1
|
Lin C, Qin H, Liao Y, Chen J, Gao B. Chemical Synthesis and Insecticidal Activity Research Based on α-Conotoxins. Molecules 2024; 29:2846. [PMID: 38930912 PMCID: PMC11206848 DOI: 10.3390/molecules29122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating resistance of agricultural pests to chemical insecticides necessitates the development of novel, efficient, and safe biological insecticides. Conus quercinus, a vermivorous cone snail, yields a crude venom rich in peptides for marine worm predation. This study screened six α-conotoxins with insecticidal potential from a previously constructed transcriptome database of C. quercinus, characterized by two disulfide bonds. These conotoxins were derived via solid-phase peptide synthesis (SPPS) and folded using two-step iodine oxidation for further insecticidal activity validation, such as CCK-8 assay and insect bioassay. The final results confirmed the insecticidal activities of the six α-conotoxins, with Qc1.15 and Qc1.18 exhibiting high insecticidal activity. In addition, structural analysis via homology modeling and functional insights from molecular docking offer a preliminary look into their potential insecticidal mechanisms. In summary, this study provides essential references and foundations for developing novel insecticides.
Collapse
Affiliation(s)
| | | | | | - Jiao Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (C.L.); (H.Q.); (Y.L.)
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (C.L.); (H.Q.); (Y.L.)
| |
Collapse
|
2
|
Xu X, Fonseca de Lima CF, Vu LD, De Smet I. When drought meets heat - a plant omics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1250878. [PMID: 37674736 PMCID: PMC10478009 DOI: 10.3389/fpls.2023.1250878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Changes in weather patterns with emerging drought risks and rising global temperature are widespread and negatively affect crop growth and productivity. In nature, plants are simultaneously exposed to multiple biotic and abiotic stresses, but most studies focus on individual stress conditions. However, the simultaneous occurrence of different stresses impacts plant growth and development differently than a single stress. Plants sense the different stress combinations in the same or in different tissues, which could induce specific systemic signalling and acclimation responses; impacting different stress-responsive transcripts, protein abundance and modifications, and metabolites. This mini-review focuses on the combination of drought and heat, two abiotic stress conditions that often occur together. Recent omics studies indicate common or independent regulators involved in heat or drought stress responses. Here, we summarize the current research results, highlight gaps in our knowledge, and flag potential future focus areas.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
3
|
Mishra DC, Majumdar SG, Kumar A, Bhati J, Chaturvedi KK, Kumar RR, Goswami S, Rai A, Budhlakoti N. Regulatory Networks of lncRNAs, miRNAs, and mRNAs in Response to Heat Stress in Wheat (Triticum Aestivum L.): An Integrated Analysis. Int J Genomics 2023; 2023:1774764. [PMID: 37033711 PMCID: PMC10079388 DOI: 10.1155/2023/1774764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 09/03/2022] [Indexed: 04/03/2023] Open
Abstract
Climate change has become a major source of concern, particularly in agriculture, because it has a significant impact on the production of economically important crops such as wheat, rice, and maize. In the present study, an attempt has been made to identify differentially expressed heat stress-responsive long non-coding RNAs (lncRNAs) in the wheat genome using publicly available wheat transcriptome data (24 SRAs) representing two conditions, namely, control and heat-stressed. A total of 10,965 lncRNAs have been identified and, among them, 153, 143, and 211 differentially expressed transcripts have been found under 0 DAT, 1 DAT, and 4 DAT heat-stress conditions, respectively. Target prediction analysis revealed that 4098 lncRNAs were targeted by 119 different miRNA responses to a plethora of environmental stresses, including heat stress. A total of 171 hub genes had 204 SSRs (simple sequence repeats), and a set of target sequences had SNP potential as well. Furthermore, gene ontology analysis revealed that the majority of the discovered lncRNAs are engaged in a variety of cellular and biological processes related to heat stress responses. Furthermore, the modeled three-dimensional (3D) structures of hub genes encoding proteins, which had an appropriate range of similarity with solved structures, provided information on their structural roles. The current study reveals many elements of gene expression regulation in wheat under heat stress, paving the way for the development of improved climate-resilient wheat cultivars.
Collapse
|
4
|
Rakkammal K, Priya A, Pandian S, Maharajan T, Rathinapriya P, Satish L, Ceasar SA, Sohn SI, Ramesh M. Conventional and Omics Approaches for Understanding the Abiotic Stress Response in Cereal Crops-An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:2852. [PMID: 36365305 PMCID: PMC9655223 DOI: 10.3390/plants11212852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 05/22/2023]
Abstract
Cereals have evolved various tolerance mechanisms to cope with abiotic stress. Understanding the abiotic stress response mechanism of cereal crops at the molecular level offers a path to high-yielding and stress-tolerant cultivars to sustain food and nutritional security. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. Omics approaches generate a massive amount of data, and adequate advancements in computational tools have been achieved for effective analysis. The combination of integrated omics and bioinformatics approaches has been recognized as vital to generating insights into genome-wide stress-regulation mechanisms. In this review, we have described the self-driven drought, heat, and salt stress-responsive mechanisms that are highlighted by the integration of stress-manipulating components, including transcription factors, co-expressed genes, proteins, etc. This review also provides a comprehensive catalog of available online omics resources for cereal crops and their effective utilization. Thus, the details provided in the review will enable us to choose the appropriate tools and techniques to reduce the negative impacts and limit the failures in the intensive crop improvement study.
Collapse
Affiliation(s)
- Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, Kerala, India
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, Mandapam Camp, CSIR—Central Salt and Marine Chemicals Research Institute, Bhavnagar 623519, Tamil Nadu, India
| | | | - Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
5
|
Bacala R, Hatcher DW, Perreault H, Fu BX. Challenges and opportunities for proteomics and the improvement of bread wheat quality. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153743. [PMID: 35749977 DOI: 10.1016/j.jplph.2022.153743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Wheat remains a critical global food source, pressured by climate change and the need to maximize yield, improve processing and nutritional quality and ensure safety. An enormous amount of research has been conducted to understand gluten protein composition and structure in relation to end-use quality, yet progress has become stagnant. This is mainly due to the need and inability to biochemically characterize the intact functional glutenin polymer in order to correlate to quality, necessitating reduction to monomeric subunits and a loss of contextual information. While some individual gluten proteins might have a positive or negative influence on gluten quality, it is the sum total of these proteins, their relative and absolute expression, their sub-cellular trafficking, the amount and size of glutenin polymers, and ratios between gluten protein classes that define viscoelasticity of gluten. The sub-cellular trafficking of gluten proteins during seed maturation is still not completely clear and there is evidence of dual pathways and therefore different destinations for proteins, either constitutively or temporally. The trafficking of proteins is also unclear in endosperm cells as they undergo programmed cell death; Golgi disappear around 12 DPA but protein filling continues at least to 25 DPA. Modulation of the timing of cellular events will invariably affect protein deposition and therefore gluten strength and function. Existing and emerging proteomics technologies such as proteoform profiling and top-down proteomics offer new tools to study gluten protein composition as a whole system and identify compositional patterns that can modify gluten structure with improved functionality.
