1
|
DePalma SJ, Jilberto J, Stis AE, Huang DD, Lo J, Davidson CD, Chowdhury A, Kent RN, Jewett ME, Kobeissi H, Chen CS, Lejeune E, Helms AS, Nordsletten DA, Baker BM. Matrix Architecture and Mechanics Regulate Myofibril Organization, Costamere Assembly, and Contractility in Engineered Myocardial Microtissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309740. [PMID: 39558513 DOI: 10.1002/advs.202309740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/09/2024] [Indexed: 11/20/2024]
Abstract
The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, they established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices, and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. They found that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly, myofibril maturation, and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can elucidate mechanisms of tissue maturation and disease.
Collapse
Affiliation(s)
- Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Austin E Stis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Darcy D Huang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Lo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Aamilah Chowdhury
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maggie E Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Adam S Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, London, SE1 7EH, UK
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Soma Y, Tohyama S, Kubo A, Yamasaki T, Kabasawa N, Haga K, Tani H, Morita-Umei Y, Umei TC, Sekine O, Nakamura M, Moriwaki T, Tanosaki S, Someya S, Kawai Y, Ohno M, Kishino Y, Kanazawa H, Fujita J, Zhang MR, Suematsu M, Fukuda K, Ieda M. Metabolic changes of human induced pluripotent stem cell-derived cardiomyocytes and teratomas after transplantation. iScience 2024; 27:111234. [PMID: 39569381 PMCID: PMC11576393 DOI: 10.1016/j.isci.2024.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Cardiac regenerative therapy using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has been applied in clinical settings. Herein, we aimed to investigate the in vivo metabolic profiles of hiPSC-CM grafts. RNA sequencing and imaging mass spectrometry were performed in the present study, which revealed that hiPSC-CM grafts matured metabolically over time after transplantation. Glycolysis, which was active in the hiPSC-CM grafts immediately after transplantation, shifted to fatty acid oxidation. Additionally, we examined the metabolic profile of teratomas that may form when non-CMs, including undifferentiated human induced pluripotent stem cells (hiPSCs), remain in transplanted cells. The upregulated gene expression of amino acid transporters and the high accumulation of amino acids, such as methionine and aromatic amino acids, were observed in the teratomas. We show that subcutaneous teratomas derived from undifferentiated hiPSCs can be detected in vivo using positron emission tomography with [18F]fluorophenylalanine ([18F]fPhe). These results provided insights into the clinical application of cardiac regenerative therapy.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shugo Tohyama
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akiko Kubo
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Noriko Kabasawa
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Heartseed Inc, Minato-ku, Tokyo 105-0023, Japan
| | - Kotaro Haga
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
| | - Hidenori Tani
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Center for Prevention Medicine, Keio University School of Medicine, Minato-ku, Tokyo 106-0041, Japan
| | - Yuika Morita-Umei
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tomohiko C Umei
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Otoya Sekine
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Nakamura
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taijun Moriwaki
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sho Tanosaki
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shota Someya
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yujiro Kawai
- Department of Cardiovascular Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masatoshi Ohno
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiovascular Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- WPI-Bio2Q, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Central Institute for Experimental Medicine and Life Science, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Heartseed Inc, Minato-ku, Tokyo 105-0023, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Ewoldt JK, DePalma SJ, Jewett ME, Karakan MÇ, Lin YM, Mir Hashemian P, Gao X, Lou L, McLellan MA, Tabares J, Ma M, Salazar Coariti AC, He J, Toussaint KC, Bifano TG, Ramaswamy S, White AE, Agarwal A, Lejeune E, Baker BM, Chen CS. Induced pluripotent stem cell-derived cardiomyocyte in vitro models: benchmarking progress and ongoing challenges. Nat Methods 2024:10.1038/s41592-024-02480-7. [PMID: 39516564 DOI: 10.1038/s41592-024-02480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/15/2024] [Indexed: 11/16/2024]
Abstract
Recent innovations in differentiating cardiomyocytes from human induced pluripotent stem cells (hiPSCs) have unlocked a viable path to creating in vitro cardiac models. Currently, hiPSC-derived cardiomyocytes (hiPSC-CMs) remain immature, leading many in the field to explore approaches to enhance cell and tissue maturation. Here, we systematically analyzed 300 studies using hiPSC-CM models to determine common fabrication, maturation and assessment techniques used to evaluate cardiomyocyte functionality and maturity and compiled the data into an open-access database. Based on this analysis, we present the diversity of, and current trends in, in vitro models and highlight the most common and promising practices for functional assessments. We further analyzed outputs spanning structural maturity, contractile function, electrophysiology and gene expression and note field-wide improvements over time. Finally, we discuss opportunities to collectively pursue the shared goal of hiPSC-CM model development, maturation and assessment that we believe are critical for engineering mature cardiac tissue.
Collapse
Affiliation(s)
- Jourdan K Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Maggie E Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - M Çağatay Karakan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Yih-Mei Lin
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Paria Mir Hashemian
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lihua Lou
- Department of Mechanical and Material Engineering, Florida International University, Miami, FL, USA
| | - Micheal A McLellan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jonathan Tabares
- Department of Physics, Florida International University, Miami, FL, USA
| | - Marshall Ma
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | | | - Jin He
- Department of Physics, Florida International University, Miami, FL, USA
| | - Kimani C Toussaint
- School of Engineering, Brown University, Providence, RI, USA
- Brown-Lifespan Center for Digital Health, Providence, RI, USA
| | - Thomas G Bifano
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Alice E White
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Arvind Agarwal
- Department of Mechanical and Material Engineering, Florida International University, Miami, FL, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
4
|
Jiang X, Lian X, Wei K, Zhang J, Yu K, Li H, Ma H, Cai Y, Pang L. Maturation of pluripotent stem cell-derived cardiomyocytes: limitations and challenges from metabolic aspects. Stem Cell Res Ther 2024; 15:354. [PMID: 39380099 PMCID: PMC11462682 DOI: 10.1186/s13287-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Acute coronary syndromes, such as myocardial infarction (MI), lack effective therapies beyond heart transplantation, which is often hindered by donor scarcity and postoperative complications. Human induced pluripotent stem cells (hiPSCs) offer the possibility of myocardial regeneration by differentiating into cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-cardiomyocytes) exhibit fetal-like calcium flux and energy metabolism, which inhibits their engraftment. Several strategies have been explored to improve the therapeutic efficacy of hiPSC-cardiomyocytes, such as selectively enhancing energy substrate utilization and improving the transplantation environment. In this review, we have discussed the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-cardiomyocytes. Additionally, we have discussed the limitations inherent in current methodologies for assessing metabolism in hiPSC-cardiomyocytes, and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart.
Collapse
Affiliation(s)
- Xi Jiang
- Health management center, the First Hospital of Jilin University, Changchun, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Kun Wei
- Department of Rehabilitation, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jie Zhang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Kaihua Yu
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haoming Li
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haichun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
5
|
Jun S, Song MH, Choi SC, Noh JM, Kim KS, Park JH, Yoon DE, Kim K, Kim M, Hwang SW, Lim DS. FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2-STAT3 signaling. Exp Mol Med 2024; 56:2231-2245. [PMID: 39349833 PMCID: PMC11541553 DOI: 10.1038/s12276-024-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2-STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2-STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2-STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Schematic showing FA enhances direct cardiac reprogramming and JAK-STAT3 signaling pathways underlying cardiomyocyte maturation.
Collapse
Affiliation(s)
- Seongmin Jun
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
- R&D Center for Companion Diagnostic, SOL Bio Corporation, Seoul, Republic of Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Correia C, Christoffersson J, Tejedor S, El-Haou S, Matadamas-Guzman M, Nair S, Dönnes P, Musa G, Rohman M, Sundqvist M, Riddle RB, Nugraha B, Bellido IS, Johansson M, Wang QD, Hidalgo A, Jennbacken K, Synnergren J, Später D. Enhancing Maturation and Translatability of Human Pluripotent Stem Cell-Derived Cardiomyocytes through a Novel Medium Containing Acetyl-CoA Carboxylase 2 Inhibitor. Cells 2024; 13:1339. [PMID: 39195229 DOI: 10.3390/cells13161339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) constitute an appealing tool for drug discovery, disease modeling, and cardiotoxicity screening. However, their physiological immaturity, resembling CMs in the late fetal stage, limits their utility. Herein, we have developed a novel, scalable cell culture medium designed to enhance the maturation of hPSC-CMs. This medium facilitates a metabolic shift towards fatty acid utilization and augments mitochondrial function by targeting Acetyl-CoA carboxylase 2 (ACC2) with a specific small molecule inhibitor. Our findings demonstrate that this maturation protocol significantly advances the metabolic, structural, molecular and functional maturity of hPSC-CMs at various stages of differentiation. Furthermore, it enables the creation of cardiac microtissues with superior structural integrity and contractile properties. Notably, hPSC-CMs cultured in this optimized maturation medium display increased accuracy in modeling a hypertrophic cardiac phenotype following acute endothelin-1 induction and show a strong correlation between in vitro and in vivo target engagement in drug screening efforts. This approach holds promise for improving the utility and translatability of hPSC-CMs in cardiac disease modeling and drug discovery.
