1
|
Viola V, Chinnappa K, Francis F. Radial glia progenitor polarity in health and disease. Front Cell Dev Biol 2024; 12:1478283. [PMID: 39416687 PMCID: PMC11479994 DOI: 10.3389/fcell.2024.1478283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Radial glia (RG) are the main progenitor cell type in the developing cortex. These cells are highly polarized, with a long basal process spanning the entire thickness of the cortex and acting as a support for neuronal migration. The RG cell terminates by an endfoot that contacts the pial (basal) surface. A shorter apical process also terminates with an endfoot that faces the ventricle, with a primary cilium protruding in the cerebrospinal fluid. These cell domains have particular subcellular compositions that are critical for the correct functioning of RG. When altered, this can affect proper development of the cortex, ultimately leading to cortical malformations, associated with different pathological outcomes. In this review, we focus on the current knowledge concerning the cell biology of these bipolar stem cells and discuss the role of their polarity in health and disease.
Collapse
Affiliation(s)
- Valeria Viola
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| | - Kaviya Chinnappa
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| | - Fiona Francis
- Institut du Fer à Moulin, Paris, France
- Institut National de Santé et de Recherche Médicale (INSERM, UMR-S 1270), Paris, France
- Faculty of Science and Engineering, Sorbonne University, Paris, France
| |
Collapse
|
2
|
Rexach JE, Cheng Y, Chen L, Polioudakis D, Lin LC, Mitri V, Elkins A, Yin A, Calini D, Kawaguchi R, Ou J, Huang J, Williams C, Robinson J, Gaus SE, Spina S, Lee EB, Grinberg LT, Vinters H, Trojanowski JQ, Seeley WW, Malhotra D, Geschwind DH. Disease-specific selective vulnerability and neuroimmune pathways in dementia revealed by single cell genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560245. [PMID: 37808727 PMCID: PMC10557766 DOI: 10.1101/2023.09.29.560245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNAseq and ATACseq in Alzheimer disease (AD), Frontotemporal degeneration (FTD), and Progressive Supranuclear Palsy (PSP), analyzing 40 participants, yielding over 1.4M cells from three brain regions ranging in vulnerability and pathological burden. We identify 35 shared disease-associated cell types and 14 that are disease-specific, replicating those previously identified in AD. Disease - specific cell states represent molecular features of disease-specific glial-immune mechanisms and neuronal vulnerability in each disorder, layer 4/5 intra-telencephalic neurons in AD, layer 2/3 intra-telencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We infer intrinsic disease-associated gene regulatory networks, which we empirically validate by chromatin footprinting. We find that causal genetic risk acts in specific neuronal and glial cells that differ across disorders, primarily non-neuronal cells in AD and specific neuronal subtypes in FTD and PSP. These data illustrate the heterogeneous spectrum of glial and neuronal composition and gene expression alterations in different dementias and identify new therapeutic targets by revealing shared and disease-specific cell states.
Collapse
|
3
|
Busselez J, Uzbekov RE, Franco B, Pancione M. New insights into the centrosome-associated spliceosome components as regulators of ciliogenesis and tissue identity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1776. [PMID: 36717357 DOI: 10.1002/wrna.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
Biomolecular condensates are membrane-less assemblies of proteins and nucleic acids. Centrosomes are biomolecular condensates that play a crucial role in nuclear division, cytoskeletal remodeling, and cilia formation in animal cells. Spatial omics technology is providing new insights into the dynamic exchange of spliceosome components between the nucleus and the centrosome/cilium. Intriguingly, centrosomes are emerging as cytoplasmic sites for information storage, enriched with RNA molecules and RNA-processing proteins. Furthermore, growing evidence supports the view that nuclear spliceosome components assembled at the centrosome function as potential coordinators of splicing subprograms, pluripotency, and cell differentiation. In this article, we first discuss the current understanding of the centrosome/cilium complex, which controls both stem cell differentiation and pluripotency. We next explore the molecular mechanisms that govern splicing factor assembly and disassembly around the centrosome and examine how RNA processing pathways contribute to ciliogenesis. Finally, we discuss numerous unresolved compelling questions regarding the centrosome-associated spliceosome components and transcript variants within the cytoplasm as sources of RNA-based secondary messages in the regulation of cell identity and cell fate determination. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Processing.
Collapse
Affiliation(s)
- Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Rustem E Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medicine, Medical Genetics, University of Naples "Federico II", Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, Madrid, Spain
| |
Collapse
|
4
|
Rothé B, Fortier S, Gagnieux C, Schmuziger C, Constam DB. Antagonistic interactions among structured domains in the multivalent Bicc1-ANKS3-ANKS6 protein network govern phase transitioning of target mRNAs. iScience 2023; 26:106855. [PMID: 37275520 PMCID: PMC10232731 DOI: 10.1016/j.isci.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The growing number of diseases linked to aberrant phase transitioning of ribonucleoproteins highlights the need to uncover how the interplay between multivalent protein and RNA interactions is regulated. Cytoplasmic granules of the RNA binding protein Bicaudal-C (Bicc1) are regulated by the ciliopathy proteins ankyrin (ANK) and sterile alpha motif (SAM) domain-containing ANKS3 and ANKS6, but whether and how target mRNAs are affected is unknown. Here, we show that head-to-tail polymers of Bicc1 nucleated by its SAM domain are interconnected by K homology (KH) domains in a protein meshwork that mediates liquid-to-gel transitioning of client transcripts. Moreover, while the dispersion of these granules by ANKS3 concomitantly released bound mRNAs, co-recruitment of ANKS6 by ANKS3 reinstated Bicc1 condensation and ribonucleoparticle assembly. RNA-independent Bicc1 polymerization and its dual regulation by ANKS3 and ANKS6 represent a new mechanism to couple the reversible immobilization of client mRNAs to controlled protein phase transitioning between distinct metastable states.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Céline Gagnieux
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Céline Schmuziger
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Cerulo L, Pezzella N, Caruso FP, Parente P, Remo A, Giordano G, Forte N, Busselez J, Boschi F, Galiè M, Franco B, Pancione M. Single-cell proteo-genomic reveals a comprehensive map of centrosome-associated spliceosome components. iScience 2023; 26:106602. [PMID: 37250316 PMCID: PMC10214398 DOI: 10.1016/j.isci.2023.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 01/16/2023] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
Ribonucleoprotein (RNP) condensates are crucial for controlling RNA metabolism and splicing events in animal cells. We used spatial proteomics and transcriptomic to elucidate RNP interaction networks at the centrosome, the main microtubule-organizing center in animal cells. We found a number of cell-type specific centrosome-associated spliceosome interactions localized in subcellular structures involved in nuclear division and ciliogenesis. A component of the nuclear spliceosome BUD31 was validated as an interactor of the centriolar satellite protein OFD1. Analysis of normal and disease cohorts identified the cholangiocarcinoma as target of centrosome-associated spliceosome alterations. Multiplexed single-cell fluorescent microscopy for the centriole linker CEP250 and spliceosome components including BCAS2, BUD31, SRSF2 and DHX35 recapitulated bioinformatic predictions on the centrosome-associated spliceosome components tissue-type specific composition. Collectively, centrosomes and cilia act as anchor for cell-type specific spliceosome components, and provide a helpful reference for explore cytoplasmic condensates functions in defining cell identity and in the origin of rare diseases.
