1
|
van Hoof S, Kreye J, Cordero-Gómez C, Hoffmann J, Momsen Reincke S, Sánchez-Sendin E, Duong SL, Upadhya M, Dhangar D, Michór P, Woodhall GL, Küpper M, Oder A, Kuchling J, Koch SP, Mueller S, Boehm-Sturm P, von Kries JP, Finke C, Kirschstein T, Wright SK, Prüss H. Human cerebrospinal fluid monoclonal CASPR2 autoantibodies induce changes in electrophysiology, functional MRI, and behavior in rodent models. Brain Behav Immun 2024; 122:266-278. [PMID: 39142424 DOI: 10.1016/j.bbi.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Anti-contactin associated protein receptor 2 (CASPR2) encephalitis is a severe autoimmune encephalitis with a variable clinical phenotype including behavioral abnormalities, cognitive decline, epileptic seizures, peripheral nerve hyperexcitability and neuropathic pain. The detailed mechanisms of how CASPR2 autoantibodies lead to synaptic dysfunction and clinical symptoms are largely unknown. Aiming for analyses from the molecular to the clinical level, we isolated antibody-secreting cells from the cerebrospinal fluid of two patients with CASPR2 encephalitis. From these we cloned four anti-CASPR2 human monoclonal autoantibodies (mAbs) with strong binding to brain and peripheral nerves. All were highly hypermutated and mainly of the IgG4 subclass. Mutagenesis studies determined selective binding to the discoidin domain of CASPR2. Surface plasmon resonance revealed affinities with dissociation constants KD in the pico- to nanomolar range. CASPR2 mAbs interrupted the interaction of CASPR2 with its binding partner contactin 2 in vitro and were internalized after binding to CASPR2-expressing cells. Electrophysiological recordings of rat hippocampal slices after stereotactic injection of CASPR2 mAbs showed characteristic afterpotentials following electrical stimulation. In vivo experiments with intracerebroventricular administration of human CASPR2 mAbs into mice and rats showed EEG-recorded brain hyperexcitability but no spontaneous recurrent seizures. Behavioral assessment of infused mice showed a subtle clinical phenotype, mainly affecting sociability. Mouse brain MRI exhibited markedly reduced resting-state functional connectivity without short-term structural changes. Together, the experimental data support the direct pathogenicity of CASPR2 autoantibodies. The minimally invasive EEG and MRI techniques applied here may serve as novel objective, quantifiable tools for improved animal models, in particular for subtle neuropsychiatric phenotypes or repeated measurements.
Collapse
Affiliation(s)
- Scott van Hoof
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany; Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - César Cordero-Gómez
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Julius Hoffmann
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - S Momsen Reincke
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisa Sánchez-Sendin
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany
| | - Sophie L Duong
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Manoj Upadhya
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Divya Dhangar
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Paulina Michór
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Gavin L Woodhall
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Maraike Küpper
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany, Center of Transdisciplinary Neurosciences Rostock (CTNR), Germany
| | - Andreas Oder
- Screening Unit, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Joseph Kuchling
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Neurocure Cluster of Excellence, NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Stefan Paul Koch
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Center for Stroke Research Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Germany; Charité 3R, Replace, Reduce, Refine, Charité - Universitätsmedizin Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Center for Stroke Research Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Germany; Charité 3R, Replace, Reduce, Refine, Charité - Universitätsmedizin Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Center for Stroke Research Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Germany; Charité 3R, Replace, Reduce, Refine, Charité - Universitätsmedizin Berlin, Germany
| | - Jens Peter von Kries
- Screening Unit, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Carsten Finke
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Neurocure Cluster of Excellence, NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany, Center of Transdisciplinary Neurosciences Rostock (CTNR), Germany
| | - Sukhvir K Wright
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK; Department of Paediatric Neurology, The Birmingham Women's and Children's Hospital National Health Service Foundation Trust, Birmingham, UK
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany.
| |
Collapse
|
2
|
Chakraborty S, Haast RAM, Onuska KM, Kanel P, Prado MAM, Prado VF, Khan AR, Schmitz TW. Multimodal gradients of basal forebrain connectivity across the neocortex. Nat Commun 2024; 15:8990. [PMID: 39420185 PMCID: PMC11487139 DOI: 10.1038/s41467-024-53148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Cortical cholinergic projections originate from subregions of the basal forebrain (BF). To examine its organization in humans, we computed multimodal gradients of BF connectivity by combining 7 T diffusion and resting state functional MRI. Moving from anteromedial to posterolateral BF, we observe reduced tethering between structural and functional connectivity gradients, with the lowest tethering in the nucleus basalis of Meynert. In the neocortex, this gradient is expressed by progressively reduced tethering from unimodal sensory to transmodal cortex, with the lowest tethering in the midcingulo-insular network, and is also spatially correlated with the molecular concentration of VAChT, measured by [18F]fluoroethoxy-benzovesamicol (FEOBV) PET. In mice, viral tracing of BF cholinergic projections and [18F]FEOBV PET confirm a gradient of axonal arborization. Altogether, our findings reveal that BF cholinergic neurons vary in their branch complexity, with certain subpopulations exhibiting greater modularity and others greater diffusivity in the functional integration with their cortical targets.
Collapse
Affiliation(s)
- Sudesna Chakraborty
- Neuroscience Graduate Program, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Department of Integrated Information Technology, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan.
| | - Roy A M Haast
- Robarts Research Institute, Western University, London, Ontario, Canada
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Kate M Onuska
- Neuroscience Graduate Program, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K.Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Marco A M Prado
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Ali R Khan
- Neuroscience Graduate Program, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Taylor W Schmitz
- Neuroscience Graduate Program, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Lawson Health Research Institute, Western University, London, Ontario, Canada.
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.
| |
Collapse
|
3
|
Kasahara K, Hikishima K, Nakata M, Tsurugizawa T, Higo N, Doya K. A whole-brain analysis of functional connectivity and immediate early gene expression reveals functional network shifts after operant learning. Neuroimage 2024; 299:120840. [PMID: 39241900 DOI: 10.1016/j.neuroimage.2024.120840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Previous studies of operant learning have addressed neuronal activities and network changes in specific brain areas, such as the striatum, sensorimotor cortex, prefrontal/orbitofrontal cortices, and hippocampus. However, how changes in the whole-brain network are caused by cellular-level changes remains unclear. We, therefore, combined resting-state functional magnetic resonance imaging (rsfMRI) and whole-brain immunohistochemical analysis of early growth response 1 (EGR1), a marker of neural plasticity, to elucidate the temporal and spatial changes in functional networks and underlying cellular processes during operant learning. We used an 11.7-Tesla MRI scanner and whole-brain immunohistochemical analysis of EGR1 in mice during the early and late stages of operant learning. In the operant training, mice received a reward when they pressed left and right buttons alternately, and were punished with a bright light when they made a mistake. A group of mice (n = 22) underwent the first rsfMRI acquisition before behavioral sessions, the second acquisition after 3 training-session-days (early stage), and the third after 21 training-session-days (late stage). Another group of mice (n = 40) was subjected to histological analysis 15 min after the early or late stages of behavioral sessions. Functional connectivity increased between the limbic areas and thalamus or auditory cortex after the early stage of training, and between the motor cortex, sensory cortex, and striatum after the late stage of training. The density of EGR1-immunopositive cells in the motor and sensory cortices increased in both the early and late stages of training, whereas the density in the amygdala increased only in the early stage of training. The subcortical networks centered around the limbic areas that emerged in the early stage have been implicated in rewards, pleasures, and fears. The connectivities between the motor cortex, somatosensory cortex, and striatum that consolidated in the late stage have been implicated in motor learning. Our multimodal longitudinal study successfully revealed temporal shifts in brain regions involved in behavioral learning together with the underlying cellular-level plasticity between these regions. Our study represents a first step towards establishing a new experimental paradigm that combines rsfMRI and immunohistochemistry to link macroscopic and microscopic mechanisms involved in learning.
Collapse
Affiliation(s)
- Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan; Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| | - Keigo Hikishima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8564, Japan; Animal Resources Section, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| | - Mariko Nakata
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan; Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Ibaraki 305-0006, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan
| | - Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
4
|
Shiohama T, Uchikawa H, Nitta N, Takatani T, Matsuda S, Ortug A, Takahashi E, Sawada D, Shimizu E, Fujii K, Aoki I, Hamada H. Brain morphological analysis in mice with hyperactivation of the hedgehog signaling pathway. Front Neurosci 2024; 18:1449673. [PMID: 39290714 PMCID: PMC11405378 DOI: 10.3389/fnins.2024.1449673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Hedgehog signaling is a highly conserved pathway that plays pivotal roles in morphogenesis, tumorigenesis, osteogenesis, and wound healing. Previous investigations in patients with Gorlin syndrome found low harm avoidance traits, and increased volumes in the cerebrum, cerebellum, and cerebral ventricles, suggesting the association between brain morphology and the constitutive hyperactivation of hedgehog signaling, while the changes of regional brain volumes in upregulated hedgehog signaling pathway remains unclear so far. Herein, we investigated comprehensive brain regional volumes using quantitative structural brain MRI, and identified increased volumes of amygdala, striatum, and pallidum on the global segmentation, and increased volumes of the lateral and medial parts of the central nucleus of the amygdala on the detail segmentation in Ptch heterozygous deletion mice. Our data may enhance comprehension of the association between brain morphogenic changes and hyperactivity in hedgehog signaling.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Uchikawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of General Medical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobuhiro Nitta
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, QST, Chiba, Japan
- Central Institute for Experimental Medicine and Life Science Bio Imaging Center, Yokohama, Japan
| | - Tomozumi Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Matsuda
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Tokyo, Japan
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Alpen Ortug
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Daisuke Sawada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pediatrics, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Ichio Aoki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, QST, Chiba, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Isumi S, Futamura D, Hanasaki T, Sako Y, Miyata S, Kan H, Suzuki Y, Hasegawa N, Mushiake H, Kametaka S, Uchiyama Y, Osanai M, Lee-Hotta S. Association of medullary reticular formation ventral part with spasticity in mice suffering from photothrombotic stroke. Neuroimage 2024; 298:120791. [PMID: 39147291 DOI: 10.1016/j.neuroimage.2024.120791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024] Open
Abstract
Strokes cause spasticity via stretch reflex hyperexcitability in the spinal cord, and spastic paralysis due to involuntary muscle contraction in the hands and fingers can severely restrict skilled hand movements. However, the underlying neurological mechanisms remain unknown. Using a mouse model of spasticity after stroke, we demonstrate changes in neuronal activity with and without electrostimulation of the afferent nerve to induce the stretch reflex, measured using quantitative activation-induced manganese-enhanced magnetic resonance imaging. Neuronal activity increased within the ventral medullary reticular formation (MdV) in the contralesional brainstem during the acute post-stroke phase, and this increase was characterised by activation of circuits involved in spasticity. Interestingly, ascending electrostimulation inhibited the MdV activity on the stimulation side in normal conditions. Moreover, immunohistochemical staining showed that, in the acute phase, the density of GluA1, one of the α-amino-3 hydroxy‑5 methyl -4 isoxazolepropionic acid receptor (AMPAR) subunits, at the synapses of MdV neurons was significantly increased. In addition, the GluA1/GluA2 ratio in these receptors was altered at 2 weeks post-stroke, confirming homeostatic plasticity as the underlying mechanisms of spasticity. These results provide new insights into the relationship between impaired skilled movements and spasticity at the acute post-stroke phase.