Collapse
Affiliation(s)
- Ray Bacala
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada; University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Dave W Hatcher
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada
| | - Héléne Perreault
- University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Bin Xiao Fu
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, Manitoba, R3C 3G8, Canada; Department of Food and Human Nutritional Sciences, 209 - 35 Chancellor's Circle, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
6
|
Luo L, Jiang P, Chen Q, Chang J, Jing Y, Luo X, Gu H, Huang Y, Chen R, Liu J, Kang D, Liu Q, Wang Y, Fang G, Zhu Y, Guan F, Lei J, Yang L, Liu C, Dai X. c-Abl controls BCR signaling and B cell differentiation by promoting B cell metabolism. Immunology 2022; 167:181-196. [PMID: 35753034 DOI: 10.1111/imm.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
As a non-receptor tyrosine kinase, c-Abl was first studied in chronic myelogenous leukemia, and its role in lymphocytes has been well characterized. c-Abl is involved in B cell development and CD19 associated B cell antigen receptor (BCR) signaling. Although c-Abl regulates different metabolic pathways, the role of c-Abl is still unknown in B cell metabolism. In this study, B cell specific c-Abl knockout (KO) mice (Mb1Cre+/- c-Ablfl/fl ) were used to investigate how c-Abl regulates B cell metabolism and BCR signaling. We found that the levels of activation positive BCR signaling proximal molecules, phosphorylated spleen tyrosine kinase (pSYK) and phosphorylated Bruton tyrosine kinase (pBTK), were decreased, while the level of key negative regulator, phosphorylated SH2-containing inositol phosphatase (pSHIP1), was increased in Mb1Cre+/- c-Ablfl/fl mice. Furthermore, we found c-Abl deficiency weakened the B cell spreading, formation of BCR signalosomes, and the polymerization of actin during BCR activation, and also impaired the differentiation of germinal center (GC) B cells both in quiescent condition and after immunization. Moreover, B cell mitochondrial respiration and the expression of B cell metabolism regulating molecules were downregulated in c-Abl deficiency mice. Overall, c-Abl, which involved in actin remodeling and B cell metabolism, positively regulates BCR signaling and promotes GC differentiation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Luo
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panpan Jiang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianglin Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiang Chang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Luo
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Gu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Huang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Chen
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Liu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yi Wang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guofeng Fang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzi Zhu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Dai
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Wheat Proteomics for Abiotic Stress Tolerance and Root System Architecture: Current Status and Future Prospects. Proteomes 2022; 10:proteomes10020017. [PMID: 35645375 PMCID: PMC9150004 DOI: 10.3390/proteomes10020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Wheat is an important staple cereal for global food security. However, climate change is hampering wheat production due to abiotic stresses, such as heat, salinity, and drought. Besides shoot architectural traits, improving root system architecture (RSA) traits have the potential to improve yields under normal and stressed environments. RSA growth and development and other stress responses involve the expression of proteins encoded by the trait controlling gene/genes. Hence, mining the key proteins associated with abiotic stress responses and RSA is important for improving sustainable yields in wheat. Proteomic studies in wheat started in the early 21st century using the two-dimensional (2-DE) gel technique and have extensively improved over time with advancements in mass spectrometry. The availability of the wheat reference genome has allowed the exploration of proteomics to identify differentially expressed or abundant proteins (DEPs or DAPs) for abiotic stress tolerance and RSA improvement. Proteomics contributed significantly to identifying key proteins imparting abiotic stress tolerance, primarily related to photosynthesis, protein synthesis, carbon metabolism, redox homeostasis, defense response, energy metabolism and signal transduction. However, the use of proteomics to improve RSA traits in wheat is in its infancy. Proteins related to cell wall biogenesis, carbohydrate metabolism, brassinosteroid biosynthesis, and transportation are involved in the growth and development of several RSA traits. This review covers advances in quantification techniques of proteomics, progress in identifying DEPs and/or DAPs for heat, salinity, and drought stresses, and RSA traits, and the limitations and future directions for harnessing proteomics in wheat improvement.
Collapse
|
8
|
Gu X, Yang S, Li G, Lu W, Lu D. Starch morphological, structural, pasting, and thermal properties of waxy maize under different heat stress durations at grain formation stage. Food Energy Secur 2022. [DOI: 10.1002/fes3.378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Xiaotian Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Siling Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety The Ministry of Education of China Yangzhou China
| |
Collapse
|
9
|
Lama S, Vallenback P, Hall SA, Kuzmenkova M, Kuktaite R. Prolonged heat and drought versus cool climate on the Swedish spring wheat breeding lines: Impact on the gluten protein quality and grain microstructure. Food Energy Secur 2022. [DOI: 10.1002/fes3.376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Sbatie Lama
- Department of Plant Breeding Swedish University of Agricultural Sciences Lomma Sweden
| | | | - Stephen A. Hall
- Division of Solid Mechanics Lund University Lund Sweden
- Lund Institute of advanced Neutron and X‐ray Science (LINXS) Lund Sweden
| | - Marina Kuzmenkova
- Department of Plant Breeding Swedish University of Agricultural Sciences Lomma Sweden
| | - Ramune Kuktaite
- Department of Plant Breeding Swedish University of Agricultural Sciences Lomma Sweden
| |
Collapse
|
10
|
Sun L, Wen J, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M. The genetic and molecular basis for improving heat stress tolerance in wheat. ABIOTECH 2022; 3:25-39. [PMID: 36304198 PMCID: PMC9590529 DOI: 10.1007/s42994-021-00064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022]
Abstract
Wheat production requires at least ~ 2.4% increase per year rate by 2050 globally to meet food demands. However, heat stress results in serious yield loss of wheat worldwide. Correspondingly, wheat has evolved genetic basis and molecular mechanisms to protect themselves from heat-induced damage. Thus, it is very urgent to understand the underlying genetic basis and molecular mechanisms responsive to elevated temperatures to provide important strategies for heat-tolerant varieties breeding. In this review, we focused on the impact of heat stress on morphology variation at adult stage in wheat breeding programs. We also summarize the recent studies of genetic and molecular factors regulating heat tolerance, including identification of heat stress tolerance related QTLs/genes, and the regulation pathway in response to heat stress. In addition, we discuss the potential ways to improve heat tolerance by developing new technologies such as genome editing. This review of wheat responses to heat stress may shed light on the understanding heat-responsive mechanisms, although the regulatory network of heat tolerance is still ambiguous in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00064-z.