Collapse
Affiliation(s)
- Luigi Cerulo
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, Naples, Italy
| | - Francesca Pia Caruso
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Andrea Remo
- Pathology Unit, Mater Salutis Hospital AULSS9, “Scaligera”, 37122 Verona, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy
| | - Nicola Forte
- Department of Clinical Pathology, Fatebenefratelli Hospital, 82100 Benevento, Italy
| | - Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 8, Verona, Italy
| | - Mirco Galiè
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, Naples, Italy
- Medical Genetics, Department of Translational Medicine, University of Naples “Federico II”, Via Sergio Pansini, 80131 Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Liu H, Li H, Jiang Z, Jin S, Song R, Yang Y, Li J, Huang J, Zhang X, Dong X, Mori M, Fritzler MJ, He L, Cardoso WV, Lu J. A local translation program regulates centriole amplification in the airway epithelium. Sci Rep 2023; 13:7090. [PMID: 37127654 PMCID: PMC10151349 DOI: 10.1038/s41598-023-34365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Biogenesis of organelles requires targeting of a subset of proteins to specific subcellular domains by signal peptides or mechanisms controlling mRNA localization and local translation. How local distribution and translation of specific mRNAs for organelle biogenesis is achieved remains elusive and likely to be dependent on the cellular context. Here we identify Trinucleotide repeat containing-6a (Tnrc6a), a component of the miRNA pathway, distinctively localized to apical granules of differentiating airway multiciliated cells (MCCs) adjacent to centrioles. In spite of being enriched in TNRC6A and the miRNA-binding protein AGO2, they lack enzymes for mRNA degradation. Instead, we found these apical granules enriched in components of the mRNA translation machinery and newly synthesized proteins suggesting that they are specific hubs for target mRNA localization and local translation in MCCs. Consistent with this, Tnrc6a loss of function prevented formation of these granules and led to a broad reduction, rather than stabilization of miRNA targets. These included downregulation of key genes involved in ciliogenesis and was associated with defective multicilia formation both in vivo and in primary airway epithelial cultures. Similar analysis of Tnrc6a disruption in yolk sac showed stabilization of miRNA targets, highlighting the potential diversity of these mechanisms across organs.
Collapse
Affiliation(s)
- Helu Liu
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Huijun Li
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Zhihua Jiang
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Shibo Jin
- Division of Cellular and Developmental Biology, Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Rui Song
- Division of Cellular and Developmental Biology, Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Ying Yang
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Jun Li
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Jingshu Huang
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Xiaoqing Zhang
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Xuesong Dong
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Munemasa Mori
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA
| | - Marvin J Fritzler
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Wellington V Cardoso
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA.
| | - Jining Lu
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, Columbia University, College of Physicians & Surgeons, 650 West 168th Street, BB 8-812, New York, NY, 10032, USA.
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, 6705 Rockledge Drive, Room 407-J, MSC 7952, Bethesda, MD, 20892-7952, USA.
| |
Collapse
|
8
|
Morleo M, Pezzella N, Franco B. Proteome balance in ciliopathies: the OFD1 protein example. Trends Mol Med 2023; 29:201-217. [PMID: 36494254 DOI: 10.1016/j.molmed.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity). Recent data demonstrated that centrosomal/ciliary proteins enable proteome control in response to spatial or microenvironmental stimuli. Here, we discuss recent discoveries regarding the role in the balance of the proteome of centrosomal/ciliary proteins associated with genetic disorders known as ciliopathies. In particular, OFD1 was the first example of a ciliopathy protein controlling both protein expression and autophagic/proteasomal degradation. Understanding the role of proteome balance in the pathogenesis of the clinical manifestations of ciliopathies may pave the way to the identification of a wide range of putative novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples 'Federico II', Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
9
|
Li C, Wang X, Li F, Ding H, Liu L, Xiong Y, Yang C, Zhang Y, Wu J, Yin A. A novel non-sense variant in the OFD1 gene caused Joubert syndrome. Front Genet 2023; 13:1064762. [PMID: 36704348 PMCID: PMC9871390 DOI: 10.3389/fgene.2022.1064762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Joubert syndrome (JBS) is a rare neurodevelopmental disorder associated with progressive renal, liver, and retinal involvement that exhibits heterogeneity in both clinical manifestations and genetic etiology. Therefore, it is difficult to make a definite prenatal diagnosis. Methods: Whole-exome sequencing and Sanger sequencing were performed to screen the causative gene variants in a suspected JBS family. RNA-seq and protein model prediction were performed to clarify the potential pathogenic mechanism. A more comprehensive review of previously reported cases with OFD1 variants is presented and may help to establish a genotype-phenotype. Results: We identified a novel non-sense variant in the OFD1 gene, OFD1 (NM_003611.3): c.2848A>T (p.Lys950Ter). Sanger sequencing confirmed cosegregation among this family. RNA-seq confirmed that partial degradation of mutant transcripts, which was predicted to be caused by the non-sense-mediated mRNA decay (NMD) mechanism, may explain the reduction in the proportion of mutant transcripts. Protein structure prediction of the non-sense variant transcript revealed that this variant may lead to a change in the OFD1 protein structure. Conclusion: The genetic variation spectrum of JBS10 caused by OFD1 was broadened. The novel variants further deepened our insight into the molecular mechanism of the disease.
