1
|
Griffis JC, Bruss J, Acker SF, Shea C, Tranel D, Boes AD. Iowa Brain-Behavior Modeling Toolkit: An Open-Source MATLAB Tool for Inferential and Predictive Modeling of Imaging-Behavior and Lesion-Deficit Relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606046. [PMID: 39131280 PMCID: PMC11312523 DOI: 10.1101/2024.07.31.606046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The traditional analytical framework taken by neuroimaging studies in general, and lesion-behavior studies in particular, has been inferential in nature and has focused on identifying and interpreting statistically significant effects within the sample under study. While this framework is well-suited for hypothesis testing approaches, achieving the modern goal of precision medicine requires a different framework that is predictive in nature and that focuses on maximizing the predictive power of models and evaluating their ability to generalize beyond the data that were used to train them. However, few tools exist to support the development and evaluation of predictive models in the context of neuroimaging or lesion-behavior research, creating an obstacle to the widespread adoption of predictive modeling approaches in the field. Further, existing tools for lesion-behavior analysis are often unable to accommodate categorical outcome variables and often impose restrictions on the predictor data. Researchers therefore often must use different software packages and analytical approaches depending on whether they are addressing a classification vs. regression problem and on whether their predictor data correspond to binary lesion images, continuous lesion-network images, connectivity matrices, or other data modalities. To address these limitations, we have developed a MATLAB software toolkit that supports both inferential and predictive modeling frameworks, accommodates both classification and regression problems, and does not impose restrictions on the modality of the predictor data. The toolkit features both a graphical user interface and scripting interface, includes implementations of multiple mass-univariate, multivariate, and machine learning models, features built-in and customizable routines for hyper-parameter optimization, cross-validation, model stacking, and significance testing, and automatically generates text-based descriptions of key methodological details and modeling results to improve reproducibility and minimize errors in the reporting of methods and results. Here, we provide an overview and discussion of the toolkit features and demonstrate its functionality by applying it to the question of how expressive and receptive language impairments relate to lesion location, structural disconnection, and functional network disruption in a large sample of patients with left hemispheric brain lesions. We find that impairments in expressive vs. receptive language are most strongly associated with left lateral prefrontal and left posterior temporal/parietal damage, respectively. We also find that impairments in expressive vs. receptive language are associated with partially overlapping patterns of fronto-temporal structural disconnection, and that the associated functional networks are also similar. Importantly, we find that lesion location and lesion-derived network measures are highly predictive of both types of impairment, with predictions from models trained on these measures explaining ~30-40% of the variance on average when applied to data from patients not used to train the models. We have made the toolkit publicly available, and we have included a comprehensive set of tutorial notebooks to support new users in applying the toolkit in their studies.
Collapse
|
2
|
Adkinson BD, Rosenblatt M, Dadashkarimi J, Tejavibulya L, Jiang R, Noble S, Scheinost D. Brain-phenotype predictions of language and executive function can survive across diverse real-world data: Dataset shifts in developmental populations. Dev Cogn Neurosci 2024; 70:101464. [PMID: 39447452 PMCID: PMC11538622 DOI: 10.1016/j.dcn.2024.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Predictive modeling potentially increases the reproducibility and generalizability of neuroimaging brain-phenotype associations. Yet, the evaluation of a model in another dataset is underutilized. Among studies that undertake external validation, there is a notable lack of attention to generalization across dataset-specific idiosyncrasies (i.e., dataset shifts). Research settings, by design, remove the between-site variations that real-world and, eventually, clinical applications demand. Here, we rigorously test the ability of a range of predictive models to generalize across three diverse, unharmonized developmental samples: the Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network (n=1110), and the Human Connectome Project in Development (n=428). These datasets have high inter-dataset heterogeneity, encompassing substantial variations in age distribution, sex, racial and ethnic minority representation, recruitment geography, clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. Through advanced methodological approaches, we demonstrate that reproducible and generalizable brain-behavior associations can be realized across diverse dataset features. Results indicate the potential of functional connectome-based predictive models to be robust despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, the best predictions were not from training and testing in the same dataset (i.e., cross-validation) but across datasets. This result suggests that training on diverse data may improve prediction in specific cases. Overall, this work provides a critical foundation for future work evaluating the generalizability of brain-phenotype associations in real-world scenarios and clinical settings.
Collapse
Affiliation(s)
- Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Javid Dadashkarimi
- Department of Radiology, Athinoula. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Bioengineering, Northeastern University, Boston, MA 02120, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Zhang LB, Chen YX, Li ZJ, Geng XY, Zhao XY, Zhang FR, Bi YZ, Lu XJ, Hu L. Advances and challenges in neuroimaging-based pain biomarkers. Cell Rep Med 2024; 5:101784. [PMID: 39383872 PMCID: PMC11513815 DOI: 10.1016/j.xcrm.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/24/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
Identifying neural biomarkers of pain has long been a central theme in pain neuroscience. Here, we review the state-of-the-art candidates for neural biomarkers of acute and chronic pain. We classify these potential neural biomarkers into five categories based on the nature of their target variables, including neural biomarkers of (1) within-individual perception, (2) between-individual sensitivity, and (3) discriminability for acute pain, as well as (4) assessment and (5) prospective neural biomarkers for chronic pain. For each category, we provide a synthesized review of candidate biomarkers developed using neuroimaging techniques including functional magnetic resonance imaging (fMRI), structural magnetic resonance imaging (sMRI), and electroencephalography (EEG). We also discuss the conceptual and practical challenges in developing neural biomarkers of pain. Addressing these challenges, optimal biomarkers of pain can be developed to deepen our understanding of how the brain represents pain and ultimately help alleviate patients' suffering and improve their well-being.
Collapse
Affiliation(s)
- Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | - Yu-Xin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Jiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yi Geng
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Rui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan-Zhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Jing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Luo L, Xu H, Tian X, Zhao Y, Xiong R, Dong H, Li X, Wang Y, Luo YJ, Feng C. The Neurocomputational Mechanism Underlying Decision-Making on Unfairness to Self and Others. Neurosci Bull 2024; 40:1471-1488. [PMID: 38900383 PMCID: PMC11422400 DOI: 10.1007/s12264-024-01245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/13/2024] [Indexed: 06/21/2024] Open
Abstract
Fairness is a fundamental value in human societies, with individuals concerned about unfairness both to themselves and to others. Nevertheless, an enduring debate focuses on whether self-unfairness and other-unfairness elicit shared or distinct neuropsychological processes. To address this, we combined a three-person ultimatum game with computational modeling and advanced neuroimaging analysis techniques to unravel the behavioral, cognitive, and neural patterns underlying unfairness to self and others. Our behavioral and computational results reveal a heightened concern among participants for self-unfairness over other-unfairness. Moreover, self-unfairness consistently activates brain regions such as the anterior insula, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex, spanning various spatial scales that encompass univariate activation, local multivariate patterns, and whole-brain multivariate patterns. These regions are well-established in their association with emotional and cognitive processes relevant to fairness-based decision-making. Conversely, other-unfairness primarily engages the middle occipital gyrus. Collectively, our findings robustly support distinct neurocomputational signatures between self-unfairness and other-unfairness.
Collapse
Affiliation(s)
- Lanxin Luo
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Han Xu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xia Tian
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yue Zhao
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ruoling Xiong
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Huafeng Dong
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoqing Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yuhe Wang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yue-Jia Luo
- Institute for Neuropsychological Rehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
- School of Psychology, Shenzhen University, Shenzhen, 518061, China.
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China.
- School of Psychology, South China Normal University, Guangzhou, 510631, China.
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
5
|
Vigotsky AD, Iannetti GD, Apkarian AV. Mental state decoders: game-changers or wishful thinking? Trends Cogn Sci 2024; 28:884-895. [PMID: 38991876 DOI: 10.1016/j.tics.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
Decoding mental and perceptual states using fMRI has become increasingly popular over the past two decades, with numerous highly-cited studies published in high-profile journals. Nevertheless, what have we learned from these decoders? In this opinion, we argue that fMRI-based decoders are not neurophysiologically informative and are not, and likely cannot be, applicable to real-world decision-making. The former point stems from the fact that decoding models cannot disentangle neural mechanisms from their epiphenomena. The latter point stems from both logical and ethical constraints. Constructing decoders requires precious time and resources that should instead be directed toward scientific endeavors more likely to yield meaningful scientific progress.
Collapse
Affiliation(s)
| | - Gian Domenico Iannetti
- Italian Institute of Technology (IIT), Rome, Italy; University College London (UCL), London, UK
| | | |
Collapse
|
6
|
Li Q, Song K, Feng T, Zhang J, Fang X. Machine learning identifies different related factors associated with depression and suicidal ideation in Chinese children and adolescents. J Affect Disord 2024; 361:24-35. [PMID: 38844165 DOI: 10.1016/j.jad.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/04/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Depression and suicidal ideation often co-occur in children and adolescents, yet they possess distinct characteristics. This study sought to identify the different related factors associated with depression and suicidal ideation. METHODS A nationwide cross-sectional survey collected data from Chinese children and adolescents aged 8 to 18 (N = 160,962; 48.91 % girls). The survey included inquiries about demographics, depression, suicidal ideation, anxiety, perceived stress, academic burnout, internet addiction, non-suicidal self-injury, bullying, and being bullied. Fifteen machine learning algorithms were conducted to identify the different related factors associated with depression and suicidal ideation. Additionally, we conducted external validation on an independent sample of 1,812,889 children and adolescents. RESULTS Our findings revealed seven related factors linked to depression and six associated with suicidal ideation, with average accuracy rates of 86.86 % and 85.82 %, respectively. For depression, the most influential factors were anxiety, perceived stress, academic burnout, internet addiction, non-suicidal self-injury, experience of bullying, and age. Similarly, anxiety, non-suicidal self-injury, perceived stress, internet addiction, academic burnout, and age emerged as paramount factors for suicidal ideation. Moreover, these related factors showed notable variations in their predictive capacities for depression and suicidal ideation across different subgroups. CONCLUSION Anxiety emerged as the predominant shared factor for both depression and suicidal ideation, whereas the other related factors displayed distinct predictive patterns for each condition. These findings highlight the critical need for tailored strategies from public mental health service providers and policymakers to address the pressing concerns of depression and suicidal ideation.