Collapse
Affiliation(s)
- Lv Sun
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Jingjing Wen
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Huiru Peng
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Yingyin Yao
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhaorong Hu
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Mingming Xin
- Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193 China
| |
Collapse
|
11
|
The Effect of Abiotic Stresses on the Protein Composition of Four Hungarian Wheat Varieties. PLANTS 2021; 11:plants11010001. [PMID: 35009005 PMCID: PMC8747273 DOI: 10.3390/plants11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
Global climate change in recent years has resulted in extreme heat and drought events that significantly influence crop production and endanger food security. Such abiotic stress during the growing season has a negative effect on yield as well as on the functional properties of wheat grain protein content and composition. This reduces the value of grain, as these factors significantly reduce end-use quality. In this study, four Hungarian bread wheat cultivars (Triticum aestivum ssp. aestivum) with different drought and heat tolerance were examined. Changes in the size- and hydrophobicity-based distribution of the total proteins of the samples have been monitored by SE- and RP-HPLC, respectively, together with parallel investigations of changes in the amounts of the R5 and G12 antibodies related to celiac disease immunoreactive peptides. Significant difference in yield, protein content and composition have been observed in each cultivar, altering the amounts of CD-related gliadin, as well as the protein parameters directly related to techno-functional properties (Glu/Gli ratio, UPP%). The extent of changes largely depended on the timing of the abiotic stress. The severity of the negative effect depended on the growth stage in which abiotic stress occurred.
Collapse
|
12
|
Chunduri V, Kaur A, Kaur S, Kumar A, Sharma S, Sharma N, Singh P, Kapoor P, Kaur S, Kumari A, Roy J, Kaur J, Garg M. Gene Expression and Proteomics Studies Suggest an Involvement of Multiple Pathways Under Day and Day-Night Combined Heat Stresses During Grain Filling in Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:660446. [PMID: 34135923 PMCID: PMC8200777 DOI: 10.3389/fpls.2021.660446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Recent weather fluctuations imposing heat stress at the time of wheat grain filling cause frequent losses in grain yield and quality. Field-based studies for understanding the effect of terminal heat stress on wheat are complicated by the effect of multiple confounding variables. In the present study, the effect of day and day-night combined heat stresses during the grain-filling stage was studied using gene expression and proteomics approaches. The gene expression analysis was performed by using real-time quantitative PCR (RT-qPCR). The expression of genes related to the starch biosynthetic pathway, starch transporters, transcription factors, and stress-responsive and storage proteins, at four different grain developmental stages, indicated the involvement of multiple pathways. Under the controlled conditions, their expression was observed until 28 days after anthesis (DAA). However, under the day stress and day-night stress, the expression of genes was initiated earlier and was observed until 14 DAA and 7 DAA, respectively. The protein profiles generated using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS/MS) showed a differential expression of the proteins belonging to multiple pathways that included the upregulation of proteins related to the translation, gliadins, and low-molecular-weight (LMW) glutenins and the downregulation of proteins related to the glycolysis, photosynthesis, defense, and high-molecular-weight (HMW) glutenins. Overall, the defense response to the day heat stress caused early gene expression and day-night heat stress caused suppression of gene expression by activating multiple pathways, which ultimately led to the reduction in grain-filling duration, grain weight, yield, and processing quality.
Collapse
Affiliation(s)
- Venkatesh Chunduri
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Amandeep Kaur
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Shubhpreet Kaur
- Department of Immunopathology, Post Graduate Institute of Medical and Education and Research, Chandigarh, India
| | - Aman Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Saloni Sharma
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Natasha Sharma
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Pargat Singh
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Satveer Kaur
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Anita Kumari
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Joy Roy
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| | - Jaspreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Monika Garg
- Agri-Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
13
|
Post-Anthesis Mobilization of Stem Assimilates in Wheat under Induced Stress. SUSTAINABILITY 2021. [DOI: 10.3390/su13115940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stem reserves in grain crops are considered important in grain filling under post-anthesis stress in the absence/low availability of photosynthetic assimilates. Considerable variation is present among genotypes for stem reserve translocation in wheat. Therefore, this study aimed to exploit the phenotypic variation for stem reserve translocation in wheat under control and chemically induced stress conditions. The phenotypic variation among six parents and their corresponding direct cross combinations was evaluated under induced stress conditions. The results signify the presence of considerable variation between treatments, genotypes, and treatment-genotype interactions. The parent LLR-20 depicted the highest translocation of dry matter and contribution of post-anthesis assimilates under induced-stress conditions. Similarly, cross combinations Nacozari × LLR22, Nacozari × LLR 20, Nacozari × Parula, Nacozari × LLR 21, LLR 22 × LLR 21, and LLR 20 × LLR 21 showed higher source-sink accumulation under induced-stress conditions. The selected parents and cross combinations can be further utilized in the breeding program to strengthen the genetic basis for stress tolerance in wheat.