Collapse
Affiliation(s)
- Cláudia Correia
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Jonas Christoffersson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Sandra Tejedor
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
| | - Saïd El-Haou
- Mechanistic Biology and Profiling, Discovery Sciences, AstraZeneca R&D, Cambridge CB2 0AA, UK
| | - Meztli Matadamas-Guzman
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Syam Nair
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Pierre Dönnes
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
- SciCross AB, 54135 Skövde, Sweden
| | - Gentian Musa
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Mattias Rohman
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Monika Sundqvist
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Rebecca B Riddle
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Bramasta Nugraha
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Ioritz Sorzabal Bellido
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca R&D, Cambridge CB2 0AA, UK
| | - Markus Johansson
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
| | - Qing-Dong Wang
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Alejandro Hidalgo
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157 Huddinge, Sweden
| | - Karin Jennbacken
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Daniela Später
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157 Huddinge, Sweden
| |
Collapse
|
7
|
Querio G, Antoniotti S, Levi R, Fleischmann BK, Gallo MP, Malan D. Insulin-Activated Signaling Pathway and GLUT4 Membrane Translocation in hiPSC-Derived Cardiomyocytes. Int J Mol Sci 2024; 25:8197. [PMID: 39125765 PMCID: PMC11312081 DOI: 10.3390/ijms25158197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a cell model now widely used to investigate pathophysiological features of cardiac tissue. Given the invaluable contribution hiPSC-CM could make for studies on cardio-metabolic disorders by defining a postnatal metabolic phenotype, our work herein focused on monitoring the insulin response in CM derived from the hiPSC line UKBi015-B. Western blot analysis on total cell lysates obtained from hiPSC-CM showed increased phosphorylation of both AKT and AS160 following insulin treatment, but failed to highlight any changes in the expression dynamics of the glucose transporter GLUT4. By contrast, the Western blot analysis of membrane fractions, rather than total lysates, revealed insulin-induced plasma membrane translocation of GLUT4, which is known to also occur in postnatal CM. Thus, these findings suggest that hiPSC-derived CMs exhibit an insulin response reminiscent to that of adult CMs regarding intracellular signaling and GLUT4 translocation to the plasma membrane, representing a suitable cellular model in the cardio-metabolic research field. Moreover, our studies also demonstrate the relevance of analyzing membrane fractions rather than total lysates in order to monitor GLUT4 dynamics in response to metabolic regulators in hiPSC-CMs.
Collapse
Affiliation(s)
- Giulia Querio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy;
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (S.A.); (R.L.)
| | - Renzo Levi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (S.A.); (R.L.)
| | - Bernd K. Fleischmann
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (B.K.F.); (D.M.)
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (S.A.); (R.L.)
| | - Daniela Malan
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (B.K.F.); (D.M.)
| |
Collapse
|
8
|
Oh J, Kwon OB, Park SW, Kim JW, Lee H, Kim YK, Choi EJ, Jung H, Choi DK, Oh BJ, Min SH. Advancing Cardiovascular Drug Screening Using Human Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2024; 25:7971. [PMID: 39063213 PMCID: PMC11277421 DOI: 10.3390/ijms25147971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a promising tool for studying cardiac physiology and drug responses. However, their use is largely limited by an immature phenotype and lack of high-throughput analytical methodology. In this study, we developed a high-throughput testing platform utilizing hPSC-CMs to assess the cardiotoxicity and effectiveness of drugs. Following an optimized differentiation and maturation protocol, hPSC-CMs exhibited mature CM morphology, phenotype, and functionality, making them suitable for drug testing applications. We monitored intracellular calcium dynamics using calcium imaging techniques to measure spontaneous calcium oscillations in hPSC-CMs in the presence or absence of test compounds. For the cardiotoxicity test, hPSC-CMs were treated with various compounds, and calcium flux was measured to evaluate their effects on calcium dynamics. We found that cardiotoxic drugs withdrawn due to adverse drug reactions, including encainide, mibefradil, and cetirizine, exhibited toxicity in hPSC-CMs but not in HEK293-hERG cells. Additionally, in the effectiveness test, hPSC-CMs were exposed to ATX-II, a sodium current inducer for mimicking long QT syndrome type 3, followed by exposure to test compounds. The observed changes in calcium dynamics following drug exposure demonstrated the utility of hPSC-CMs as a versatile model system for assessing both cardiotoxicity and drug efficacy. Overall, our findings highlight the potential of hPSC-CMs in advancing drug discovery and development, which offer a physiologically relevant platform for the preclinical screening of novel therapeutics.
Collapse
Affiliation(s)
- Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Sang-Wook Park
- Department of Oral Biochemistry, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jun-Woo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Heejin Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Young-Kyu Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Eun Ji Choi
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (E.J.C.); (H.J.)
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (E.J.C.); (H.J.)
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dong Kyu Choi
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Bae Jun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Sang-Hyun Min
- Department of Innovative Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Kriedemann N, Triebert W, Teske J, Mertens M, Franke A, Ullmann K, Manstein F, Drakhlis L, Haase A, Halloin C, Martin U, Zweigerdt R. Standardized production of hPSC-derived cardiomyocyte aggregates in stirred spinner flasks. Nat Protoc 2024; 19:1911-1939. [PMID: 38548938 DOI: 10.1038/s41596-024-00976-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 07/10/2024]
Abstract
A promising cell-therapy approach for heart failure aims at differentiating human pluripotent stem cells (hPSCs) into functional cardiomyocytes (CMs) in vitro to replace the disease-induced loss of patients' heart muscle cells in vivo. But many challenges remain for the routine clinical application of hPSC-derived CMs (hPSC-CMs), including good manufacturing practice (GMP)-compliant production strategies. This protocol describes the efficient generation of hPSC-CM aggregates in suspension culture, emphasizing process simplicity, robustness and GMP compliance. The strategy promotes clinical translation and other applications that require large numbers of CMs. Using a simple spinner-flask platform, this protocol is applicable to a broad range of users with general experience in handling hPSCs without extensive know-how in biotechnology. hPSCs are expanded in monolayer to generate the required cell numbers for process inoculation in suspension culture, followed by stirring-controlled formation of cell-only aggregates at a 300-ml scale. After 48 h at checkpoint (CP) 0, chemically defined cardiac differentiation is induced by WNT-pathway modulation through use of the glycogen-synthase kinase-3 inhibitor CHIR99021 (WNT agonist), which is replaced 24 h later by the chemical WNT-pathway inhibitor IWP-2. The exact application of the described process parameters is important to ensure process efficiency and robustness. After 10 d of differentiation (CP I), the production of ≥100 × 106 CMs is expected. Moreover, to 'uncouple' cell production from downstream applications, continuous maintenance of CM aggregates for up to 35 d in culture (CP II) is demonstrated without a reduction in CM content, supporting downstream logistics while potentially overcoming the requirement for cryopreservation.
Collapse
Affiliation(s)
- Nils Kriedemann
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany.
| | - Wiebke Triebert
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Evotec, Hamburg, Germany
| | - Jana Teske
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Mira Mertens
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Annika Franke
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Kevin Ullmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Felix Manstein
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Evotec, Hamburg, Germany
| | - Lika Drakhlis
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Alexandra Haase
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Caroline Halloin
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Department of Cell Therapy Process Technology, Novo Nordisk, Måløv, Denmark
| | - Ulrich Martin
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
10
|
Gokhan I, Blum TS, Campbell SG. Engineered heart tissue: Design considerations and the state of the art. BIOPHYSICS REVIEWS 2024; 5:021308. [PMID: 38912258 PMCID: PMC11192576 DOI: 10.1063/5.0202724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Originally developed more than 20 years ago, engineered heart tissue (EHT) has become an important tool in cardiovascular research for applications such as disease modeling and drug screening. Innovations in biomaterials, stem cell biology, and bioengineering, among other fields, have enabled EHT technologies to recapitulate many aspects of cardiac physiology and pathophysiology. While initial EHT designs were inspired by the isolated-trabecula culture system, current designs encompass a variety of formats, each of which have unique strengths and limitations. In this review, we describe the most common EHT formats, and then systematically evaluate each aspect of their design, emphasizing the rational selection of components for each application.
Collapse
Affiliation(s)
| | - Thomas S. Blum
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
11
|
Fetterman KA, Blancard M, Lyra-Leite DM, Vanoye CG, Fonoudi H, Jouni M, DeKeyser JML, Lenny B, Sapkota Y, George AL, Burridge PW. Independent compartmentalization of functional, metabolic, and transcriptional maturation of hiPSC-derived cardiomyocytes. Cell Rep 2024; 43:114160. [PMID: 38678564 PMCID: PMC11247623 DOI: 10.1016/j.celrep.2024.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) recapitulate numerous disease and drug response phenotypes, but cell immaturity may limit their accuracy and fidelity as a model system. Cell culture medium modification is a common method for enhancing maturation, yet prior studies have used complex media with little understanding of individual component contribution, which may compromise long-term hiPSC-CM viability. Here, we developed high-throughput methods to measure hiPSC-CM maturation, determined factors that enhanced viability, and then systematically assessed the contribution of individual maturation medium components. We developed a medium that is compatible with extended culture. We discovered that hiPSC-CM maturation can be sub-specified into electrophysiological/EC coupling, metabolism, and gene expression and that induction of these attributes is largely independent. In this work, we establish a defined baseline for future studies of cardiomyocyte maturation. Furthermore, we provide a selection of medium formulae, optimized for distinct applications and priorities, that promote measurable attributes of maturation.
Collapse
Affiliation(s)
- K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc L DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Lenny
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
13
|
Orlowska MK, Krycer JR, Reid JD, Mills RJ, Doran MR, Hudson JE. A miniaturized culture platform for control of the metabolic environment. BIOMICROFLUIDICS 2024; 18:024101. [PMID: 38434908 PMCID: PMC10908563 DOI: 10.1063/5.0169143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The heart is a metabolic "omnivore" and adjusts its energy source depending on the circulating metabolites. Human cardiac organoids, a three-dimensional in vitro model of the heart wall, are a useful tool to study cardiac physiology and pathology. However, cardiac tissue naturally experiences shear stress and nutrient fluctuations via blood flow in vivo, whilst in vitro models are conventionally cultivated in a static medium. This necessitates the regular refreshing of culture media, which creates acute cellular disturbances and large metabolic fluxes. To culture human cardiac organoids in a more physiological manner, we have developed a perfused bioreactor for cultures in a 96-well plate format. The designed bioreactor is easy to fabricate using a common culture plate and a 3D printer. Its open system allows for the use of traditional molecular biology techniques, prevents flow blockage issues, and provides easy access for sampling and cell assays. We hypothesized that a perfused culture would create more stable environment improving cardiac function and maturation. We found that lactate is rapidly produced by human cardiac organoids, resulting in large fluctuations in this metabolite under static culture. Despite this, neither medium perfusion in bioreactor culture nor lactate supplementation improved cardiac function or maturation. In fact, RNA sequencing revealed little change across the transcriptome. This demonstrates that cardiac organoids are robust in response to fluctuating environmental conditions under normal physiological conditions. Together, we provide a framework for establishing an easily accessible perfusion system that can be adapted to a range of miniaturized cell culture systems.