Collapse
Affiliation(s)
- Qingyin Li
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China
| | - Kunru Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tao Feng
- Beijing Mind Data & Analysis Technology Co. Ltd, Beijing, China
| | - Jintao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Xiaoyi Fang
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
7
|
Dzialas V, Doering E, Eich H, Strafella AP, Vaillancourt DE, Simonyan K, van Eimeren T. Houston, We Have AI Problem! Quality Issues with Neuroimaging-Based Artificial Intelligence in Parkinson's Disease: A Systematic Review. Mov Disord 2024. [PMID: 39235364 DOI: 10.1002/mds.30002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
In recent years, many neuroimaging studies have applied artificial intelligence (AI) to facilitate existing challenges in Parkinson's disease (PD) diagnosis, prognosis, and intervention. The aim of this systematic review was to provide an overview of neuroimaging-based AI studies and to assess their methodological quality. A PubMed search yielded 810 studies, of which 244 that investigated the utility of neuroimaging-based AI for PD diagnosis, prognosis, or intervention were included. We systematically categorized studies by outcomes and rated them with respect to five minimal quality criteria (MQC) pertaining to data splitting, data leakage, model complexity, performance reporting, and indication of biological plausibility. We found that the majority of studies aimed to distinguish PD patients from healthy controls (54%) or atypical parkinsonian syndromes (25%), whereas prognostic or interventional studies were sparse. Only 20% of evaluated studies passed all five MQC, with data leakage, non-minimal model complexity, and reporting of biological plausibility as the primary factors for quality loss. Data leakage was associated with a significant inflation of accuracies. Very few studies employed external test sets (8%), where accuracy was significantly lower, and 19% of studies did not account for data imbalance. Adherence to MQC was low across all observed years and journal impact factors. This review outlines that AI has been applied to a wide variety of research questions pertaining to PD; however, the number of studies failing to pass the MQC is alarming. Therefore, we provide recommendations to enhance the interpretability, generalizability, and clinical utility of future AI applications using neuroimaging in PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Verena Dzialas
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Elena Doering
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Helena Eich
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Antonio P Strafella
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Krembil Brain Institute, University Health Network, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Ashames MMA, Demir A, Gerek ON, Fidan M, Gulmezoglu MB, Ergin S, Edizkan R, Koc M, Barkana A, Calisir C. Are deep learning classification results obtained on CT scans fair and interpretable? Phys Eng Sci Med 2024; 47:967-979. [PMID: 38573489 PMCID: PMC11408573 DOI: 10.1007/s13246-024-01419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Following the great success of various deep learning methods in image and object classification, the biomedical image processing society is also overwhelmed with their applications to various automatic diagnosis cases. Unfortunately, most of the deep learning-based classification attempts in the literature solely focus on the aim of extreme accuracy scores, without considering interpretability, or patient-wise separation of training and test data. For example, most lung nodule classification papers using deep learning randomly shuffle data and split it into training, validation, and test sets, causing certain images from the Computed Tomography (CT) scan of a person to be in the training set, while other images of the same person to be in the validation or testing image sets. This can result in reporting misleading accuracy rates and the learning of irrelevant features, ultimately reducing the real-life usability of these models. When the deep neural networks trained on the traditional, unfair data shuffling method are challenged with new patient images, it is observed that the trained models perform poorly. In contrast, deep neural networks trained with strict patient-level separation maintain their accuracy rates even when new patient images are tested. Heat map visualizations of the activations of the deep neural networks trained with strict patient-level separation indicate a higher degree of focus on the relevant nodules. We argue that the research question posed in the title has a positive answer only if the deep neural networks are trained with images of patients that are strictly isolated from the validation and testing patient sets.
Collapse
Affiliation(s)
- Mohamad M A Ashames
- Department of Electrical and Electronics Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ahmet Demir
- Department of Electrical and Electronics Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Omer N Gerek
- Department of Electrical and Electronics Engineering, Eskisehir Technical University, Eskisehir, Turkey
| | - Mehmet Fidan
- Vocational School of Transportation, Eskisehir Technical University, Eskisehir, Turkey
| | - M Bilginer Gulmezoglu
- Department of Electrical and Electronics Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Semih Ergin
- Department of Electrical and Electronics Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Rifat Edizkan
- Department of Electrical and Electronics Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mehmet Koc
- Department of Computer Engineering, Eskisehir Technical University, Eskisehir, Turkey.
| | - Atalay Barkana
- Department of Electrical and Electronics Engineering, Eskisehir Technical University, Eskisehir, Turkey
| | - Cuneyt Calisir
- Department of Radiology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
9
|
Iqbal MS, Belal Bin Heyat M, Parveen S, Ammar Bin Hayat M, Roshanzamir M, Alizadehsani R, Akhtar F, Sayeed E, Hussain S, Hussein HS, Sawan M. Progress and trends in neurological disorders research based on deep learning. Comput Med Imaging Graph 2024; 116:102400. [PMID: 38851079 DOI: 10.1016/j.compmedimag.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
In recent years, deep learning (DL) has emerged as a powerful tool in clinical imaging, offering unprecedented opportunities for the diagnosis and treatment of neurological disorders (NDs). This comprehensive review explores the multifaceted role of DL techniques in leveraging vast datasets to advance our understanding of NDs and improve clinical outcomes. Beginning with a systematic literature review, we delve into the utilization of DL, particularly focusing on multimodal neuroimaging data analysis-a domain that has witnessed rapid progress and garnered significant scientific interest. Our study categorizes and critically analyses numerous DL models, including Convolutional Neural Networks (CNNs), LSTM-CNN, GAN, and VGG, to understand their performance across different types of Neurology Diseases. Through particular analysis, we identify key benchmarks and datasets utilized in training and testing DL models, shedding light on the challenges and opportunities in clinical neuroimaging research. Moreover, we discuss the effectiveness of DL in real-world clinical scenarios, emphasizing its potential to revolutionize ND diagnosis and therapy. By synthesizing existing literature and describing future directions, this review not only provides insights into the current state of DL applications in ND analysis but also covers the way for the development of more efficient and accessible DL techniques. Finally, our findings underscore the transformative impact of DL in reshaping the landscape of clinical neuroimaging, offering hope for enhanced patient care and groundbreaking discoveries in the field of neurology. This review paper is beneficial for neuropathologists and new researchers in this field.
Collapse
Affiliation(s)
- Muhammad Shahid Iqbal
- Department of Computer Science and Information Technology, Women University of Azad Jammu & Kashmir, Bagh, Pakistan.
| | - Md Belal Bin Heyat
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| | - Saba Parveen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | - Mohamad Roshanzamir
- Department of Computer Engineering, Faculty of Engineering, Fasa University, Fasa, Iran.
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, VIC 3216, Australia.
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Eram Sayeed
- Kisan Inter College, Dhaurahara, Kushinagar, India.
| | - Sadiq Hussain
- Department of Examination, Dibrugarh University, Assam 786004, India.
| | - Hany S Hussein
- Electrical Engineering Department, Faculty of Engineering, King Khalid University, Abha 61411, Saudi Arabia; Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81528, Egypt.
| | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Sundermann B, Pfleiderer B, McLeod A, Mathys C. Seeing more than the Tip of the Iceberg: Approaches to Subthreshold Effects in Functional Magnetic Resonance Imaging of the Brain. Clin Neuroradiol 2024; 34:531-539. [PMID: 38842737 PMCID: PMC11339104 DOI: 10.1007/s00062-024-01422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
Many functional magnetic resonance imaging (fMRI) studies and presurgical mapping applications rely on mass-univariate inference with subsequent multiple comparison correction. Statistical results are frequently visualized as thresholded statistical maps. This approach has inherent limitations including the risk of drawing overly-selective conclusions based only on selective results passing such thresholds. This article gives an overview of both established and newly emerging scientific approaches to supplement such conventional analyses by incorporating information about subthreshold effects with the aim to improve interpretation of findings or leverage a wider array of information. Topics covered include neuroimaging data visualization, p-value histogram analysis and the related Higher Criticism approach for detecting rare and weak effects. Further examples from multivariate analyses and dedicated Bayesian approaches are provided.
Collapse
Affiliation(s)
- Benedikt Sundermann
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Clinic of Radiology, Medical Faculty, University of Münster, Münster, Germany.
| | - Bettina Pfleiderer
- Clinic of Radiology, Medical Faculty, University of Münster, Münster, Germany
| | - Anke McLeod
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Long Y, Ren J, Cheng F, Duan Y, Wang B, Sun Y, Sun Q, Bian L, Yi J, Qin Y, Huang R, Guo W, Jiang H, Liu C, Feng X, Qin L. Identifying gray matter alterations in Cushing's disease using machine learning: An interpretable approach. Med Phys 2024; 51:5479-5491. [PMID: 38558279 DOI: 10.1002/mp.17032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Cushing's Disease (CD) is a rare clinical syndrome characterized by excessive secretion of adrenocorticotrophic hormone, leading to significant functional and structural brain alterations as observed in Magnetic Resonance Imaging (MRI). While traditional statistical analysis has been widely employed to investigate these MRI changes in CD, it has lacked the ability to predict individual-level outcomes. PURPOSE To address this problem, this paper has proposed an interpretable machine learning (ML) framework, including model-level assessment, feature-level assessment, and biology-level assessment to ensure a comprehensive analysis based on structural MRI of CD. METHODS The ML framework has effectively identified the changes in brain regions in the stage of model-level assessment, verified the effectiveness of these altered brain regions to predict CD from normal controls in the stage of feature-level assessment, and carried out a correlation analysis between altered brain regions and clinical symptoms in the stage of biology-level assessment. RESULTS The experimental results of this study have demonstrated that the Insula, Fusiform gyrus, Superior frontal gyrus, Precuneus, and the opercular portion of the Inferior frontal gyrus of CD showed significant alterations in brain regions. Furthermore, our study has revealed significant correlations between clinical symptoms and the frontotemporal lobes, insulin, and olfactory cortex, which also have been confirmed by previous studies. CONCLUSIONS The ML framework proposed in this study exhibits exceptional potential in uncovering the intricate pathophysiological mechanisms underlying CD, with potential applicability in diagnosing other diseases.
Collapse
Affiliation(s)
- Yue Long
- College of Computer, Chengdu University, Chengdu, China
| | - Jie Ren
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - FuChao Cheng
- College of Computer, Chengdu University, Chengdu, China
| | - YuMei Duan
- Department of Computer and Software, Chengdu Jincheng College, Chengdu, China
| | - BaoFeng Wang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - QingFang Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Rui Jin Lu Wan Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LiuGuan Bian
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - JunChen Yi
- International Foundation ProgramInternational CollegeGuangxi University, Guangxi, China
| | - Ying Qin
- College of Computer, Chengdu University, Chengdu, China
| | | | - WeiTong Guo
- College of Computer, Chengdu University, Chengdu, China
| | - Hong Jiang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Rui Jin Lu Wan Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- College of Computer, Chengdu University, Chengdu, China
| | - Xiao Feng
- College of Computer, Chengdu University, Chengdu, China
| | - Ling Qin
- College of Computer, Chengdu University, Chengdu, China
| |
Collapse
|
12
|
Gan X, Zhou F, Xu T, Liu X, Zhang R, Zheng Z, Yang X, Zhou X, Yu F, Li J, Cui R, Wang L, Yuan J, Yao D, Becker B. A neurofunctional signature of subjective disgust generalizes to oral distaste and socio-moral contexts. Nat Hum Behav 2024; 8:1383-1402. [PMID: 38641635 DOI: 10.1038/s41562-024-01868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
While disgust originates in the hard-wired mammalian distaste response, the conscious experience of disgust in humans strongly depends on subjective appraisal and may even extend to socio-moral contexts. Here, in a series of studies, we combined functional magnetic resonance imaging with machine-learning-based predictive modelling to establish a comprehensive neurobiological model of subjective disgust. The developed neurofunctional signature accurately predicted momentary self-reported subjective disgust across discovery (n = 78) and pre-registered validation (n = 30) cohorts and generalized across core disgust (n = 34 and n = 26), gustatory distaste (n = 30) and socio-moral (unfair offers; n = 43) contexts. Disgust experience was encoded in distributed cortical and subcortical systems, and exhibited distinct and shared neural representations with subjective fear or negative affect in interoceptive-emotional awareness and conscious appraisal systems, while the signatures most accurately predicted the respective target experience. We provide an accurate functional magnetic resonance imaging signature for disgust with a high potential to resolve ongoing evolutionary debates.