Collapse
Affiliation(s)
- Shogo Isumi
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Daiki Futamura
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takuto Hanasaki
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yukito Sako
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Shotaro Miyata
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yumika Suzuki
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Naoki Hasegawa
- Department of Radiological Imaging and Informatics, School of Medicine, Tohoku University, Sendai, Japan
| | - Hajime Mushiake
- Department of Physiology, School of Medicine, Tohoku University, Sendai, Japan
| | - Satoshi Kametaka
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yasushi Uchiyama
- Division of Creative Physical Therapy, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Makoto Osanai
- Department of Physiology, School of Medicine, Tohoku University, Sendai, Japan; Laboratory for Physiological Functional Imaging, Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sachiko Lee-Hotta
- Division of Creative Physical Therapy, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan.
| |
Collapse
|
6
|
Williams IR, Ryugo DK. Bilateral and symmetric glycinergic and glutamatergic projections from the LSO to the IC in the CBA/CaH mouse. Front Neural Circuits 2024; 18:1430598. [PMID: 39184455 PMCID: PMC11341401 DOI: 10.3389/fncir.2024.1430598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location. It has been shown that midbrain neurons are largely excited by sound from the contralateral ear and inhibited by sound leading at the ipsilateral ear. In this context, ascending projections from the lateral superior olive (LSO) to the IC have been reported to be ipsilaterally glycinergic and contralaterally glutamatergic. This study used CBA/CaH mice (3-6 months old) and applied unilateral retrograde tracing techniques into the IC in conjunction with immunocytochemical methods with glycine and glutamate transporters (GlyT2 and vGLUT2, respectively) to analyze the projection patterns from the LSO to the IC. Glycinergic and glutamatergic neurons were spatially intermixed within the LSO, and both types projected to the IC. For GlyT2 and vGLUT2 neurons, the average percentage of ipsilaterally and contralaterally projecting cells was similar (ANOVA, p = 0.48). A roughly equal number of GlyT2 and vGLUT2 neurons did not project to the IC. The somatic size and shape of these neurons match the descriptions of LSO principal cells. A minor but distinct population of small (< 40 μm2) neurons that labeled for GlyT2 did not project to the IC; these cells emerge as candidates for inhibitory local circuit neurons. Our findings indicate a symmetric and bilateral projection of glycine and glutamate neurons from the LSO to the IC. The differences between our results and those from previous studies suggest that species and habitat differences have a significant role in mechanisms of binaural processing and highlight the importance of research methods and comparative neuroscience. These data will be important for modeling how excitatory and inhibitory systems converge to create auditory space in the CBA/CaH mouse.
Collapse
Affiliation(s)
- Isabella R. Williams
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head, Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
7
|
Zhao Z, Okada N, Yagishita S, Yahata N, Nitta N, Shibata S, Abe Y, Morita S, Kumagai E, Tanaka KF, Suhara T, Takumi T, Kasai K, Jinde S. Correlations of brain structure with the social behavior of 15q11-13 duplication mice, an animal model of autism. Neurosci Res 2024:S0168-0102(24)00100-7. [PMID: 39097003 DOI: 10.1016/j.neures.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Duplication of chromosome 15q11-13 has been reported to be one of the most frequent cytogenetic copy number variations in autism spectrum disorder (ASD), and a mouse model of paternal 15q11-13 duplication was generated, termed 15q dup mice. While previous studies have replicated some of the behavioral and brain structural phenotypes of ASD separately, the relationship between brain structure and behavior has rarely been examined. In this study, we performed behavioral experiments related to anxiety and social behaviors and magnetic resonance imaging (MRI) using the same set of 15q dup and wild-type mice. 15q dup mice showed increased anxiety and a tendency toward alterations in social behaviors, as reported previously, as well as variability in terms of sociability. MRI analysis revealed that a lower sociability index was correlated with a smaller gray matter volume in the right medial entorhinal cortex. These results may help to understand how variability in behavioral phenotypes of ASD arises even in individuals with the same genetic background and to determine the individual differences in neurodevelopmental trajectory correlated with specific brain structures that underlie these phenotypes.
Collapse
Affiliation(s)
- Zhilei Zhao
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Yagishita
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriaki Yahata
- National Institutes for Quantum Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Nobuhiro Nitta
- National Institutes for Quantum Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan; Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki Ward, Kawasaki, Kanagawa 210-0821, Japan
| | - Sayaka Shibata
- National Institutes for Quantum Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Susumu Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Eureka Kumagai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Tetsuya Suhara
- National Institutes for Quantum Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe 650-0017, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
8
|
Park JW, Tian Y, Kim ST, Park C, Kim YM, Chung HK, Kim KM, Jahng GH. Oligomeric amyloid-β targeted contrast agent for MRI evaluation of Alzheimer's disease mouse models. Front Pharmacol 2024; 15:1392729. [PMID: 38895620 PMCID: PMC11184063 DOI: 10.3389/fphar.2024.1392729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background Oligomeric amyloid beta (oAβ) is a toxic factor that acts in the early stage of Alzheimer's disease (AD) and may initiate the pathologic cascade. Therefore, detecting oAβ has a crucial role in the early diagnosis, monitoring, and treatment of AD. Purpose The purpose of this study was to evaluate MRI signal changes in different mouse models and the time-dependent signal changes using our novel gadolinium (Gd)-dodecane tetraacetic acid (DOTA)- ob5 aptamer contrast agent. Methods We developed an MRI contrast agent by conjugating Gd-DOTA-DNA aptamer called ob5 to evaluate its ability to detect oAβ deposits in the brain using MRI. A total of 10 control mice, 9 3xTg AD mice, and 11 APP/PS/Tau AD mice were included in this study, with the age of each model being 16 or 36 weeks. A T1-weighted image was acquired at the time points before (0 min) and after injection of the contrast agent at 5, 10, 15, 20, and 25 min. The analyses were performed to compare MRI signal differences among the three groups and the time-dependent signal differences in different mouse models. Results Both 3xTg AD and APP/PS/Tau AD mouse models had higher signal enhancement than control mice at all scan-time points after injection of our contrast media, especially in bilateral hippocampal areas. In particular, all Tg AD mouse models aged 16 weeks showed a higher contrast enhancement than those aged 36 weeks. For 3xTg AD and APP/PS/Tau AD groups, the signal enhancement was significantly different among the five time points (0 min, 5 min, 10 min, 15 min, 20 min, and 25 min) in multiple ROI areas, typically in the bilateral hippocampus, left thalamus, and left amygdala. Conclusion The findings of this study suggest that the expression of the contrast agent in different AD models demonstrates its translational flexibility across different species. The signal enhancement peaked around 15-20 min after injection of the contrast agent. Therefore, our novel contrast agent targeting oAβ has the potential ability to diagnose early AD and monitor the progression of AD.
Collapse
Affiliation(s)
- Jang Woo Park
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Yunan Tian
- Department of Medicine, Graduate School, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Sang-Tae Kim
- J&Pharma, Neuroscience Research Institute, Healthcare Innovation Park, Seongnam City, Republic of Korea
| | - Chanwoo Park
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Yu Mi Kim
- J&Pharma, Neuroscience Research Institute, Healthcare Innovation Park, Seongnam City, Republic of Korea
| | - Hye Kyung Chung
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Kyeong Min Kim
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Research Institute of Radiological and Medical Sciences, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Radiological and Medico Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Gurdon B, Yates SC, Csucs G, Groeneboom NE, Hadad N, Telpoukhovskaia M, Ouellette A, Ouellette T, O'Connell KMS, Singh S, Murdy TJ, Merchant E, Bjerke I, Kleven H, Schlegel U, Leergaard TB, Puchades MA, Bjaalie JG, Kaczorowski CC. Detecting the effect of genetic diversity on brain composition in an Alzheimer's disease mouse model. Commun Biol 2024; 7:605. [PMID: 38769398 PMCID: PMC11106287 DOI: 10.1038/s42003-024-06242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD) is broadly characterized by neurodegeneration, pathology accumulation, and cognitive decline. There is considerable variation in the progression of clinical symptoms and pathology in humans, highlighting the importance of genetic diversity in the study of AD. To address this, we analyze cell composition and amyloid-beta deposition of 6- and 14-month-old AD-BXD mouse brains. We utilize the analytical QUINT workflow- a suite of software designed to support atlas-based quantification, which we expand to deliver a highly effective method for registering and quantifying cell and pathology changes in diverse disease models. In applying the expanded QUINT workflow, we quantify near-global age-related increases in microglia, astrocytes, and amyloid-beta, and we identify strain-specific regional variation in neuron load. To understand how individual differences in cell composition affect the interpretation of bulk gene expression in AD, we combine hippocampal immunohistochemistry analyses with bulk RNA-sequencing data. This approach allows us to categorize genes whose expression changes in response to AD in a cell and/or pathology load-dependent manner. Ultimately, our study demonstrates the use of the QUINT workflow to standardize the quantification of immunohistochemistry data in diverse mice, - providing valuable insights into regional variation in cellular load and amyloid deposition in the AD-BXD model.
Collapse
Affiliation(s)
- Brianna Gurdon
- The Jackson Laboratory, Bar Harbor, ME, USA
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA
| | - Sharon C Yates
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gergely Csucs
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nicolaas E Groeneboom
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niran Hadad
- The Jackson Laboratory, Bar Harbor, ME, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Andrew Ouellette
- The Jackson Laboratory, Bar Harbor, ME, USA
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA
| | - Tionna Ouellette
- The Jackson Laboratory, Bar Harbor, ME, USA
- Tufts University Graduate School of Biomedical Sciences, Medford, MA, USA
| | - Kristen M S O'Connell
- The Jackson Laboratory, Bar Harbor, ME, USA
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA
- Tufts University Graduate School of Biomedical Sciences, Medford, MA, USA
| | - Surjeet Singh
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Ingvild Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ulrike Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Catherine C Kaczorowski
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA.
- Tufts University Graduate School of Biomedical Sciences, Medford, MA, USA.
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Hamada HT, Abe Y, Takata N, Taira M, Tanaka KF, Doya K. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation. Nat Commun 2024; 15:4152. [PMID: 38755120 PMCID: PMC11099070 DOI: 10.1038/s41467-024-48489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.
Collapse
Affiliation(s)
- Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Research & Development Department, Araya Inc, Tokyo, Japan.
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
11
|
Shindo M, Terao M, Takada S, Ichinose M, Matsuzaka E, Yokoi T, Azuma N, Mizuno S, Tsumura H. Establishment and visual analysis of CBA/J-Pde6b Y347Y/Y347X and C3H/HeJ-Pde6b Y347Y/Y347X mice. Exp Anim 2024; 73:203-210. [PMID: 38171880 PMCID: PMC11091356 DOI: 10.1538/expanim.23-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
In CBA/J and C3H/HeJ mice, retinitis pigmentosa is inherited as an autosomal-recessive trait due to a mutation in Pde6b, which encodes cGMP phosphodiesterase subunit b. In these strains, the Y347X mutation in Pde6b leads to the upregulation of cGMP levels, increased Ca2+ influx induces rod death, and the outer segment and rod cells entirely disappeared by 35 days after birth. In the present study, we utilized the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9-mediated gene editing to repair the Y347X mutation in CBA/J and C3H/HeJ mice. Evaluation of the established CBA/J-Pde6bY347Y/Y347X and C3H/HeJ-Pde6bY347Y/Y347X mice, which were confirmed to have normal retinal layers by live fundoscopic imaging and histopathological analysis, revealed improved visual acuity based on the visual cliff and light/dark latency tests. Furthermore, our analyses revealed that the visible platform test was a more effective tool for testing visual behavior in these mice. The results suggest that the established strains can serve as control groups for CBA/J and C3H/HeJ in ophthalmology studies involving retinitis pigmentosa.