Collapse
|
14
|
Zhai H, Jiang C, Zhao Y, Yang S, Li Y, Yan K, Wu S, Luo B, Du Y, Jin H, Liu X, Zhang Y, Lu F, Reynolds M, Ou X, Qiao W, Jiang Z, Peng T, Gao D, Hu W, Wang J, Gao H, Yin G, Zhang K, Li G, Wang D. Wheat heat tolerance is impaired by heightened deletions in the distal end of 4AL chromosomal arm. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1038-1051. [PMID: 33372381 PMCID: PMC8131055 DOI: 10.1111/pbi.13529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/09/2020] [Indexed: 05/14/2023]
Abstract
Heat stress (HS) causes substantial damages to worldwide crop production. As a cool season crop, wheat (Triticum aestivum) is sensitive to HS-induced damages. To support the genetic improvement of wheat HS tolerance (HST), we conducted fine mapping of TaHST1, a locus required for maintaining wheat vegetative and reproductive growth under elevated temperatures. TaHST1 was mapped to the distal terminus of 4AL chromosome arm using genetic populations derived from two BC6 F6 breeding lines showing tolerance (E6015-4T) or sensitivity (E6015-3S) to HS. The 4AL region carrying TaHST1 locus was approximately 0.949 Mbp and contained the last 19 high confidence genes of 4AL according to wheat reference genome sequence. Resequencing of E6015-3S and E6015-4T and haplotype analysis of 3087 worldwide wheat accessions revealed heightened deletion polymorphisms in the distal 0.949 Mbp region of 4AL, which was confirmed by the finding of frequent gene losses in this region in eight genome-sequenced hexaploid wheat cultivars. The great majority (86.36%) of the 3087 lines displayed different degrees of nucleotide sequence deletions, with only 13.64% of them resembling E6015-4T in this region. These deletions can impair the presence and/or function of TaHST1 and surrounding genes, thus rendering global wheat germplasm vulnerable to HS or other environmental adversities. Therefore, conscientious and urgent efforts are needed in global wheat breeding programmes to optimize the structure and function of 4AL distal terminus by ensuring the presence of TaHST1 and surrounding genes. The new information reported here will help to accelerate the ongoing global efforts in improving wheat HST.
Collapse
Affiliation(s)
- Huijie Zhai
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- School of Life Science and TechnologyHenan Institute of Science and TechnologyXinxiangChina
| | - Congcong Jiang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yue Zhao
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Shuling Yang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Kunfang Yan
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Shuyu Wu
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Bingke Luo
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Yi Du
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Huaibing Jin
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Xin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yanbin Zhang
- Crop Breeding InstituteHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | | | - Xingqi Ou
- School of Life Science and TechnologyHenan Institute of Science and TechnologyXinxiangChina
| | - Wenchen Qiao
- Dryland Farming InstituteHebei Academy of Agricultural and Forestry SciencesHengshuiHebeiChina
| | - Zhikai Jiang
- Xinxiang Academy of Agricultural SciencesXinxiangHenanChina
| | - Tao Peng
- Jiyuan Academy of Agricultral SciencesJiyuanHenanChina
| | - Derong Gao
- Yangzhou Academy of Agricultural SciencesYangzhouJiangsuChina
| | - Wenjing Hu
- Yangzhou Academy of Agricultural SciencesYangzhouJiangsuChina
| | - Jiangchun Wang
- Yantai Academy of Agricultural SciencesYantaiShandongChina
| | - Haitao Gao
- Luoyang Academy of Agricultral and Forestry SciencesLuoyangHenanChina
| | - Guihong Yin
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Kunpu Zhang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Guangwei Li
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Daowen Wang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Ma Y, Xie Y, Ha R, Cao B, Song L. Effects of Elevated CO 2 on Photosynthetic Accumulation, Sucrose Metabolism-Related Enzymes, and Genes Identification in Goji Berry ( Lycium barbarum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:643555. [PMID: 33777078 PMCID: PMC7991576 DOI: 10.3389/fpls.2021.643555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/16/2021] [Indexed: 05/14/2023]
Abstract
Goji berry (Lycium barbarum L.) exposure to elevated CO2 (eCO2) for long periods reduces their sugar and secondary metabolite contents. However, sugar accumulation in fruit depends on photosynthesis and photoassimilate partitioning. This study aimed to explore photosynthesis, sugar content, and sucrose metabolism-related enzyme activities in goji berry leaves and fruits under ambient and eCO2 levels, and identify the genes encoding L. barbarum acid invertase (LBAI), L. barbarum sucrose synthase (LBSS), L. barbarum sucrose phosphate synthase (LBSPS), and L. barbarum neutral invertase (LBNI), based on transcriptome profiling. Further, the characterization of four identified genes was analyzed including subcellular localization and expression patterns. In plants grown under eCO2 for 90 or 120 days, the expression of the above-mentioned genes changed significantly as the photosynthetic rate increased. In addition, leaf and fruit sugar contents decreased, and the activities of four sucrose metabolism-related enzymes increased in leaves, while acid and neutral invertase increased in fruits. Protein sequence analysis demonstrated that LBAI and LBNI contain a conservative structure domain belonging to the glycosyl hydrolases (Glyco_hydro) family, and both LBSS and LBSPS belonging to the sucrose synthase (Sucrose_synth) and glycosyltransferase (Glycos_transf) family. Subcellular localization analysis showed that LBAI, LBNI, and LBSS were all located in the nucleus, plasma membrane, and cytoplasm, while LBSPS was located in the plasma membrane. The expressions of LBAI, LBSPS, and LBNI were high in the stems, whereas LBSS was predominantly expressed in the fruits. Our findings provide fundamental data on photosynthesis and sugar accumulation trends in goji berries under eCO2 exposure.
Collapse
Affiliation(s)
- Yaping Ma
- School of Agriculture, Ningxia University, Yinchuan, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yun Xie
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Rong Ha
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan, China
- *Correspondence: Bing Cao,
| | - Lihua Song
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
16
|
Tomás D, Coelho LP, Rodrigues JC, Viegas W, Silva M. Assessment of Four Portuguese Wheat Landrace Diversity to Cope With Global Warming. FRONTIERS IN PLANT SCIENCE 2020; 11:594977. [PMID: 33362824 PMCID: PMC7756116 DOI: 10.3389/fpls.2020.594977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Wheat is a dietary staple consumed worldwide strongly responsible for proteins and carbohydrate population intake. However, wheat production and quality will scarcely fulfill forward demands, which are compounded by high-temperature (HT) events as heatwaves, increasingly common in Portugal. Thus, landraces assume crucial importance as potential reservoirs of useful traits for wheat breeding and may be pre-adapted to extreme environmental conditions. This work evaluates four Portuguese landrace yield and grain composition through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, particularly protein content, and their responses to HT treatment mimicking a heatwave. Landraces showed distinct yield traits, especially plant height and first spike grain number, and a similar pattern in FTIR spectra, although revealing differences in grain components' proportions. Comparison between spectra band intensity indicates that Ardito has the highest protein-related peaks, contrary to Magueija, which appears to be the landrace with higher lipid content. In plants submitted to 1 week of HT treatment 10 days after anthesis, the first spike grain size and weight were markedly reduced in all landraces. Additionally, it was observed that a general increase in grain protein content in the four landraces, being the increment observed in Ardito and Grécia, is statistically significant. The comparative assessment of control and HT average FTIR spectra denoted also the occurrence of alterations in grain polysaccharide composition. An integrated assessment of the evaluations performed revealed that Ardito and Magueija landraces presented diverse yield-related characteristics and distinct responses to cope with HT. In fact, the former landrace revealed considerable grain yield diminution along with an increase in grain protein proportion after HT, while the latter showed a significant increase in spikes and grain number, with grain quality detriment. These results reinforce the relevance of scrutinizing old genotype diversity seeking for useful characteristics, particularly considering HT impact on grain production and quality.