Collapse
Affiliation(s)
- Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Liu
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zihao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Yang
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Xinqi Zhou
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- Max Planck School of Cognition, Leipzig, Germany
| | - Ruifang Cui
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiajin Yuan
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Dezhong Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
- Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Tan H, Zeng X, Ni J, Liang K, Xu C, Zhang Y, Wang J, Li Z, Yang J, Han C, Gao Y, Yu X, Han S, Meng F, Ma Y. Intracranial EEG signals disentangle multi-areal neural dynamics of vicarious pain perception. Nat Commun 2024; 15:5203. [PMID: 38890380 PMCID: PMC11189531 DOI: 10.1038/s41467-024-49541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Empathy enables understanding and sharing of others' feelings. Human neuroimaging studies have identified critical brain regions supporting empathy for pain, including the anterior insula (AI), anterior cingulate (ACC), amygdala, and inferior frontal gyrus (IFG). However, to date, the precise spatio-temporal profiles of empathic neural responses and inter-regional communications remain elusive. Here, using intracranial electroencephalography, we investigated electrophysiological signatures of vicarious pain perception. Others' pain perception induced early increases in high-gamma activity in IFG, beta power increases in ACC, but decreased beta power in AI and amygdala. Vicarious pain perception also altered the beta-band-coordinated coupling between ACC, AI, and amygdala, as well as increased modulation of IFG high-gamma amplitudes by beta phases of amygdala/AI/ACC. We identified a necessary combination of neural features for decoding vicarious pain perception. These spatio-temporally specific regional activities and inter-regional interactions within the empathy network suggest a neurodynamic model of human pain empathy.
Collapse
Affiliation(s)
- Huixin Tan
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Xiaoyu Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jun Ni
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Kun Liang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Zizhou Li
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Chunlei Han
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Gao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Fangang Meng
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
14
|
Teghipco A, Newman-Norlund R, Gibson M, Bonilha L, Absher J, Fridriksson J, Rorden C. Stable multivariate lesion symptom mapping. APERTURE NEURO 2024; 4:10.52294/001c.117311. [PMID: 39364269 PMCID: PMC11449259 DOI: 10.52294/001c.117311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Multivariate lesion-symptom mapping (MLSM) considers lesion information across the entire brain to predict impairments. The strength of this approach is also its weakness-considering many brain features together synergistically can uncover complex brain-behavior relationships but exposes a high-dimensional feature space that a model is expected to learn. Successfully distinguishing between features in this landscape can be difficult for models, particularly in the presence of irrelevant or redundant features. Here, we propose stable multivariate lesion-symptom mapping (sMLSM), which integrates the identification of reliable features with stability selection into conventional MLSM and describe our open-source MATLAB implementation. Usage is showcased with our publicly available dataset of chronic stroke survivors (N=167) and further validated in our independent public acute stroke dataset (N = 1106). We demonstrate that sMLSM eliminates inconsistent features highlighted by MLSM, reduces variation in feature weights, enables the model to learn more complex patterns of brain damage, and improves model accuracy for predicting aphasia severity in a way that tends to be robust regarding the choice of parameters for identifying reliable features. Critically, sMLSM more consistently outperforms predictions based on lesion size alone. This advantage is evident starting at modest sample sizes (N>75). Spatial distribution of feature importance is different in sMLSM, which highlights the features identified by univariate lesion symptom mapping while also implicating select regions emphasized by MLSM. Beyond improved prediction accuracy, sMLSM can offer deeper insight into reliable biomarkers of impairment, informing our understanding of neurobiology.
Collapse
Affiliation(s)
- Alex Teghipco
- Communication Sciences & Disorders, University of South Carolina
| | | | | | - Leonardo Bonilha
- Communication Sciences & Disorders, University of South Carolina
- Neurology, University of South Carolina School of Medicine
| | - John Absher
- Neurology, University of South Carolina School of Medicine
- School of Health Research, Clemson University
- Medicine, Neurosurgery and Radiology, Prisma Health
| | | | | |
Collapse
|
15
|
Chen Y, Zekelman LR, Zhang C, Xue T, Song Y, Makris N, Rathi Y, Golby AJ, Cai W, Zhang F, O'Donnell LJ. TractGeoNet: A geometric deep learning framework for pointwise analysis of tract microstructure to predict language assessment performance. Med Image Anal 2024; 94:103120. [PMID: 38458095 PMCID: PMC11016451 DOI: 10.1016/j.media.2024.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/30/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
We propose a geometric deep-learning-based framework, TractGeoNet, for performing regression using diffusion magnetic resonance imaging (dMRI) tractography and associated pointwise tissue microstructure measurements. By employing a point cloud representation, TractGeoNet can directly utilize tissue microstructure and positional information from all points within a fiber tract without the need to average or bin data along the streamline as traditionally required by dMRI tractometry methods. To improve regression performance, we propose a novel loss function, the Paired-Siamese Regression loss, which encourages the model to focus on accurately predicting the relative differences between regression label scores rather than just their absolute values. In addition, to gain insight into the brain regions that contribute most strongly to the prediction results, we propose a Critical Region Localization algorithm. This algorithm identifies highly predictive anatomical regions within the white matter fiber tracts for the regression task. We evaluate the effectiveness of the proposed method by predicting individual performance on two neuropsychological assessments of language using a dataset of 20 association white matter fiber tracts from 806 subjects from the Human Connectome Project Young Adult dataset. The results demonstrate superior prediction performance of TractGeoNet compared to several popular regression models that have been applied to predict individual cognitive performance based on neuroimaging features. Of the twenty tracts studied, we find that the left arcuate fasciculus tract is the most highly predictive of the two studied language performance assessments. Within each tract, we localize critical regions whose microstructure and point information are highly and consistently predictive of language performance across different subjects and across multiple independently trained models. These critical regions are widespread and distributed across both hemispheres and all cerebral lobes, including areas of the brain considered important for language function such as superior and anterior temporal regions, pars opercularis, and precentral gyrus. Overall, TractGeoNet demonstrates the potential of geometric deep learning to enhance the study of the brain's white matter fiber tracts and to relate their structure to human traits such as language performance.
Collapse
Affiliation(s)
- Yuqian Chen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Leo R Zekelman
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Chaoyi Zhang
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Tengfei Xue
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Nikos Makris
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weidong Cai
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Harp NR, Wager TD, Kober H. Neuromarkers in addiction: definitions, development strategies, and recent advances. J Neural Transm (Vienna) 2024; 131:509-523. [PMID: 38630190 DOI: 10.1007/s00702-024-02766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Substance use disorders (SUDs) are the most costly and prevalent psychiatric conditions. Recent calls emphasize a need for biomarkers-measurable, stable indicators of normal and abnormal processes and response to treatment or environmental agents-and, in particular, brain-based neuromarkers that will advance understanding of the neurobiological basis of SUDs and clinical practice. To develop neuromarkers, researchers must be grounded in evidence that a putative marker (i) is sensitive and specific to the psychological phenomenon of interest, (ii) constitutes a predictive model, and (iii) generalizes to novel observations (e.g., through internal cross-validation and external application to novel data). These neuromarkers may be used to index risk of developing SUDs (susceptibility), classify individuals with SUDs (diagnostic), assess risk for progression to more severe pathology (prognostic) or index current severity of pathology (monitoring), detect response to treatment (response), and predict individualized treatment outcomes (predictive). Here, we outline guidelines for developing and assessing neuromarkers, we then review recent advances toward neuromarkers in addiction neuroscience centering our discussion around neuromarkers of craving-a core feature of SUDs. In doing so, we specifically focus on the Neurobiological Craving Signature (NCS), which show great promise for meeting the demand of neuromarkers.
Collapse
Affiliation(s)
- Nicholas R Harp
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Tor D Wager
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Hedy Kober
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
17
|
Wiersch L, Friedrich P, Hamdan S, Komeyer V, Hoffstaedter F, Patil KR, Eickhoff SB, Weis S. Sex classification from functional brain connectivity: Generalization to multiple datasets. Hum Brain Mapp 2024; 45:e26683. [PMID: 38647035 PMCID: PMC11034006 DOI: 10.1002/hbm.26683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Machine learning (ML) approaches are increasingly being applied to neuroimaging data. Studies in neuroscience typically have to rely on a limited set of training data which may impair the generalizability of ML models. However, it is still unclear which kind of training sample is best suited to optimize generalization performance. In the present study, we systematically investigated the generalization performance of sex classification models trained on the parcelwise connectivity profile of either single samples or compound samples of two different sizes. Generalization performance was quantified in terms of mean across-sample classification accuracy and spatial consistency of accurately classifying parcels. Our results indicate that the generalization performance of parcelwise classifiers (pwCs) trained on single dataset samples is dependent on the specific test samples. Certain datasets seem to "match" in the sense that classifiers trained on a sample from one dataset achieved a high accuracy when tested on the respected other one and vice versa. The pwCs trained on the compound samples demonstrated overall highest generalization performance for all test samples, including one derived from a dataset not included in building the training samples. Thus, our results indicate that both a large sample size and a heterogeneous data composition of a training sample have a central role in achieving generalizable results.
Collapse
Affiliation(s)
- Lisa Wiersch
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Patrick Friedrich
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Sami Hamdan
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Vera Komeyer
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
- Department of Biology, Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Felix Hoffstaedter
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Kaustubh R. Patil
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Simon B. Eickhoff
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Susanne Weis
- Institute of Systems NeuroscienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| |
Collapse
|
18
|
Kim HJ, Lux BK, Lee E, Finn ES, Woo CW. Brain decoding of spontaneous thought: Predictive modeling of self-relevance and valence using personal narratives. Proc Natl Acad Sci U S A 2024; 121:e2401959121. [PMID: 38547065 PMCID: PMC10998624 DOI: 10.1073/pnas.2401959121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024] Open
Abstract
The contents and dynamics of spontaneous thought are important factors for personality traits and mental health. However, assessing spontaneous thoughts is challenging due to their unconstrained nature, and directing participants' attention to report their thoughts may fundamentally alter them. Here, we aimed to decode two key content dimensions of spontaneous thought-self-relevance and valence-directly from brain activity. To train functional MRI-based predictive models, we used individually generated personal stories as stimuli in a story-reading task to mimic narrative-like spontaneous thoughts (n = 49). We then tested these models on multiple test datasets (total n = 199). The default mode, ventral attention, and frontoparietal networks played key roles in the predictions, with the anterior insula and midcingulate cortex contributing to self-relevance prediction and the left temporoparietal junction and dorsomedial prefrontal cortex contributing to valence prediction. Overall, this study presents brain models of internal thoughts and emotions, highlighting the potential for the brain decoding of spontaneous thought.
Collapse
Affiliation(s)
- Hong Ji Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, South Korea
| | - Byeol Kim Lux
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Psychological and Brain Sciences, Dartmouth College, NH03755
| | - Eunjin Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, South Korea
| | - Emily S. Finn
- Department of Psychological and Brain Sciences, Dartmouth College, NH03755
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, South Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon16419, South Korea
| |
Collapse
|
19
|
Wiersch L, Friedrich P, Hamdan S, Komeyer V, Hoffstaedter F, Patil KR, Eickhoff SB, Weis S. Sex classification from functional brain connectivity: Generalization to multiple datasets Generalizability of sex classifiers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.30.555495. [PMID: 37693374 PMCID: PMC10491190 DOI: 10.1101/2023.08.30.555495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Machine learning (ML) approaches are increasingly being applied to neuroimaging data. Studies in neuroscience typically have to rely on a limited set of training data which may impair the generalizability of ML models. However, it is still unclear which kind of training sample is best suited to optimize generalization performance. In the present study, we systematically investigated the generalization performance of sex classification models trained on the parcelwise connectivity profile of either single samples or a compound sample containing data from four different datasets. Generalization performance was quantified in terms of mean across-sample classification accuracy and spatial consistency of accurately classifying parcels. Our results indicate that generalization performance of pwCs trained on single dataset samples is dependent on the specific test samples. Certain datasets seem to "match" in the sense that classifiers trained on a sample from one dataset achieved a high accuracy when tested on the respected other one and vice versa. The pwC trained on the compound sample demonstrated overall highest generalization performance for all test samples, including one derived from a dataset not included in building the training samples. Thus, our results indicate that a big and heterogenous training sample comprising data of multiple datasets is best suited to achieve generalizable results.