Collapse
Affiliation(s)
- Miyuki Shindo
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Minoru Ichinose
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Emiko Matsuzaka
- Department of Ophthalmology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Tadashi Yokoi
- Department of Ophthalmology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Noriyuki Azuma
- Department of Ophthalmology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideki Tsumura
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
12
|
Ma X, Xing Y, Zhai R, Du Y, Yan H. Development and advancements in rodent MRI-based brain atlases. Heliyon 2024; 10:e27421. [PMID: 38510053 PMCID: PMC10950579 DOI: 10.1016/j.heliyon.2024.e27421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Rodents, particularly mice and rats, are extensively utilized in fundamental neuroscience research. Brain atlases have played a pivotal role in this field, evolving from traditional printed histology atlases to digital atlases incorporating diverse imaging datasets. Magnetic resonance imaging (MRI)-based brain atlases, also known as brain maps, have been employed in specific studies. However, the existence of numerous versions of MRI-based brain atlases has impeded their standardized application and widespread use, despite the consensus within the academic community regarding their significance in mice and rats. Furthermore, there is a dearth of comprehensive and systematic reviews on MRI-based brain atlases for rodents. This review aims to bridge this gap by providing a comprehensive overview of the advancements in MRI-based brain atlases for rodents, with a specific focus on mice and rats. It seeks to explore the advantages and disadvantages of histologically printed brain atlases in comparison to MRI brain atlases, delineate the standardized methods for creating MRI brain atlases, and summarize their primary applications in neuroscience research. Additionally, this review aims to assist researchers in selecting appropriate versions of MRI brain atlases for their studies or refining existing MRI brain atlas resources, thereby facilitating the development and widespread adoption of standardized MRI-based brain atlases in rodents.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yao Xing
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Renkuan Zhai
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Yingying Du
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Huanhuan Yan
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518048, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
13
|
Willekens SMA, Morini F, Mediavilla T, Nilsson E, Orädd G, Hahn M, Chotiwan N, Visa M, Berggren PO, Ilegems E, Överby AK, Ahlgren U, Marcellino D. An MR-based brain template and atlas for optical projection tomography and light sheet fluorescence microscopy in neuroscience. Front Neurosci 2024; 18:1328815. [PMID: 38601090 PMCID: PMC11004350 DOI: 10.3389/fnins.2024.1328815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Optical Projection Tomography (OPT) and light sheet fluorescence microscopy (LSFM) are high resolution optical imaging techniques, ideally suited for ex vivo 3D whole mouse brain imaging. Although they exhibit high specificity for their targets, the anatomical detail provided by tissue autofluorescence remains limited. Methods T1-weighted images were acquired from 19 BABB or DBE cleared brains to create an MR template using serial longitudinal registration. Afterwards, fluorescent OPT and LSFM images were coregistered/normalized to the MR template to create fusion images. Results Volumetric calculations revealed a significant difference between BABB and DBE cleared brains, leading to develop two optimized templates, with associated tissue priors and brain atlas, for BABB (OCUM) and DBE (iOCUM). By creating fusion images, we identified virus infected brain regions, mapped dopamine transporter and translocator protein expression, and traced innervation from the eye along the optic tract to the thalamus and superior colliculus using cholera toxin B. Fusion images allowed for precise anatomical identification of fluorescent signal in the detailed anatomical context provided by MR. Discussion The possibility to anatomically map fluorescent signals on magnetic resonance (MR) images, widely used in clinical and preclinical neuroscience, would greatly benefit applications of optical imaging of mouse brain. These specific MR templates for cleared brains enable a broad range of neuroscientific applications integrating 3D optical brain imaging.
Collapse
Affiliation(s)
- Stefanie M. A. Willekens
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Federico Morini
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Tomas Mediavilla
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Emma Nilsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Greger Orädd
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Max Hahn
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Nunya Chotiwan
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Montse Visa
- The Rolf Luft Research Centre for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Centre for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Erwin Ilegems
- The Rolf Luft Research Centre for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Ulf Ahlgren
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Daniel Marcellino
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Oelschlegel AM, Bhattacharjee R, Wenk P, Harit K, Rothkötter HJ, Koch SP, Boehm-Sturm P, Matuschewski K, Budinger E, Schlüter D, Goldschmidt J, Nishanth G. Beyond the microcirculation: sequestration of infected red blood cells and reduced flow in large draining veins in experimental cerebral malaria. Nat Commun 2024; 15:2396. [PMID: 38493187 PMCID: PMC10944460 DOI: 10.1038/s41467-024-46617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Sequestration of infected red blood cells (iRBCs) in the microcirculation is a hallmark of cerebral malaria (CM) in post-mortem human brains. It remains controversial how this might be linked to the different disease manifestations, in particular brain swelling leading to brain herniation and death. The main hypotheses focus on iRBC-triggered inflammation and mechanical obstruction of blood flow. Here, we test these hypotheses using murine models of experimental CM (ECM), SPECT-imaging of radiolabeled iRBCs and cerebral perfusion, MR-angiography, q-PCR, and immunohistochemistry. We show that iRBC accumulation and reduced flow precede inflammation. Unexpectedly, we find that iRBCs accumulate not only in the microcirculation but also in large draining veins and sinuses, particularly at the rostral confluence. We identify two parallel venous streams from the superior sagittal sinus that open into the rostral rhinal veins and are partially connected to infected skull bone marrow. The flow in these vessels is reduced early, and the spatial patterns of pathology correspond to venous drainage territories. Our data suggest that venous efflux reductions downstream of the microcirculation are causally linked to ECM pathology, and that the different spatiotemporal patterns of edema development in mice and humans could be related to anatomical differences in venous anatomy.
Collapse
Affiliation(s)
- A M Oelschlegel
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Research group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - R Bhattacharjee
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - P Wenk
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - K Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - H-J Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - S P Koch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - P Boehm-Sturm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - K Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany
| | - E Budinger
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - D Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - J Goldschmidt
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - G Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
15
|
Stapleton MC, Koch SP, Cortes DRE, Wyman S, Schwab KE, Mueller S, McKennan CG, Boehm-Sturm P, Wu YL. Apolipoprotein-E deficiency leads to brain network alteration characterized by diffusion MRI and graph theory. Front Neurosci 2023; 17:1183312. [PMID: 38075287 PMCID: PMC10702609 DOI: 10.3389/fnins.2023.1183312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/18/2023] [Indexed: 02/12/2024] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a major health concern for senior citizens, characterized by memory loss, confusion, and impaired cognitive abilities. Apolipoprotein-E (ApoE) is a well-known risk factor for LOAD, though exactly how ApoE affects LOAD risks is unknown. We hypothesize that ApoE attenuation of LOAD resiliency or vulnerability has a neurodevelopmental origin via changing brain network architecture. We investigated the brain network structure in adult ApoE knock out (ApoE KO) and wild-type (WT) mice with diffusion tensor imaging (DTI) followed by graph theory to delineate brain network topology. Left and right hemisphere connectivity revealed significant differences in number of connections between the hippocampus, amygdala, caudate putamen and other brain regions. Network topology based on the graph theory of ApoE KO demonstrated decreased functional integration, network efficiency, and network segregation between the hippocampus and amygdala and the rest of the brain, compared to those in WT counterparts. Our data show that brain network developed differently in ApoE KO and WT mice at 5 months of age, especially in the network reflected in the hippocampus, amygdala, and caudate putamen. This indicates that ApoE is involved in brain network development which might modulate LOAD risks via changing brain network structures.
Collapse
Affiliation(s)
- Margaret Caroline Stapleton
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Stefan Paul Koch
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Devin Raine Everaldo Cortes
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Wyman
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Kristina E. Schwab
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Susanne Mueller
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Philipp Boehm-Sturm
- Charité 3R | Replace, Reduce, Refine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yijen Lin Wu
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Rangos Research Center Animal Imaging Core, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Hikishima K, Tsurugizawa T, Kasahara K, Hayashi R, Takagi R, Yoshinaka K, Nitta N. Functional ultrasound reveals effects of MRI acoustic noise on brain function. Neuroimage 2023; 281:120382. [PMID: 37734475 DOI: 10.1016/j.neuroimage.2023.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Loud acoustic noise from the scanner during functional magnetic resonance imaging (fMRI) can affect functional connectivity (FC) observed in the resting state, but the exact effect of the MRI acoustic noise on resting state FC is not well understood. Functional ultrasound (fUS) is a neuroimaging method that visualizes brain activity based on relative cerebral blood volume (rCBV), a similar neurovascular coupling response to that measured by fMRI, but without the audible acoustic noise. In this study, we investigated the effects of different acoustic noise levels (silent, 80 dB, and 110 dB) on FC by measuring resting state fUS (rsfUS) in awake mice in an environment similar to fMRI measurement. Then, we compared the results to those of resting state fMRI (rsfMRI) conducted using an 11.7 Tesla scanner. RsfUS experiments revealed a significant reduction in FC between the retrosplenial dysgranular and auditory cortexes (0.56 ± 0.07 at silence vs 0.05 ± 0.05 at 110 dB, p=.01) and a significant increase in FC anticorrelation between the infralimbic and motor cortexes (-0.21 ± 0.08 at silence vs -0.47 ± 0.04 at 110 dB, p=.017) as acoustic noise increased from silence to 80 dB and 110 dB, with increased consistency of FC patterns between rsfUS and rsfMRI being found with the louder noise conditions. Event-related auditory stimulation experiments using fUS showed strong positive rCBV changes (16.5% ± 2.9% at 110 dB) in the auditory cortex, and negative rCBV changes (-6.7% ± 0.8% at 110 dB) in the motor cortex, both being constituents of the brain network that was altered by the presence of acoustic noise in the resting state experiments. Anticorrelation between constituent brain regions of the default mode network (such as the infralimbic cortex) and those of task-positive sensorimotor networks (such as the motor cortex) is known to be an important feature of brain network antagonism, and has been studied as a biological marker of brain disfunction and disease. This study suggests that attention should be paid to the acoustic noise level when using rsfMRI to evaluate the anticorrelation between the default mode network and task-positive sensorimotor network.
Collapse
Affiliation(s)
- Keigo Hikishima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinwa 904-0495, Japan.
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan
| | - Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan
| | - Ryusuke Hayashi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan
| | - Ryo Takagi
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Kiyoshi Yoshinaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Naotaka Nitta
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| |
Collapse
|
17
|
Hikishima K, Tsurugizawa T, Kasahara K, Takagi R, Yoshinaka K, Nitta N. Brain-wide mapping of resting-state networks in mice using high-frame rate functional ultrasound. Neuroimage 2023; 279:120297. [PMID: 37500027 DOI: 10.1016/j.neuroimage.2023.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Functional ultrasound (fUS) imaging is a method for visualizing deep brain activity based on cerebral blood volume changes coupled with neural activity, while functional MRI (fMRI) relies on the blood-oxygenation-level-dependent signal coupled with neural activity. Low-frequency fluctuations (LFF) of fMRI signals during resting-state can be measured by resting-state fMRI (rsfMRI), which allows functional imaging of the whole brain, and the distributions of resting-state network (RSN) can then be estimated from these fluctuations using independent component analysis (ICA). This procedure provides an important method for studying cognitive and psychophysiological diseases affecting specific brain networks. The distributions of RSNs in the brain-wide area has been reported primarily by rsfMRI. RSNs using rsfMRI are generally computed from the time-course of fMRI signals for more than 5 min. However, a recent dynamic functional connectivity study revealed that RSNs are still not perfectly stable even after 10 min. Importantly, fUS has a higher temporal resolution and stronger correlation with neural activity compared with fMRI. Therefore, we hypothesized that fUS applied during the resting-state for a shorter than 5 min would provide similar RSNs compared to fMRI. High temporal resolution rsfUS data were acquired at 10 Hz in awake mice. The quality of the default mode network (DMN), a well-known RSN, was evaluated using signal-noise separation (SNS) applied to different measurement durations of rsfUS. The results showed that the SNS did not change when the measurement duration was increased to more than 210 s. Next, we measured short-duration rsfUS multi-slice measurements in the brain-wide area. The results showed that rsfUS with the short duration succeeded in detecting RSNs distributed in the brain-wide area consistent with RSNs detected by 11.7-T MRI under awake conditions (medial prefrontal cortex and cingulate cortex in the anterior DMN, retrosplenial cortex and visual cortex in the posterior DMN, somatosensory and motor cortexes in the lateral cortical network, thalamus, dorsal hippocampus, and medial cerebellum), confirming the reliability of the RSNs detected by rsfUS. However, bilateral RSNs located in the secondary somatosensory cortex, ventral hippocampus, auditory cortex, and lateral cerebellum extracted from rsfUS were different from the unilateral RSNs extracted from rsfMRI. These findings indicate the potential of rsfUS as a method for analyzing functional brain networks and should encourage future research to elucidate functional brain networks and their relationships with disease model mice.