Collapse
Affiliation(s)
- Diana Tomás
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Pinto Coelho
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - José Carlos Rodrigues
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Wanda Viegas
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Manuela Silva
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int J Mol Sci 2020; 21:ijms21218258. [PMID: 33158156 PMCID: PMC7662356 DOI: 10.3390/ijms21218258] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
Drought is a serious threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. Drought adversely affects seed germination, plant growth, and development via non-normal physiological processes. Plants generally acclimatize to drought stress through various tolerance mechanisms, but the changes in global climate and modern agricultural systems have further worsened the crop productivity. In order to increase the production and productivity, several strategies such as the breeding of tolerant varieties and exogenous application of growth regulators, osmoprotectants, and plant mineral nutrients are followed to mitigate the effects of drought stress. Nevertheless, the complex nature of drought stress makes these strategies ineffective in benefiting the farming community. Seed priming is an alternative, low-cost, and feasible technique, which can improve drought stress tolerance through enhanced and advanced seed germination. Primed seeds can retain the memory of previous stress and enable protection against oxidative stress through earlier activation of the cellular defense mechanism, reduced imbibition time, upsurge of germination promoters, and osmotic regulation. However, a better understanding of the metabolic events during the priming treatment is needed to use this technology in a more efficient way. Interestingly, the review highlights the morphological, physiological, biochemical, and molecular responses of seed priming for enhancing the drought tolerance in crop plants. Furthermore, the challenges and opportunities associated with various priming methods are also addressed side-by-side to enable the use of this simple and cost-efficient technique in a more efficient manner.
Collapse
Affiliation(s)
- Vishvanathan Marthandan
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
| | - Rathnavel Geetha
- Department of Seed Science and Technology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Karunanandham Kumutha
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Vellaichamy Gandhimeyyan Renganathan
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
| | - Jegadeesan Ramalingam
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
- Correspondence:
| |
Collapse
|
18
|
Guo W, Han L, Li X, Wang H, Mu P, Lin Q, Liu Q, Zhang Y. Proteome and lysine acetylome analysis reveals insights into the molecular mechanism of seed germination in wheat. Sci Rep 2020; 10:13454. [PMID: 32778714 PMCID: PMC7418024 DOI: 10.1038/s41598-020-70230-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Seed germination is the first stage in wheat growth and development, directly affecting grain yield and quality. As an important post-translation modification, lysine acetylation participates in diverse biological functions. However, little is known regarding the quantitative acetylproteome characterization during wheat seed germination. In this study, we generated the first comparative proteomes and lysine acetylomes during wheat seed germination. In total, 5,639 proteins and 1,301 acetylated sites on 722 proteins were identified at 0, 12 and 24 h after imbibitions. Several particularly preferred amino acids were found near acetylation sites, including KacS, KacT, KacK, KacR, KacH, KacF, KacN, Kac*E, FKac and Kac*D, in the embryos during seed germination. Among them, KacH, KacF, FKac and KacK were conserved in wheat. Biosynthetic process, transcriptional regulation, ribosome and proteasome pathway related proteins were significantly enriched in both differentially expressed proteins and differentially acetylated proteins through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. We also revealed that histone acetylation was differentially involved in epigenetic regulation during seed germination. Meanwhile, abscisic acid and stress related proteins were found with acetylation changes. In addition, we focused on 8 enzymes involved in carbohydrate metabolism, and found they were differentially acetylated during seed germination. Finally, a putative metabolic pathway was proposed to dissect the roles of protein acetylation during wheat seed germination. These results not only demonstrate that lysine acetylation may play key roles in seed germination of wheat but also reveal insights into the molecular mechanism of seed germination in this crop.
Collapse
Affiliation(s)
- Weiwei Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Liping Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ping Mu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qi Lin
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qingchang Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.,Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
19
|
Labuschagne M, Masci S, Tundo S, Muccilli V, Saletti R, van Biljon A. Proteomic Analysis of Proteins Responsive to Drought and Low Temperature Stress in a Hard Red Spring Wheat Cultivar. Molecules 2020; 25:molecules25061366. [PMID: 32192150 PMCID: PMC7144396 DOI: 10.3390/molecules25061366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022] Open
Abstract
Drought stress is becoming more prevalent with global warming, and has been shown to have large effects on gluten proteins linked to wheat bread making quality. Likewise, low temperature stress can detrimentally affect proteins in wheat. This study was done to determine the differential abundance of high molecular weight (HMW) glutenin proteins in a drought and low temperature stressed high quality hard red spring wheat cultivar (PAN3478), against a control. The treatments were applied in the greenhouse at the soft dough stage. HMW glutenin proteins were extracted from the flour, and were separated by using two-dimensional gel electrophoresis. Protein spots that had p values lower than 0.05 and fold values equal to or greater than 1.2 were considered to be significantly differentially abundant. These proteins were further analyzed by using tandem mass spectrometry. There was a 1.3 to 1.8 fold change in 17 protein spots due to the cold treatment. The drought treatment caused a 1.3 to 3.8 fold change in 19 protein spots. These spots matched either HMW or low molecular weight (LMW) glutenin subunits. In the latter case, the C subunits of LMW glutenins were notably found to be up-regulated under both stress conditions. All the proteins that have been identified can directly influence dough characteristics. Data are available via ProteomeXchange with the identifier PXD017578.