Collapse
Affiliation(s)
- Lisa Wiersch
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Patrick Friedrich
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Sami Hamdan
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Vera Komeyer
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Department of Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Susanne Weis
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
20
|
Wen Z, Pace-Schott EF, Lazar SW, Rosén J, Åhs F, Phelps EA, LeDoux JE, Milad MR. Distributed neural representations of conditioned threat in the human brain. Nat Commun 2024; 15:2231. [PMID: 38472184 PMCID: PMC10933283 DOI: 10.1038/s41467-024-46508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Detecting and responding to threat engages several neural nodes including the amygdala, hippocampus, insular cortex, and medial prefrontal cortices. Recent propositions call for the integration of more distributed neural nodes that process sensory and cognitive facets related to threat. Integrative, sensitive, and reproducible distributed neural decoders for the detection and response to threat and safety have yet to be established. We combine functional MRI data across varying threat conditioning and negative affect paradigms from 1465 participants with multivariate pattern analysis to investigate distributed neural representations of threat and safety. The trained decoders sensitively and specifically distinguish between threat and safety cues across multiple datasets. We further show that many neural nodes dynamically shift representations between threat and safety. Our results establish reproducible decoders that integrate neural circuits, merging the well-characterized 'threat circuit' with sensory and cognitive nodes, discriminating threat from safety regardless of experimental designs or data acquisition parameters.
Collapse
Affiliation(s)
- Zhenfu Wen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Edward F Pace-Schott
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sara W Lazar
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jörgen Rosén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Åhs
- Department of Psychology and Social Work, Mid Sweden University, Östersund, Sweden
| | | | - Joseph E LeDoux
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
21
|
Han J, Zhuang K, Chen X, Xiao M, Liu Y, Song S, Gao X, Chen H. Connectivity-based neuromarker for children's inhibitory control ability and its relevance to body mass index. Child Neuropsychol 2024:1-18. [PMID: 38375872 DOI: 10.1080/09297049.2024.2314956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
Preserving a normal body mass index (BMI) is crucial for the healthy growth and development of children. As a core aspect of executive functions, inhibitory control plays a pivotal role in maintaining a normal BMI, which is key to preventing issues of childhood obesity. By studying individual variations in inhibitory control performance and its associated connectivity-based neuromarker in a sample of primary school students (N = 64; 9-12 yr), we aimed to unravel the pathway through which inhibitory control impacts children's BMI. Utilizing resting-state functional MRI scans and a connectivity-based psychometric prediction framework, we found that enhanced inhibitory control abilities were primarily associated with increased functional connectivity in brain structures vital to executive functions, such as the superior frontal lobule, superior parietal lobule, and posterior cingulate cortex. Conversely, inhibitory control abilities displayed a negative relationship with functional connectivity originating from reward-related brain structures, such as the orbital frontal and ventral medial prefrontal lobes. Furthermore, we revealed that both inhibitory control and its corresponding neuromarker can moderate the association between food-related delayed gratification and BMI in children. However, only the neuromarker of inhibitory control maintained its moderating effect on children's future BMI, as determined in the follow-up after one year. Overall, our findings shed light on the potential mechanisms of how inhibitory control in children impacts BMI, highlighting the utility of the connectivity-based neuromarker of inhibitory control in the context of childhood obesity.
Collapse
Affiliation(s)
- Jinfeng Han
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Shiqing Song
- Faculty of Psychology, Shaanxi Normal University, Xi'an, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Adkinson BD, Rosenblatt M, Dadashkarimi J, Tejavibulya L, Jiang R, Noble S, Scheinost D. Brain-phenotype predictions can survive across diverse real-world data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576916. [PMID: 38328100 PMCID: PMC10849571 DOI: 10.1101/2024.01.23.576916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Recent work suggests that machine learning models predicting psychiatric treatment outcomes based on clinical data may fail when applied to unharmonized samples. Neuroimaging predictive models offer the opportunity to incorporate neurobiological information, which may be more robust to dataset shifts. Yet, among the minority of neuroimaging studies that undertake any form of external validation, there is a notable lack of attention to generalization across dataset-specific idiosyncrasies. Research settings, by design, remove the between-site variations that real-world and, eventually, clinical applications demand. Here, we rigorously test the ability of a range of predictive models to generalize across three diverse, unharmonized samples: the Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network (n=1110), and the Human Connectome Project in Development (n=428). These datasets have high inter-dataset heterogeneity, encompassing substantial variations in age distribution, sex, racial and ethnic minority representation, recruitment geography, clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. We demonstrate that reproducible and generalizable brain-behavior associations can be realized across diverse dataset features with sample sizes in the hundreds. Results indicate the potential of functional connectivity-based predictive models to be robust despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, the best predictions were not from training and testing in the same dataset (i.e., cross-validation) but across datasets. This result suggests that training on diverse data may improve prediction in specific cases. Overall, this work provides a critical foundation for future work evaluating the generalizability of neuroimaging predictive models in real-world scenarios and clinical settings.
Collapse
Affiliation(s)
- Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Javid Dadashkarimi
- Department of Radiology, Athinoula. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02129, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02120, USA
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
23
|
Belov V, Erwin-Grabner T, Aghajani M, Aleman A, Amod AR, Basgoze Z, Benedetti F, Besteher B, Bülow R, Ching CRK, Connolly CG, Cullen K, Davey CG, Dima D, Dols A, Evans JW, Fu CHY, Gonul AS, Gotlib IH, Grabe HJ, Groenewold N, Hamilton JP, Harrison BJ, Ho TC, Mwangi B, Jaworska N, Jahanshad N, Klimes-Dougan B, Koopowitz SM, Lancaster T, Li M, Linden DEJ, MacMaster FP, Mehler DMA, Melloni E, Mueller BA, Ojha A, Oudega ML, Penninx BWJH, Poletti S, Pomarol-Clotet E, Portella MJ, Pozzi E, Reneman L, Sacchet MD, Sämann PG, Schrantee A, Sim K, Soares JC, Stein DJ, Thomopoulos SI, Uyar-Demir A, van der Wee NJA, van der Werff SJA, Völzke H, Whittle S, Wittfeld K, Wright MJ, Wu MJ, Yang TT, Zarate C, Veltman DJ, Schmaal L, Thompson PM, Goya-Maldonado R. Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures. Sci Rep 2024; 14:1084. [PMID: 38212349 PMCID: PMC10784593 DOI: 10.1038/s41598-023-47934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/19/2023] [Indexed: 01/13/2024] Open
Abstract
Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.
Collapse
Affiliation(s)
- Vladimir Belov
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Tracy Erwin-Grabner
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute of Education and Child Studies, Section Forensic Family and Youth Care, Leiden University, Leiden, The Netherlands
| | - Andre Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alyssa R Amod
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Zeynep Basgoze
- Department of Psychiatry and Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Francesco Benedetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Robin Bülow
- Institute for Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Colm G Connolly
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Kathryn Cullen
- Department of Psychiatry and Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Annemiek Dols
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute for Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia H Y Fu
- School of Psychology, University of East London, London, UK
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ali Saffet Gonul
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Nynke Groenewold
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Tiffany C Ho
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benson Mwangi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center Of Excellence On Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Natalia Jaworska
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | | | | | - Thomas Lancaster
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - David E J Linden
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Frank P MacMaster
- Departments of Psychiatry and Pediatrics, University of Calgary, Calgary, AB, Canada
| | - David M A Mehler
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Elisa Melloni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mardien L Oudega
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sara Poletti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Maria J Portella
- Sant Pau Mental Health Research Group, Institut de Recerca de L'Hospital de La Santa Creu I Sant Pau, Barcelona, Catalonia, Spain
| | - Elena Pozzi
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jair C Soares
- Center Of Excellence On Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dan J Stein
- SA MRC Research Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Aslihan Uyar-Demir
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey
| | - Nic J A van der Wee
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven J A van der Werff
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/ Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Mon-Ju Wu
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center Of Excellence On Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tony T Yang
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, Bethesda, MD, USA
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
24
|
Hussain D, Al-Masni MA, Aslam M, Sadeghi-Niaraki A, Hussain J, Gu YH, Naqvi RA. Revolutionizing tumor detection and classification in multimodality imaging based on deep learning approaches: Methods, applications and limitations. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:857-911. [PMID: 38701131 DOI: 10.3233/xst-230429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND The emergence of deep learning (DL) techniques has revolutionized tumor detection and classification in medical imaging, with multimodal medical imaging (MMI) gaining recognition for its precision in diagnosis, treatment, and progression tracking. OBJECTIVE This review comprehensively examines DL methods in transforming tumor detection and classification across MMI modalities, aiming to provide insights into advancements, limitations, and key challenges for further progress. METHODS Systematic literature analysis identifies DL studies for tumor detection and classification, outlining methodologies including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and their variants. Integration of multimodality imaging enhances accuracy and robustness. RESULTS Recent advancements in DL-based MMI evaluation methods are surveyed, focusing on tumor detection and classification tasks. Various DL approaches, including CNNs, YOLO, Siamese Networks, Fusion-Based Models, Attention-Based Models, and Generative Adversarial Networks, are discussed with emphasis on PET-MRI, PET-CT, and SPECT-CT. FUTURE DIRECTIONS The review outlines emerging trends and future directions in DL-based tumor analysis, aiming to guide researchers and clinicians toward more effective diagnosis and prognosis. Continued innovation and collaboration are stressed in this rapidly evolving domain. CONCLUSION Conclusions drawn from literature analysis underscore the efficacy of DL approaches in tumor detection and classification, highlighting their potential to address challenges in MMI analysis and their implications for clinical practice.
Collapse
Affiliation(s)
- Dildar Hussain
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Mohammed A Al-Masni
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Muhammad Aslam
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Abolghasem Sadeghi-Niaraki
- Department of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Korea
| | - Jamil Hussain
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Rizwan Ali Naqvi
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, Korea
| |
Collapse
|
25
|
Lin C, Bulls LS, Tepfer LJ, Vyas AD, Thornton MA. Advancing Naturalistic Affective Science with Deep Learning. AFFECTIVE SCIENCE 2023; 4:550-562. [PMID: 37744976 PMCID: PMC10514024 DOI: 10.1007/s42761-023-00215-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023]
Abstract
People express their own emotions and perceive others' emotions via a variety of channels, including facial movements, body gestures, vocal prosody, and language. Studying these channels of affective behavior offers insight into both the experience and perception of emotion. Prior research has predominantly focused on studying individual channels of affective behavior in isolation using tightly controlled, non-naturalistic experiments. This approach limits our understanding of emotion in more naturalistic contexts where different channels of information tend to interact. Traditional methods struggle to address this limitation: manually annotating behavior is time-consuming, making it infeasible to do at large scale; manually selecting and manipulating stimuli based on hypotheses may neglect unanticipated features, potentially generating biased conclusions; and common linear modeling approaches cannot fully capture the complex, nonlinear, and interactive nature of real-life affective processes. In this methodology review, we describe how deep learning can be applied to address these challenges to advance a more naturalistic affective science. First, we describe current practices in affective research and explain why existing methods face challenges in revealing a more naturalistic understanding of emotion. Second, we introduce deep learning approaches and explain how they can be applied to tackle three main challenges: quantifying naturalistic behaviors, selecting and manipulating naturalistic stimuli, and modeling naturalistic affective processes. Finally, we describe the limitations of these deep learning methods, and how these limitations might be avoided or mitigated. By detailing the promise and the peril of deep learning, this review aims to pave the way for a more naturalistic affective science.