Collapse
Affiliation(s)
- Keigo Hikishima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan; Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ryo Takagi
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kiyoshi Yoshinaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Naotaka Nitta
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
18
|
Mahani FSN, Kalantari A, Fink GR, Hoehn M, Aswendt M. A systematic review of the relationship between magnetic resonance imaging based resting-state and structural networks in the rodent brain. Front Neurosci 2023; 17:1194630. [PMID: 37554291 PMCID: PMC10405456 DOI: 10.3389/fnins.2023.1194630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
Recent developments in rodent brain imaging have enabled translational characterization of functional and structural connectivity at the whole brain level in vivo. Nevertheless, fundamental questions about the link between structural and functional networks remain unsolved. In this review, we systematically searched for experimental studies in rodents investigating both structural and functional network measures, including studies correlating functional connectivity using resting-state functional MRI with diffusion tensor imaging or viral tracing data. We aimed to answer whether functional networks reflect the architecture of the structural connectome, how this reciprocal relationship changes throughout a disease, how structural and functional changes relate to each other, and whether changes follow the same timeline. We present the knowledge derived exclusively from studies that included in vivo imaging of functional and structural networks. The limited number of available reports makes it difficult to draw general conclusions besides finding a spatial and temporal decoupling between structural and functional networks during brain disease. Data suggest that when overcoming the currently limited evidence through future studies with combined imaging in various disease models, it will be possible to explore the interaction between both network systems as a disease or recovery biomarker.
Collapse
Affiliation(s)
- Fatemeh S. N. Mahani
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Aref Kalantari
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Mathias Hoehn
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Markus Aswendt
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Chotiwan N, Rosendal E, Willekens SMA, Schexnaydre E, Nilsson E, Lindqvist R, Hahn M, Mihai IS, Morini F, Zhang J, Ebel GD, Carlson LA, Henriksson J, Ahlgren U, Marcellino D, Överby AK. Type I interferon shapes brain distribution and tropism of tick-borne flavivirus. Nat Commun 2023; 14:2007. [PMID: 37037810 PMCID: PMC10086010 DOI: 10.1038/s41467-023-37698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Viral tropism within the brain and the role(s) of vertebrate immune response to neurotropic flaviviruses infection is largely understudied. We combine multimodal imaging (cm-nm scale) with single nuclei RNA-sequencing to study Langat virus in wildtype and interferon alpha/beta receptor knockout (Ifnar-/-) mice to visualize viral pathogenesis and define molecular mechanisms. Whole brain viral infection is imaged by Optical Projection Tomography coregistered to ex vivo MRI. Infection is limited to grey matter of sensory systems in wildtype mice, but extends into white matter, meninges and choroid plexus in Ifnar-/- mice. Cells in wildtype display strong type I and II IFN responses, likely due to Ifnb expressing astrocytes, infiltration of macrophages and Ifng-expressing CD8+ NK cells, whereas in Ifnar-/-, the absence of this response contributes to a shift in cellular tropism towards non-activated resident microglia. Multimodal imaging-transcriptomics exemplifies a powerful way to characterize mechanisms of viral pathogenesis and tropism.
Collapse
Affiliation(s)
- Nunya Chotiwan
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden.
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand.
| | - Ebba Rosendal
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Stefanie M A Willekens
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden
| | - Erin Schexnaydre
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 90187, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 90187, Umeå, Sweden
| | - Emma Nilsson
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
| | - Max Hahn
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden
| | - Ionut Sebastian Mihai
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Department of Department of Molecular biology, Umeå University, 90187, Umeå, Sweden
- Företagsforskarskolan, Umeå University, 90187, Umeå, Sweden
| | - Federico Morini
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden
| | - Jianguo Zhang
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 90187, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 90187, Umeå, Sweden
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Lars-Anders Carlson
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 90187, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 90187, Umeå, Sweden
| | - Johan Henriksson
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 90187, Umeå, Sweden
- Department of Department of Molecular biology, Umeå University, 90187, Umeå, Sweden
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden
| | - Daniel Marcellino
- Department of Integrative Medical Biology, Umeå University, 90187, Umeå, Sweden
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden.
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
20
|
Yoo CH, Kim J, Baek HM, Chang KA, Choe BY. Neurodegenerative Changes in the Brains of the 5xFAD Alzheimer’s Disease Model Mice Investigated by High-Field and High-Resolution Magnetic Resonance Imaging and Multi-Nuclei Magnetic Resonance Spectroscopy. Int J Mol Sci 2023; 24:ijms24065073. [PMID: 36982146 PMCID: PMC10049146 DOI: 10.3390/ijms24065073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
This study aimed to investigate morphological and metabolic changes in the brains of 5xFAD mice. Structural magnetic resonance imaging (MRI) and 1H magnetic resonance spectroscopy (MRS) were obtained in 10- and 14-month-old 5xFAD and wild-type (WT) mice, while 31P MRS scans were acquired in 11-month-old mice. Significantly reduced gray matter (GM) was identified by voxel-based morphometry (VBM) in the thalamus, hypothalamus, and periaqueductal gray areas of 5xFAD mice compared to WT mice. Significant reductions in N-acetyl aspartate and elevation of myo-Inositol were revealed by the quantification of MRS in the hippocampus of 5xFAD mice, compared to WT. A significant reduction in NeuN-positive cells and elevation of Iba1- and GFAP-positive cells supported this observation. The reduction in phosphomonoester and elevation of phosphodiester was observed in 11-month-old 5xFAD mice, which might imply a sign of disruption in the membrane synthesis. Commonly reported 1H MRS features were replicated in the hippocampus of 14-month-old 5xFAD mice, and a sign of disruption in the membrane synthesis and elevation of breakdown were revealed in the whole brain of 5xFAD mice by 31P MRS. GM volume reduction was identified in the thalamus, hypothalamus, and periaqueductal gray areas of 5xFAD mice.
Collapse
Affiliation(s)
- Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jinho Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Correspondence: (H.-M.B.); (K.-A.C.)
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Correspondence: (H.-M.B.); (K.-A.C.)
| | - Bo-Young Choe
- Department of Biomedicine & Health Sciences, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
21
|
Gurdon B, Yates SC, Csucs G, Groeneboom NE, Hadad N, Telpoukhovskaia M, Ouellette A, Ouellette T, O'Connell K, Singh S, Murdy T, Merchant E, Bjerke I, Kleven H, Schlegel U, Leergaard TB, Puchades MA, Bjaalie JG, Kaczorowski CC. Detecting the effect of genetic diversity on brain composition in an Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530226. [PMID: 36909528 PMCID: PMC10002670 DOI: 10.1101/2023.02.27.530226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Alzheimer's disease (AD) is characterized by neurodegeneration, pathology accumulation, and progressive cognitive decline. There is significant variation in age at onset and severity of symptoms highlighting the importance of genetic diversity in the study of AD. To address this, we analyzed cell and pathology composition of 6- and 14-month-old AD-BXD mouse brains using the semi-automated workflow (QUINT); which we expanded to allow for nonlinear refinement of brain atlas-registration, and quality control assessment of atlas-registration and brain section integrity. Near global age-related increases in microglia, astrocyte, and amyloid-beta accumulation were measured, while regional variation in neuron load existed among strains. Furthermore, hippocampal immunohistochemistry analyses were combined with bulk RNA-sequencing results to demonstrate the relationship between cell composition and gene expression. Overall, the additional functionality of the QUINT workflow delivers a highly effective method for registering and quantifying cell and pathology changes in diverse disease models.
Collapse
Affiliation(s)
- Brianna Gurdon
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
| | - Sharon C Yates
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gergely Csucs
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nicolaas E Groeneboom
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | - Andrew Ouellette
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
| | - Tionna Ouellette
- The Jackson Laboratory, Bar Harbor, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| | - Kristen O'Connell
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| | | | - Tom Murdy
- The Jackson Laboratory, Bar Harbor, ME
| | | | - Ingvild Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ulrike Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Catherine C Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| |
Collapse
|
22
|
Wang Z, Deng J, Liang T, Su L, Zheng L, Chen H, Liu D. Lilium regale Wilson WRKY3 modulates an antimicrobial peptide gene, LrDef1, during response to Fusarium oxysporum. BMC PLANT BIOLOGY 2022; 22:257. [PMID: 35606728 PMCID: PMC9128230 DOI: 10.1186/s12870-022-03649-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND WRKY transcription factors (TFs) play vital roles in plant growth and development, secondary metabolite synthesis, and response to biotic and abiotic stresses. In a previous transcriptome sequencing analysis of Lilium regale Wilson, we identified multiple WRKY TFs that respond to exogenous methyl jasmonate treatment and lily Fusarium wilt (Fusarium oxysporum). RESULTS In the present study, the WRKY TF LrWRKY3 was further analyzed to reveal its function in defense response to F. oxysporum. The LrWRKY3 protein was localized in the plant cell nucleus, and LrWRKY3 transgenic tobacco lines showed higher resistance to F. oxysporum compared with wild-type (WT) tobacco. In addition, some genes related to jasmonic acid (JA) biosynthesis, salicylic acid (SA) signal transduction, and disease resistance had higher transcriptional levels in the LrWRKY3 transgenic tobacco lines than in the WT. On the contrary, L. regale scales transiently expressing LrWRKY3 RNA interference fragments showed higher sensitivity to F. oxysporum infection. Moreover, a F. oxysporum-induced defensin gene, Def1, was isolated from L. regale, and the recombinant protein LrDef1 isolated and purified from Escherichia coli possessed antifungal activity to several phytopathogens, including F. oxysporum. Furthermore, co-expression of LrWRKY3 and the LrDef1 promoter in tobacco enhanced the LrDef1 promoter-driven expression activity. CONCLUSIONS These results clearly indicate that LrWRKY3 is an important positive regulator in response to F. oxysporum infection, and one of its targets is the antimicrobial peptide gene LrDef1.
Collapse
Affiliation(s)
- Zie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Jie Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Tingting Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Linlin Su
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Lilei Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Hongjun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Number 727 Jing Ming South Road, Chenggong District, Kunming, 650500, China.
| |
Collapse
|
23
|
Akaba Y, Shiohama T, Komaki Y, Seki F, Ortug A, Sawada D, Uchida W, Kamagata K, Shimoji K, Aoki S, Takahashi S, Suzuki T, Natsume J, Takahashi E, Tsujimura K. Comprehensive Volumetric Analysis of Mecp2-Null Mouse Model for Rett Syndrome by T2-Weighted 3D Magnetic Resonance Imaging. Front Neurosci 2022; 16:885335. [PMID: 35620663 PMCID: PMC9127869 DOI: 10.3389/fnins.2022.885335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 01/01/2023] Open
Abstract
Rett syndrome (RTT) is a severe progressive neurodevelopmental disorder characterized by various neurological symptoms. Almost all RTT cases are caused by mutations in the X-linked methyl-CpG-binding protein 2 (MeCP2) gene, and several mouse models have been established to understand the disease. However, the neuroanatomical abnormalities in each brain region of RTT mouse models have not been fully understood. Here, we investigated the global and local neuroanatomy of the Mecp2 gene-deleted RTT model (Mecp2-KO) mouse brain using T2-weighted 3D magnetic resonance imaging with different morphometry to clarify the brain structural abnormalities that are involved in the pathophysiology of RTT. We found a significant reduction in global and almost all local volumes in the brain of Mecp2-KO mice. In addition, a detailed comparative analysis identified specific volume reductions in several brain regions in the Mecp2-deficient brain. Our analysis also revealed that the Mecp2-deficient brain shows changes in hemispheric asymmetry in several brain regions. These findings suggest that MeCP2 affects not only the whole-brain volume but also the region-specific brain structure. Our study provides a framework for neuroanatomical studies of a mouse model of RTT.
Collapse
Affiliation(s)
- Yuichi Akaba
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| | - Yuji Komaki
- Central Institute for Experimental Animals, Kawasaki, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Fumiko Seki
- Central Institute for Experimental Animals, Kawasaki, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Alpen Ortug
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Daisuke Sawada
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Keigo Shimoji
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Takeshi Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Emi Takahashi
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Keita Tsujimura
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- *Correspondence: Keita Tsujimura,
| |
Collapse
|
24
|
Zaheer J, Kim H, Ko IO, Jo EK, Choi EJ, Lee HJ, Shim I, Woo HJ, Choi J, Kim GH, Kim JS. Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. ENVIRONMENT INTERNATIONAL 2022; 161:107121. [PMID: 35134716 DOI: 10.1016/j.envint.2022.107121] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
In common with the increase in environmental pollution in the past 10 years, there has also been a recent increase in the prevalence of autism spectrum disorder (ASD). In this regard, we hypothesized that exposure to microplastics is a potential risk factor for ASD. To evaluate the validity of this hypothesis, we initially examined the accumulation of polyethylene (PE) in the brains of mice and then assessed the behavioral effects using mouse models at different life stages, namely, prenatal, post-weaning, puberty, and adult models. Based on typical behavioral assessments of autistic traits in the model mice, we established that ASD-like traits were induced in mice after PE feeding. In addition, we examined the induction of ASD-like traits in response to microplastic exposure using positron emission tomography, magnetic resonance spectroscopy, quantitative real-time polymerase chain reaction, microarray, and microbiome analysis. We believe these findings provide evidence in microplastics as a potential risk factor for ASD.