Collapse
Affiliation(s)
- Chen Li
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xingwang Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fake Li
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongke Ding
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ying Xiong
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chaoxiang Yang
- Medical Imaging Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yan Zhang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jing Wu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China,*Correspondence: Jing Wu, ; Aihua Yin,
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China,*Correspondence: Jing Wu, ; Aihua Yin,
| |
Collapse
|
10
|
Nazlamova L, Villa Vasquez SS, Lord J, Karthik V, Cheung MK, Lakowski J, Wheway G. Microtubule modification defects underlie cilium degeneration in cell models of retinitis pigmentosa associated with pre-mRNA splicing factor mutations. Front Genet 2022; 13:1009430. [PMID: 36176300 PMCID: PMC9513239 DOI: 10.3389/fgene.2022.1009430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of hereditary blindness, and may occur in isolation as a non-syndromic condition or alongside other features in a syndromic presentation. Biallelic or monoallelic mutations in one of eight genes encoding pre-mRNA splicing factors are associated with non-syndromic RP. The molecular mechanism of disease remains incompletely understood, limiting opportunities for targeted treatment. Here we use CRISPR and base edited PRPF6 and PRPF31 mutant cell lines, and publicly-available data from human PRPF31+/− patient derived retinal organoids and PRPF31 siRNA-treated organotypic retinal cultures to confirm an enrichment of differential splicing of microtubule, centrosomal, cilium and DNA damage response pathway genes in these cells. We show that genes with microtubule/centrosome/centriole/cilium gene ontology terms are enriched for weak 3′ and 5′ splice sites, and that subtle defects in spliceosome activity predominantly affect efficiency of splicing of these exons. We suggest that the primary defect in PRPF6 or PRPF31 mutant cells is microtubule and centrosomal defects, leading to defects in cilium and mitotic spindle stability, with the latter leading to DNA damage, triggering differential splicing of DNA damage response genes to activate this pathway. Finally, we expand understanding of “splicing factor RP” by investigating the function of TTLL3, one of the most statistically differentially expressed genes in PRPF6 and PRPF31 mutant cells. We identify that TTLL3 is the only tubulin glycylase expressed in the human retina, essential for monoglycylation of microtubules of the cilium, including the retinal photoreceptor cilium, to prevent cilium degeneration and retinal degeneration. Our preliminary data suggest that rescue of tubulin glycylation through overexpression of TTLL3 is sufficient to rescue cilium number in PRPF6 and PRPF31 mutant cells, suggesting that this defect underlies the cellular defect and may represent a potential target for therapeutic intervention in this group of disorders.
Collapse
Affiliation(s)
- Liliya Nazlamova
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Suly Saray Villa Vasquez
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jenny Lord
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Varshini Karthik
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Man-Kim Cheung
- Centre for Research in Biosciences, University of the West of England, Bristol, United Kingdom
| | - Jörn Lakowski
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Gabrielle Wheway,
| |
Collapse
|
11
|
O'Neill AC, Uzbas F, Antognolli G, Merino F, Draganova K, Jäck A, Zhang S, Pedini G, Schessner JP, Cramer K, Schepers A, Metzger F, Esgleas M, Smialowski P, Guerrini R, Falk S, Feederle R, Freytag S, Wang Z, Bahlo M, Jungmann R, Bagni C, Borner GHH, Robertson SP, Hauck SM, Götz M. Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity. Science 2022; 376:eabf9088. [PMID: 35709258 DOI: 10.1126/science.abf9088] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell-derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type-specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type-specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes.
Collapse
Affiliation(s)
- Adam C O'Neill
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Fatma Uzbas
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Giulia Antognolli
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Florencia Merino
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Kalina Draganova
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Alex Jäck
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Sirui Zhang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Kimberly Cramer
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, LMU, Munich, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Fabian Metzger
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Centre Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Miriam Esgleas
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Pawel Smialowski
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Sven Falk
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, LMU, Planegg-Martinsried, Germany
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Melanie Bahlo
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, LMU, Munich, Germany
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.,Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | | | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Centre Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, LMU, Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Expanding the phenotype of males with OFD1 pathogenic variants-a case report and literature review. Eur J Med Genet 2022; 65:104496. [PMID: 35398350 PMCID: PMC10369588 DOI: 10.1016/j.ejmg.2022.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
Abstract
Pathogenic variants in the OFD1 gene have been classically associated with the Orofaciodigital syndrome type 1 in females, a condition previously considered to be X-linked dominant with male embryonic lethality. However, an increasing number of males with pathogenic OFD1 variants who survived beyond the neonatal period have now been reported in the literature. Although each new report has added to the ever-broadening spectrum of clinical findings seen in males, many questions about genotype-phenotype correlations and disease mechanism remain. Herein, we describe a 9-year-old male child with a novel hemizygous pathogenic OFD1 variant identified by exome sequencing and a unique combination of findings, not previously reported, including presence of both a hypothalamic hamartoma and the molar tooth sign. His clinical features overlap multiple ciliopathy phenotypes, blurring the boundaries of distinct ciliopathy gene-disease relationships. This case provides further evidence for the consideration of a broad OFD1-relateddisorder spectrum in affected males rather than multiple distinct phenotypes. Additionally, a review of previously published cases of the disorder in males support the inclusion of the OFD1 gene in the differential diagnosis and work up for all individuals who present with primary ciliopathy-type features, regardless of their gender. We also highlight current information about OFD1 variant types and pathogenesis and explore how these could mechanistically drive some of the observed phenotypic differences.