Collapse
Affiliation(s)
- Chujun Lin
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Landry S. Bulls
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Lindsey J. Tepfer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Amisha D. Vyas
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Mark A. Thornton
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA
| |
Collapse
|
26
|
Zhu H, Li T, Zhao B. Statistical Learning Methods for Neuroimaging Data Analysis with Applications. Annu Rev Biomed Data Sci 2023; 6:73-104. [PMID: 37127052 DOI: 10.1146/annurev-biodatasci-020722-100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The aim of this review is to provide a comprehensive survey of statistical challenges in neuroimaging data analysis, from neuroimaging techniques to large-scale neuroimaging studies and statistical learning methods. We briefly review eight popular neuroimaging techniques and their potential applications in neuroscience research and clinical translation. We delineate four themes of neuroimaging data and review major image processing analysis methods for processing neuroimaging data at the individual level. We briefly review four large-scale neuroimaging-related studies and a consortium on imaging genomics and discuss four themes of neuroimaging data analysis at the population level. We review nine major population-based statistical analysis methods and their associated statistical challenges and present recent progress in statistical methodology to address these challenges.
Collapse
Affiliation(s)
- Hongtu Zhu
- Department of Biostatistics, Department of Statistics, Department of Genetics, and Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA;
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Tengfei Li
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Lalithadevi B, Krishnaveni S, Gnanadurai JSC. A Feasibility Study of Diabetic Retinopathy Detection in Type II Diabetic Patients Based on Explainable Artificial Intelligence. J Med Syst 2023; 47:85. [PMID: 37552340 DOI: 10.1007/s10916-023-01976-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
Diabetic retinopathy (DR) is vision impairment and a life-threatening condition for diabetic patients. Especially type II diabetic people have higher chances of getting retinal problems. Hence, early prediction of DR is necessary for preventing the diabetic patients from vision impairment. The main aim of this feasibility study is to identify the most critical risk features that could lead to diabetic retinopathy. This study investigated type II diabetic patients' socio-analytical, diabetes, behavioral, and clinical risk factors. We conducted a self-individual questionnaire session for all participants. Our questionnaire asked about the reliability of results, feeling comfortable during the screening test, willingness to participate in future screenings, overall perspective, and satisfaction with the DR screening test. We proposed a random forest model for predicting the prevalence of DR risk among diabetics. Further explanations of the model were conducted using more robust SHAP eXplainable Artificial Intelligence (XAI) tools. The SHAP method makes it possible to understand how input variables interact with their representative output records, as well as how input variables are ranked. In addition, various descriptive and inferential statistical analyses were performed on the data and evaluated the significant relationship between the factors discussed above via hypothesis testing. This feasibility study involved 172 type II diabetic patients (73 males and 99 females). Therefore, we found that 81 (47.09%) out of 172 participants had referable DR. The average age of the patients was determined as 55.08, with a standard deviation of ± 9.770 (ranging from 40 to 79). Type II patients were affected by mild, moderate, severe, and advanced proliferative diabetic retinopathy (PDR) stages with 23.83%, 13.95%, 5.81%, and 3.48%, respectively, of the total samples. The developed RF model obtained high accuracy of 94.9% using clinical dataset. Our results showed that the formation of tiny microminiature lesions was noticeable in type II diabetic patients with aged people, abnormal blood glucose levels, and prolonged diabetes duration.
Collapse
Affiliation(s)
- B Lalithadevi
- Department of Computational Intelligence, SRM Institute of Science and Technology, Kattankulathur, Chennai, TN, India.
| | - S Krishnaveni
- Department of Computational Intelligence, SRM Institute of Science and Technology, Kattankulathur, Chennai, TN, India
| | | |
Collapse
|
28
|
Belov V, Kozyrev V, Singh A, Sacchet MD, Goya-Maldonado R. Subject-specific whole-brain parcellations of nodes and boundaries are modulated differently under 10 Hz rTMS. Sci Rep 2023; 13:12615. [PMID: 37537227 PMCID: PMC10400653 DOI: 10.1038/s41598-023-38946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has gained considerable importance in the treatment of neuropsychiatric disorders, including major depression. However, it is not yet understood how rTMS alters brain's functional connectivity. Here we report changes in functional connectivity captured by resting state functional magnetic resonance imaging (rsfMRI) within the first hour after 10 Hz rTMS. We apply subject-specific parcellation schemes to detect changes (1) in network nodes, where the strongest functional connectivity of regions is observed, and (2) in network boundaries, where functional transitions between regions occur. We use support vector machine (SVM), a widely used machine learning algorithm that is robust and effective, for the classification and characterization of time intervals of changes in node and boundary maps. Our results reveal that changes in connectivity at the boundaries are slower and more complex than in those observed in the nodes, but of similar magnitude according to accuracy confidence intervals. These results were strongest in the posterior cingulate cortex and precuneus. As network boundaries are indeed under-investigated in comparison to nodes in connectomics research, our results highlight their contribution to functional adjustments to rTMS.
Collapse
Affiliation(s)
- Vladimir Belov
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
29
|
Bellier L, Llorens A, Marciano D, Gunduz A, Schalk G, Brunner P, Knight RT. Music can be reconstructed from human auditory cortex activity using nonlinear decoding models. PLoS Biol 2023; 21:e3002176. [PMID: 37582062 PMCID: PMC10427021 DOI: 10.1371/journal.pbio.3002176] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/30/2023] [Indexed: 08/17/2023] Open
Abstract
Music is core to human experience, yet the precise neural dynamics underlying music perception remain unknown. We analyzed a unique intracranial electroencephalography (iEEG) dataset of 29 patients who listened to a Pink Floyd song and applied a stimulus reconstruction approach previously used in the speech domain. We successfully reconstructed a recognizable song from direct neural recordings and quantified the impact of different factors on decoding accuracy. Combining encoding and decoding analyses, we found a right-hemisphere dominance for music perception with a primary role of the superior temporal gyrus (STG), evidenced a new STG subregion tuned to musical rhythm, and defined an anterior-posterior STG organization exhibiting sustained and onset responses to musical elements. Our findings show the feasibility of applying predictive modeling on short datasets acquired in single patients, paving the way for adding musical elements to brain-computer interface (BCI) applications.
Collapse
Affiliation(s)
- Ludovic Bellier
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Anaïs Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Déborah Marciano
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Gerwin Schalk
- Department of Neurology, Albany Medical College, Albany, New York, United States of America
| | - Peter Brunner
- Department of Neurology, Albany Medical College, Albany, New York, United States of America
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
- National Center for Adaptive Neurotechnologies, Albany, New York, United States of America
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
30
|
Kim J, Andrews-Hanna JR, Eisenbarth H, Lux BK, Kim HJ, Lee E, Lindquist MA, Losin EAR, Wager TD, Woo CW. A dorsomedial prefrontal cortex-based dynamic functional connectivity model of rumination. Nat Commun 2023; 14:3540. [PMID: 37321986 PMCID: PMC10272121 DOI: 10.1038/s41467-023-39142-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Rumination is a cognitive style characterized by repetitive thoughts about one's negative internal states and is a common symptom of depression. Previous studies have linked trait rumination to alterations in the default mode network, but predictive brain markers of rumination are lacking. Here, we adopt a predictive modeling approach to develop a neuroimaging marker of rumination based on the variance of dynamic resting-state functional connectivity and test it across 5 diverse subclinical and clinical samples (total n = 288). A whole-brain marker based on dynamic connectivity with the dorsomedial prefrontal cortex (dmPFC) emerges as generalizable across the subclinical datasets. A refined marker consisting of the most important features from a virtual lesion analysis further predicts depression scores of adults with major depressive disorder (n = 35). This study highlights the role of the dmPFC in trait rumination and provides a dynamic functional connectivity marker for rumination.
Collapse
Affiliation(s)
- Jungwoo Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Jessica R Andrews-Hanna
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Cognitive Science, University of Arizona, Tucson, AZ, USA
| | - Hedwig Eisenbarth
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Byeol Kim Lux
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Hong Ji Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Eunjin Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth A Reynolds Losin
- Department of Psychology, University of Miami, Miami, FL, USA
- Department of Biobehavioral Health, Penn State University, State College, PA, USA
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea.
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea.
| |
Collapse
|
31
|
Thomas AW, Ré C, Poldrack RA. Benchmarking explanation methods for mental state decoding with deep learning models. Neuroimage 2023; 273:120109. [PMID: 37059157 PMCID: PMC10258563 DOI: 10.1016/j.neuroimage.2023.120109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023] Open
Abstract
Deep learning (DL) models find increasing application in mental state decoding, where researchers seek to understand the mapping between mental states (e.g., experiencing anger or joy) and brain activity by identifying those spatial and temporal features of brain activity that allow to accurately identify (i.e., decode) these states. Once a DL model has been trained to accurately decode a set of mental states, neuroimaging researchers often make use of methods from explainable artificial intelligence research to understand the model's learned mappings between mental states and brain activity. Here, we benchmark prominent explanation methods in a mental state decoding analysis of multiple functional Magnetic Resonance Imaging (fMRI) datasets. Our findings demonstrate a gradient between two key characteristics of an explanation in mental state decoding, namely, its faithfulness and its alignment with other empirical evidence on the mapping between brain activity and decoded mental state: explanation methods with high explanation faithfulness, which capture the model's decision process well, generally provide explanations that align less well with other empirical evidence than the explanations of methods with less faithfulness. Based on our findings, we provide guidance for neuroimaging researchers on how to choose an explanation method to gain insight into the mental state decoding decisions of DL models.