Collapse
Affiliation(s)
- Javeria Zaheer
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Republic of Korea
| | - Hyeongi Kim
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In Ok Ko
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Eun-Kyeong Jo
- School of Health & Environmental Science, College of Health Science, Korea University Seoul 02841, Republic of Korea
| | - Eui-Ju Choi
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Hyun-Jeong Woo
- Department of Biomedical Engineering, School of Integrative Engineering, College of ICT Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jonghoon Choi
- Department of Biomedical Engineering, School of Integrative Engineering, College of ICT Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gun-Ha Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jin Su Kim
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Republic of Korea.
| |
Collapse
|
25
|
Giacobbo BL, Özalay Ö, Mediavilla T, Ericsson M, Axelsson J, Rieckmann A, Sultan F, Marcellino D. The Aged Striatum: Evidence of Molecular and Structural Changes Using a Longitudinal Multimodal Approach in Mice. Front Aging Neurosci 2022; 14:795132. [PMID: 35140600 PMCID: PMC8818755 DOI: 10.3389/fnagi.2022.795132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
To study the aging human brain requires significant resources and time. Thus, mice models of aging can provide insight into changes in brain biological functions at a fraction of the time when compared to humans. This study aims to explore changes in dopamine D1 and D2 receptor availability and of gray matter density in striatum during aging in mice and to evaluate whether longitudinal imaging in mice may serve as a model for normal brain aging to complement cross-sectional research in humans. Mice underwent repeated structural magnetic resonance imaging (sMRI), and [11C]Raclopride and [11C]SCH23390 positron emission tomography (PET) was performed on a subset of aging mice. PET and sMRI data were analyzed by binding potential (BPND), voxel- and tensor-based morphometry (VBM and TBM, respectively). Longitudinal PET revealed a significant reduction in striatal BPND for D2 receptors over time, whereas no significant change was found for D1 receptors. sMRI indicated a significant increase in modulated gray matter density (mGMD) over time in striatum, with limited clusters showing decreased mGMD. Mouse [11C]Raclopride data is compatible with previous reports in human cross-sectional studies, suggesting that a natural loss of dopaminergic D2 receptors in striatum can be assessed in mice, reflecting estimates from humans. No changes in D1 were found, which may be attributed to altered [11C]SCH23390 kinetics in anesthetized mice, suggesting that this tracer is not yet able to replicate human findings. sMRI revealed a significant increase in mGMD. Although contrary to expectations, this increase in modulated GM density may be attributed to an age-related increase in non-neuronal cells.
Collapse
Affiliation(s)
| | - Özgün Özalay
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Tomas Mediavilla
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Anna Rieckmann
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Fahad Sultan
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Daniel Marcellino
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- *Correspondence: Daniel Marcellino,
| |
Collapse
|
26
|
Ruat J, Heinz DE, Binder FP, Stark T, Neuner R, Hartmann A, Kaplick PM, Chen A, Czisch M, Wotjak CT. Structural correlates of trauma-induced hyperarousal in mice. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110404. [PMID: 34303744 DOI: 10.1016/j.pnpbp.2021.110404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic disease caused by traumatic incidents. Numerous studies have revealed grey matter volume differences in affected individuals. The nature of the disease renders it difficult to distinguish between a priori versus a posteriori changes. To overcome this difficulty, we studied the consequences of a traumatic event on brain morphology in mice before and 4 weeks after exposure to brief foot shocks (or sham treatment), and correlated morphology with symptoms of hyperarousal. In the latter context, we assessed hyperarousal upon confrontation with acoustic, visual, or composite (acoustic/visual/tactile) threats and integrated the individual readouts into a single Hyperarousal Score using logistic regression analysis. MRI scans with subsequent whole-brain deformation-based morphometry (DBM) analysis revealed a volume decrease of the dorsal hippocampus and an increase of the reticular nucleus in shocked mice when compared to non-shocked controls. Using the Hyperarousal Score as regressor for the post-exposure MRI measurement, we observed negative correlations with several brain structures including the dorsal hippocampus. If the development of changes with respect to the basal MRI was considered, reduction in globus pallidus volume reflected hyperarousal severity. Our findings demonstrate that a brief traumatic incident can cause volume changes in defined brain structures and suggest the globus pallidus as an important hub for the control of fear responses to threatening stimuli of different sensory modalities.
Collapse
Affiliation(s)
- Julia Ruat
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Daniel E Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Florian P Binder
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tibor Stark
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czechia
| | - Robert Neuner
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alice Hartmann
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Paul M Kaplick
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Czisch
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany; Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
27
|
Abe Y, Kwon S, Oishi M, Unekawa M, Takata N, Seki F, Koyama R, Abe M, Sakimura K, Masamoto K, Tomita Y, Okano H, Mushiake H, Tanaka KF. Optical manipulation of local cerebral blood flow in the deep brain of freely moving mice. Cell Rep 2021; 36:109427. [PMID: 34320360 DOI: 10.1016/j.celrep.2021.109427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
An artificial tool for manipulating local cerebral blood flow (CBF) is necessary for understanding how CBF controls brain function. Here, we generate vascular optogenetic tools whereby smooth muscle cells and endothelial cells express optical actuators in the brain. The illumination of channelrhodopsin-2 (ChR2)-expressing mice induces a local reduction in CBF. Photoactivated adenylyl cyclase (PAC) is an optical protein that increases intracellular cyclic adenosine monophosphate (cAMP), and the illumination of PAC-expressing mice induces a local increase in CBF. We target the ventral striatum, determine the temporal kinetics of CBF change, and optimize the illumination intensity to confine the effects to the ventral striatum. We demonstrate the utility of this vascular optogenetic manipulation in freely and adaptively behaving mice and validate the task- and actuator-dependent behavioral readouts. The development of vascular optogenetic animal models will help accelerate research linking vasculature, circuits, and behavior to health and disease.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Live Imaging Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Soojin Kwon
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Physiology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Mitsuhiro Oishi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Live Imaging Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Fumiko Seki
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kazuto Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
28
|
张 竞, 刘 恺, 曾 善, 陈 纯, 邓 燕, 靖 林, 文 戈. [Energy metabolism disorder and functional magnetic resonance imaging of the medial prefrontal cortex in mice with chronic unpredictable mild stress]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:521-528. [PMID: 33963710 PMCID: PMC8110447 DOI: 10.12122/j.issn.1673-4254.2021.04.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To analyze spontaneous activities and energy metabolism in the medial prefrontal cortex (mPFC) of mice with chronic unpredictable mild stress (CUMS) and explore the correlation of these changes with the mTORC1 signaling pathway. OBJECTIVE Normal C57Bl/6 mice were randomly divided into control group (n=16) and depression model group (n= 16), and the mice in the latter group were subjected to 8 weeks of modeling with CUMS. Behavioral tests including open field test, sucrose consumption test, tail suspension test and forced swimming test were performed, and the changes in prefrontal gray matter volume and the amplitude of low frequency fluctuation (ALFF) in the mice were detected with functional magnetic resonance imaging. The CUMS mice were then randomized into two groups for treatment with ketamine (n=8) or saline (n=8). The mPFC tissues of the mice were collected for detecting the phosphorylation levels of mTORC1-related proteins with Western blotting and ATP level and NADP +/NADPH ratio with ELISA in the 3 groups. OBJECTIVE Compared with the control mice, CUMS mice exhibited a distinct depressive phenotype with significantly decreased sucrose preference (P < 0.05) and shortened total distances (P < 0.01) and central exercise distances (P < 0.05) in the open field test without obvious changes of immobile time in tail suspension test and forced swimming test (P>0.05). Prefrontal gray matter volume and mALFF increased (P < 0.01), and the phosphorylation level of mTORC1- related proteins, ATP level and NADP +/NADPH ratio all decreased significantly (P < 0.05) in CUMS mice. After ketamine treatment, the phosphorylation level of mTORC1-related proteins and ATP level increased significantly in CUMS mice (P < 0.05), but the increase of NADP +/NADPH ratio was not statistically significant. OBJECTIVE The mPFC of CUMS mice shows increased spontaneous activities but lowered productivity efficiency, indicating the presence of energy metabolism disorder in the mPFC, which is related with reduced mTORC1 phosphorylation and can be alleviated by activating the mTORC1 pathway with ketamine.
Collapse
Affiliation(s)
- 竞予 张
- 南方医科大学南方医院影像中心,广东 广州 510515Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 恺 刘
- 徐州医科大学附属医院影像科,江苏 徐州 221006Department of Medical Imaging, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - 善美 曾
- 南方医科大学南方医院影像中心,广东 广州 510515Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 纯辉 陈
- 广州中医药大学第二附属医院大院脾胃病科,广东 广州 510120Department of Spleen and Stomach Diseases, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - 燕佳 邓
- 徐州医科大学医学影像学院,江苏 徐州 221006School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - 林林 靖
- 南方医科大学中西医结合医院手术室,广东 广州 510315Operating Theater, TCM Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - 戈 文
- 南方医科大学南方医院影像中心,广东 广州 510515Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Hori T, Ikuta S, Hattori S, Takao K, Miyakawa T, Koike C. Mice with mutations in Trpm1, a gene in the locus of 15q13.3 microdeletion syndrome, display pronounced hyperactivity and decreased anxiety-like behavior. Mol Brain 2021; 14:61. [PMID: 33785025 PMCID: PMC8008678 DOI: 10.1186/s13041-021-00749-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
The 15q13.3 microdeletion syndrome is a genetic disorder characterized by a wide spectrum of psychiatric disorders that is caused by the deletion of a region containing 7 genes on chromosome 15 (MTMR10, FAN1, TRPM1, MIR211, KLF13, OTUD7A, and CHRNA7). The contribution of each gene in this syndrome has been studied using mutant mouse models, but no single mouse model recapitulates the whole spectrum of human 15q13.3 microdeletion syndrome. The behavior of Trpm1-/- mice has not been investigated in relation to 15q13.3 microdeletion syndrome due to the visual impairment in these mice, which may confound the results of behavioral tests involving vision. We were able to perform a comprehensive behavioral test battery using Trpm1 null mutant mice to investigate the role of Trpm1, which is thought to be expressed solely in the retina, in the central nervous system and to examine the relationship between TRPM1 and 15q13.3 microdeletion syndrome. Our data demonstrate that Trpm1-/- mice exhibit abnormal behaviors that may explain some phenotypes of 15q13.3 microdeletion syndrome, including reduced anxiety-like behavior, abnormal social interaction, attenuated fear memory, and the most prominent phenotype of Trpm1 mutant mice, hyperactivity. While the ON visual transduction pathway is impaired in Trpm1-/- mice, we did not detect compensatory high sensitivities for other sensory modalities. The pathway for visual impairment is the same between Trpm1-/- mice and mGluR6-/- mice, but hyperlocomotor activity has not been reported in mGluR6-/- mice. These data suggest that the phenotype of Trpm1-/- mice extends beyond that expected from visual impairment alone. Here, we provide the first evidence associating TRPM1 with impairment of cognitive function similar to that observed in phenotypes of 15q13.3 microdeletion syndrome.
Collapse
Affiliation(s)
- Tesshu Hori
- Graduate School of Pharmacy, Ritsumeikan University, Kusatsu, Shiga, Japan
- Laboratory for Systems Neuroscience and Developmental Biology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shohei Ikuta
- Laboratory for Systems Neuroscience and Developmental Biology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Satoko Hattori
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Toyama, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Tsuyoshi Miyakawa
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Chieko Koike
- Graduate School of Pharmacy, Ritsumeikan University, Kusatsu, Shiga, Japan.