Collapse
|
13
|
Pezzella N, Bove G, Tammaro R, Franco B. OFD1: One gene, several disorders. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:57-71. [PMID: 35112477 PMCID: PMC9303915 DOI: 10.1002/ajmg.c.31962] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/14/2022]
Abstract
The OFD1 protein is necessary for the formation of primary cilia and left–right asymmetry establishment but additional functions have also been ascribed to this multitask protein. When mutated, this protein results in a variety of phenotypes ranging from multiorgan involvement, such as OFD type I (OFDI) and Joubert syndromes (JBS10), and Primary ciliary dyskinesia (PCD), to the engagement of single tissues such as in the case of retinitis pigmentosa (RP23). The inheritance pattern of these condition differs from X‐linked dominant male‐lethal (OFDI) to X‐linked recessive (JBS10, PCD, and RP23). Distinctive biological peculiarities of the protein, which can contribute to explain the extreme clinical variability and the genetic mechanisms underlying the different disorders are discussed. The extensive spectrum of clinical manifestations observed in OFD1‐mutated patients represents a paradigmatic example of the complexity of genetic diseases. The elucidation of the mechanisms underlying this complexity will expand our comprehension of inherited disorders and will improve the clinical management of patients.
Collapse
Affiliation(s)
- Nunziana Pezzella
- Scuola Superiore Meridionale, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Guglielmo Bove
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Brunella Franco
- Scuola Superiore Meridionale, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Microtubule and Actin Cytoskeletal Dynamics in Male Meiotic Cells of Drosophila melanogaster. Cells 2022; 11:cells11040695. [PMID: 35203341 PMCID: PMC8870657 DOI: 10.3390/cells11040695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023] Open
Abstract
Drosophila dividing spermatocytes offer a highly suitable cell system in which to investigate the coordinated reorganization of microtubule and actin cytoskeleton systems during cell division of animal cells. Like male germ cells of mammals, Drosophila spermatogonia and spermatocytes undergo cleavage furrow ingression during cytokinesis, but abscission does not take place. Thus, clusters of primary and secondary spermatocytes undergo meiotic divisions in synchrony, resulting in cysts of 32 secondary spermatocytes and then 64 spermatids connected by specialized structures called ring canals. The meiotic spindles in Drosophila males are substantially larger than the spindles of mammalian somatic cells and exhibit prominent central spindles and contractile rings during cytokinesis. These characteristics make male meiotic cells particularly amenable to immunofluorescence and live imaging analysis of the spindle microtubules and the actomyosin apparatus during meiotic divisions. Moreover, because the spindle assembly checkpoint is not robust in spermatocytes, Drosophila male meiosis allows investigating of whether gene products required for chromosome segregation play additional roles during cytokinesis. Here, we will review how the research studies on Drosophila male meiotic cells have contributed to our knowledge of the conserved molecular pathways that regulate spindle microtubules and cytokinesis with important implications for the comprehension of cancer and other diseases.
Collapse
|
15
|
Zein-Sabatto H, Lerit DA. The Identification and Functional Analysis of mRNA Localizing to Centrosomes. Front Cell Dev Biol 2021; 9:782802. [PMID: 34805187 PMCID: PMC8595238 DOI: 10.3389/fcell.2021.782802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are multifunctional organelles tasked with organizing the microtubule cytoskeleton required for genome stability, intracellular trafficking, and ciliogenesis. Contributing to the diversity of centrosome functions are cell cycle-dependent oscillations in protein localization and post-translational modifications. Less understood is the role of centrosome-localized messenger RNA (mRNA). Since its discovery, the concept of nucleic acids at the centrosome was controversial, and physiological roles for centrosomal mRNAs remained muddled and underexplored. Over the past decades, however, transcripts, RNA-binding proteins, and ribosomes were detected at the centrosome in various organisms and cell types, hinting at a conservation of function. Indeed, recent work defines centrosomes as sites of local protein synthesis, and defined mRNAs were recently implicated in regulating centrosome functions. In this review, we summarize the evidence for the presence of mRNA at the centrosome and the current work that aims to unravel the biological functions of mRNA localized to centrosomes.
Collapse
Affiliation(s)
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
16
|
OFD Type I syndrome: lessons learned from a rare ciliopathy. Biochem Soc Trans 2021; 48:1929-1939. [PMID: 32897366 DOI: 10.1042/bst20191029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
The OFD1 gene was initially identified as the gene responsible for the X-linked dominant male lethal OFD type I syndrome, a developmental disorder ascribed to cilia disfunction. The transcript has been subsequently associated to four different X-linked recessive conditions, namely Joubert syndrome, retinitis pigmentosa, primary ciliary dyskinesia and Simpson-Golabi-Behmel type 2 syndrome. The centrosomal/basal body OFD1 protein has indeed been shown to be required for primary cilia formation and left-right asymmetry. The protein is also involved in other tasks, e.g. regulation of cellular protein content, constrain of the centriolar length, chromatin remodeling at DNA double strand breaks, control of protein quality balance and cell cycle progression, which might be mediated by non-ciliary activities. OFD1 represents a paradigmatic model of a protein that performs its diverse actions according to the cell needs and depending on the subcellular localization, the cell type/tissue and other possible factors still to be determined. An increased number of multitask protein, such as OFD1, may represent a partial explanation to human complexity, as compared with less complex organisms with an equal or slightly lower number of proteins.
Collapse
|
17
|
What Antarctic Plants Can Tell Us about Climate Changes: Temperature as a Driver for Metabolic Reprogramming. Biomolecules 2021; 11:biom11081094. [PMID: 34439761 PMCID: PMC8392395 DOI: 10.3390/biom11081094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Global warming is strongly affecting the maritime Antarctica climate and the consequent melting of perennial snow and ice covers resulted in increased colonization by plants. Colobanthus quitensis is a vascular plant highly adapted to the harsh environmental conditions of Antarctic Peninsula and understanding how the plant is responding to global warming is a new challenging target for modern cell physiology. To this aim, we performed differential proteomic analysis on C. quitensis plants grown in natural conditions compared to plants grown for one year inside open top chambers (OTCs) which determine an increase of about 4 °C at midday, mimicking the effect of global warming. A thorough analysis of the up- and downregulated proteins highlighted an extensive metabolism reprogramming leading to enhanced photoprotection and oxidative stress control as well as reduced content of cell wall components. Overall, OTCs growth seems to be advantageous for C. quitensis plants which could benefit from a better CO2 diffusion into the mesophyll and a reduced ROS-mediated photodamage.