Collapse
|
14
|
Butler D, Reyes DR. Heart-on-a-chip systems: disease modeling and drug screening applications. LAB ON A CHIP 2024; 24:1494-1528. [PMID: 38318723 DOI: 10.1039/d3lc00829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening have been performed using animal models. Unfortunately, animal models oftentimes fail to adequately mimic human physiology, leading to a poor translation of therapeutics from pre-clinical trials to consumers. Even those that make it to market can be removed due to unforeseen side effects. As such, there exists a clinical, technological, and economical need for systems that faithfully capture human (patho)physiology for modeling CVD, assessing cardiotoxicity, and evaluating drug efficacy. Heart-on-a-chip (HoC) systems are a part of the broader organ-on-a-chip paradigm that leverages microfluidics, tissue engineering, microfabrication, electronics, and gene editing to create human-relevant models for studying disease, drug-induced side effects, and therapeutic efficacy. These compact systems can be capable of real-time measurements and on-demand characterization of tissue behavior and could revolutionize the drug development process. In this review, we highlight the key components that comprise a HoC system followed by a review of contemporary reports of their use in disease modeling, drug toxicity and efficacy assessment, and as part of multi-organ-on-a-chip platforms. We also discuss future perspectives and challenges facing the field, including a discussion on the role that standardization is expected to play in accelerating the widespread adoption of these platforms.
Collapse
Affiliation(s)
- Derrick Butler
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Darwin R Reyes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
15
|
Li J, Hua Y, Liu Y, Qu X, Zhang J, Ishida M, Yoshida N, Tabata A, Miyoshi H, Shiba M, Higo S, Sougawa N, Takeda M, Kawamura T, Matsuura R, Okuzaki D, Toyofuku T, Sawa Y, Liu L, Miyagawa S. Human induced pluripotent stem cell-derived closed-loop cardiac tissue for drug assessment. iScience 2024; 27:108992. [PMID: 38333703 PMCID: PMC10850789 DOI: 10.1016/j.isci.2024.108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Human iPSC-derived cardiomyocytes (hiPSC-CMs) exhibit functional immaturity, potentially impacting their suitability for assessing drug proarrhythmic potential. We previously devised a traveling wave (TW) system to promote maturation in 3D cardiac tissue. To align with current drug assessment paradigms (CiPA and JiCSA), necessitating a 2D monolayer cardiac tissue, we integrated the TW system with a multi-electrode array. This gave rise to a hiPSC-derived closed-loop cardiac tissue (iCT), enabling spontaneous TW initiation and swift pacing of cardiomyocytes from various cell lines. The TW-paced cardiomyocytes demonstrated heightened sarcomeric and functional maturation, exhibiting enhanced response to isoproterenol. Moreover, these cells showcased diminished sensitivity to verapamil and maintained low arrhythmia rates with ranolazine-two drugs associated with a low risk of torsades de pointes (TdP). Notably, the TW group displayed increased arrhythmia rates with high and intermediate risk TdP drugs (quinidine and pimozide), underscoring the potential utility of this system in drug assessment applications.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuting Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masako Ishida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriko Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Akiko Tabata
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hayato Miyoshi
- Fujifilm Corporation, Ashigarakami 258-8577, Kanagawa, Japan
| | - Mikio Shiba
- Cardiovascular Division, Osaka Police Hospital, Tennoji 543-0035, Osaka, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Nagako Sougawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Physiology, Osaka Dental University, 8-1 Kuzuha Hanazono-cho, Hirakata 573-1121, Osaka, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryohei Matsuura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshihiko Toyofuku
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Yoshiki Sawa
- Department of Future Medicine, Division of Health Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
17
|
Seo J, Saha S, Brown ME. The past, present, and future promise of pluripotent stem cells. JOURNAL OF IMMUNOLOGY AND REGENERATIVE MEDICINE 2024; 22-23:100077. [PMID: 38706532 PMCID: PMC11065261 DOI: 10.1016/j.regen.2024.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Affiliation(s)
| | | | - Matthew E. Brown
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Division of Transplantation, 600 Highland Avenue, Madison, WI, 53792, United States
| |
Collapse
|
18
|
Johnson BB, Cosson MV, Tsansizi LI, Holmes TL, Gilmore T, Hampton K, Song OR, Vo NTN, Nasir A, Chabronova A, Denning C, Peffers MJ, Merry CLR, Whitelock J, Troeberg L, Rushworth SA, Bernardo AS, Smith JGW. Perlecan (HSPG2) promotes structural, contractile, and metabolic development of human cardiomyocytes. Cell Rep 2024; 43:113668. [PMID: 38198277 DOI: 10.1016/j.celrep.2023.113668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/-) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/- hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure.
Collapse
Affiliation(s)
- Benjamin B Johnson
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Marie-Victoire Cosson
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Lorenza I Tsansizi
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Terri L Holmes
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Katherine Hampton
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ok-Ryul Song
- The Francis Crick Institute, London NW1 1AT, UK; High-Throughput Screening Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Nguyen T N Vo
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aishah Nasir
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alzbeta Chabronova
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Chris Denning
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Catherine L R Merry
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - John Whitelock
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Linda Troeberg
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andreia S Bernardo
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK.
| | - James G W Smith
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
19
|
Rossler KJ, de Lange WJ, Mann MW, Aballo TJ, Melby JA, Zhang J, Kim G, Bayne EF, Zhu Y, Farrell ET, Kamp TJ, Ralphe JC, Ge Y. Lactate- and immunomagnetic-purified hiPSC-derived cardiomyocytes generate comparable engineered cardiac tissue constructs. JCI Insight 2024; 9:e172168. [PMID: 37988170 PMCID: PMC10906451 DOI: 10.1172/jci.insight.172168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared with magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACS-purified hiPSC-CMs affects the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. Global proteomics revealed that lactate-purified hiPSC-CMs displayed a differential phenotype over MACS hiPSC-CMs. hiPSC-CMs were then integrated into 3D hiPSC-ECTs and cultured for 4 weeks. Structurally, there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force and Ca2+ transient measurements revealed similar functional performance between purification methods. High-resolution mass spectrometry-based quantitative proteomics showed no significant difference in protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates that lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable structural, functional, and proteomic features, and it suggests that lactate purification does not result in an irreversible change in a hiPSC-CM phenotype.
Collapse
Affiliation(s)
- Kalina J. Rossler
- Molecular and Cellular Pharmacology Training Program
- Department of Cell and Regenerative Biology
| | | | | | - Timothy J. Aballo
- Molecular and Cellular Pharmacology Training Program
- Department of Cell and Regenerative Biology
| | | | | | | | | | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Timothy J. Kamp
- Department of Cell and Regenerative Biology
- Department of Medicine
| | | | - Ying Ge
- Department of Cell and Regenerative Biology
- Department of Chemistry, and
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Pohjolainen L, Kinnunen SM, Auno S, Kiriazis A, Pohjavaara S, Kari-Koskinen J, Zore M, Jumppanen M, Yli-Kauhaluoma J, Talman V, Ruskoaho H, Välimäki MJ. Switching of hypertrophic signalling towards enhanced cardiomyocyte identity and maturity by a GATA4-targeted compound. Stem Cell Res Ther 2024; 15:5. [PMID: 38167208 PMCID: PMC10763434 DOI: 10.1186/s13287-023-03623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The prevalence of heart failure is constantly increasing, and the prognosis of patients remains poor. New treatment strategies to preserve cardiac function and limit cardiac hypertrophy are therefore urgently needed. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used as an experimental platform for cardiac in vitro studies. However, in contrast to adult cardiomyocytes, hiPSC-CMs display immature morphology, contractility, gene expression and metabolism and hence express a naive phenotype that resembles more of a foetal cardiomyocyte. METHODS A library of 14 novel compounds was synthesized in-house and screened for GATA4-NKX2-5 reporter activity and cellular toxicity. The most potent compound, 3i-1262, along with previously reported GATA4-acting compounds, were selected to investigate their effects on hypertrophy induced by endothelin-1 or mechanical stretch. Morphological changes and protein expression were characterized using immunofluorescence staining and high-content analysis. Changes in gene expression were studied using qPCR and RNA sequencing. RESULTS The prototype compound 3i-1262 inhibited GATA4-NKX2-5 synergy in a luciferase reporter assay. Additionally, the isoxazole compound 3i-1262 inhibited the hypertrophy biomarker B-type natriuretic peptide (BNP) by reducing BNP promoter activity and proBNP expression in neonatal rat ventricular myocytes and hiPSC-CMs, respectively. Treatment with 3i-1262 increased metabolic activity and cardiac troponin T expression in hiPSC-CMs without affecting GATA4 protein levels. RNA sequencing analysis revealed that 3i-1262 induces gene expression related to metabolic activity and cell cycle exit, indicating a change in the identity and maturity status of hiPSC-CMs. The biological processes that were enriched in upregulated genes in response to 3i-1262 were downregulated in response to mechanical stretch, and conversely, the downregulated processes in response to 3i-1262 were upregulated in response to mechanical stretch. CONCLUSIONS There is currently a lack of systematic understanding of the molecular modulation and control of hiPSC-CM maturation. In this study, we demonstrated that the GATA4-interfering compound 3i-1262 reorganizes the cardiac transcription factor network and converts hypertrophic signalling towards enhanced cardiomyocyte identity and maturity. This conceptually unique approach provides a novel structural scaffold for further development as a modality to promote cardiomyocyte specification and maturity.