- Laboratory for Systems Neuroscience and Developmental Biology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
- Center for Systems Vision Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Kusatsu, Shiga, Japan.
| |
Collapse
|
30
|
Takata N, Sato N, Komaki Y, Okano H, Tanaka KF. Flexible annotation atlas of the mouse brain: combining and dividing brain structures of the Allen Brain Atlas while maintaining anatomical hierarchy. Sci Rep 2021; 11:6234. [PMID: 33737651 PMCID: PMC7973786 DOI: 10.1038/s41598-021-85807-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
A brain atlas is necessary for analyzing structure and function in neuroimaging research. Although various annotation volumes (AVs) for the mouse brain have been proposed, it is common in magnetic resonance imaging (MRI) of the mouse brain that regions-of-interest (ROIs) for brain structures (nodes) are created arbitrarily according to each researcher's necessity, leading to inconsistent ROIs among studies. One reason for such a situation is the fact that earlier AVs were fixed, i.e. combination and division of nodes were not implemented. This report presents a pipeline for constructing a flexible annotation atlas (FAA) of the mouse brain by leveraging public resources of the Allen Institute for Brain Science on brain structure, gene expression, and axonal projection. A mere two-step procedure with user-specified, text-based information and Python codes constructs FAA with nodes which can be combined or divided objectively while maintaining anatomical hierarchy of brain structures. Four FAAs with total node count of 4, 101, 866, and 1381 were demonstrated. Unique characteristics of FAA realized analysis of resting-state functional connectivity (FC) across the anatomical hierarchy and among cortical layers, which were thin but large brain structures. FAA can improve the consistency of whole brain ROI definition among laboratories by fulfilling various requests from researchers with its flexibility and reproducibility.
Collapse
Affiliation(s)
- Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
- Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan.
| | - Nobuhiko Sato
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuji Komaki
- Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
31
|
Cellular correlates of gray matter volume changes in magnetic resonance morphometry identified by two-photon microscopy. Sci Rep 2021; 11:4234. [PMID: 33608622 PMCID: PMC7895945 DOI: 10.1038/s41598-021-83491-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) of the brain combined with voxel-based morphometry (VBM) revealed changes in gray matter volume (GMV) in various disorders. However, the cellular basis of GMV changes has remained largely unclear. We correlated changes in GMV with cellular metrics by imaging mice with MRI and two-photon in vivo microscopy at three time points within 12 weeks, taking advantage of age-dependent changes in brain structure. Imaging fluorescent cell nuclei allowed inferences on (i) physical tissue volume as determined from reference spaces outlined by nuclei, (ii) cell density, (iii) the extent of cell clustering, and (iv) the volume of cell nuclei. Our data indicate that physical tissue volume alterations only account for 13.0% of the variance in GMV change. However, when including comprehensive measurements of nucleus volume and cell density, 35.6% of the GMV variance could be explained, highlighting the influence of distinct cellular mechanisms on VBM results.
Collapse
|
32
|
Abstract
To survive, animals need to adapt to changes of their ecosystem by changing their behaviors or even morphing the organs responsible for generating these behaviors. Small mammals have a high metabolic rate, and to balance energy deficits during winter they can decrease their brain and body size, a phenomenon termed Dehnel’s effect. We find specific seasonal changes in the brain of the smallest terrestrial mammal, the Etruscan shrew. Their cortex shrinks in the winter, with layer-width and neuron number reduction in the energetically expensive somatosensory cortical layer 4. Imaging of neural activity revealed reduced suppressive responses to whisker touch during winter, indicating that such cortical adaptation may have synergistic functional and behavioral effects in addition to direct metabolic benefits. Seasonal cycles govern life on earth, from setting the time for the mating season to influencing migrations and governing physiological conditions like hibernation. The effect of such changing conditions on behavior is well-appreciated, but their impact on the brain remains virtually unknown. We investigate long-term seasonal changes in the mammalian brain, known as Dehnel’s effect, where animals exhibit plasticity in body and brain sizes to counter metabolic demands in winter. We find large seasonal variation in cellular architecture and neuronal activity in the smallest terrestrial mammal, the Etruscan shrew, Suncus etruscus. Their brain, and specifically their neocortex, shrinks in winter. Shrews are tactile hunters, and information from whiskers first reaches the somatosensory cortex layer 4, which exhibits a reduced width (−28%) in winter. Layer 4 width (+29%) and neuron number (+42%) increase the following summer. Activity patterns in the somatosensory cortex show a prominent reduction of touch-suppressed neurons in layer 4 (−55%), the most metabolically active layer. Loss of inhibitory gating occurs with a reduction in parvalbumin-positive interneurons, one of the most active neuronal subtypes and the main regulators of inhibition in layer 4. Thus, a reduction in neurons in layer 4 and particularly parvalbumin-positive interneurons may incur direct metabolic benefits. However, changes in cortical balance can also affect the threshold for detecting sensory stimuli and impact prey choice, as observed in wild shrews. Thus, seasonal neural adaptation can offer synergistic metabolic and behavioral benefits to the organism and offer insights on how neural systems show adaptive plasticity in response to ecological demands.
Collapse
|
33
|
Kawamura A, Abe Y, Seki F, Katayama Y, Nishiyama M, Takata N, Tanaka KF, Okano H, Nakayama KI. Chd8 mutation in oligodendrocytes alters microstructure and functional connectivity in the mouse brain. Mol Brain 2020; 13:160. [PMID: 33228730 PMCID: PMC7686671 DOI: 10.1186/s13041-020-00699-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
CHD8 encodes a chromatin-remodeling factor and is one of the most recurrently mutated genes in individuals with autism spectrum disorder (ASD). Although we have recently shown that mice heterozygous for Chd8 mutation manifest myelination defects and ASD-like behaviors, the detailed mechanisms underlying ASD pathogenesis have remained unclear. Here we performed diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rsfMRI) in oligodendrocyte lineage-specific Chd8 heterozygous mutant mice. DTI revealed that ablation of Chd8 specifically in oligodendrocytes of mice was associated with microstructural changes of specific brain regions including the cortex and striatum. The extent of these changes in white matter including the corpus callosum and fornix was correlated with total contact time in the reciprocal social interaction test. Analysis with rsfMRI revealed changes in functional brain connectivity in the mutant mice, and the extent of such changes in the cortex, hippocampus, and amygdala was also correlated with the change in social interaction. Our results thus suggest that changes in brain microstructure and functional connectivity induced by oligodendrocyte dysfunction might underlie altered social interaction in mice with oligodendrocyte-specific CHD8 haploinsufficiency.
Collapse
Affiliation(s)
- Atsuki Kawamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yoshifumi Abe
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Fumiko Seki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
34
|
Chang SJ, Santamaria AJ, Sanchez FJ, Villamil LM, Pinheiro Saraiva P, Rodriguez J, Nunez-Gomez Y, Opris I, Solano JP, Guest JD, Noga BR. In vivo Population Averaged Stereotaxic T2w MRI Brain Template for the Adult Yucatan Micropig. Front Neuroanat 2020; 14:599701. [PMID: 33281567 PMCID: PMC7691581 DOI: 10.3389/fnana.2020.599701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022] Open
Abstract
Population averaged brain templates are an essential tool for imaging-based neuroscience research, providing investigators with information about the expected size and morphology of brain structures and the spatial relationships between them, within a demographic cross-section. This allows for a standardized comparison of neuroimaging data between subjects and provides neuroimaging software with a probabilistic framework upon which further processing and analysis can be based. Many different templates have been created to represent specific study populations and made publicly available for human and animal research. An increasingly studied animal model in the neurosciences that still lacks appropriate brain templates is the adult Yucatan micropig. In particular, T2-weighted templates are absent in this species as a whole. To address this need and provide a tool for neuroscientists wishing to pursue neuroimaging research in the adult micropig, we present the construction of population averaged (n = 16) T2-weighted MRI brain template for the adult Yucatan micropig. Additionally, we present initial analysis of T1-weighted (n = 3), and diffusion-weighted (n = 3) images through multimodal registration of these contrasts to our T2 template. The strategies used here may also be generalized to create similar templates for other study populations or species in need of template construction.
Collapse
Affiliation(s)
- Stephano J. Chang
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Andrea J. Santamaria
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francisco J. Sanchez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luz M. Villamil
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pedro Pinheiro Saraiva
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jose Rodriguez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yohjans Nunez-Gomez
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ioan Opris
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan P. Solano
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, United States
| | - James D. Guest
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Brian R. Noga
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
35
|
Engelhardt C, Boulat B, Czisch M, Schmidt MV. Lack of FKBP51 Shapes Brain Structure and Connectivity in Male Mice. J Magn Reson Imaging 2020; 53:1358-1365. [PMID: 33184939 DOI: 10.1002/jmri.27439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Stress exposure as well as psychiatric disorders are often associated with abnormalities in brain structure or connectivity. The co-chaperone FK506-binding protein 51 (FKBP51) is a regulator of the stress system and is associated with a risk to develop stress-related mental illnesses. PURPOSE To assess the effect of a general FKBP51 knockout on brain structure and connectivity in male mice. STUDY TYPE Animal study. ANIMAL MODEL Two cohorts of FKBP51 knockout (51KO) and wildtype (WT) mice. The first cohort was comprised of n = 18 WT and n = 17 51KOs; second cohort n = 10 WT and n = 9 51KOs. FIELD STRENGTH/SEQUENCE 9.4T/3D gradient echo (VBM), DTI-EPI (DTI). ASSESSMENT Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). For VBM, all procedures were executed in SPM12. DTI: FMRIB Software Library (FSL) Tract Based Statistics (TBSS) were integrated within DTI-TK, allowing the creation of a mean FA skeleton. A voxelwise statistical analysis was applied between WT and 51KO mice. STATISTICAL TEST Volumetric differences were collected at a threshold of P < 0.005, and only clusters surviving a familywise error correction on the cluster level (pFWE, cluster <0.05) were further considered. VBM data were analyzed using a two-sample t-test. The Threshold Free Cluster Enhancement (TFCE) method was used to derive uncorrected-P statistical results at a P-level of 0.01. RESULTS The structural analysis revealed two clusters of significantly larger volumes in the hypothalamus, periaqueductal gray, and dorsal raphe region of WT animals. DTI measurements, however, demonstrated statistically higher fractional anisotropy (FA) values for 51KO animals in locations including the anterior commissure, fornix, and posterior commissure/superior colliculus commissure region. DATA CONCLUSION This study used in vivo structural MRI and DTI to demonstrate that a lack of FKBP51 leads to alterations in brain architecture and connectivity in male mice. These findings are of particular translational relevance for our understanding of the neuroanatomy underlying the interaction of FKBP5 genetic status, stress susceptibility, and psychiatric disorders. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Clara Engelhardt
- Department of Stress Neurobiology and Neurogenetics, Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.,Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V
| | | | | | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
36
|
Braggio D, Barbeito-Andrés J, Gonzalez P, Hallgrímsson B, Larrabide I. VBM sensitivity to localization and extent of mouse brain lesions: A simulation approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105636. [PMID: 32668384 DOI: 10.1016/j.cmpb.2020.105636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Voxel-based morphometry (VBM) is a popular neuroimaging technique, used to detect and quantify morphological differences in brain tissues between groups. Widely used in human studies, VBM approaches have tremendous potential for neuroimaging studies in animal models. A significant challenge for applying VBM to small animal studies is the poor understanding of how the design of preprocessing pipelines impacts quantitative results. This is important because the large differences in size, resolution, and imaging parameters implies that human imaging preprocessing pipelines cannot be uncritically applied to small animal studies. In this work, we assessed and validated the performance of different VBM pipelines for the study of the mouse brain. METHODS We applied two pipelines -namely DARTEL VBM and Optimized VBM- by varying spatial normalization used during preprocessing. Using an automatic method, we simulated varying levels of volumetric gray matter (GM) loss and sizes of tissue atrophy on specific areas of the mouse brain. We evaluated the performance of each pipeline by comparing location and extent of the differences detected by them with the simulated ones. Finally, we applied both pipelines on magnetic resonance (MR) images of the brain derived from an experimental model of growth restriction on mice. RESULTS Our results demonstrated that some subtle atrophies were detected by the Optimized workflow but not by the DARTEL VBM workflow. Detection of less subtle atrophies was similar for the two workflows, but DARTEL VBM performed better at estimating their size and anatomical location. Both VBM pipelines had difficulties at finding atrophies with a very small level of volumetric loss and, in general, they underestimated the magnitudes of difference between groups. These results also varied across brain regions, with better performance on brain cortex than other regions such as the cerebellum. CONCLUSIONS The analysis and quantification of VBM pipelines on different areas of the mouse brain allows a better understanding of the advantages and limitations of their results. We performed a controlled and quantitative analysis of the method providing robust evidence to interpret changes in real contexts.