Collapse
|
18
|
Iaconis D, Crina C, Brillante S, Indrieri A, Morleo M, Franco B. The HOPS complex subunit VPS39 controls ciliogenesis through autophagy. Hum Mol Genet 2021; 29:1018-1029. [PMID: 32077937 PMCID: PMC7158379 DOI: 10.1093/hmg/ddaa029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are microtubule-based organelles that assemble and protrude from the surface of most mammalian cells during quiescence. The biomedical relevance of cilia is indicated by disorders ascribed to cilia dysfunction, known as ciliopathies, that display distinctive features including renal cystic disease. In this report, we demonstrate that vacuolar protein sorting 39 (VPS39), a component of the homotypic fusion and vacuole protein sorting (HOPS) complex, acts as a negative regulator of ciliogenesis in human renal cells, by controlling the localization of the intraflagellar transport 20 protein at the base of cilia through autophagy. Moreover, we show that VPS39 controls ciliogenesis through autophagy also in vivo in renal tubules of medaka fish. These observations suggest a direct involvement of the HOPS complex in the regulation of autophagy-mediated ciliogenesis and eventually in target selection. Interestingly, we show that the impact of autophagy modulation on ciliogenesis is cell-type dependent and strictly related to environmental stimuli. This report adds a further tile to the cilia-autophagy connection and suggests that VPS39 could represent a new biological target for the recovery of the cilia-related phenotypes observed in the kidneys of patients affected by ciliopathies.
Collapse
Affiliation(s)
- Daniela Iaconis
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Claudia Crina
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Simona Brillante
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council, 35 20122 Milan, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
19
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
20
|
Lashkevich KA, Dmitriev SE. mRNA Targeting, Transport and Local Translation in Eukaryotic Cells: From the Classical View to a Diversity of New Concepts. Mol Biol 2021; 55:507-537. [PMID: 34092811 PMCID: PMC8164833 DOI: 10.1134/s0026893321030080] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Spatial organization of protein biosynthesis in the eukaryotic cell has been studied for more than fifty years, thus many facts have already been included in textbooks. According to the classical view, mRNA transcripts encoding secreted and transmembrane proteins are translated by ribosomes associated with endoplasmic reticulum membranes, while soluble cytoplasmic proteins are synthesized on free polysomes. However, in the last few years, new data has emerged, revealing selective translation of mRNA on mitochondria and plastids, in proximity to peroxisomes and endosomes, in various granules and at the cytoskeleton (actin network, vimentin intermediate filaments, microtubules and centrosomes). There are also long-standing debates about the possibility of protein synthesis in the nucleus. Localized translation can be determined by targeting signals in the synthesized protein, nucleotide sequences in the mRNA itself, or both. With RNA-binding proteins, many transcripts can be assembled into specific RNA condensates and form RNP particles, which may be transported by molecular motors to the sites of active translation, form granules and provoke liquid-liquid phase separation in the cytoplasm, both under normal conditions and during cell stress. The translation of some mRNAs occurs in specialized "translation factories," assemblysomes, transperons and other structures necessary for the correct folding of proteins, interaction with functional partners and formation of oligomeric complexes. Intracellular localization of mRNA has a significant impact on the efficiency of its translation and presumably determines its response to cellular stress. Compartmentalization of mRNAs and the translation machinery also plays an important role in viral infections. Many viruses provoke the formation of specific intracellular structures, virus factories, for the production of their proteins. Here we review the current concepts of the molecular mechanisms of transport, selective localization and local translation of cellular and viral mRNAs, their effects on protein targeting and topogenesis, and on the regulation of protein biosynthesis in different compartments of the eukaryotic cell. Special attention is paid to new systems biology approaches, providing new cues to the study of localized translation.
Collapse
Affiliation(s)
- Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
21
|
Senatore E, Chiuso F, Rinaldi L, Intartaglia D, Delle Donne R, Pedone E, Catalanotti B, Pirone L, Fiorillo B, Moraca F, Giamundo G, Scala G, Raffeiner A, Torres-Quesada O, Stefan E, Kwiatkowski M, van Pijkeren A, Morleo M, Franco B, Garbi C, Conte I, Feliciello A. The TBC1D31/praja2 complex controls primary ciliogenesis through PKA-directed OFD1 ubiquitylation. EMBO J 2021; 40:e106503. [PMID: 33934390 PMCID: PMC8126939 DOI: 10.15252/embj.2020106503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
The primary cilium is a microtubule‐based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X‐linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease. OFD1 plays a key role in cilium biogenesis. However, the impact of signalling pathways and the role of the ubiquitin‐proteasome system (UPS) in the control of OFD1 stability remain unknown. Here, we identify a novel complex assembled at centrosomes by TBC1D31, including the E3 ubiquitin ligase praja2, protein kinase A (PKA), and OFD1. We show that TBC1D31 is essential for ciliogenesis. Mechanistically, upon G‐protein‐coupled receptor (GPCR)‐cAMP stimulation, PKA phosphorylates OFD1 at ser735, thus promoting OFD1 proteolysis through the praja2‐UPS circuitry. This pathway is essential for ciliogenesis. In addition, a non‐phosphorylatable OFD1 mutant dramatically affects cilium morphology and dynamics. Consistent with a role of the TBC1D31/praja2/OFD1 axis in ciliogenesis, alteration of this molecular network impairs ciliogenesis in vivo in Medaka fish, resulting in developmental defects. Our findings reveal a multifunctional transduction unit at the centrosome that links GPCR signalling to ubiquitylation and proteolysis of the ciliopathy protein OFD1, with important implications on cilium biology and development. Derangement of this control mechanism may underpin human genetic disorders.