Collapse
Affiliation(s)
- Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Sini M Kinnunen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Samuli Auno
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Saana Pohjavaara
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Julia Kari-Koskinen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Matej Zore
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikael Jumppanen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Mika J Välimäki
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
21
|
Liew LC, Poh BM, An O, Ho BX, Lim CYY, Pang JKS, Beh LY, Yang HH, Soh BS. JAK2 as a surface marker for enrichment of human pluripotent stem cells-derived ventricular cardiomyocytes. Stem Cell Res Ther 2023; 14:367. [PMID: 38093391 PMCID: PMC10720068 DOI: 10.1186/s13287-023-03610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) hold great promise for cardiac disease modelling, drug discovery and regenerative medicine. Despite the advancement in various differentiation protocols, the heterogeneity of the generated population composed of diverse cardiac subtypes poses a significant challenge to their practical applications. Mixed populations of cardiac subtypes can compromise disease modelling and drug discovery, while transplanting them may lead to undesired arrhythmias as they may not integrate and synchronize with the host tissue's contractility. It is therefore crucial to identify cell surface markers that could enable high purity of ventricular CMs for subsequent applications. METHODS By exploiting the fact that immature CMs expressing myosin light chain 2A (MLC2A) will gradually express myosin light chain 2 V (MLC2V) protein as they mature towards ventricular fate, we isolated signal regulatory protein alpha (SIRPA)-positive CMs expressing intracellular MLC2A or MLC2V using MARIS (method for analysing RNA following intracellular sorting). Subsequently, RNA sequencing analysis was performed to examine the gene expression profile of MLC2A + and MLC2V + sorted CMs. We identified genes that were significantly up-regulated in MLC2V + samples to be potential surface marker candidates for ventricular specification. To validate these surface markers, we performed immunostaining and western blot analysis to measure MLC2A and MLC2V protein expressions in SIRPA + CMs that were either positive or negative for the putative surface markers, JAK2 (Janus kinase 2) or CD200. We then characterized the electrophysiological properties of surface marker-sorted CMs, using fluo-4 AM, a green-fluorescent calcium indicator, to measure the cellular calcium transient at the single cell level. For functional validation, we investigated the response of the surface marker-sorted CMs to vernakalant, an atrial-selective anti-arrhythmic agent. RESULTS In this study, while JAK2 and CD200 were identified as potential surface markers for the purification of ventricular-like CMs, the SIRPA+/JAK2+ population showed a higher percentage of MLC2V-expressing cells (~ 90%) compared to SIRPA+/CD200+ population (~ 75%). SIRPA+/JAK2+ sorted CMs exhibited ventricular-like electrophysiological properties, including slower beating rate, slower calcium depolarization and longer calcium repolarization duration. Importantly, vernakalant had limited to no significant effect on the calcium repolarization duration of SIRPA+/JAK2+ population, indicating their enrichment for ventricular-like CMs. CONCLUSION Our study lays the groundwork for the identification of cardiac subtype surface markers that allow purification of cardiomyocyte sub-populations. Our findings suggest that JAK2 can be employed as a cell surface marker for enrichment of hPSC-derived ventricular-like CMs.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Boon Min Poh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Beatrice Xuan Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Christina Ying Yan Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Leslie Y Beh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Henry He Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
22
|
Volmert B, Kiselev A, Juhong A, Wang F, Riggs A, Kostina A, O'Hern C, Muniyandi P, Wasserman A, Huang A, Lewis-Israeli Y, Panda V, Bhattacharya S, Lauver A, Park S, Qiu Z, Zhou C, Aguirre A. A patterned human primitive heart organoid model generated by pluripotent stem cell self-organization. Nat Commun 2023; 14:8245. [PMID: 38086920 PMCID: PMC10716495 DOI: 10.1038/s41467-023-43999-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Pluripotent stem cell-derived organoids can recapitulate significant features of organ development in vitro. We hypothesized that creating human heart organoids by mimicking aspects of in utero gestation (e.g., addition of metabolic and hormonal factors) would lead to higher physiological and anatomical relevance. We find that heart organoids produced using this self-organization-driven developmental induction strategy are remarkably similar transcriptionally and morphologically to age-matched human embryonic hearts. We also show that they recapitulate several aspects of cardiac development, including large atrial and ventricular chambers, proepicardial organ formation, and retinoic acid-mediated anterior-posterior patterning, mimicking the developmental processes found in the post-heart tube stage primitive heart. Moreover, we provide proof-of-concept demonstration of the value of this system for disease modeling by exploring the effects of ondansetron, a drug administered to pregnant women and associated with congenital heart defects. These findings constitute a significant technical advance for synthetic heart development and provide a powerful tool for cardiac disease modeling.
Collapse
Affiliation(s)
- Brett Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Aniwat Juhong
- Institute for Quantitative Health Science and Engineering, Division of Biomedical Devices, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Ashlin Riggs
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aleksandra Kostina
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Colin O'Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aaron Wasserman
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Amanda Huang
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Yonatan Lewis-Israeli
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Vishal Panda
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI, USA
| | - Sudin Bhattacharya
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI, USA
| | - Adam Lauver
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Zhen Qiu
- Institute for Quantitative Health Science and Engineering, Division of Biomedical Devices, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
23
|
Ormrod B, Ehler E. Induced pluripotent stem cell-derived cardiomyocytes-more show than substance? Biophys Rev 2023; 15:1941-1950. [PMID: 38192353 PMCID: PMC10771368 DOI: 10.1007/s12551-023-01099-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/04/2023] [Indexed: 01/10/2024] Open
Abstract
Cardiomyocytes that are derived from human-induced pluripotent stem cells (iPSC-CM) are an exciting tool to investigate cardiomyopathy disease mechanisms at the cellular level as well as to screen for potential side effects of novel drugs. However, currently their benefit is limited due to their fairly immature differentiation status under conventional culture conditions. This review is mainly aimed at researchers outside of the iPSC-CM field and will describe potential pitfalls and which features at the level of the myofibrils would be desired to make them a more representative model system. We will also discuss different strategies that may help to achieve these.
Collapse
Affiliation(s)
- Beth Ormrod
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, SE1 1UL UK
| | - Elisabeth Ehler
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, SE1 1UL UK
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), Room 3.26A, New Hunt’s House, Guy’s Campus, London, SE1 1UL UK
- British Heart Foundation Centre of Research Excellence, King’s College London, London, SE1 1UL UK
| |
Collapse
|
24
|
Jilberto J, DePalma SJ, Lo J, Kobeissi H, Quach L, Lejeune E, Baker BM, Nordsletten D. A data-driven computational model for engineered cardiac microtissues. Acta Biomater 2023; 172:123-134. [PMID: 37879587 PMCID: PMC10938557 DOI: 10.1016/j.actbio.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Engineered heart tissues (EHTs) present a potential solution to some of the current challenges in the treatment of heart disease; however, the development of mature, adult-like cardiac tissues remains elusive. Mechanical stimuli have been observed to improve whole-tissue function and cardiomyocyte (CM) maturation, although our ability to fully utilize these mechanisms is hampered, in part, by our incomplete understanding of the mechanobiology of EHTs. In this work, we leverage experimental data, produced by a mechanically tunable experimental setup, to introduce a tissue-specific computational modeling pipeline of EHTs. Our new modeling pipeline generates simulated, image-based EHTs, capturing ECM and myofibrillar structure as well as functional parameters estimated directly from experimental data. This approach enables the unique estimation of EHT function by data-based estimation of CM active stresses. We use this experimental and modeling pipeline to study different mechanical environments, where we contrast the force output of the tissue with the computed active stress of CMs. We show that the significant differences in measured experimental forces can largely be explained by the levels of myofibril formation achieved by the CMs in the distinct mechanical environments, with active stress showing more muted variations across conditions. The presented model also enables us to dissect the relative contributions of myofibrils and extracellular matrix to tissue force output, a task difficult to address experimentally. These results highlight the importance of tissue-specific modeling to augment EHT experiments, providing deeper insights into the mechanobiology driving EHT function. STATEMENT OF SIGNIFICANCE: Engineered heart tissues (EHTs) have the potential to revolutionize the way heart disease is treated. However, developing mature cardiomyocytes (CM) in these tissues remains a challenge due, in part, to our incomplete understanding of the fundamental biomechanical mechanisms that drive EHT development. This work integrates the experimental data of an EHT platform developed to study the influence of mechanics in CM maturation with computational biomechanical models. This approach is used to augment conclusions obtained in-vitro - by measuring quantities such as cell stress and strain - and to dissect the relevance of each component in the whole tissue performance. Our results show how a combination of specialized in-silico and in-vitro approaches can help us better understand the mechanobiology of EHTs.
Collapse
Affiliation(s)
- Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, MI, USA.