Collapse
Affiliation(s)
- Delfina Braggio
- Instituto Pladema, Facultad de Ciencias Exactas, UNCPBA, Argentina.
| | - Jimena Barbeito-Andrés
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos, CONICET, UNAJ, Hospital El Cruce, Argentina
| | - Paula Gonzalez
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos, CONICET, UNAJ, Hospital El Cruce, Argentina
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, McCaig Institute for Bone and Joint Health, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
37
|
In Vivo Structural and Functional Abnormalities of the Striatums Is Related to Decreased Astrocytic BDNF in Itpr2-/- Mice Exhibiting Depressive-Like Behavior. Neural Plast 2020; 2020:8830670. [PMID: 32952549 PMCID: PMC7481938 DOI: 10.1155/2020/8830670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/07/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Background Previous researches indicate that Itpr2−/− mice (inositol 1,4,5-trisphosphate receptor type 2 knockout mice) show depressive-like symptoms; however, little is known regarding the in vivo neurobiological effect of Itpr2 as well as the specific pattern of brain abnormalities in Itpr2−/− mice. Methods/Materials. First, behavioral tests, structural magnetic resonance imaging (MRI), and resting-state functional MRI were performed on Itpr2−/− mice and matched healthy controls. Voxel-based morphometry and seed-based voxel-wise functional connectivity (FC) were, respectively, calculated to assess the gray matter volume and the functional activities of the brain in vivo. Second, the sample of relevant changed brain regions was extracted to detect the expression of BDNF. Finally, to further validate the relationship between Itpr2 deficiency and the observed brain abnormalities, we performed Western blotting to detect the expression of pro-BDNF and mBDNF in Itpr2−/− C8-D1A (a type of astrocyte). Results Compared with controls, Itpr2−/− mice showed depressive-like behaviors as well as significantly lower gray matter volume in striatums mainly, periaqueductal GM, and the right frontoparietal cortices as well as lower striatal-hippocampal and striatal-right parietal cortex (mainly for the primary and secondary somatosensory cortex) FC. Moreover, decreased expression of mBDNF was found in both sample tissues of the striatum in Itpr2−/− mice and Itpr2−/− C8-D1A. Conclusion By combining biochemistry and MR analyses, this study provides evidences to support that the Itpr2-related neuropathological effect is possibly mediated by the striatal abnormality associated with dysfunctional astrocytes in Itpr2−/− mice in vivo, thus may help us better understand underlying mechanisms of Itpr2 deficiency as well as its relation to depressive-like behavior.
Collapse
|
38
|
Abe Y, Takata N, Sakai Y, Hamada HT, Hiraoka Y, Aida T, Tanaka K, Bihan DL, Doya K, Tanaka KF. Diffusion functional MRI reveals global brain network functional abnormalities driven by targeted local activity in a neuropsychiatric disease mouse model. Neuroimage 2020; 223:117318. [PMID: 32882386 DOI: 10.1016/j.neuroimage.2020.117318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusion functional magnetic resonance imaging (DfMRI) has been proposed as an alternative functional imaging method to detect brain activity without confounding hemodynamic effects. Here, taking advantage of this DfMRI feature, we investigated abnormalities of dynamic brain function in a neuropsychiatric disease mouse model (glial glutamate transporter-knockdown mice with obsessive-compulsive disorder [OCD]-related behavior). Our DfMRI approaches consisted of three analyses: resting state brain activity, functional connectivity, and propagation of neural information. We detected hyperactivation and biased connectivity across the cortico-striatal-thalamic circuitry, which is consistent with known blood oxygen-level dependent (BOLD)-fMRI patterns in OCD patients. In addition, we performed ignition-driven mean integration (IDMI) analysis, which combined activity and connectivity analyses, to evaluate neural propagation initiated from brain activation. This analysis revealed an unbalanced distribution of neural propagation initiated from intrinsic local activation to the global network, while these were not detected by the conventional method with BOLD-fMRI. This abnormal function detected by DfMRI was associated with OCD-related behavior. Together, our comprehensive DfMRI approaches can successfully provide information on dynamic brain function in normal and diseased brains.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Departemnt of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| | - Norio Takata
- Departemnt of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | - Yuki Sakai
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan; Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Yuichi Hiraoka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, Japan
| | - Tomomi Aida
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, Japan
| | - Denis Le Bihan
- NeuroSpin, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France; Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Kenji F Tanaka
- Departemnt of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| |
Collapse
|
39
|
Tada AM, Hamezah HS, Yanagisawa D, Morikawa S, Tooyama I. Neuroprotective Effects of Casein-Derived Peptide Met-Lys-Pro (MKP) in a Hypertensive Model. Front Neurosci 2020; 14:845. [PMID: 32922259 PMCID: PMC7457086 DOI: 10.3389/fnins.2020.00845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that casein hydrolysate, CH-3, from bovine milk and casein-derived tripeptide Met-Lys-Pro (MKP) has ACE inhibitory activity and reduces blood pressure. In this study, we investigated the therapeutic effects of MKP in a hypertensive rat model (7-week-old male SHRSP/Izm rats). For long term evaluation, rats were fed either a diet containing CH-3 or normal diet. The survival rate of SHRSP rats was significantly improved by intake of CH-3 for 181 days. For short term evaluation, rats were orally administered synthetic tripeptide MKP or distilled water for 4 weeks. MRI study demonstrated that hemorrhagic lesions were observed in two of five rats in the control group, while no hemorrhagic lesions were observed in the MKP group. Volumetric analysis using MRI revealed that MKP administration inhibited atrophy of diencephalic regions. Histological examinations revealed that hemorrhage areas and astrogliosis in the hippocampus and cerebral cortex were lower in the MKP group than in the control group. Gene expression analysis indicated that MKP administration reduced expression of genes related to cerebral circulation insufficiency such as immune responses (Cd74 and Prkcd), response to hypoxia (Ddit4, Apold1, and Prkcd), reactive oxygen species metabolic process (Ddit4 and Pdk4), and apoptotic process (Ddit4, Prkcd, and Sgk1), suggesting that MKP administration prevented cerebral ischemia associated with hypertension. In addition, some genes encoding responses to hormone stimulus (Fos, Dusp1, and Sik1) were also downregulated. Serum aldosterone and corticosterone levels were also significantly decreased following MKP administration. The present study indicates that MKP shows neuroprotective effects in SHRSP rats by regulating cerebral circulation insufficiency and corticoid levels. MKP administration may therefore be a potential therapeutic strategy for hypertensive brain diseases such as cerebrovascular disease.
Collapse
Affiliation(s)
- Asuka Matsuzaki Tada
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan.,Functional Food Ingredients Group, Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | | | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Shigehiro Morikawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
40
|
Sakurai K, Shintani T, Jomura N, Matsuda T, Sumiyoshi A, Hisatsune T. Hyper BOLD Activation in Dorsal Raphe Nucleus of APP/PS1 Alzheimer's Disease Mouse during Reward-Oriented Drinking Test under Thirsty Conditions. Sci Rep 2020; 10:3915. [PMID: 32127559 PMCID: PMC7054396 DOI: 10.1038/s41598-020-60894-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, causes behavioural abnormalities such as disinhibition, impulsivity, and hyperphagia. Preclinical studies using AD model mice have investigated these phenotypes by measuring brain activity in awake, behaving mice. In this study, we monitored the behavioural alterations of impulsivity and hyperphagia in middle-aged AD model mice. As a behavioural readout, we trained the mice to accept a water-reward under thirsty conditions. To analyse brain activity, we developed a measure for licking behaviour combined with visualisation of whole brain activity using awake fMRI. In a water-reward learning task, the AD model mice showed significant hyperactivity of the dorsal raphe nucleus in thirsty conditions. In summary, we successfully visualised altered brain activity in AD model mice during reward-oriented behaviour for the first time using awake fMRI. This may help in understanding the causes of behavioural alterations in AD patients.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Teppei Shintani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Naohiro Jomura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Takeshi Matsuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Akira Sumiyoshi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, 263-8555, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
41
|
Thiebaut de Schotten M, Croxson PL, Mars RB. Large-scale comparative neuroimaging: Where are we and what do we need? Cortex 2019; 118:188-202. [PMID: 30661736 PMCID: PMC6699599 DOI: 10.1016/j.cortex.2018.11.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/26/2023]
Abstract
Neuroimaging has a lot to offer comparative neuroscience. Although invasive "gold standard" techniques have a better spatial resolution, neuroimaging allows fast, whole-brain, repeatable, and multi-modal measurements of structure and function in living animals and post-mortem tissue. In the past years, comparative neuroimaging has increased in popularity. However, we argue that its most significant potential lies in its ability to collect large-scale datasets of many species to investigate principles of variability in brain organisation across whole orders of species-an ambition that is presently unfulfilled but achievable. We briefly review the current state of the field and explore what the current obstacles to such an approach are. We propose some calls to action.
Collapse
Affiliation(s)
- Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris France; Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| | - Paula L Croxson
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands.
| |
Collapse
|
42
|
Nguyen H, Tinet E, Chauveau T, Geinguenaud F, Lalatonne Y, Michel A, Aid-Launais R, Journé C, Lefèbvre C, Simon-Yarza T, Motte L, Jouini N, Tualle JM, Chaubet F. Bimodal Fucoidan-Coated Zinc Oxide/Iron Oxide-Based Nanoparticles for the Imaging of Atherothrombosis. Molecules 2019; 24:E962. [PMID: 30857260 PMCID: PMC6429451 DOI: 10.3390/molecules24050962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
A polyol method was used to obtain ultrasmall ZnO nanoparticles (NPs) doped with iron ions and coated with a low molecular weight fucoidan in order to perform in vivo MR and ex vivo fluorescence imaging of athrothrombosis. During the synthesis, the early elimination of water by azeotropic distillation with toluene allowed us to produce NPs which size, determined by XRD and TEM, decreased from 7 nm to 4 nm with the increase of iron/zinc ratios from 0.05 to 0.50 respectively. For the highest iron content (NP-0.50) NPs were evidenced as a mixture of nanocrystals made of wurtzite and cubic phase with a molar ratio of 2.57:1, although it was not possible to distinguish one from the other by TEM. NP-0.50 were superparamagnetic and exhibited a large emission spectrum at 470 nm when excited at 370 nm. After surface functionalization of NP-0.50 with fucoidan (fuco-0.50), the hydrodynamic size in the physiological medium was 162.0 ± 0.4 nm, with a corresponding negative zeta potential of -48.7 ± 0.4 mV, respectively. The coating was evidenced by FT-IR spectra and thermogravimetric analysis. Aqueous suspensions of fuco-0.50 revealed high transverse proton relaxivities (T₂) with an r₂ value of 173.5 mM-1 s-1 (300 K, 7.0 T) and remained stable for more than 3 months in water or in phosphate buffer saline without evolution of the hydrodynamic size and size distribution. No cytotoxic effect was observed on human endothelial cells up to 48 h with these NPs at a dose of 0.1 mg/mL. After injection into a rat model of atherothrombosis, MR imaging allowed the localization of diseased areas and the subsequent fluorescence imaging of thrombus on tissue slices.