Collapse
Affiliation(s)
- Armin W Thomas
- Stanford Data Science, Stanford University, 450 Serra Mall, 94305, Stanford, USA.
| | - Christopher Ré
- Dept. of Computer Science, Stanford University, 450 Serra Mall, 94305, Stanford, USA
| | - Russell A Poldrack
- Dept. of Psychology, Stanford University, 450 Serra Mall, Stanford, 94305, USA
| |
Collapse
|
32
|
Scheinost D, Pollatou A, Dufford AJ, Jiang R, Farruggia MC, Rosenblatt M, Peterson H, Rodriguez RX, Dadashkarimi J, Liang Q, Dai W, Foster ML, Camp CC, Tejavibulya L, Adkinson BD, Sun H, Ye J, Cheng Q, Spann MN, Rolison M, Noble S, Westwater ML. Machine Learning and Prediction in Fetal, Infant, and Toddler Neuroimaging: A Review and Primer. Biol Psychiatry 2023; 93:893-904. [PMID: 36759257 PMCID: PMC10259670 DOI: 10.1016/j.biopsych.2022.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/10/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
Abstract
Predictive models in neuroimaging are increasingly designed with the intent to improve risk stratification and support interventional efforts in psychiatry. Many of these models have been developed in samples of children school-aged or older. Nevertheless, despite growing evidence that altered brain maturation during the fetal, infant, and toddler (FIT) period modulates risk for poor mental health outcomes in childhood, these models are rarely implemented in FIT samples. Applications of predictive modeling in children of these ages provide an opportunity to develop powerful tools for improved characterization of the neural mechanisms underlying development. To facilitate the broader use of predictive models in FIT neuroimaging, we present a brief primer and systematic review on the methods used in current predictive modeling FIT studies. Reflecting on current practices in more than 100 studies conducted over the past decade, we provide an overview of topics, modalities, and methods commonly used in the field and under-researched areas. We then outline ethical and future considerations for neuroimaging researchers interested in predicting health outcomes in early life, including researchers who may be relatively new to either advanced machine learning methods or using FIT data. Altogether, the last decade of FIT research in machine learning has provided a foundation for accelerating the prediction of early-life trajectories across the full spectrum of illness and health.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut; Child Study Center, Yale School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut.
| | - Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Michael C Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Hannah Peterson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | | | | | - Qinghao Liang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Wei Dai
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Maya L Foster
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Chris C Camp
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Huili Sun
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jean Ye
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Qi Cheng
- Departments of Neuroscience and Psychology, Smith College, Northampton, Massachusetts
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Max Rolison
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Margaret L Westwater
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
33
|
Konova AB, Zilverstand A. Deriving Generalizable and Interpretable Brain-Behavior Phenotypes of Cannabis Use. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:238-240. [PMID: 36889869 PMCID: PMC10766112 DOI: 10.1016/j.bpsc.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 03/08/2023]
Affiliation(s)
- Anna B Konova
- Department of Psychiatry, University Behavioral Health Care, and the Brain Health Institute, Rutgers University-New Brunswick, Piscataway, New Jersey.
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
34
|
Kulkarni KR, Schafer M, Berner LA, Fiore VG, Heflin M, Hutchison K, Calhoun V, Filbey F, Pandey G, Schiller D, Gu X. An Interpretable and Predictive Connectivity-Based Neural Signature for Chronic Cannabis Use. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:320-330. [PMID: 35659965 PMCID: PMC9708942 DOI: 10.1016/j.bpsc.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cannabis is one of the most widely used substances in the world, with usage trending upward in recent years. However, although the psychiatric burden associated with maladaptive cannabis use has been well established, reliable and interpretable biomarkers associated with chronic use remain elusive. In this study, we combine large-scale functional magnetic resonance imaging with machine learning and network analysis and develop an interpretable decoding model that offers both accurate prediction and novel insights into chronic cannabis use. METHODS Chronic cannabis users (n = 166) and nonusing healthy control subjects (n = 124) completed a cue-elicited craving task during functional magnetic resonance imaging. Linear machine learning methods were used to classify individuals into chronic users and nonusers based on whole-brain functional connectivity. Network analysis was used to identify the most predictive regions and communities. RESULTS We obtained high (∼80% out-of-sample) accuracy across 4 different classification models, demonstrating that task-evoked connectivity can successfully differentiate chronic cannabis users from nonusers. We also identified key predictive regions implicating motor, sensory, attention, and craving-related areas, as well as a core set of brain networks that contributed to successful classification. The most predictive networks also strongly correlated with cannabis craving within the chronic user group. CONCLUSIONS This novel approach produced a neural signature of chronic cannabis use that is both accurate in terms of out-of-sample prediction and interpretable in terms of predictive networks and their relation to cannabis craving.
Collapse
Affiliation(s)
- Kaustubh R Kulkarni
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matthew Schafer
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Laura A Berner
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Vincenzo G Fiore
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matt Heflin
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kent Hutchison
- Institute for Cognitive Science, University of Colorado, Boulder, Colorado
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| | - Francesca Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniela Schiller
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiaosi Gu
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
35
|
Wang ZL, Potenza MN, Song KR, Dong GH, Fang XY, Zhang JT. Subgroups of internet gaming disorder based on addiction-related resting-state functional connectivity. Addiction 2023; 118:327-339. [PMID: 36089824 DOI: 10.1111/add.16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/31/2022] [Indexed: 01/05/2023]
Abstract
AIMS To identify subgroups of people with internet gaming disorder (IGD) based on addiction-related resting-state functional connectivity and how these subgroups show different clinical correlates and responses to treatment. DESIGN Secondary analysis of two functional magnetic resonance imaging (fMRI) data sets. SETTING Zhejiang province and Beijing, China. PARTICIPANTS One hundred and sixty-nine IGD and 147 control subjects. MEASUREMENTS k-Means algorithmic and support-vector machine-learning approaches were used to identify subgroups of IGD subjects. These groups were examined with respect to assessments of craving, behavioral activation and inhibition, emotional regulation, cue-reactivity and guessing-related measures. FINDINGS Two groups of subjects with IGD were identified and defined by distinct patterns of connectivity in brain networks previously implicated in addictions: subgroup 1 ('craving-related subgroup') and subgroup 2 ('mixed psychological subgroup'). Clustering IGD on this basis enabled the development of diagnostic classifiers with high sensitivity and specificity for IGD subgroups in 10-fold validation (n = 218) and out-of-sample replication (n = 98) data sets. Subgroup 1 is characterized by high craving scores, cue-reactivity during fMRI and responsiveness to a craving behavioral intervention therapy. Subgroup 2 is characterized by high craving, behavioral inhibition and activations scores, non-adaptive emotion-regulation strategies and guessing-task fMRI measures. Subgroups 1 and 2 showed largely opposite functional-connectivity patterns in overlapping networks. CONCLUSIONS There appear to be two subgroups of people with internet gaming disorder, each associated with differing patterns of brain functional connectivity and distinct clinical symptom profiles and gender compositions.
Collapse
Affiliation(s)
- Zi-Liang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Council on Problem Gambling, Wethersfield, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA.,Department of Neuroscience and Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Kun-Ru Song
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Xiao-Yi Fang
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China
| | - Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
36
|
Weber KA, Teplin ZM, Wager TD, Law CSW, Prabhakar NK, Ashar YK, Gilam G, Banerjee S, Delp SL, Glover GH, Hastie TJ, Mackey S. Confounds in neuroimaging: A clear case of sex as a confound in brain-based prediction. Front Neurol 2022; 13:960760. [PMID: 36601297 PMCID: PMC9806266 DOI: 10.3389/fneur.2022.960760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Muscle weakness is common in many neurological, neuromuscular, and musculoskeletal conditions. Muscle size only partially explains muscle strength as adaptions within the nervous system also contribute to strength. Brain-based biomarkers of neuromuscular function could provide diagnostic, prognostic, and predictive value in treating these disorders. Therefore, we sought to characterize and quantify the brain's contribution to strength by developing multimodal MRI pipelines to predict grip strength. However, the prediction of strength was not straightforward, and we present a case of sex being a clear confound in brain decoding analyses. While each MRI modality-structural MRI (i.e., gray matter morphometry), diffusion MRI (i.e., white matter fractional anisotropy), resting state functional MRI (i.e., functional connectivity), and task-evoked functional MRI (i.e., left or right hand motor task activation)-and a multimodal prediction pipeline demonstrated significant predictive power for strength (R 2 = 0.108-0.536, p ≤ 0.001), after correcting for sex, the predictive power was substantially reduced (R 2 = -0.038-0.075). Next, we flipped the analysis and demonstrated that each MRI modality and a multimodal prediction pipeline could significantly predict sex (accuracy = 68.0%-93.3%, AUC = 0.780-0.982, p < 0.001). However, correcting the brain features for strength reduced the accuracy for predicting sex (accuracy = 57.3%-69.3%, AUC = 0.615-0.780). Here we demonstrate the effects of sex-correlated confounds in brain-based predictive models across multiple brain MRI modalities for both regression and classification models. We discuss implications of confounds in predictive modeling and the development of brain-based MRI biomarkers, as well as possible strategies to overcome these barriers.
Collapse
Affiliation(s)
- Kenneth A. Weber
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States,*Correspondence: Kenneth A. Weber II
| | - Zachary M. Teplin
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Christine S. W. Law
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Nitin K. Prabhakar
- Division of Physical Medicine and Rehabilitation, Department of Orthopaedic Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yoni K. Ashar
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States
| | - Gadi Gilam
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States,The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Scott L. Delp
- Department of Bioengineering and Mechanical Engineering, Stanford University, Palo Alto, CA, United States
| | - Gary H. Glover
- Radiological Sciences Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Trevor J. Hastie
- Department of Statistics, Stanford University, Palo Alto, CA, United States
| | - Sean Mackey
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
37
|
Farahani FV, Fiok K, Lahijanian B, Karwowski W, Douglas PK. Explainable AI: A review of applications to neuroimaging data. Front Neurosci 2022; 16:906290. [PMID: 36583102 PMCID: PMC9793854 DOI: 10.3389/fnins.2022.906290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Deep neural networks (DNNs) have transformed the field of computer vision and currently constitute some of the best models for representations learned via hierarchical processing in the human brain. In medical imaging, these models have shown human-level performance and even higher in the early diagnosis of a wide range of diseases. However, the goal is often not only to accurately predict group membership or diagnose but also to provide explanations that support the model decision in a context that a human can readily interpret. The limited transparency has hindered the adoption of DNN algorithms across many domains. Numerous explainable artificial intelligence (XAI) techniques have been developed to peer inside the "black box" and make sense of DNN models, taking somewhat divergent approaches. Here, we suggest that these methods may be considered in light of the interpretation goal, including functional or mechanistic interpretations, developing archetypal class instances, or assessing the relevance of certain features or mappings on a trained model in a post-hoc capacity. We then focus on reviewing recent applications of post-hoc relevance techniques as applied to neuroimaging data. Moreover, this article suggests a method for comparing the reliability of XAI methods, especially in deep neural networks, along with their advantages and pitfalls.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Krzysztof Fiok
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Behshad Lahijanian
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, United States
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Waldemar Karwowski
- Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Pamela K. Douglas
- School of Modeling, Simulation, and Training, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
38
|
Cheng F, Duan Y, Jiang H, Zeng Y, Chen X, Qin L, Zhao L, Yi F, Tang Y, Liu C. Identifying and distinguishing of essential tremor and Parkinson's disease with grouped stability analysis based on searchlight-based MVPA. Biomed Eng Online 2022; 21:81. [PMID: 36443843 PMCID: PMC9703788 DOI: 10.1186/s12938-022-01050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Since both essential tremor (ET) and Parkinson's disease (PD) are movement disorders and share similar clinical symptoms, it is very difficult to recognize the differences in the presentation, course, and treatment of ET and PD, which leads to misdiagnosed commonly. PURPOSE Although neuroimaging biomarker of ET and PD has been investigated based on statistical analysis, it is unable to assist the clinical diagnosis of ET and PD and ensure the efficiency of these biomarkers. The aim of the study was to identify the neuroimaging biomarkers of ET and PD based on structural magnetic resonance imaging (MRI). Moreover, the study also distinguished ET from PD via these biomarkers to validate their classification performance. METHODS This study has developed and implemented a three-level machine learning framework to identify and distinguish ET and PD. First of all, at the model-level assessment, the searchlight-based machine learning method has been used to identify the group differences of patients (ET/PD) with normal controls (NCs). And then, at the feature-level assessment, the stability of group differences has been tested based on structural brain atlas separately using the permutation test to identify the robust neuroimaging biomarkers. Furthermore, the identified biomarkers of ET and PD have been applied to classify ET from PD based on machine learning techniques. Finally, the identified biomarkers have been compared with the previous findings of the biology-level assessment. RESULTS According to the biomarkers identified by machine learning, this study has found widespread alterations of gray matter (GM) for ET and large overlap between ET and PD and achieved superior classification performance (PCA + SVM, accuracy = 100%). CONCLUSIONS This study has demonstrated the significance of a machine learning framework to identify and distinguish ET and PD. Future studies using a large data set are needed to confirm the potential clinical application of machine learning techniques to discern between PD and ET.