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Jason Lo
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, MA, USA
| | - Lani Quach
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, MA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, MI, USA; Department of Cardiac Surgery, University of Michigan, MI, USA; Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
25
|
Fan X, Yang G, Duru F, Grilli M, Akin I, Zhou X, Saguner AM, Ei-Battrawy I. Arrhythmogenic Cardiomyopathy: from Preclinical Models to Genotype-phenotype Correlation and Pathophysiology. Stem Cell Rev Rep 2023; 19:2683-2708. [PMID: 37731079 PMCID: PMC10661732 DOI: 10.1007/s12015-023-10615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a hereditary myocardial disease characterized by the replacement of the ventricular myocardium with fibrous fatty deposits. ACM is usually inherited in an autosomal dominant pattern with variable penetrance and expressivity, which is mainly related to ventricular tachyarrhythmia and sudden cardiac death (SCD). Importantly, significant progress has been made in determining the genetic background of ACM due to the development of new techniques for genetic analysis. The exact molecular pathomechanism of ACM, however, is not completely clear and the genotype-phenotype correlations have not been fully elucidated, which are useful to predict the prognosis and treatment of ACM patients. Different gene-targeted and transgenic animal models, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models, and heterologous expression systems have been developed. Here, this review aims to summarize preclinical ACM models and platforms promoting our understanding of the pathogenesis of ACM and assess their value in elucidating the ACM genotype-phenotype relationship.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Guoqiang Yang
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Acupuncture and Rehabilitation, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Grilli
- Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- First Department of Medicine, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Ardan Muammer Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Ei-Battrawy
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- Department of Cardiology and Angiology, Ruhr University, Bochum, Germany; Institute of Physiology, Department of Cellular and Translational Physiology and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr- University Bochum, Bochum, Germany.
| |
Collapse
|
26
|
DePalma SJ, Jillberto J, Stis AE, Huang DD, Lo J, Davidson CD, Chowdhury A, Jewett ME, Kobeissi H, Chen CS, Lejeune E, Helms AS, Nordsletten DA, Baker BM. Matrix architecture and mechanics regulate myofibril organization, costamere assembly, and contractility of engineered myocardial microtissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563346. [PMID: 37961415 PMCID: PMC10634701 DOI: 10.1101/2023.10.20.563346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, we established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. We find that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can inform the design of translatable regenerative cardiac therapies.
Collapse
|
27
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
28
|
Gao Y, Su L, Wei Y, Tan S, Hu Z, Tao Z, Kovalik JP, Soong TW, Zhang J, Pu J, Ye L. Ascorbic acid induces MLC2v protein expression and promotes ventricular-like cardiomyocyte subtype in human induced pluripotent stem cells derived cardiomyocytes. Theranostics 2023; 13:3872-3896. [PMID: 37441603 PMCID: PMC10334833 DOI: 10.7150/thno.80801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The potentially unlimited number of cardiomyocyte (CMs) derived from human induced pluripotent stem cells (hiPSCs) in vitro facilitates high throughput applications like cell transplantation for myocardial repair, disease modelling, and cardiotoxicity testing during drug development. Despite promising progress in these areas, a major disadvantage that limits the use of hiPSC derived CMs (hiPSC-CMs) is their immaturity. Methods: Three hiPSC lines (PCBC-hiPSC, DP3-hiPSCs, and MLC2v-mEGFP hiPSC) were differentiated into CMs (PCBC-CMs, DP3-CMs, and MLC2v-CMs, respectively) with or without retinoic acid (RA). hiPSC-CMs were either maintained up to day 30 of contraction (D30C), or D60C, or purified using lactate acid and used for experiments. Purified hiPSC-CMs were cultured in basal maturation medium (BMM) or BMM supplemented with ascorbic acid (AA) for 14 days. The AA treated and non-treated hiPSC-CMs were characterized for sarcomeric proteins (MLC2v, TNNI3, and MYH7), ion channel proteins (Kir2.1, Nav1.5, Cav1.2, SERCA2a, and RyR), mitochondrial membrane potential, metabolomics, and action potential. Bobcat339, a selective and potent inhibitor of DNA demethylation, was used to determine whether AA promoted hiPSC-CM maturation through modulating DNA demethylation. Results: AA significantly increased MLC2v expression in PCBC-CMs, DP3-CMs, MLC2v-CMs, and RA induced atrial-like PCBC-CMs. AA treatment significantly increased mitochondrial mass, membrane potential, and amino acid and fatty acid metabolism in PCBC-CMs. Patch clamp studies showed that AA treatment induced PCBC-CMs and DP3-CMs adaptation to a ventricular-like phenotype. Bobcat339 inhibited MLC2v protein expression in AA treated PCBC-CMs and DP3-CMs. DNA demethylation inhibition was also associated with reduced TET1 and TET2 protein expressions and reduced accumulation of the oxidative product, 5 hmC, in both PCBC-CMs and DP3-CMs, in the presence of AA. Conclusions: Ascorbic acid induced MLC2v protein expression and promoted ventricular-like CM subtype in hiPSC-CMs. The effect of AA on hiPSC-CM was attenuated with inhibition of TET1/TET2 mediated DNA demethylation.
Collapse
Affiliation(s)
- Yu Gao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Yuhua Wei
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shihua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Zhenyu Hu
- Department of Physiology, National University of Singapore, Singapore
- Cardiovascular Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| | - Zhonghao Tao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jean-Paul Kovalik
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore
- Cardiovascular Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| |
Collapse
|
29
|
Rossler KJ, de Lange WJ, Mann MW, Aballo TJ, Melby JA, Zhang J, Kim G, Bayne EF, Zhu Y, Farrell ET, Kamp TJ, Ralphe JC, Ge Y. Lactate and Immunomagnetic-purified iPSC-derived Cardiomyocytes Generate Comparable Engineered Cardiac Tissue Constructs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539642. [PMID: 37205556 PMCID: PMC10187273 DOI: 10.1101/2023.05.05.539642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely-used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared to magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACs-purified hiPSC-CMs impacts the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. After purification, hiPSC-CMs were combined with hiPSC-cardiac fibroblasts to create 3D hiPSC-ECT constructs maintained in culture for four weeks. There were no structural differences observed, and there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force, Ca 2+ transients, and β-adrenergic response revealed similar functional performance between purification methods. High-resolution mass spectrometry (MS)-based quantitative proteomics showed no significant difference in any protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable molecular and functional properties, and suggests lactate purification does not result in an irreversible change in hiPSC-CM phenotype.
Collapse
|
30
|
Zhou J, Cui B, Wang X, Wang H, Zheng J, Guo F, Sun Y, Fan H, Shen J, Su J, Wang J, Zhao H, Tang Y, Gong T, Sun N, Liang P. Overexpression of KCNJ2 enhances maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:92. [PMID: 37061738 PMCID: PMC10105952 DOI: 10.1186/s13287-023-03312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/07/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Although human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising cell resource for cardiovascular research, these cells exhibit an immature phenotype that hampers their potential applications. The inwardly rectifying potassium channel Kir2.1, encoded by the KCNJ2 gene, has been thought as an important target for promoting electrical maturation of iPSC-CMs. However, a comprehensive characterization of morphological and functional changes in iPSC-CMs overexpressing KCNJ2 (KCNJ2 OE) is still lacking. METHODS iPSC-CMs were generated using a 2D in vitro monolayer differentiation protocol. Human KCNJ2 construct with green fluorescent protein (GFP) tag was created and overexpressed in iPSC-CMs via lentiviral transduction. The mixture of iPSC-CMs and mesenchymal cells was cocultured with decellularized natural heart matrix for generation of 3D human engineered heart tissues (EHTs). RESULTS We showed that mRNA expression level of KCNJ2 in iPSC-CMs was dramatically lower than that in human left ventricular tissues. KCNJ2 OE iPSC-CMs yielded significantly increased protein expression of Kir2.1 and current density of Kir2.1-encoded IK1. The larger IK1 linked to a quiescent phenotype that required pacing to elicit action potentials in KCNJ2 OE iPSC-CMs, which can be reversed by IK1 blocker BaCl2. KCNJ2 OE also led to significantly hyperpolarized maximal diastolic potential (MDP), shortened action potential duration (APD) and increased maximal upstroke velocity. The enhanced electrophysiological maturation in KCNJ2 OE iPSC-CMs was accompanied by improvements in Ca2+ signaling, mitochondrial energy metabolism and transcriptomic profile. Notably, KCNJ2 OE iPSC-CMs exhibited enlarged cell size and more elongated and stretched shape, indicating a morphological phenotype toward structural maturation. Drug testing using hERG blocker E-4031 revealed that a more stable MDP in KCNJ2 OE iPSC-CMs allowed for obtaining significant drug response of APD prolongation in a concentration-dependent manner. Moreover, KCNJ2 OE iPSC-CMs formed more mature human EHTs with better tissue structure and cell junction. CONCLUSIONS Overexpression of KCNJ2 can robustly enhance maturation of iPSC-CMs in electrophysiology, Ca2+ signaling, metabolism, transcriptomic profile, cardiomyocyte structure and tissue engineering, thus providing more accurate cellular model for elucidating cellular and molecular mechanisms of cardiovascular diseases, screening drug-induced cardiotoxicity, and developing personalized and precision cardiovascular medicine.
Collapse
Affiliation(s)
- Jingjun Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Baiping Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Hongkun Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Junnan Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Fengfeng Guo
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Yaxun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Hangping Fan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jiaxi Shen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jun Su
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jue Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Haige Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yiquan Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Tingyu Gong
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214028, Jiangsu, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
| |
Collapse
|
31
|
Tian F, Yin L, Lin P, Liu Y, Wang W, Chen Y, Tang Y. Aligned Nanofibrous Net Deposited Perpendicularly on Microridges Supports Endothelium Formation and Promotes the Structural Maturation of hiPSC-Derived Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17518-17531. [PMID: 36992621 DOI: 10.1021/acsami.2c22551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cell alignment widely exists in various in vivo tissues and also plays an essential role in the construction of in vitro models, such as vascular endothelial and myocardial models. Recently, microscale and nanoscale hierarchical topographical structures have been drawing increasing attention for engineering in vitro cell alignment. In the present study, we fabricated a micro-/nanohierarchical substrate based on soft lithography and electrospinning to assess the synergetic effect of both the aligned nanofibrous topographical guidance and the off-ground culture environment provided by the substrate on the endothelium formation and the maturation of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The morphology, proliferation, and barrier formation of human umbilical vein endothelial cells (HUVECs) as well as the alignment, cardiac-specific proteins, and maturity-related gene expression of hiPSC-CMs on the aligned-nanofiber/microridge (AN-MR) substrate were studied. Compared with the glass slide and the single-aligned nanofiber substrate, the AN-MR substrate enhanced the proliferation, alignment, and cell-cell interaction of HUVECs and improved the length of the sarcomere and maturation-related gene expression of hiPSC-CMs. Finally, the response of hiPSC-CMs on different substrates to two typical cardiac drugs (isoproterenol and E-4031) was tested and analyzed, showing that the hiPSC-CMs on AN-MR substrates were more resistant to drugs than those in other groups, which was related to the higher maturity of the cells. Overall, the proposed micro-/nanohierarchical substrate supports the in vitro endothelium formation and enhances the maturation of hiPSC-CMs, which show great potential to be applied in the construction of in vitro models and tissue engineering.