Collapse
Affiliation(s)
- Maryke Labuschagne
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa;
- Correspondence: ; Tel.: +27-51-4012715
| | - Stefania Masci
- Department of Agricultural and Forestry Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD), Italy;
| | - Vera Muccilli
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, 95131 Catania, Italy; (V.M.); (R.S.)
| | - Rosaria Saletti
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, 95131 Catania, Italy; (V.M.); (R.S.)
| | - Angeline van Biljon
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa;
| |
Collapse
|
20
|
Shu Y, Zhou Y, Mu K, Hu H, Chen M, He Q, Huang S, Ma H, Yu X. A transcriptomic analysis reveals soybean seed pre-harvest deterioration resistance pathways under high temperature and humidity stress. Genome 2020; 63:115-124. [PMID: 31774699 DOI: 10.1139/gen-2019-0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Pre-harvest soybean seeds in the field are susceptible to high temperature and humidity (HTH) stress, leading to pre-harvest seed deterioration, which will result in a reduction in grain quality, yield, and seed vigor. To understand the gene expression involved in seed deterioration response under HTH stress, in this study, we conducted an RNA-Seq analysis using two previously screened soybean cultivars with contrasting seed deterioration resistance. HTH stress induced 1081 and 357 differentially expressed genes (DEGs) in the sensitive cultivar Ningzhen No. 1 and resistant cultivar Xiangdou No. 3, respectively. The majority of DEGs in the resistant cultivar were up-regulated, while down-regulated DEGs were predominant in the sensitive cultivar. KEGG pathway analysis revealed that metabolic pathways, biosynthesis of secondary metabolites, and protein processing in endoplasmic reticulum were the predominant pathways in both cultivars during seed deterioration under HTH stress. The genes involved in photosynthesis, carbohydrate metabolism, lipid metabolism, and heat shock proteins pathways might contribute to the different response to seed deterioration under HTH treatment in the two soybean cultivars. Our study extends the knowledge of gene expression in soybean seed under HTH stress and further provides insight into the molecular mechanism of seed deterioration as well as new strategies for breeding soybean with improved seed deterioration resistance.
Collapse
Affiliation(s)
- Yingjie Shu
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuli Zhou
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Kebin Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyuan He
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Shoucheng Huang
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Hao Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingwang Yu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
21
|
Cuesta-Seijo JA, De Porcellinis AJ, Valente AH, Striebeck A, Voss C, Marri L, Hansson A, Jansson AM, Dinesen MH, Fangel JU, Harholt J, Popovic M, Thieme M, Hochmuth A, Zeeman SC, Mikkelsen TN, J�rgensen RB, Roitsch TG, M�ller BL, Braumann I. Amylopectin Chain Length Dynamics and Activity Signatures of Key Carbon Metabolic Enzymes Highlight Early Maturation as Culprit for Yield Reduction of Barley Endosperm Starch after Heat Stress. PLANT & CELL PHYSIOLOGY 2019; 60:2692-2706. [PMID: 31397873 PMCID: PMC6896705 DOI: 10.1093/pcp/pcz155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/30/2019] [Indexed: 05/30/2023]
Abstract
Abiotic environmental stresses have a negative impact on the yield and quality of crops. Understanding these stresses is an essential enabler for mitigating breeding strategies and it becomes more important as the frequency of extreme weather conditions increases due to climate change. This study analyses the response of barley (Hordeum vulgare L.) to a heat wave during grain filling in three distinct stages: the heat wave itself, the return to a normal temperature regime, and the process of maturation and desiccation. The properties and structure of the starch produced were followed throughout the maturational stages. Furthermore, the key enzymes involved in the carbohydrate supply to the grain were monitored. We observed differences in starch structure with well-separated effects because of heat stress and during senescence. Heat stress produced marked effects on sucrolytic enzymes in source and sink tissues. Early cessation of plant development as an indirect consequence of the heat wave was identified as the major contributor to final yield loss from the stress, highlighting the importance for functional stay-green traits for the development of heat-resistant cereals.
Collapse
Affiliation(s)
| | | | | | - Alexander Striebeck
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Cynthia Voss
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Lucia Marri
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Andreas Hansson
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Anita M Jansson
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | | | - Jonatan Ulrik Fangel
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Jesper Harholt
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Milan Popovic
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Hojbakkegard Alle, 2630 Taastrup, Denmark
| | - Mercedes Thieme
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Anton Hochmuth
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Teis N�rgaard Mikkelsen
- Atmospheric Environment, DTU Environmental engineering, Technical University of Denmark, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Rikke Bagger J�rgensen
- Atmospheric Environment, DTU Environmental engineering, Technical University of Denmark, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Thomas Georg Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Hojbakkegard Alle, 2630 Taastrup, Denmark
| | - Birger Lindberg M�ller
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| |
Collapse
|
22
|
Feng M, Cai H, Guan Y, Sun J, Zhang L, Cang J. Analyses of transgenic fibroblast growth factor 21 mature rice seeds. BREEDING SCIENCE 2019; 69:279-288. [PMID: 31481837 PMCID: PMC6711730 DOI: 10.1270/jsbbs.18117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/04/2019] [Indexed: 05/06/2023]
Abstract
Although some studies have been conducted on the effects of foreign protein expression on rice, the results vary with foreign gene types and protein expression. This study reveals the effects of fibroblast growth factor 21 (FGF21) expression on mature rice seeds in various aspects. Results revealed that the grain weight of the transgene rice was lower than that of non-transgenic wild-type. The sucrose content and ADP-glucose pyrophosphorylase (AGPase) activity in transgenic FGF21 rice were higher than that in non-transgenic wild-type rice, while changes in the starch content, starch branching enzyme (SBE), sucrose synthase (SuS), superoxide dismutase (SOD) and peroxidase (POD) activity were lower in transgenic FGF21 rice compared to non-transgenic wild-type. The scanning electron microscope results revealed that mature seeds of the transgenic FGF21 rice contained fewer vascular bundles with irregular arrangement compared to the wild-type. The mature seeds of CK and T1 rice lines were collected for proteome analysis, and 167 differentially expressed proteins (DEPs) were found. In addition, the most enriched pathways in both rice lines were determined to be amino sugar and nucleotide sugar metabolism and starch and sucrose metabolism, etc. This study laid the foundation for revealing the effects of exogenous protein expression on rice bioreactors.