Collapse
Affiliation(s)
- FuChao Cheng
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - YuMei Duan
- Department of Computer and Software, Chengdu Jincheng College, Chengdu, China
| | - Hong Jiang
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zeng
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - XiaoDan Chen
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - Ling Qin
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - LiQin Zhao
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - FaSheng Yi
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China ,Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, Chengdu, China
| | - YiQian Tang
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| | - Chang Liu
- grid.411292.d0000 0004 1798 8975College of Computer, Chengdu University, Chengdu, China
| |
Collapse
|
39
|
Thomas AW, Ré C, Poldrack RA. Interpreting mental state decoding with deep learning models. Trends Cogn Sci 2022; 26:972-986. [PMID: 36223760 DOI: 10.1016/j.tics.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/12/2023]
Abstract
In mental state decoding, researchers aim to identify the set of mental states (e.g., experiencing happiness or fear) that can be reliably identified from the activity patterns of a brain region (or network). Deep learning (DL) models are highly promising for mental state decoding because of their unmatched ability to learn versatile representations of complex data. However, their widespread application in mental state decoding is hindered by their lack of interpretability, difficulties in applying them to small datasets, and in ensuring their reproducibility and robustness. We recommend approaching these challenges by leveraging recent advances in explainable artificial intelligence (XAI) and transfer learning, and also provide recommendations on how to improve the reproducibility and robustness of DL models in mental state decoding.
Collapse
Affiliation(s)
- Armin W Thomas
- Stanford Data Science, Stanford University, Stanford, CA, USA; Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Christopher Ré
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Russell A Poldrack
- Stanford Data Science, Stanford University, Stanford, CA, USA; Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
40
|
Dhamala E, Ooi LQR, Chen J, Kong R, Anderson KM, Chin R, Yeo BTT, Holmes AJ. Proportional intracranial volume correction differentially biases behavioral predictions across neuroanatomical features, sexes, and development. Neuroimage 2022; 260:119485. [PMID: 35843514 PMCID: PMC9425854 DOI: 10.1016/j.neuroimage.2022.119485] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Individual differences in brain anatomy can be used to predict variations in cognitive ability. Most studies to date have focused on broad population-level trends, but the extent to which the observed predictive features are shared across sexes and age groups remains to be established. While it is standard practice to account for intracranial volume (ICV) using proportion correction in both regional and whole-brain morphometric analyses, in the context of brain-behavior predictions the possible differential impact of ICV correction on anatomical features and subgroups within the population has yet to be systematically investigated. In this work, we evaluate the effect of proportional ICV correction on sex-independent and sex-specific predictive models of individual cognitive abilities across multiple anatomical properties (surface area, gray matter volume, and cortical thickness) in healthy young adults (Human Connectome Project; n = 1013, 548 females) and typically developing children (Adolescent Brain Cognitive Development study; n = 1823, 979 females). We demonstrate that ICV correction generally reduces predictive accuracies derived from surface area and gray matter volume, while increasing predictive accuracies based on cortical thickness in both adults and children. Furthermore, the extent to which predictive models generalize across sexes and age groups depends on ICV correction: models based on surface area and gray matter volume are more generalizable without ICV correction, while models based on cortical thickness are more generalizable with ICV correction. Finally, the observed neuroanatomical features predictive of cognitive abilities are unique across age groups regardless of ICV correction, but whether they are shared or unique across sexes (within age groups) depends on ICV correction. These findings highlight the importance of considering individual differences in ICV, and show that proportional ICV correction does not remove the effects of cranial volume from anatomical measurements and can introduce ICV bias where previously there was none. ICV correction choices affect not just the strength of the relationships captured, but also the conclusions drawn regarding the neuroanatomical features that underlie those relationships.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, United States; Kavli Institute for Neuroscience, Yale University, New Haven, United States.
| | - Leon Qi Rong Ooi
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Jianzhong Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Ru Kong
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Kevin M Anderson
- Department of Psychology, Yale University, New Haven, United States
| | - Rowena Chin
- Department of Psychology, Yale University, New Haven, United States
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, United States; Kavli Institute for Neuroscience, Yale University, New Haven, United States; Department of Psychiatry, Yale University, New Haven, United States; Wu Tsai Institute, Yale University, New Haven, United States.
| |
Collapse
|
41
|
Yu S, Shi E, Wang R, Zhao S, Liu T, Jiang X, Zhang S. A hybrid learning framework for fine-grained interpretation of brain spatiotemporal patterns during naturalistic functional magnetic resonance imaging. Front Hum Neurosci 2022; 16:944543. [PMID: 36248685 PMCID: PMC9563232 DOI: 10.3389/fnhum.2022.944543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Naturalistic stimuli, including movie, music, and speech, have been increasingly applied in the research of neuroimaging. Relative to a resting-state or single-task state, naturalistic stimuli can evoke more intense brain activities and have been proved to possess higher test–retest reliability, suggesting greater potential to study adaptive human brain function. In the current research, naturalistic functional magnetic resonance imaging (N-fMRI) has been a powerful tool to record brain states under naturalistic stimuli, and many efforts have been devoted to study the high-level semantic features from spatial or temporal representations via N-fMRI. However, integrating both spatial and temporal characteristics of brain activities for better interpreting the patterns under naturalistic stimuli is still underexplored. In this work, a novel hybrid learning framework that comprehensively investigates both the spatial (via Predictive Model) and the temporal [via convolutional neural network (CNN) model] characteristics of the brain is proposed. Specifically, to focus on certain relevant regions from the whole brain, regions of significance (ROS), which contain common spatial activation characteristics across individuals, are selected via the Predictive Model. Further, voxels of significance (VOS), whose signals contain significant temporal characteristics under naturalistic stimuli, are interpreted via one-dimensional CNN (1D-CNN) model. In this article, our proposed framework is applied onto the N-fMRI data during naturalistic classical/pop/speech audios stimuli. The promising performance is achieved via the Predictive Model to differentiate the different audio categories. Especially for distinguishing the classic and speech audios, the accuracy of classification is up to 92%. Moreover, spatial ROS and VOS are effectively obtained. Besides, temporal characteristics of the high-level semantic features are investigated on the frequency domain via convolution kernels of 1D-CNN model, and we effectively bridge the “semantic gap” between high-level semantic features of N-fMRI and low-level acoustic features of naturalistic audios in the frequency domain. Our results provide novel insights on characterizing spatiotemporal patterns of brain activities via N-fMRI and effectively explore the high-level semantic features under naturalistic stimuli, which will further benefit the understanding of the brain working mechanism and the advance of naturalistic stimuli clinical application.
Collapse
Affiliation(s)
- Sigang Yu
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Enze Shi
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Ruoyang Wang
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
| | - Xi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Shu Zhang,
| |
Collapse
|
42
|
Demographic reporting across a decade of neuroimaging: a systematic review. Brain Imaging Behav 2022; 16:2785-2796. [DOI: 10.1007/s11682-022-00724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Diversity of participants in biomedical research with respect to race, ethnicity, and biological sex is crucial, particularly given differences in disease prevalence, recovery, and survival rates between demographic groups. The objective of this systematic review was to report on the demographics of neuroimaging studies using magnetic resonance imaging (MRI). The Web of Science database was used and data collection was performed between June 2021 to November 2021; all articles were reviewed independently by at least two researchers. Articles utilizing MR data acquired in the United States, with n ≥ 10 human subjects, and published between 2010–2020 were included. Non-primary research articles and those published in journals that did not meet a quality control check were excluded. Of the 408 studies meeting inclusion criteria, approximately 77% report sex, 10% report race, and 4% report ethnicity. Demographic reporting also varied as function of disease studied, participant age range, funding, and publisher. We anticipate quantitative data on the extent, or lack, of reporting will be necessary to ensure inclusion of diverse populations in biomedical research.
Collapse
|
43
|
Choice of Voxel-based Morphometry processing pipeline drives variability in the location of neuroanatomical brain markers. Commun Biol 2022; 5:913. [PMID: 36068295 PMCID: PMC9448776 DOI: 10.1038/s42003-022-03880-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
Fundamental and clinical neuroscience has benefited tremendously from the development of automated computational analyses. In excess of 600 human neuroimaging papers using Voxel-based Morphometry (VBM) are now published every year and a number of different automated processing pipelines are used, although it remains to be systematically assessed whether they come up with the same answers. Here we examined variability between four commonly used VBM pipelines in two large brain structural datasets. Spatial similarity and between-pipeline reproducibility of the processed gray matter brain maps were generally low between pipelines. Examination of sex-differences and age-related changes revealed considerable differences between the pipelines in terms of the specific regions identified. Machine learning-based multivariate analyses allowed accurate predictions of sex and age, however accuracy differed between pipelines. Our findings suggest that the choice of pipeline alone leads to considerable variability in brain structural markers which poses a serious challenge for reproducibility and interpretation. Four common processing pipelines tested on two Voxel-based Morphometry (VBM) datasets yield considerable variations in results, raising issues on the interpretability and robustness of VBM results.
Collapse
|
44
|
Kim B, Andrews-Hanna JR, Han J, Lee E, Woo CW. When self comes to a wandering mind: Brain representations and dynamics of self-generated concepts in spontaneous thought. SCIENCE ADVANCES 2022; 8:eabn8616. [PMID: 36044582 PMCID: PMC9432827 DOI: 10.1126/sciadv.abn8616] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Self-relevant concepts are major building blocks of spontaneous thought, and their dynamics in a natural stream of thought are likely to reveal one's internal states that are important for mental health. Here, we conducted a functional magnetic resonance imaging experiment (n = 62) to examine brain representations and dynamics of self-generated concepts in the context of spontaneous thought using a newly developed free association-based thought sampling task. The dynamics of conceptual associations were predictive of individual differences in general negative affectivity, replicating across multiple datasets (n = 196). Reflecting on self-generated concepts strongly engaged brain regions linked to autobiographical memory, conceptual processes, emotion, and autonomic regulation, including the medial prefrontal and medial temporal subcortical structures. Multivariate pattern-based predictive modeling revealed that the neural representations of valence became more person-specific as the level of perceived self-relevance increased. Overall, this study sheds light on how self-generated concepts in spontaneous thought construct inner affective states and idiosyncrasies.