Collapse
Affiliation(s)
- Feng Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Linlin Yin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yurong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 Rue Lhomond, Paris 75005, France
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
GAO Z, ZHOU F, MU J. Research Progress towards the Effects of Fatty Acids on the Differentiation and Maturation of Human Induced Pluripotent Stem Cells into Cardiomyocytes. Rev Cardiovasc Med 2023; 24:69. [PMID: 39077493 PMCID: PMC11264038 DOI: 10.31083/j.rcm2403069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 07/31/2024] Open
Abstract
The incidence of cardiovascular disease has been continuously increasing. Because cardiomyocytes (CM) are non-renewable cells, it is difficult to find appropriate CM sources to repair injured hearts. Research of human induced pluripotent stem cell (hiPSC) differentiation and maturation into CM has been invaluable for the treatment of heart diseases. The use of hiPSCs as regenerative therapy allows for the treatment of many diseases that cannot be cured, including progressive heart failure. This review contributes to the study of cardiac repair and targeted treatment of cardiovascular diseases at the cytological level. Recent studies have shown that for differentiation and maturation of hiPSCs into CMs, fatty acids have a strong influence on cellular metabolism, organelle development, expression of specific genes, and functional performance. This review describes the recent research progress on how fatty acids affect the differentiation of hiPSCs into CMs and their maturation.
Collapse
Affiliation(s)
- Zhen GAO
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029 Beijing, China
| | - Fan ZHOU
- Department of Ultrasound, The Third Medical Center of PLA General Hospital, 100039 Beijing, China
| | - Junsheng MU
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, 100029 Beijing, China
| |
Collapse
|
33
|
Metabolism-based cardiomyocytes production for regenerative therapy. J Mol Cell Cardiol 2023; 176:11-20. [PMID: 36681267 DOI: 10.1016/j.yjmcc.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Human pluripotent stem cells (hPSCs) are currently used in clinical applications such as cardiac regenerative therapy, studying disease models, and drug screening for heart failure. Transplantation of hPSC-derived cardiomyocytes (hPSC-CMs) can be used as an alternative therapy for heart transplantation. In contrast to differentiated somatic cells, hPSCs possess unique metabolic programs to maintain pluripotency, and understanding their metabolic features can contribute to the development of technologies that can be useful for their clinical applications. The production of hPSC-CMs requires stepwise specification during embryonic development and metabolic regulation is crucial for proper embryonic development. These metabolic features have been applied to hPSC-CM production methods, such as mesoderm induction, specifications for cardiac progenitors, and their maturation. This review describes the metabolic programs in hPSCs and the metabolic regulation in hPSC-CM production for cardiac regenerative therapy.
Collapse
|
34
|
Patino-Guerrero A, Ponce Wong RD, Kodibagkar VD, Zhu W, Migrino RQ, Graudejus O, Nikkhah M. Development and Characterization of Isogenic Cardiac Organoids from Human-Induced Pluripotent Stem Cells Under Supplement Starvation Regimen. ACS Biomater Sci Eng 2023; 9:944-958. [PMID: 36583992 DOI: 10.1021/acsbiomaterials.2c01290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of cardiovascular risk factors is expected to increase the occurrence of cardiovascular diseases (CVDs) worldwide. Cardiac organoids are promising candidates for bridging the gap between in vitro experimentation and translational applications in drug development and cardiac repair due to their attractive features. Here we present the fabrication and characterization of isogenic scaffold-free cardiac organoids derived from human induced pluripotent stem cells (hiPSCs) formed under a supplement-deprivation regimen that allows for metabolic synchronization and maturation of hiPSC-derived cardiac cells. We propose the formation of coculture cardiac organoids that include hiPSC-derived cardiomyocytes and hiPSC-derived cardiac fibroblasts (hiPSC-CMs and hiPSC-CFs, respectively). The cardiac organoids were characterized through extensive morphological assessment, evaluation of cellular ultrastructures, and analysis of transcriptomic and electrophysiological profiles. The morphology and transcriptomic profile of the organoids were improved by coculture of hiPSC-CMs with hiPSC-CFs. Specifically, upregulation of Ca2+ handling-related genes, such as RYR2 and SERCA, and structure-related genes, such as TNNT2 and MYH6, was observed. Additionally, the electrophysiological characterization of the organoids under supplement deprivation shows a trend for reduced conduction velocity for coculture organoids. These studies help us gain a better understanding of the role of other isogenic cells such as hiPSC-CFs in the formation of mature cardiac organoids, along with the introduction of exogenous chemical cues, such as supplement starvation.
Collapse
Affiliation(s)
- Alejandra Patino-Guerrero
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona8528, United States
| | | | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona8528, United States
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona85259, United States
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona85012, United States.,University of Arizona College of Medicine, Phoenix, Arizona85004, United States
| | - Oliver Graudejus
- BMSEED, Mesa, Arizona85201, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona85287, United States
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona8528, United States.,Center for Personalized Diagnostics Biodesign Institute, Arizona State University, Tempe, Arizona85281, United States
| |
Collapse
|
35
|
Malihi G, Nikoui V, Elson EL. A review on qualifications and cost effectiveness of induced pluripotent stem cells (IPSCs)-induced cardiomyocytes in drug screening tests. Arch Physiol Biochem 2023; 129:131-142. [PMID: 32783745 DOI: 10.1080/13813455.2020.1802600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human induced pluripotent stem cells (hIPSCs) have initiated a higher degree of successes in disease modelling, preclinical evaluation of drug therapy and pharmaco-toxicological testing. Since the discovery of iPSCs in 2006, many advanced techniques have been introduced to differentiate iPSCs to cardiomyocytes, which have been progressively improved. The disease models from iPSC-induced cardiomyocytes (iPSC-CM) have been successfully helping to study a variety of cardiac diseases such as long QT syndrome, drug-induced long QT, different cardiomyopathies related to mutations in mitochondria or desmosomal proteins and other rare genetic diseases. IPSC-CMs have also been used to screen the role of chemicals in cardiovascular drug discovery and individualisation of drug dosages. In this review, the quality of current procedures for characterisation and maturation of iPSC-CM lines will be discussed. Also, we will focus on time efficiency and cost of standard differentiation methods after reprogramming.
Collapse
Affiliation(s)
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
36
|
Chai AC, Cui M, Chemello F, Li H, Chen K, Tan W, Atmanli A, McAnally JR, Zhang Y, Xu L, Liu N, Bassel-Duby R, Olson EN. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med 2023; 29:401-411. [PMID: 36797478 PMCID: PMC10053064 DOI: 10.1038/s41591-022-02176-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/07/2022] [Indexed: 02/18/2023]
Abstract
The most common form of genetic heart disease is hypertrophic cardiomyopathy (HCM), which is caused by variants in cardiac sarcomeric genes and leads to abnormal heart muscle thickening. Complications of HCM include heart failure, arrhythmia and sudden cardiac death. The dominant-negative c.1208G>A (p.R403Q) pathogenic variant (PV) in β-myosin (MYH7) is a common and well-studied PV that leads to increased cardiac contractility and HCM onset. In this study we identify an adenine base editor and single-guide RNA system that can efficiently correct this human PV with minimal bystander editing and off-target editing at selected sites. We show that delivery of base editing components rescues pathological manifestations of HCM in induced pluripotent stem cell cardiomyocytes derived from patients with HCM and in a humanized mouse model of HCM. Our findings demonstrate the potential of base editing to treat inherited cardiac diseases and prompt the further development of adenine base editor-based therapies to correct monogenic variants causing cardiac disease.
Collapse
Affiliation(s)
- Andreas C Chai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Cui
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ayhan Atmanli
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John R McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
Wu P, Sai X, Li Z, Ye X, Jin L, Liu G, Li G, Yang P, Zhao M, Zhu S, Liu N, Zhu P. Maturation of induced pluripotent stem cell-derived cardiomyocytes and its therapeutic effect on myocardial infarction in mouse. Bioact Mater 2023; 20:286-305. [PMID: 35702609 PMCID: PMC9167678 DOI: 10.1016/j.bioactmat.2022.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have an irreplaceable role in the treatment of myocardial infarction (MI), which can be injected into the transplanted area with new cardiomyocytes (Cardiomyocytes, CMs), and improve myocardial function. However, the immaturity of the structure and function of iPSC-CMs is the main bottleneck at present. Since collagen participates in the formation of extracellular matrix (ECM), we synthesized nano colloidal gelatin (Gel) with collagen as the main component, and confirmed that the biomaterial has good biocompatibility and is suitable for cellular in vitro growth. Subsequently, we combined the PI3K/AKT/mTOR pathway inhibitor BEZ-235 with Gel and found that the two combined increased the sarcomere length and action potential amplitude (APA) of iPSC-CMs, and improved the Ca2+ processing ability, the maturation of mitochondrial morphological structure and metabolic function. Not only that, Gel can also prolong the retention rate of iPSC-CMs in the myocardium and increase the expression of Cx43 and angiogenesis in the transplanted area of mature iPSC-CMs, which also provides a reliable basis for the subsequent treatment of mature iPSC-CMs. BEZ-235 + Gel promotes the maturation of sarcomere structure in iPSC-CMs. BEZ-235 + Gel promotes electrophysiological maturation of iPSC-CMs. BEZ-235 + Gel increases mitochondrial respiration in iPSC-CMs. Gel loaded with mature iPSC-CMs enhanced angiogenesis and gap junction formation at the injection site.