Collapse
Affiliation(s)
- Mingfang Feng
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Hua Cai
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Ying Guan
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Jian Sun
- College of Agriculture, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences,
Harbin 150086,
P.R. China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| |
Collapse
|
23
|
Analysis of durum wheat proteome changes under marine and fungal biostimulant treatments using large-scale quantitative proteomics: A useful dataset of durum wheat proteins. J Proteomics 2019; 200:28-39. [DOI: 10.1016/j.jprot.2019.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 11/24/2022]
|
24
|
Impa SM, Sunoj VSJ, Krassovskaya I, Bheemanahalli R, Obata T, Jagadish SVK. Carbon balance and source-sink metabolic changes in winter wheat exposed to high night-time temperature. PLANT, CELL & ENVIRONMENT 2019; 42:1233-1246. [PMID: 30471235 DOI: 10.1111/pce.13488] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/09/2018] [Accepted: 11/20/2018] [Indexed: 05/05/2023]
Abstract
Carbon loss under high night-time temperature (HNT) leads to significant reduction in wheat yield. Growth chamber studies were carried out using six winter wheat genotypes, to unravel postheading HNT (23°C)-induced alterations in carbon balance, source-sink metabolic changes, yield, and yield-related traits compared with control (15°C) conditions. Four of the six tested genotypes recorded a significant increase in night respiration after 4 days of HNT exposure, with all the cultivars regulating carbon loss and demonstrating different degree of acclimation to extended HNT exposure. Metabolite profiling indicated carbohydrate metabolism in spikes and activation of the TriCarboxylic Acid (TCA) cycle in leaves as important pathways operating under HNT exposure. A significant increase in sugars, sugar-alcohols, and phosphate in spikes of the tolerant genotype (Tascosa) indicated osmolytes and membrane protective mechanisms acting against HNT damage. Enhanced night respiration under HNT resulted in higher accumulation of TCA cycle intermediates like isocitrate and fumarate in leaves of the susceptible genotype (TX86A5606). Lower grain number due to lesser productive spikes and reduced grain weight due to shorter grain-filling duration determined HNT-induced yield loss in winter wheat. Traits and mechanisms identified will help catalyze the development of physiological and metabolic markers for breeding HNT-tolerant wheat.
Collapse
Affiliation(s)
- Somayanda M Impa
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas, USA
| | - V S John Sunoj
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas, USA
| | - Inga Krassovskaya
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska Lincoln, Lincoln, Nebraska
| | - Raju Bheemanahalli
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas, USA
| | - Toshihiro Obata
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska Lincoln, Lincoln, Nebraska
| | - S V Krishna Jagadish
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
25
|
Kumar RR, Singh K, Ahuja S, Tasleem M, Singh I, Kumar S, Grover M, Mishra D, Rai GK, Goswami S, Singh GP, Chinnusamy V, Rai A, Praveen S. Quantitative proteomic analysis reveals novel stress-associated active proteins (SAAPs) and pathways involved in modulating tolerance of wheat under terminal heat. Funct Integr Genomics 2018; 19:329-348. [PMID: 30465139 DOI: 10.1007/s10142-018-0648-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Terminal heat stress has detrimental effect on the growth and yield of wheat. Very limited information is available on heat stress-associated active proteins (SAAPs) in wheat. Here, we have identified 159 protein groups with 4271 SAAPs in control (22 ± 3 °C) and HS-treated (38 °C, 2 h) wheat cvs. HD2985 and HD2329 using iTRAQ. We identified 3600 proteins to be upregulated and 5825 proteins to be downregulated in both the wheat cvs. under HS. We observed 60.3% of the common SAAPs showing upregulation in HD2985 (thermotolerant) and downregulation in HD2329 (thermosusceptible) under HS. GO analysis showed proton transport (molecular), photosynthesis (biological), and ATP binding (cellular) to be most altered under HS. Most of the SAAPs identified were observed to be chloroplast localized and involved in photosynthesis. Carboxylase enzyme was observed most abundant active enzymes in wheat under HS. An increase in the degradative isoenzymes (α/β-amylases) was observed, as compared to biosynthesis enzymes (ADP-glucophosphorylase, soluble starch synthase, etc.) under HS. Transcript profiling showed very high relative fold expression of HSP17, CDPK, Cu/Zn SOD, whereas downregulation of AGPase, SSS under HS. The identified SAAPs can be used for targeted protein-based precision wheat-breeding program for the development of 'climate-smart' wheat.
Collapse
Affiliation(s)
- Ranjeet R Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Khushboo Singh
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sumedha Ahuja
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mohd Tasleem
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Indra Singh
- CABin, Indian Agricultural Statistical Research Institute (IASRI), Pusa, New Delhi, 110012, India
| | - Sanjeev Kumar
- CABin, Indian Agricultural Statistical Research Institute (IASRI), Pusa, New Delhi, 110012, India
| | - Monendra Grover
- CABin, Indian Agricultural Statistical Research Institute (IASRI), Pusa, New Delhi, 110012, India
| | - Dwijesh Mishra
- CABin, Indian Agricultural Statistical Research Institute (IASRI), Pusa, New Delhi, 110012, India
| | - Gyanendra K Rai
- Sher-E-Kashmir University of Agriculture Science and Technology, Chatta, Jammu and Kashmir, 180009, India
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gyanendra P Singh
- Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Rai
- CABin, Indian Agricultural Statistical Research Institute (IASRI), Pusa, New Delhi, 110012, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
26
|
Vu LD, Zhu T, Verstraeten I, van de Cotte B, Gevaert K, De Smet I. Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4609-4624. [PMID: 29939309 PMCID: PMC6117581 DOI: 10.1093/jxb/ery204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/16/2018] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum ssp.) is one of the most important human food sources. However, this crop is very sensitive to temperature changes. Specifically, processes during wheat leaf, flower, and seed development and photosynthesis, which all contribute to the yield of this crop, are affected by high temperature. While this has to some extent been investigated on physiological, developmental, and molecular levels, very little is known about early signalling events associated with an increase in temperature. Phosphorylation-mediated signalling mechanisms, which are quick and dynamic, are associated with plant growth and development, also under abiotic stress conditions. Therefore, we probed the impact of a short-term and mild increase in temperature on the wheat leaf and spikelet phosphoproteome. In total, 3822 (containing 5178 phosphosites) and 5581 phosphopeptides (containing 7023 phosphosites) were identified in leaf and spikelet samples, respectively. Following statistical analysis, the resulting data set provides the scientific community with a first large-scale plant phosphoproteome under the control of higher ambient temperature. This community resource on the high temperature-mediated wheat phosphoproteome will be valuable for future studies. Our analyses also revealed a core set of common proteins between leaf and spikelet, suggesting some level of conserved regulatory mechanisms. Furthermore, we observed temperature-regulated interconversion of phosphoforms, which probably impacts protein activity.