Collapse
Affiliation(s)
- Byeol Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Jessica R. Andrews-Hanna
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Cognitive Science, University of Arizona, Tucson, AZ, USA
| | - Jihoon Han
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Eunjin Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
45
|
Srivastava P, Fotiadis P, Parkes L, Bassett DS. The expanding horizons of network neuroscience: From description to prediction and control. Neuroimage 2022; 258:119250. [PMID: 35659996 PMCID: PMC11164099 DOI: 10.1016/j.neuroimage.2022.119250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
The field of network neuroscience has emerged as a natural framework for the study of the brain and has been increasingly applied across divergent problems in neuroscience. From a disciplinary perspective, network neuroscience originally emerged as a formal integration of graph theory (from mathematics) and neuroscience (from biology). This early integration afforded marked utility in describing the interconnected nature of neural units, both structurally and functionally, and underscored the relevance of that interconnection for cognition and behavior. But since its inception, the field has not remained static in its methodological composition. Instead, it has grown to use increasingly advanced graph-theoretic tools and to bring in several other disciplinary perspectives-including machine learning and systems engineering-that have proven complementary. In doing so, the problem space amenable to the discipline has expanded markedly. In this review, we discuss three distinct flavors of investigation in state-of-the-art network neuroscience: (i) descriptive network neuroscience, (ii) predictive network neuroscience, and (iii) a perturbative network neuroscience that draws on recent advances in network control theory. In considering each area, we provide a brief summary of the approaches, discuss the nature of the insights obtained, and highlight future directions.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Panagiotis Fotiadis
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA; Santa Fe Institute, Santa Fe NM 87501, USA.
| |
Collapse
|
46
|
Gender-related differences in involvement of addiction brain networks in internet gaming disorder: Relationships with craving and emotional regulation. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110574. [PMID: 35569619 DOI: 10.1016/j.pnpbp.2022.110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Abnormal interactions among addiction brain networks associated with intoxication, negative affect, and anticipation may have relevance for internet gaming disorder (IGD). Despite prior studies having identified gender-related differences in the neural correlates of IGD, gender-related differences in the involvement of brain networks remain unclear. METHODS One-hundred-and-nine individuals with IGD (54 males) and 111 with recreational game use (RGU; 58 males) provided resting-state fMRI data. We examined gender-related differences in involvement of addiction brain networks in IGD versus RGU subjects. We further compared the strength between and within addiction brain networks and explored possible relationships between the strength of functional connectivities within and between addiction brain networks and several relevant behavioral measures. RESULTS The addiction brain networks showed high correct classification rates in distinguishing IGD and RGU subjects in men and women. Male subjects with versus without IGD showed stronger functional connectivities between and within addiction brain networks. Moreover, the strength of the connectivity within the anticipation network in male IGD subjects was positively related to subjective craving. However, female subjects with versus without IGD showed decreased functional connections between and within addiction brain networks. The strength of connectivity between the anticipation and negative-affect brain networks in female IGD subjects was negatively related to maladaptive cognitive emotion-regulation strategies. CONCLUSIONS Addiction brain networks have potential for distinguishing IGD and RGU individuals. Importantly, this study identified novel gender-related differences in brain-behavior relationships in IGD. These results help advance current neuroscientific theories of IGD and may inform gender-informed treatment strategies.
Collapse
|
47
|
Linking cerebellar functional gradients to transdiagnostic behavioral dimensions of psychopathology. Neuroimage Clin 2022; 36:103176. [PMID: 36063759 PMCID: PMC9450332 DOI: 10.1016/j.nicl.2022.103176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
High co-morbidity and substantial overlap across psychiatric disorders encourage a transition in psychiatry research from categorical to dimensional approaches that integrate neuroscience and psychopathology. Converging evidence suggests that the cerebellum is involved in a wide range of cognitive functions and mental disorders. An important question thus centers on the extent to which cerebellar function can be linked to transdiagnostic dimensions of psychopathology. To address this question, we used a multivariate data-driven statistical technique (partial least squares) to identify latent dimensions linking human cerebellar connectome as assessed by functional MRI to a large set of clinical, cognitive, and trait measures across 198 participants, including healthy controls (n = 92) as well as patients diagnosed with attention-deficit/hyperactivity disorder (n = 35), bipolar disorder (n = 36), and schizophrenia (n = 35). Macroscale spatial gradients of connectivity at voxel level were used to characterize cerebellar connectome properties, which provide a low-dimensional representation of cerebellar connectivity, i.e., a sensorimotor-supramodal hierarchical organization. This multivariate analysis revealed significant correlated patterns of cerebellar connectivity gradients and behavioral measures that could be represented into four latent dimensions: general psychopathology, impulsivity and mood, internalizing symptoms and executive dysfunction. Each dimension was associated with a unique spatial pattern of cerebellar connectivity gradients across all participants. Multiple control analyses and 10-fold cross-validation confirmed the robustness and generalizability of the yielded four dimensions. These findings highlight the relevance of cerebellar connectivity as a necessity for the study and classification of transdiagnostic dimensions of psychopathology and call on researcher to pay more attention to the role of cerebellum in the dimensions of psychopathology, not just within the cerebral cortex.
Collapse
|
48
|
Li T, Pei Z, Zhu Z, Wu X, Feng C. Intrinsic brain activity patterns across large-scale networks predict reciprocity propensity. Hum Brain Mapp 2022; 43:5616-5629. [PMID: 36054523 PMCID: PMC9704792 DOI: 10.1002/hbm.26038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 01/15/2023] Open
Abstract
Reciprocity is prevalent across human societies, but individuals are heterogeneous regarding their reciprocity propensity. Although a large body of task-based brain imaging measures has shed light on the neural underpinnings of reciprocity at group level, the neural basis underlying the individual differences in reciprocity propensity remains largely unclear. Here, we combined brain imaging and machine learning techniques to individually predict reciprocity propensity from resting-state brain activity measured by fractional amplitude of low-frequency fluctuation. The brain regions contributing to the prediction were then analyzed for functional connectivity and decoding analyses, allowing for a data-driven quantitative inference on psychophysiological functions. Our results indicated that patterns of resting-state brain activity across multiple brain systems were capable of predicting individual reciprocity propensity, with the contributing regions distributed across the salience (e.g., ventrolateral prefrontal cortex), fronto-parietal (e.g., dorsolateral prefrontal cortex), default mode (e.g., ventromedial prefrontal cortex), and sensorimotor (e.g., supplementary motor area) networks. Those contributing brain networks are implicated in emotion and cognitive control, mentalizing, and motor-based processes, respectively. Collectively, these findings provide novel evidence on the neural signatures underlying the individual differences in reciprocity, and lend support the assertion that reciprocity emerges from interactions among regions embodied in multiple large-scale brain networks.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University)Ministry of EducationGuangzhouChina,School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhouChina,Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Zhaodi Pei
- School of Artificial IntelligenceBeijing Normal UniversityBeijingChina,Engineering Research Center of Intelligent Technology and Educational Application of Ministry of EducationBeijing Normal UniversityBeijingChina
| | - Zhiyuan Zhu
- School of Artificial IntelligenceBeijing Normal UniversityBeijingChina,Engineering Research Center of Intelligent Technology and Educational Application of Ministry of EducationBeijing Normal UniversityBeijingChina
| | - Xia Wu
- School of Artificial IntelligenceBeijing Normal UniversityBeijingChina,Engineering Research Center of Intelligent Technology and Educational Application of Ministry of EducationBeijing Normal UniversityBeijingChina
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University)Ministry of EducationGuangzhouChina,School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
49
|
Jiang R, Scheinost D, Zuo N, Wu J, Qi S, Liang Q, Zhi D, Luo N, Chung Y, Liu S, Xu Y, Sui J, Calhoun V. A Neuroimaging Signature of Cognitive Aging from Whole-Brain Functional Connectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201621. [PMID: 35811304 PMCID: PMC9403648 DOI: 10.1002/advs.202201621] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/02/2022] [Indexed: 05/14/2023]
Abstract
Cognitive decline is amongst one of the most commonly reported complaints during normal aging. Despite evidence that age and cognition are linked with similar neural correlates, no previous studies have directly ascertained how these two constructs overlap in the brain in terms of neuroimaging-based prediction. Based on a long lifespan healthy cohort (CamCAN, aged 19-89 years, n = 567), it is shown that both cognitive function (domains spanning executive function, emotion processing, motor function, and memory) and human age can be reliably predicted from unique patterns of functional connectivity, with models generalizable in two external datasets (n = 533 and n = 453). Results show that cognitive decline and normal aging both manifest decrease within-network connections (especially default mode and ventral attention networks) and increase between-network connections (somatomotor network). Whereas dorsal attention network is an exception, which is highly predictive on cognitive ability but is weakly correlated with aging. Further, the positively weighted connections in predicting fluid intelligence significantly mediate its association with age. Together, these findings offer insights into why normal aging is often associated with cognitive decline in terms of brain network organization, indicating a process of neural dedifferentiation and compensational theory.
Collapse
Affiliation(s)
- Rongtao Jiang
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenCT06520USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenCT06520USA
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenCT06520USA
- Department of Statistics and Data ScienceYale UniversityNew HavenCT06520USA
- Child Study CenterYale School of MedicineNew HavenCT06510USA
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190P. R. China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jing Wu
- Department of Medical OncologyBeijing You‐An HospitalCapital Medical UniversityBeijing100069P. R. China
| | - Shile Qi
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Qinghao Liang
- Department of Biomedical EngineeringYale UniversityNew HavenCT06520USA
| | - Dongmei Zhi
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100088P. R. China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190P. R. China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Young‐Chul Chung
- Department of PsychiatryJeonbuk National University Medical SchoolJeonju54907Republic of Korea
- Department of PsychiatryChonbuk National University HospitalJeonju54907Republic of Korea
| | - Sha Liu
- Department of Psychiatry and MDT Center for Cognitive Impairment and Sleep DisordersFirst HospitalFirst Clinical Medical College of Shanxi Medical UniversityTaiyuan030001P. R. China
| | - Yong Xu
- Department of Psychiatry and MDT Center for Cognitive Impairment and Sleep DisordersFirst HospitalFirst Clinical Medical College of Shanxi Medical UniversityTaiyuan030001P. R. China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100088P. R. China
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia Institute of TechnologyEmory University and Georgia State UniversityAtlantaGA30303USA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia Institute of TechnologyEmory University and Georgia State UniversityAtlantaGA30303USA
| |
Collapse
|
50
|
Tejavibulya L, Rolison M, Gao S, Liang Q, Peterson H, Dadashkarimi J, Farruggia MC, Hahn CA, Noble S, Lichenstein SD, Pollatou A, Dufford AJ, Scheinost D. Predicting the future of neuroimaging predictive models in mental health. Mol Psychiatry 2022; 27:3129-3137. [PMID: 35697759 PMCID: PMC9708554 DOI: 10.1038/s41380-022-01635-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022]
Abstract
Predictive modeling using neuroimaging data has the potential to improve our understanding of the neurobiology underlying psychiatric disorders and putatively information interventions. Accordingly, there is a plethora of literature reviewing published studies, the mathematics underlying machine learning, and the best practices for using these approaches. As our knowledge of mental health and machine learning continue to evolve, we instead aim to look forward and "predict" topics that we believe will be important in current and future studies. Some of the most discussed topics in machine learning, such as bias and fairness, the handling of dirty data, and interpretable models, may be less familiar to the broader community using neuroimaging-based predictive modeling in psychiatry. In a similar vein, transdiagnostic research and targeting brain-based features for psychiatric intervention are modern topics in psychiatry that predictive models are well-suited to tackle. In this work, we target an audience who is a researcher familiar with the fundamental procedures of machine learning and who wishes to increase their knowledge of ongoing topics in the field. We aim to accelerate the utility and applications of neuroimaging-based predictive models for psychiatric research by highlighting and considering these topics. Furthermore, though not a focus, these ideas generalize to neuroimaging-based predictive modeling in other clinical neurosciences and predictive modeling with different data types (e.g., digital health data).
Collapse
Affiliation(s)
- Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
| | - Max Rolison
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Siyuan Gao
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Hannah Peterson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Javid Dadashkarimi
- Department of Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Michael C Farruggia
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - C Alice Hahn
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|