Collapse
|
38
|
Martyniak A, Jeż M, Dulak J, Stępniewski J. Adaptation of cardiomyogenesis to the generation and maturation of cardiomyocytes from human pluripotent stem cells. IUBMB Life 2023; 75:8-29. [PMID: 36263833 DOI: 10.1002/iub.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022]
Abstract
The advent of methods for efficient generation and cardiac differentiation of pluripotent stem cells opened new avenues for disease modelling, drug testing, and cell therapies of the heart. However, cardiomyocytes (CM) obtained from such cells demonstrate an immature, foetal-like phenotype that involves spontaneous contractions, irregular morphology, expression of embryonic isoforms of sarcomere components, and low level of ion channels. These and other features may affect cellular response to putative therapeutic compounds and the efficient integration into the host myocardium after in vivo delivery. Therefore, novel strategies to increase the maturity of pluripotent stem cell-derived CM are of utmost importance. Several approaches have already been developed relying on molecular changes that occur during foetal and postnatal maturation of the heart, its electromechanical activity, and the cellular composition. As a better understanding of these determinants may facilitate the generation of efficient protocols for in vitro acquisition of an adult-like phenotype by immature CM, this review summarizes the most important molecular factors that govern CM during embryonic development, postnatal changes that trigger heart maturation, as well as protocols that are currently used to generate mature pluripotent stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alicja Martyniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Jeż
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
39
|
Hong Y, Zhao Y, Li H, Yang Y, Chen M, Wang X, Luo M, Wang K. Engineering the maturation of stem cell-derived cardiomyocytes. Front Bioeng Biotechnol 2023; 11:1155052. [PMID: 37034258 PMCID: PMC10073467 DOI: 10.3389/fbioe.2023.1155052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The maturation of human stem cell-derived cardiomyocytes (hSC-CMs) has been a major challenge to further expand the scope of their application. Over the past years, several strategies have been proven to facilitate the structural and functional maturation of hSC-CMs, which include but are not limited to engineering the geometry or stiffness of substrates, providing favorable extracellular matrices, applying mechanical stretch, fluidic or electrical stimulation, co-culturing with niche cells, regulating biochemical cues such as hormones and transcription factors, engineering and redirecting metabolic patterns, developing 3D cardiac constructs such as cardiac organoid or engineered heart tissue, or culturing under in vivo implantation. In this review, we summarize these maturation strategies, especially the recent advancements, and discussed their advantages as well as the pressing problems that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yun Zhao
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Hao Li
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yunshu Yang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Meining Chen
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Xi Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Mingyao Luo
- Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Kai Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| |
Collapse
|
40
|
Mesquita FCP, Morrissey J, Monnerat G, Domont GB, Nogueira FCS, Hochman-Mendez C. Decellularized Extracellular Matrix Powder Accelerates Metabolic Maturation at Early Stages of Cardiac Differentiation in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells Tissues Organs 2023; 212:32-44. [PMID: 34933302 DOI: 10.1159/000521580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
During fetal development, cardiomyocytes switch from glycolysis to oxidative metabolism to sustain the energy requirements of functional cells. State-of-the-art cardiac differentiation protocols yield phenotypically immature cardiomyocytes, and common methods to improve metabolic maturation require multistep protocols to induce maturation only after cardiac specification is completed. Here, we describe a maturation method using ventricle-derived decellularized extracellular matrix (dECM) that promoted early-stage metabolic maturation of cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs). Chemically and architecturally preserved particles (45-500 μm) of pig ventricular dECM were added to hiPSCs at the start of differentiation. At the end of our maturation protocol (day 15 of cardiac differentiation), we observed an intimate interaction between cardiomyocytes and dECM particles without impairment of cardiac differentiation efficiency (approx. 70% of cTNT+). Compared with control cells (those cultured without pig dECM), 15-day-old dECM-treated cardiomyocytes demonstrated increased expression of markers related to cardiac metabolic maturation, MAPK1, FOXO1, and FOXO3, and a switch from ITGA6 (the immature integrin isoform) to ITGA3 and ITGA7 (those present in adult cardiomyocytes). Electrical parameters and responsiveness to dobutamine also improved in pig ventricular dECM-treated cells. Extending the culture time to 30 days, we observed a switch from glucose to fatty acid metabolism, indicated by decreased glucose uptake and increased fatty acid consumption in cells cultured with dECM. Together, these data suggest that dECM contains endogenous cues that enable metabolic maturation of hiPSC-CMs at early stages of cardiac differentiation.
Collapse
Affiliation(s)
| | | | - Gustavo Monnerat
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C S Nogueira
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
41
|
Chirico N, Kessler EL, Maas RGC, Fang J, Qin J, Dokter I, Daniels M, Šarić T, Neef K, Buikema JW, Lei Z, Doevendans PA, Sluijter JPG, van Mil A. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2022; 13:531. [PMID: 36575473 PMCID: PMC9795728 DOI: 10.1186/s13287-022-03209-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/01/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) do not display all hallmarks of mature primary cardiomyocytes, especially the ability to use fatty acids (FA) as an energy source, containing high mitochondrial mass, presenting binucleation and increased DNA content per nuclei (polyploidism), and synchronized electrical conduction. This immaturity represents a bottleneck to their application in (1) disease modelling-as most cardiac (genetic) diseases have a middle-age onset-and (2) clinically relevant models, where integration and functional coupling are key. So far, several methods have been reported to enhance iPSC-CM maturation; however, these protocols are laborious, costly, and not easily scalable. Therefore, we developed a simple, low-cost, and rapid protocol to promote cardiomyocyte maturation using two small molecule activators of the peroxisome proliferator-activated receptor β/δ and gamma coactivator 1-alpha (PPAR/PGC-1α) pathway: asiatic acid (AA) and GW501516 (GW). METHODS AND RESULTS: Monolayers of iPSC-CMs were incubated with AA or GW every other day for ten days resulting in increased expression of FA metabolism-related genes and markers for mitochondrial activity. AA-treated iPSC-CMs responsiveness to the mitochondrial respiratory chain inhibitors increased and exhibited higher flexibility in substrate utilization. Additionally, structural maturity improved after treatment as demonstrated by an increase in mRNA expression of sarcomeric-related genes and higher nuclear polyploidy in AA-treated samples. Furthermore, treatment led to increased ion channel gene expression and protein levels. CONCLUSIONS Collectively, we developed a fast, easy, and economical method to induce iPSC-CMs maturation via PPAR/PGC-1α activation. Treatment with AA or GW led to increased metabolic, structural, functional, and electrophysiological maturation, evaluated using a multiparametric quality assessment.
Collapse
Affiliation(s)
- Nino Chirico
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elise L. Kessler
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renée G. C. Maas
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Juntao Fang
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jiabin Qin
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Dokter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Daniels
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tomo Šarić
- grid.6190.e0000 0000 8580 3777Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Klaus Neef
- grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.491096.3Department of Cardiology, Amsterdam Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jan-Willem Buikema
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhiyong Lei
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A. Doevendans
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.411737.7Netherlands Heart Institute, Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alain van Mil
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Vučković S, Dinani R, Nollet EE, Kuster DWD, Buikema JW, Houtkooper RH, Nabben M, van der Velden J, Goversen B. Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling. STEM CELL RESEARCH & THERAPY 2022; 13:332. [PMID: 35870954 PMCID: PMC9308297 DOI: 10.1186/s13287-022-03021-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/25/2022] [Indexed: 12/02/2022]
Abstract
Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have emerged as a powerful tool for disease modeling, though their immature nature currently limits translation into clinical practice. Maturation strategies increasingly pay attention to cardiac metabolism because of its pivotal role in cardiomyocyte development and function. Moreover, aberrances in cardiac metabolism are central to the pathogenesis of cardiac disease. Thus, proper modeling of human cardiac disease warrants careful characterization of the metabolic properties of iPSC-CMs. Methods Here, we examined the effect of maturation protocols on healthy iPSC-CMs applied in 23 studies and compared fold changes in functional metabolic characteristics to assess the level of maturation. In addition, pathological metabolic remodeling was assessed in 13 iPSC-CM studies that focus on hypertrophic cardiomyopathy (HCM), which is characterized by abnormalities in metabolism. Results Matured iPSC-CMs were characterized by mitochondrial maturation, increased oxidative capacity and enhanced fatty acid use for energy production. HCM iPSC-CMs presented varying degrees of metabolic remodeling ranging from compensatory to energy depletion stages, likely due to the different types of mutations and clinical phenotypes modeled. HCM further displayed early onset hypertrophy, independent of the type of mutation or disease stage. Conclusions Maturation strategies improve the metabolic characteristics of iPSC-CMs, but not to the level of the adult heart. Therefore, a combination of maturation strategies might prove to be more effective. Due to early onset hypertrophy, HCM iPSC-CMs may be less suitable to detect early disease modifiers in HCM and might prove more useful to examine the effects of gene editing and new drugs in advanced disease stages. With this review, we provide an overview of the assays used for characterization of cardiac metabolism in iPSC-CMs and advise on which metabolic assays to include in future maturation and disease modeling studies.
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03021-9.