Collapse
Affiliation(s)
- Lam Dai Vu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Inge Verstraeten
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brigitte van de Cotte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
27
|
Juhász A, Belova T, Florides CG, Maulis C, Fischer I, Gell G, Birinyi Z, Ong J, Keeble-Gagnère G, Maharajan A, Ma W, Gibson P, Jia J, Lang D, Mayer KFX, Spannagl M, Tye-Din JA, Appels R, Olsen OA. Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. SCIENCE ADVANCES 2018; 4:eaar8602. [PMID: 30128352 PMCID: PMC6097586 DOI: 10.1126/sciadv.aar8602] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 07/11/2018] [Indexed: 05/24/2023]
Abstract
Wheat is an important staple grain for humankind globally because of its end-use quality and nutritional properties and its adaptability to diverse climates. For a small proportion of the population, specific wheat proteins can trigger adverse immune responses and clinical manifestations such as celiac disease, wheat allergy, baker's asthma, and wheat-dependent exercise-induced anaphylaxis (WDEIA). Establishing the content and distribution of the immunostimulatory regions in wheat has been hampered by the complexity of the wheat genome and the lack of complete genome sequence information. We provide novel insights into the wheat grain proteins based on a comprehensive analysis and annotation of the wheat prolamin Pfam clan grain proteins and other non-prolamin allergens implicated in these disorders using the new International Wheat Genome Sequencing Consortium bread wheat reference genome sequence, RefSeq v1.0. Celiac disease and WDEIA genes are primarily expressed in the starchy endosperm and show wide variation in protein- and transcript-level expression in response to temperature stress. Nonspecific lipid transfer proteins and α-amylase trypsin inhibitor gene families, implicated in baker's asthma, are primarily expressed in the aleurone layer and transfer cells of grains and are more sensitive to cold temperature. The study establishes a new reference map for immunostimulatory wheat proteins and provides a fresh basis for selecting wheat lines and developing diagnostics for products with more favorable consumer attributes.
Collapse
Affiliation(s)
- Angéla Juhász
- State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
- Applied Genomics Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | | | - Chris G. Florides
- State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Csaba Maulis
- State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Iris Fischer
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Gyöngyvér Gell
- Applied Genomics Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Zsófia Birinyi
- Applied Genomics Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Jamie Ong
- State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Gabriel Keeble-Gagnère
- Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, VIC 3083, Australia
| | | | - Wujun Ma
- State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Peter Gibson
- Department of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jizeng Jia
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daniel Lang
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Klaus F. X. Mayer
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Technical University of Munich, School of Life Sciences, Campus Weihenstephan, Freising, Germany
| | - Manuel Spannagl
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Jason A. Tye-Din
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Rudi Appels
- State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
- Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, VIC 3083, Australia
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
28
|
Kumar R, Mukherjee S, Ayele BT. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: A comprehensive review. Biotechnol Adv 2018; 36:954-967. [PMID: 29499342 DOI: 10.1016/j.biotechadv.2018.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/27/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
Abstract
Wheat is one of the most important crops globally, and its grain is mainly used for human food, accounting for 20% of the total dietary calories. It is also used as animal feed and as a raw material for a variety of non-food and non-feed industrial products such as a feedstock for the production of bioethanol. Starch is the major constituent of a wheat grain, as a result, it is considered as a critical determinant of wheat yield and quality. The amount and composition of starch deposited in wheat grains is controlled primarily by sucrose transport from source tissues to the grain and its conversion to starch. Therefore, elucidation of the molecular mechanisms regulating these physiological processes provides important opportunities to improve wheat starch yield and quality through biotechnological approaches. This review comprehensively discusses the current understanding of the molecular aspects of sucrose transport and sucrose-to-starch metabolism in wheat grains. It also highlights the advances and prospects of starch biotechnology in wheat.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shalini Mukherjee
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
29
|
Zhu X, Tian GG, Yu B, Yang Y, Wu J. Effects of bisphenol A on ovarian follicular development and female germline stem cells. Arch Toxicol 2018; 92:1581-1591. [PMID: 29380011 DOI: 10.1007/s00204-018-2167-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/25/2018] [Indexed: 01/07/2023]
Abstract
Bisphenol A (BPA), one of the most frequently detected emerging pollutants in the environment, has been implicated in adverse effects in male and female reproduction at extremely low concentrations. This study aimed to investigate the effects and potential mechanism of BPA on mouse ovarian follicular development and female germline stem cells (FGSCs). Female CD-1 adult mice were administered gradient concentrations of BPA (12.5, 25, and 50 mg/kg/day) by intraperitoneal injection. We found that the number of atretic ovarian follicles was significantly increased at high BPA concentrations. Additionally, the numbers of primordial follicles, primary follicles, and corpus luteum (CL) were significantly reduced at high BPA concentrations. Interestingly, the number of FGSCs was remarkably reduced in BPA-treated ovaries. Furthermore, the increased apoptotic rate of FGSCs in vitro was triggered by BPA accompanied by increased BPA concentrations. To investigate the mechanism of BPA in ovarian follicular development, 193 differentially expressed proteins were identified in BPA-treated ovaries by the isobaric tags for relative and absolute quantification-coupled 2D liquid chromatography-mass spectrometry technique. A total of 106 proteins were downregulated and 85 proteins were upregulated. Among these proteins, the apoptosis-related protein SAFB-like transcriptional modulator (SLTM) was remarkably upregulated, and this result was consistent with western blotting. Taken together, our results suggest that an ovarian follicular development, especially, the development of primordial follicles, primary follicles, and the CL, is inhibited by high BPA concentrations, and the ovarian follicle atresia is initiated by BPA through upregulated expression of SLTM. Furthermore, BPA induces apoptosis of cultured FGSCs. The effect of BPA on ovarian follicular development and FGSCs, especially the effect on FGSCs, suggests a novel mechanism of how BPA causes female infertility.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Geng G Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Baoli Yu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, No. 800. Dongchuan Road, Minhang District, Shanghai, 200240, China. .,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
30
|
Mishra D, Shekhar S, Singh D, Chakraborty S, Chakraborty N. Heat Shock Proteins and Abiotic Stress Tolerance in Plants. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|