Collapse
Affiliation(s)
- Hoang Nguyen
- Laboratory for Vascular Translational Science, Inserm U1148, Institut Galilée-Université Paris Diderot, Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
- Laboratoire de Physique des Lasers, UMR CNRS 7538, Institut Galilée-Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
| | - Eric Tinet
- Laboratoire de Physique des Lasers, UMR CNRS 7538, Institut Galilée-Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
| | - Thierry Chauveau
- Laboratoire des Sciences des Procédés et des Matériaux, UPR CNRS 3407, Institut Galilée-Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
| | - Frédéric Geinguenaud
- Laboratory for Vascular Translational Science, Inserm U1148, Institut Galilée-Université Paris Diderot, Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
| | - Yoann Lalatonne
- Laboratory for Vascular Translational Science, Inserm U1148, Institut Galilée-Université Paris Diderot, Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
- Service de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France.
| | - Aude Michel
- Laboratoire Phénix, UMR 8234, UPMC, 4 place Jussieu, 75252 Paris Cedex 05, France.
| | - Rachida Aid-Launais
- Laboratory for Vascular Translational Science, Inserm U1148, Institut Galilée-Université Paris Diderot, Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
- Fédération de Recherche en Imagerie multimodalité (FRIM), UMS 34, Hôpital Bichat, 46 rue Henri Huchard, 75018 Paris Cedex, France.
| | - Clément Journé
- Laboratory for Vascular Translational Science, Inserm U1148, Institut Galilée-Université Paris Diderot, Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
- Fédération de Recherche en Imagerie multimodalité (FRIM), UMS 34, Hôpital Bichat, 46 rue Henri Huchard, 75018 Paris Cedex, France.
| | - Caroline Lefèbvre
- Université de Technologie de Compiègne, Service d'Analyse Physico-Chimique, Direction à la Recherche, Rue du Dr Schweitzer, CS 60319, 60203 Compiègne cedex, France.
| | - Teresa Simon-Yarza
- Laboratory for Vascular Translational Science, Inserm U1148, Institut Galilée-Université Paris Diderot, Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
| | - Laurence Motte
- Laboratory for Vascular Translational Science, Inserm U1148, Institut Galilée-Université Paris Diderot, Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
| | - Noureddine Jouini
- Laboratoire des Sciences des Procédés et des Matériaux, UPR CNRS 3407, Institut Galilée-Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
| | - Jean-Michel Tualle
- Laboratoire de Physique des Lasers, UMR CNRS 7538, Institut Galilée-Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
| | - Frédéric Chaubet
- Laboratory for Vascular Translational Science, Inserm U1148, Institut Galilée-Université Paris Diderot, Université Paris 13, Sorbonne-Paris-Cité, 99 av JB Clément, 93430 Villetaneuse, France.
| |
Collapse
|
43
|
Hess A, Hinz R, Keliris GA, Boehm-Sturm P. On the Usage of Brain Atlases in Neuroimaging Research. Mol Imaging Biol 2019; 20:742-749. [PMID: 30094652 DOI: 10.1007/s11307-018-1259-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brain atlases play a key role in modern neuroimaging analysis of brain structure and function. We review available atlas databases for humans and animals and illustrate common state-of-the-art workflows in neuroimaging research based on image registration. Advances in noninvasive imaging methods, 3D ex vivo microscopy, and image processing are summarized which will eventually close the current resolution gap between brain atlases based on conventional 2D histology and those based on 3D in vivo imaging.
Collapse
Affiliation(s)
- Andreas Hess
- Institute for Experimental Pharmacology, Friedrich Alexander University Erlangen Nuremberg, Fahrstraße 17, 91054, Erlangen, Germany.
| | - Rukun Hinz
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. .,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
44
|
Ma D, Holmes HE, Cardoso MJ, Modat M, Harrison IF, Powell NM, O'Callaghan JM, Ismail O, Johnson RA, O'Neill MJ, Collins EC, Beg MF, Popuri K, Lythgoe MF, Ourselin S. Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation. Front Neurosci 2019; 13:11. [PMID: 30733665 PMCID: PMC6354066 DOI: 10.3389/fnins.2019.00011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/08/2019] [Indexed: 11/29/2022] Open
Abstract
Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.
Collapse
Affiliation(s)
- Da Ma
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom.,School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Holly E Holmes
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Manuel J Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Nick M Powell
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - James M O'Callaghan
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Ozama Ismail
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Ross A Johnson
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | | | - Emily C Collins
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Mirza F Beg
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Karteek Popuri
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
45
|
Nie B, Wu D, Liang S, Liu H, Sun X, Li P, Huang Q, Zhang T, Feng T, Ye S, Zhang Z, Shan B. A stereotaxic MRI template set of mouse brain with fine sub-anatomical delineations: Application to MEMRI studies of 5XFAD mice. Magn Reson Imaging 2018; 57:83-94. [PMID: 30359719 DOI: 10.1016/j.mri.2018.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE Manganese-enhanced magnetic resonance imaging (MEMRI) can help us trace the active neurons and neuronal pathway in transgenic mouse AD model. 5XFAD has been widespread accepted as a valuable model system for studying brain dysfunction progresses in the courses of AD. To further understand the development of AD at early stages, an effective and objective data analysis platform for MEMRI studies should be constructed. MATERIALS AND METHODS A set of stereotaxic templates of mouse brain in Paxinos and Franklin space, "the Institute of High Energy Physics Mouse Template", or IMT for short, was constructed by iteratively registration and averaging. An atlas image was reconstructed from the Paxinos and Franklin atlas figures and each sub-anatomical segmentation was assigning a unique integer. An analysis SPM plug-in toolbox was further created, that automates and standardizes the time-consuming processes of brain extraction, tissue segmentation, and statistical analysis for MEMRI scans. RESULTS The IMT comprised a T2WI template image, a MEMRI template image, intracranial tissue segmentations, and accompany with a digital mouse brain atlas image, in which 707 sub-anatomical brain regions are delineated. Data analyses were performed on groups of developing 5XFAD mice to demonstrate the usage of IMT, and the results shows that abnormal neuronal activity occurs at early stage in 5XFAD mice. CONCLUSION We have constructed a stereotaxic template set of mouse brain named IMT with fine delineations of sub-anatomical structures, which is compatible with SPM. It will give a widely range of researchers a standardized coordinate system for localization of any mouse brain related data.
Collapse
Affiliation(s)
- Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Di Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shengxiang Liang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Physical Science and Technology College, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Sun
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Physical Science and Technology College, Zhengzhou University, Zhengzhou 450001, China
| | - Panlong Li
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Physical Science and Technology College, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Huang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Feng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Physical Science and Technology College, Zhengzhou University, Zhengzhou 450001, China
| | - Songtao Ye
- College of Information Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China.
| |
Collapse
|
46
|
Miterko LN, Lackey EP, Heck DH, Sillitoe RV. Shaping Diversity Into the Brain's Form and Function. Front Neural Circuits 2018; 12:83. [PMID: 30364100 PMCID: PMC6191489 DOI: 10.3389/fncir.2018.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/18/2018] [Indexed: 11/23/2022] Open
Abstract
The brain contains a large diversity of unique cell types that use specific genetic programs to control development and instruct the intricate wiring of sensory, motor, and cognitive brain regions. In addition to their cellular diversity and specialized connectivity maps, each region's dedicated function is also expressed in their characteristic gross external morphologies. The folds on the surface of the cerebral cortex and cerebellum are classic examples. But, to what extent does structure relate to function and at what spatial scale? We discuss the mechanisms that sculpt functional brain maps and external morphologies. We also contrast the cryptic structural defects in conditions such as autism spectrum disorders to the overt microcephaly after Zika infections, taking into consideration that both diseases disrupt proper cognitive development. The data indicate that dynamic processes shape all brain areas to fit into jigsaw-like patterns. The patterns in each region reflect circuit connectivity, which ultimately supports local signal processing and accomplishes multi-areal integration of information processing to optimize brain functions.
Collapse
Affiliation(s)
- Lauren N. Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Elizabeth P. Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
47
|
Hamamoto Y, Hasegawa D, Yu Y, Asada R, Mizoguchi S, Kuwabara T, Wada M, Fujiwara-Igarashi A, Fujita M. Statistical Structural Analysis of Familial Spontaneous Epileptic Cats Using Voxel-Based Morphometry. Front Vet Sci 2018; 5:172. [PMID: 30087902 PMCID: PMC6066542 DOI: 10.3389/fvets.2018.00172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/04/2018] [Indexed: 12/29/2022] Open
Abstract
Voxel-based morphometry (VBM) based on high resolution three-dimensional data of magnetic resonance imaging has been developed as a statistical morphometric imaging analysis method to locate brain abnormalities in humans. Recently, VBM has been used for human patients with psychological or neurological disorders such as Alzheimer's disease, Parkinson's disease, and epilepsy. Traditional volumetry using region of interest (ROI) is performed manually and the observer needs detailed knowledge of the neuroanatomy having to trace objects of interest on many slices which can cause artificial errors. In contrast, VBM is an automatic technique that has less observer biases compared to the ROI method. In humans, VBM analysis is performed in patients with epilepsy to detect accurately structural abnormalities. Familial spontaneous epileptic cats (FSECs) have been developed as an animal model of mesial temporal lobe epilepsy. In FSECs, hippocampal asymmetry had been detected using three-dimensional magnetic resonance (MR) volumetry based on the ROI method. In this study, we produced a standard template of the feline brain and compared FSECs and healthy cats using standard VBM analysis. The feline standard template and tissue probability maps were created using 38 scans from 14 healthy cats. Subsequently, the gray matter was compared between FSECs (n = 25) and healthy controls (n = 12) as group analysis and between each FSEC and controls as individual analysis. The feline standard template and tissue probability maps could be created using the VBM tools for humans. There was no significant reduction of GM in the FSEC group compared to the control group. However, 5/25 (20%) FSECs showed significant decreases in the hippocampal and/or amygdaloid regions in individual analysis. Here, we established the feline standard templates of the brain that can be used to determine accurately abnormal zones. Furthermore, like MR volumetry, VBM identified morphometric changes in the hippocampus and/or amygdala in some FSECs.
Collapse
Affiliation(s)
- Yuji Hamamoto
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Daisuke Hasegawa
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yoshihiko Yu
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Rikako Asada
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Shunta Mizoguchi
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Takayuki Kuwabara
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Masae Wada
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Aki Fujiwara-Igarashi
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Michio Fujita
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| |
Collapse
|
48
|
Himmelhan DK, Rawashdeh O, Oelschläger HHA. Early postnatal development of the visual cortex in mice with retinal degeneration. Mech Dev 2018; 151:1-9. [PMID: 29563063 DOI: 10.1016/j.mod.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 11/15/2022]
Abstract
This study characterizes the early postnatal development of the visual neocortex in C3H/HeNRj mice. These mice are homozygous for the Pde6brd1 mutation, which causes retinal degeneration starting from postnatal day 7 (P7). To monitor the development of the visual cortex between P3 and P28 we used eight antigens known to be expressed at different developmental stages (Nestin, tau3, β3- Tubulin, Calbindin, Doublecortin, MAP2, Parvalbumin and NeuN). Using semiquantitative analysis we traced the expression and localization of different developmental markers throughout the layers of the visual cortex. Cortical tissue sections corresponding to the first postnatal week (P3-P6) stained positively for Nestin, tau3, β3-Tubulin and Calbindin. These proteins are known to be involved in the migration of neural progenitor cells (NPCs) within the cortical plate. At the time of eye-opening (P14), Doublecortin, MAP2 and NeuN, markers for developing and maturing neurons involved in NPC differentiation are present. Between P9 and P21 Nestin and Calbindin disappear while NeuN and Parvalbumin expression increases in the course of visual neocortex development. The findings of this study provide a snapshot of the dynamic changes in cortex formation during early postnatal development. So far, it is the first investigation on the postnatal development of the mouse visual cortex. Our results indicate that in C3H/HeNRj mice retinal degeneration during these early stages may not influence the maturation of the visual cortex. Until P28 in this mouse strain, the development of the visual neocortex is in accordance with data from other mice (C57BL/6) without retinal degeneration. Whether in older individuals of the C3H/HeNRj strain the visual neocortex will show signs of functional impairment has to be shown by future work.
Collapse
Affiliation(s)
- D K Himmelhan
- Department of Anatomy III (Dr. Senckenbergische Anatomie), Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - O Rawashdeh
- Department of Anatomy III (Dr. Senckenbergische Anatomie), Johann Wolfgang Goethe University, Frankfurt am Main, Germany; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - H H A Oelschläger
- Department of Anatomy III (Dr. Senckenbergische Anatomie), Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|