Collapse
Affiliation(s)
- Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | | | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University Federico II, Naples, Italy
| | - Federica Moraca
- Department of Pharmacy, University Federico II, Naples, Italy.,Net4Science srl, University "Magna Graecia", Catanzaro, Italy
| | | | - Giovanni Scala
- Department of Biology, University Federico II, Naples, Italy
| | - Andrea Raffeiner
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria.,Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Omar Torres-Quesada
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria.,Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria.,Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | | | | | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| |
Collapse
|
22
|
Abstract
Autophagy is a cellular self-degradative pathway. Our study unveiled a novel mechanism mediated by OFD1, the protein mutated in Oral-Facial-Digital type I syndrome, based on selective degradation of autophagic proteins, which enables cells to calibrate their self-degradation. We demonstrated that unrestrained autophagy contributes to renal cysts observed in Ofd1 mutants.
Collapse
Affiliation(s)
- Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| |
Collapse
|
23
|
Aulitto M, Strazzulli A, Sansone F, Cozzolino F, Monti M, Moracci M, Fiorentino G, Limauro D, Bartolucci S, Contursi P. Prebiotic properties of Bacillus coagulans MA-13: production of galactoside hydrolyzing enzymes and characterization of the transglycosylation properties of a GH42 β-galactosidase. Microb Cell Fact 2021; 20:71. [PMID: 33736637 PMCID: PMC7977261 DOI: 10.1186/s12934-021-01553-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 01/18/2023] Open
Abstract
Background The spore-forming lactic acid bacterium Bacillus coagulans MA-13 has been isolated from canned beans manufacturing and successfully employed for the sustainable production of lactic acid from lignocellulosic biomass. Among lactic acid bacteria, B. coagulans strains are generally recognized as safe (GRAS) for human consumption. Low-cost microbial production of industrially valuable products such as lactic acid and various enzymes devoted to the hydrolysis of oligosaccharides and lactose, is of great importance to the food industry. Specifically, α- and β-galactosidases are attractive for their ability to hydrolyze not-digestible galactosides present in the food matrix as well as in the human gastrointestinal tract. Results In this work we have explored the potential of B. coagulans MA-13 as a source of metabolites and enzymes to improve the digestibility and the nutritional value of food. A combination of mass spectrometry analysis with conventional biochemical approaches has been employed to unveil the intra- and extra- cellular glycosyl hydrolase (GH) repertoire of B. coagulans MA-13 under diverse growth conditions. The highest enzymatic activity was detected on β-1,4 and α-1,6-glycosidic linkages and the enzymes responsible for these activities were unambiguously identified as β-galactosidase (GH42) and α-galactosidase (GH36), respectively. Whilst the former has been found only in the cytosol, the latter is localized also extracellularly. The export of this enzyme may occur through a not yet identified secretion mechanism, since a typical signal peptide is missing in the α-galactosidase sequence. A full biochemical characterization of the recombinant β-galactosidase has been carried out and the ability of this enzyme to perform homo- and hetero-condensation reactions to produce galacto-oligosaccharides, has been demonstrated. Conclusions Probiotics which are safe for human use and are capable of producing high levels of both α-galactosidase and β-galactosidase are of great importance to the food industry. In this work we have proven the ability of B. coagulans MA-13 to over-produce these two enzymes thus paving the way for its potential use in treatment of gastrointestinal diseases. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01553-y.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Ferdinando Sansone
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Marco Moracci
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy.,Institute of Biosciences and BioResources-National Research Council of Italy, Naples, Italy
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | | | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy. .,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy. .,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy.
| |
Collapse
|
24
|
Morleo M, Brillante S, Formisano U, Ferrante L, Carbone F, Iaconis D, Palma A, Buonomo V, Maione AS, Grumati P, Settembre C, Franco B. Regulation of autophagosome biogenesis by OFD1-mediated selective autophagy. EMBO J 2021; 40:e105120. [PMID: 33368531 PMCID: PMC7883294 DOI: 10.15252/embj.2020105120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a lysosome-dependent degradation pathway essential to maintain cellular homeostasis. Therefore, either defective or excessive autophagy may be detrimental for cells and tissues. The past decade was characterized by significant advances in molecular dissection of stimulatory autophagy inputs; however, our understanding of the mechanisms that restrain autophagy is far from complete. Here, we describe a negative feedback mechanism that limits autophagosome biogenesis based on the selective autophagy-mediated degradation of ATG13, a component of the ULK1 autophagy initiation complex. We demonstrate that the centrosomal protein OFD1 acts as bona fide autophagy receptor for ATG13 via direct interaction with the Atg8/LC3/GABARAP family of proteins. We also show that patients with Oral-Facial-Digital type I syndrome, caused by mutations in the OFD1 gene, display excessive autophagy and that genetic inhibition of autophagy in a mouse model of the disease, significantly ameliorates polycystic kidney, a clinical manifestation of the disorder. Collectively, our data report the discovery of an autophagy self-regulated mechanism and implicate dysregulated autophagy in the pathogenesis of renal cystic disease in mammals.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
| | - Simona Brillante
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
| | - Umberto Formisano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
| | - Luigi Ferrante
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
| | - Fabrizia Carbone
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
| | - Daniela Iaconis
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
| | - Alessandro Palma
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
| | - Angela Serena Maione
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
- Present address:
Vascular Biology and Regenerative Medicine UnitCentro Cardiologico Monzino IRCCSMilanItaly
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
- Department of Clinical Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliNaplesItaly
- Medical GeneticsDepartment of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
25
|
Alfieri M, Iaconis D, Tammaro R, Perone L, Calì G, Nitsch L, Dougherty GW, Ragnini-Wilson A, Franco B. The centrosomal/basal body protein OFD1 is required for microtubule organization and cell cycle progression. Tissue Cell 2020; 64:101369. [PMID: 32473706 DOI: 10.1016/j.tice.2020.101369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
Oral-Facial-Digital type I (OFD1) is a rare inherited form of renal cystic disease associated with ciliary dysfunction. This disorder is due to mutations in the OFD1 gene that encodes a protein localized to centrosomes and basal bodies in different cell types. Immunofluorescence analysis demonstrated that OFD1 displays a dynamic distribution during cell cycle. High-content microscopy analysis of Ofd1-depleted fibroblasts revealed impaired cell cycle progression. Immunofluorescence analysis and cell proliferation assays also indicated the presence of a variety of defects such as centrosome accumulation, nuclear abnormalities and aneuploidy. In addition, Ofd1-depleted cells displayed an abnormal microtubule network that may underlie these defects. All together our results suggest that OFD1 contributes to the function of the microtubule organizing center (MTOC) in the cell, controlling cell cycle progression both in vitro and in vivo.