Collapse
|
43
|
Dias TP, Baltazar T, Pinto SN, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JMS. Xeno-Free Integrated Platform for Robust Production of Cardiomyocyte Sheets from hiPSCs. Stem Cells Int 2022; 2022:4542719. [PMID: 36467280 PMCID: PMC9712013 DOI: 10.1155/2022/4542719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be efficiently differentiated into cardiomyocytes (CMs), which can be used for cardiac disease modeling, for drug screening, and to regenerate damaged myocardium. Implementation of xeno-free culture systems is essential to fully explore the potential of these cells. However, differentiation using xeno-free adhesion matrices often results in low CM yields and lack of functional CM sheets, capable of enduring additional maturation stages. Here, we established a xeno-free CM differentiation platform using TeSR/Synthemax, including a replating step and integrated with two versatile purification/enrichment metabolic approaches. Results showed that the replating step was essential to reestablish a fully integrated, closely-knit CM sheet. In addition, replating contributed to increase the cTnT expression from 65% to 75% and the output from 2.2 to 3.1 CM per hiPSC, comparable with the efficiency observed when using TeSR/Matrigel. In addition, supplementation with PluriSin1 and Glu-Lac+ medium allowed increasing the CM content over 80% without compromising CM sheet integrity or functionality. Thus, this xeno-free differentiation platform is a reliable and robust method to produce hiPSC-derived CMs, increasing the possibility of using these cells safely for a wide range of applications.
Collapse
Affiliation(s)
- Tiago P. Dias
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tânia Baltazar
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N. Pinto
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tiago G. Fernandes
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Margarida Diogo
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
44
|
Wang G, Xu Y, Wang Q, Chai Y, Sun X, Yang F, Zhang J, Wu M, Liao X, Yu X, Sheng X, Liu Z, Zhang J. Rare and undiagnosed diseases: From disease-causing gene identification to mechanism elucidation. FUNDAMENTAL RESEARCH 2022; 2:918-928. [PMID: 38933382 PMCID: PMC11197726 DOI: 10.1016/j.fmre.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Rare and undiagnosed diseases substantially decrease patient quality of life and have increasingly become a heavy burden on healthcare systems. Because of the challenges in disease-causing gene identification and mechanism elucidation, patients are often confronted with difficulty obtaining a precise diagnosis and treatment. Due to advances in sequencing and multiomics analysis approaches combined with patient-derived iPSC models and gene-editing platforms, substantial progress has been made in the diagnosis and treatment of rare and undiagnosed diseases. The aforementioned techniques also provide an operational basis for future precision medicine studies. In this review, we summarize recent progress in identifying disease-causing genes based on GWAS/WES/WGS-guided multiomics analysis approaches. In addition, we discuss recent advances in the elucidation of pathogenic mechanisms and treatment of diseases with state-of-the-art iPSC and organoid models, which are improved by cell maturation level and gene editing technology. The comprehensive strategies described above will generate a new paradigm of disease classification that will significantly promote the precision and efficiency of diagnosis and treatment for rare and undiagnosed diseases.
Collapse
Affiliation(s)
- Gang Wang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yuyan Xu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qintao Wang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yi Chai
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiangwei Sun
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fan Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jian Zhang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengchen Wu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xufeng Liao
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Yu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Sheng
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhihong Liu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jin Zhang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine; Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
45
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
46
|
Liu H, Sun Y, Xu H, Tan B, Yi Q, Tian J, Zhu J. PTEN-induced putative kinase 1 regulates mitochondrial quality control and is essential for the maturation of human induced pluripotent stem cell-derived cardiomyocytes. Genes Dis 2022. [PMID: 37492732 PMCID: PMC10363588 DOI: 10.1016/j.gendis.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have attracted attention in the field of regenerative medicine due to their potential ability to repair damaged hearts. However, the immature phenotype of these cells limits their clinical application. Cardiomyocyte maturation is accompanied by changes in mitochondrial quality. PTEN-induced putative kinase 1 (PINK1) has been linked to mitochondrial quality control. However, whether the changes in mitochondrial quality in hiPSC-CMs are associated with PINK1, and the impact of PINK1 on hiPSC-CMs development are not clear. In this study, we found that knockdown of PINK1 in hiPSC-CMs resulted in mitochondrial fragmentation and impaired mitochondrial functions such as mitophagy and mitochondrial biogenesis. PINK1 deletion also inhibited the maturation of hiPSC-CMs, reverting them to a naive structural and functional state. We found that restoring the mitochondrial structure did not completely rescue the mitochondrial dysfunction caused by PINK1 deletion, while activation of PINK1 kinase activity using kinetin promoted mitochondrial fusion, increased the mitochondrial membrane potential and ATP production, and maintained the development and maturation of hiPSC-CMs. In conclusion, PINK1 regulates the mitochondrial structure and function of hiPSC-CMs, and is essential for the maturation of hiPSC-CMs.
Collapse
|
47
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
48
|
Reilly L, Munawar S, Zhang J, Crone WC, Eckhardt LL. Challenges and innovation: Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes. Front Cardiovasc Med 2022; 9:966094. [PMID: 36035948 PMCID: PMC9411865 DOI: 10.3389/fcvm.2022.966094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has both challenges and promise. While patient-derived iPSC-CMs provide a unique opportunity for disease modeling with isogenic cells, the challenge is that these cells still demonstrate distinct properties which make it functionally less akin to adult cardiomyocytes. In response to this challenge, numerous innovations in differentiation and modification of hiPSC-CMs and culture techniques have been developed. Here, we provide a focused commentary on hiPSC-CMs for use in disease modeling, the progress made in generating electrically and metabolically mature hiPSC-CMs and enabling investigative platforms. The solutions are bringing us closer to the promise of modeling heart disease using human cells in vitro.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Saba Munawar
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jianhua Zhang
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Wendy C. Crone
- Department of Engineering Physics, College of Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Lee L. Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Lee L. Eckhardt
| |
Collapse
|
49
|
Hamledari H, Asghari P, Jayousi F, Aguirre A, Maaref Y, Barszczewski T, Ser T, Moore E, Wasserman W, Klein Geltink R, Teves S, Tibbits GF. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation. Front Cardiovasc Med 2022; 9:967659. [PMID: 36061558 PMCID: PMC9429949 DOI: 10.3389/fcvm.2022.967659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and reduced quality of life globally. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a personalized platform to study inherited heart diseases, drug-induced cardiac toxicity, and cardiac regenerative therapy. However, the immaturity of CMs obtained by current strategies is a major hurdle in utilizing hiPSC-CMs at their fullest potential. Here, the major findings and limitations of current maturation methodologies to enhance the utility of hiPSC-CMs in the battle against a major source of morbidity and mortality are reviewed. The most recent knowledge of the potential signaling pathways involved in the transition of fetal to adult CMs are assimilated. In particular, we take a deeper look on role of nutrient sensing signaling pathways and the potential role of cap-independent translation mediated by the modulation of mTOR pathway in the regulation of cardiac gap junctions and other yet to be identified aspects of CM maturation. Moreover, a relatively unexplored perspective on how our knowledge on the effects of preterm birth on cardiovascular development can be actually utilized to enhance the current understanding of CM maturation is examined. Furthermore, the interaction between the evolving neonatal human heart and brown adipose tissue as the major source of neonatal thermogenesis and its endocrine function on CM development is another discussed topic which is worthy of future investigation. Finally, the current knowledge regarding transcriptional mediators of CM maturation is still limited. The recent studies have produced the groundwork to better understand CM maturation in terms of providing some of the key factors involved in maturation and development of metrics for assessment of maturation which proves essential for future studies on in vitro PSC-CMs maturation.
Collapse
Affiliation(s)
- Homa Hamledari
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Farah Jayousi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Alejandro Aguirre
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Yasaman Maaref
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tiffany Barszczewski
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Terri Ser
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Edwin Moore
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Wyeth Wasserman
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ramon Klein Geltink
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Sheila Teves
- Department of Biochemistry and Molecular Biology, University of British Colombia, Vancouver, BC, Canada
| | - Glen F. Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Afzal J, Liu Y, Du W, Suhail Y, Zong P, Feng J, Ajeti V, Sayyad WA, Nikolaus J, Yankova M, Deymier AC, Yue L, Kshitiz. Cardiac ultrastructure inspired matrix induces advanced metabolic and functional maturation of differentiated human cardiomyocytes. Cell Rep 2022; 40:111146. [PMID: 35905711 DOI: 10.1016/j.celrep.2022.111146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 12/21/2022] Open
Abstract
The vast potential of human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) in preclinical models of cardiac pathologies, precision medicine, and drug screening remains to be fully realized because hiPSC-CMs are immature without adult-like characteristics. Here, we present a method to accelerate hiPSC-CM maturation on a substrate, cardiac mimetic matrix (CMM), mimicking adult human heart matrix ligand chemistry, rigidity, and submicron ultrastructure, which synergistically mature hiPSC-CMs rapidly within 30 days. hiPSC-CMs matured on CMM exhibit systemic transcriptomic maturation toward an adult heart state, are aligned with high strain energy, metabolically rely on oxidative phosphorylation and fatty acid oxidation, and display enhanced redox handling capability, efficient calcium handling, and electrophysiological features of ventricular myocytes. Endothelin-1-induced pathological hypertrophy is mitigated on CMM, highlighting the role of a native cardiac microenvironment in withstanding hypertrophy progression. CMM is a convenient model for accelerated development of ventricular myocytes manifesting highly specialized cardiac-specific functions.
Collapse
Affiliation(s)
- Junaid Afzal
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Wenqiang Du
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Pengyu Zong
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Jianlin Feng
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Visar Ajeti
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Wasim A Sayyad
- Department of Cell Biology, Yale University, New Haven, CT 06510, USA
| | - Joerg Nikolaus
- West Campus Imaging Core, Yale University, New Haven, CT 06477, USA
| | - Maya Yankova
- Electron Microscopy Core, University of Connecticut Health, Farmington, CT 06032, USA
| | - Alix C Deymier
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Lixia Yue
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA; Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA.
| |
Collapse
|