Collapse
Affiliation(s)
- Mariaevelina Alfieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Daniela Iaconis
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Lucia Perone
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Gaetano Calì
- National Research Council - Institute of Experimental Endocrinology and Oncology, Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Gerard W Dougherty
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of General Pediatrics, University Hospital Muenster, 48149, Muenster, Germany
| | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples "Federico II", Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
26
|
Rothé B, Gagnieux C, Leal-Esteban LC, Constam DB. Role of the RNA-binding protein Bicaudal-C1 and interacting factors in cystic kidney diseases. Cell Signal 2019; 68:109499. [PMID: 31838063 DOI: 10.1016/j.cellsig.2019.109499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/03/2023]
Abstract
Polycystic kidneys frequently associate with mutations in individual components of cilia, basal bodies or centriolar satellites that perturb complex protein networks. In this review, we focus on the RNA-binding protein Bicaudal-C1 (BICC1) which was found mutated in renal cystic dysplasia, and on its interactions with the ankyrin repeat and sterile α motif (SAM)-containing proteins ANKS3 and ANKS6 and associated kinases and their partially overlapping ciliopathy phenotypes. After reviewing BICC1 homologs in model organisms and their functions in mRNA and cell metabolism during development and in renal tubules, we discuss recent insights from cell-based assays and from structure analysis of the SAM domains, and how SAM domain oligomerization might influence multivalent higher order complexes that are implicated in ciliary signal transduction.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | - Céline Gagnieux
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | - Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland; Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
27
|
Sechi S, Frappaolo A, Karimpour-Ghahnavieh A, Gottardo M, Burla R, Di Francesco L, Szafer-Glusman E, Schininà E, Fuller MT, Saggio I, Riparbelli MG, Callaini G, Giansanti MG. Drosophila Doublefault protein coordinates multiple events during male meiosis by controlling mRNA translation. Development 2019; 146:dev.183053. [PMID: 31645358 DOI: 10.1242/dev.183053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
During the extended prophase of Drosophila gametogenesis, spermatocytes undergo robust gene transcription and store many transcripts in the cytoplasm in a repressed state, until translational activation of select mRNAs in later steps of spermatogenesis. Here, we characterize the Drosophila Doublefault (Dbf) protein as a C2H2 zinc-finger protein, primarily expressed in testes, that is required for normal meiotic division and spermiogenesis. Loss of Dbf causes premature centriole disengagement and affects spindle structure, chromosome segregation and cytokinesis. We show that Dbf interacts with the RNA-binding protein Syncrip/hnRNPQ, a key regulator of localized translation in Drosophila We propose that the pleiotropic effects of dbf loss-of-function mutants are associated with the requirement of dbf function for translation of specific transcripts in spermatocytes. In agreement with this hypothesis, Dbf protein binds cyclin B mRNA and is essential for translation of cyclin B in mature spermatocytes.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Marco Gottardo
- Dipartimento di Scienze della Vita, Università di Siena, 53100 Siena, Italy
| | - Romina Burla
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Laura Di Francesco
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Edith Szafer-Glusman
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Eugenia Schininà
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Margaret T Fuller
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | | | - Giuliano Callaini
- Dipartimento di Biotecnologie Mediche, Università di Siena, 53100 Siena, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
28
|
Bukowy-Bieryllo Z, Rabiasz A, Dabrowski M, Pogorzelski A, Wojda A, Dmenska H, Grzela K, Sroczynski J, Witt M, Zietkiewicz E. Truncating mutations in exons 20 and 21 of OFD1 can cause primary ciliary dyskinesia without associated syndromic symptoms. J Med Genet 2019; 56:769-777. [PMID: 31366608 DOI: 10.1136/jmedgenet-2018-105918] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/25/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a motile ciliopathy, whose symptoms include airway infections, male infertility and situs inversus. Apart from the typical forms of PCD, rare syndromic PCD forms exist. Mutations of the X-linked OFD1 gene cause several syndromic ciliopathies, including oral-facial-digital syndrome type 1, Joubert syndrome type 10 (JBTS10), and Simpson-Golabi-Behmel syndrome type 2, the latter causing the X-linked syndromic form of PCD. Neurological and skeletal symptoms are characteristic for these syndromes, with their severity depending on the location of the mutation within the gene. OBJECTIVES To elucidate the role of motile cilia defects in the respiratory phenotype of PCD patients with C-terminal OFD1 mutations. METHODS Whole-exome sequencing in a group of 120 Polish PCD patients, mutation screening of the OFD1 coding sequence, analysis of motile cilia, and magnetic resonance brain imaging. RESULTS Four novel hemizygous OFD1 mutations, in exons 20 and 21, were found in men with a typical PCD presentation but without severe neurological, skeletal or renal symptoms characteristic for other OFD1-related syndromes. Magnetic resonance brain imaging in two patients did not show a molar tooth sign typical for JBTS10. Cilia in the respiratory epithelium were sparse, unusually long and displayed a defective motility pattern. CONCLUSION Consistent with the literature, truncations of the C-terminal part of OFD1 (exons 16-22) almost invariably cause a respiratory phenotype (due to motile cilia defects) while their impact on the primary cilia function is limited. We suggest that exons 20-21 should be included in the panel for regular mutation screening in PCD.
Collapse
Affiliation(s)
| | - Alicja Rabiasz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Dabrowski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Andrzej Pogorzelski
- Rabka Branch, Institute of Tuberculosis and Lung Diseases, Rabka-Zdroj, Poland
| | - Alina Wojda
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Hanna Dmenska
- Department of Lung Physiology, Children's Memorial Health Institute, Warsaw, Poland
| | - Katarzyna Grzela
- Departments of Pulmonology and Allergy, Warsaw Medical University, Warsaw, Poland
| | - Jakub Sroczynski
- Department of Paediatric Otolaryngology, Poznan University of Medical Sciences, Poznan, Wielkopolskie, Poland
| | - Michal Witt
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Ewa Zietkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
29
|
The Nuclear Arsenal of Cilia. Dev Cell 2019; 49:161-170. [DOI: 10.1016/j.devcel.2019.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/07/2018] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
|
30
|
Leal-Esteban LC, Rothé B, Fortier S, Isenschmid M, Constam DB. Role of Bicaudal C1 in renal gluconeogenesis and its novel interaction with the CTLH complex. PLoS Genet 2018; 14:e1007487. [PMID: 29995892 PMCID: PMC6056059 DOI: 10.1371/journal.pgen.1007487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/23/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023] Open
Abstract
Altered glucose and lipid metabolism fuel cystic growth in polycystic kidneys, but the cause of these perturbations is unclear. Renal cysts also associate with mutations in Bicaudal C1 (Bicc1) or in its self-polymerizing sterile alpha motif (SAM). Here, we found that Bicc1 maintains normoglycemia and the expression of the gluconeogenic enzymes FBP1 and PEPCK in kidneys. A proteomic screen revealed that Bicc1 interacts with the C-Terminal to Lis-Homology domain (CTLH) complex. Since the orthologous Gid complex in S. cerevisae targets FBP1 and PEPCK for degradation, we mapped the topology among CTLH subunits and found that SAM-mediated binding controls Bicc1 protein levels, whereas Bicc1 inhibited the accumulation of several CTLH subunits. Under the conditions analyzed, Bicc1 increased FBP1 protein levels independently of the CTLH complex. Besides linking Bicc1 to cell metabolism, our findings reveal new layers of complexity in the regulation of renal gluconeogenesis compared to lower eukaryotes. Polycystic kidney diseases (PKD) are incurable inherited chronic disorders marked by fluid-filled cysts that frequently cause renal failure. A glycolytic metabolism reminiscent of cancerous cells accelerates cystic growth, but the mechanism underlying such metabolic re-wiring is poorly understood. PKD-like cystic kidneys also develop in mice that lack the RNA-binding protein Bicaudal-C (Bicc1), and mutations in a single copy of human BICC1 associate with renal cystic dysplasia. Here, we report that Bicc1 regulates renal gluconeogenesis. A screen for interacting factors revealed that Bicc1 binds the C-Terminal to Lis-Homology domain (CTLH) complex, which in lower eukaryotes mediates degradation of gluconeogenic enzymes. By contrast, Bicc1 and the mammalian CTLH complex regulated each other, and Bicc1 stimulated the accumulation of the rate-limiting gluconeogenic enzyme even in cells depleted of CTLH subunits. Our finding that Bicc1 is required for normoglycemia implies that renal gluconeogenesis may be important to inhibit cyst formation.
Collapse
Affiliation(s)
- Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Manuela Isenschmid
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Armentano MF, Caterino M, Miglionico R, Ostuni A, Pace MC, Cozzolino F, Monti M, Milella L, Carmosino M, Pucci P, Bisaccia F. New insights on the functional role of URG7 in the cellular response to ER stress. Biol Cell 2018; 110:147-158. [DOI: 10.1111/boc.201800004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | - Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli “Federico II”; Naples 80121 Italy
| | - Rocchina Miglionico
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| | - Angela Ostuni
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| | - Maria Carmela Pace
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| | - Flora Cozzolino
- CEINGE Biotecnologie Avanzate s.c.a.r.l; Naples 80145 Italy
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Naples 80126 Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate s.c.a.r.l; Naples 80145 Italy
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Naples 80126 Italy
| | - Luigi Milella
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| | - Monica Carmosino
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| | - Piero Pucci
- CEINGE Biotecnologie Avanzate s.c.a.r.l; Naples 80145 Italy
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Naples 80126 Italy
| | - Faustino Bisaccia
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| |
Collapse
|
32
|
Krastev DB, Pettitt SJ, Campbell J, Song F, Tanos BE, Stoynov SS, Ashworth A, Lord CJ. Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets. Nat Commun 2018; 9:2016. [PMID: 29789535 PMCID: PMC5964205 DOI: 10.1038/s41467-018-04466-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/01/2018] [Indexed: 12/26/2022] Open
Abstract
Poly (ADP-ribose)ylation is a dynamic protein modification that regulates multiple cellular processes. Here, we describe a system for identifying and characterizing PARylation events that exploits the ability of a PBZ (PAR-binding zinc finger) protein domain to bind PAR with high-affinity. By linking PBZ domains to bimolecular fluorescent complementation biosensors, we developed fluorescent PAR biosensors that allow the detection of temporal and spatial PARylation events in live cells. Exploiting transposon-mediated recombination, we integrate the PAR biosensor en masse into thousands of protein coding genes in living cells. Using these PAR-biosensor "tagged" cells in a genetic screen we carry out a large-scale identification of PARylation targets. This identifies CTIF (CBP80/CBP20-dependent translation initiation factor) as a novel PARylation target of the tankyrase enzymes in the centrosomal region of cells, which plays a role in the distribution of the centrosomal satellites.
Collapse
Affiliation(s)
- Dragomir B Krastev
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - James Campbell
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Feifei Song
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Barbara E Tanos
- The Cancer Therapeutics Division, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Stoyno S Stoynov
- The Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Alan Ashworth
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
- UCSF Helen Diller Family Comprehensive Cancer Center, 1450 3rd Street, San Francisco, CA, 94158, USA.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
33
|
Rothé B, Leettola CN, Leal-Esteban L, Cascio D, Fortier S, Isenschmid M, Bowie JU, Constam DB. Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6. Structure 2018; 26:209-224.e6. [PMID: 29290488 PMCID: PMC6258031 DOI: 10.1016/j.str.2017.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/31/2017] [Accepted: 12/01/2017] [Indexed: 01/25/2023]
Abstract
Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Catherine N Leettola
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Lucia Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Manuela Isenschmid
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, SV ISREC, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|