1
|
Schreier P, Huang L, Fung E, Mollon J, Sielaff B, Lake MR, Schulz M, Awwad K. Development and validation of an ultra-performance liquid chromatography with tandem mass spectrometry method for determination of soluble repulsive guidance molecule A in human serum and cerebrospinal fluid. Bioanalysis 2024:1-12. [PMID: 39387340 DOI: 10.1080/17576180.2024.2403241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Aim: Repulsive guidance molecule A (RGMa) is upregulated in neurodegenerative diseases. To assess RGMa levels in human serum and cerebrospinal fluid (CSF), a quantification method was developed and validated according to ICH M10 guideline.Methods & results: Sample preparation consisted of immunoprecipitation (IP, only for serum), digestion and purification followed by MS.Conclusion: An UPLC-MS/MS method was established and used to assess normal range of soluble RGMa levels in serum and CSF of healthy controls, and patients with mild cognitive impairment or Alzheimer's disease. The normal range was between 13.0-44.8 ng/ml (CSF) and 9.9-20.9 ng/ml (serum) in healthy controls. In the CSF of patients with mild cognitive impairment and Alzheimer's disease, total soluble RGMa was twofold lower while unchanged in serum.
Collapse
Affiliation(s)
- Patrick Schreier
- AbbVie Deutschland GmbH & Co. KG, Knollstr., Rhineland-Palatinate, Ludwigshafen, 67061, Germany
| | - Lili Huang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Emma Fung
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Jennifer Mollon
- AbbVie Deutschland GmbH & Co. KG, Knollstr., Rhineland-Palatinate, Ludwigshafen, 67061, Germany
| | - Bernhard Sielaff
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Marc R Lake
- AbbVie Inc., 1 N Waukegan Rd, North Chicago, IL 60064, USA
| | - Michael Schulz
- AbbVie Deutschland GmbH & Co. KG, Knollstr., Rhineland-Palatinate, Ludwigshafen, 67061, Germany
| | - Khader Awwad
- AbbVie Deutschland GmbH & Co. KG, Knollstr., Rhineland-Palatinate, Ludwigshafen, 67061, Germany
| |
Collapse
|
2
|
Jacobson PB, Mothe A, Levy A, Krakovsky M, Hooker BA, Zhang X, Mollon J, Mordashova Y, Droescher M, Weiss S, Barghorn S, Dreher I, Awwad K, Nimmrich V, Huang L, Fung E, Buck WR, Pfleeger K, Ziemann A, Smith E, Fox GB, Tator CH, Gold M. Neutralizing RGMa with Elezanumab Promotes Cerebroprotection and Recovery in Rabbit Middle Cerebral Artery Occlusion. Transl Stroke Res 2024; 15:805-817. [PMID: 37326791 PMCID: PMC11226526 DOI: 10.1007/s12975-023-01164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Repulsive guidance molecule A (RGMa) is an inhibitor of neuronal growth and survival which is upregulated in the damaged central nervous system following acute spinal cord injury (SCI), traumatic brain injury, acute ischemic stroke (AIS), and other neuropathological conditions. Neutralization of RGMa is neuroprotective and promotes neuroplasticity in several preclinical models of neurodegeneration and injury including multiple sclerosis, AIS, and SCI. Given the limitations of current treatments for AIS due to narrow time windows to intervention (TTI), and restrictive patient selection criteria, there is significant unmet need for therapeutic agents that enable tissue survival and repair following acute ischemic damage for a broader population of stroke patients. In this preclinical study, we evaluated whether elezanumab, a human anti-RGMa monoclonal antibody, could improve neuromotor function and modulate neuroinflammatory cell activation following AIS with delayed intervention times up to 24 h using a rabbit embolic permanent middle cerebral artery occlusion model (pMCAO). In two replicate 28-day pMCAO studies, weekly intravenous infusions of elezanumab, over a range of doses and TTIs of 6 and 24 h after stroke, significantly improved neuromotor function in both pMCAO studies when first administered 6 h after stroke. All elezanumab treatment groups, including the 24 h TTI group, had significantly less neuroinflammation as assessed by microglial and astrocyte activation. The novel mechanism of action and potential for expanding TTI in human AIS make elezanumab distinct from current acute reperfusion therapies, and support evaluation in clinical trials of acute CNS damage to determine optimal dose and TTI in humans.
Collapse
Affiliation(s)
- Peer B Jacobson
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA.
| | - Andrea Mothe
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, ON, M5T 0S8, Canada
| | | | | | - Bradley A Hooker
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Xiaomeng Zhang
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Jennifer Mollon
- Data and Statistical Sciences, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, 67061, KnollstrasseLudwigshafen, Germany
| | - Yulia Mordashova
- Data and Statistical Sciences, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, 67061, KnollstrasseLudwigshafen, Germany
| | - Mathias Droescher
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sabine Weiss
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Stefan Barghorn
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Ingeborg Dreher
- Department of Drug Metabolism, Pharmacokinetics and Bioanalysis, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Khader Awwad
- Department of Drug Metabolism, Pharmacokinetics and Bioanalysis, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Volker Nimmrich
- Department of Drug Metabolism, Pharmacokinetics and Bioanalysis, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Lili Huang
- AbbVie Biologics, AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Emma Fung
- AbbVie Biologics, AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Wayne R Buck
- Preclinical Safety, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Kimberly Pfleeger
- Department of Neuroscience Development, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Adam Ziemann
- Department of Neuroscience Development, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Elaine Smith
- Department of Neuroscience Development, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Gerard B Fox
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Charles H Tator
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, ON, M5T 0S8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Michael Gold
- Department of Neuroscience Development, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| |
Collapse
|
3
|
Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci 2024; 25:493-513. [PMID: 38789516 DOI: 10.1038/s41583-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.
Collapse
Affiliation(s)
- Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Müller T, Riederer P. The vicious circle between homocysteine, methyl group-donating vitamins and chronic levodopa intake in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:631-638. [PMID: 37329350 DOI: 10.1007/s00702-023-02666-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
A biomarker for declined methylation capacity is elevation of homocysteine levels. They increase the risk for onset of vascular disease and contribute to progression of chronic neurodegeneration and aging. This narrative review discusses associations between homocysteine, consumption of methyl group-donating vitamins and impact on disease-generating mechanisms in levodopa-treated patients with Parkinson's disease. We conclude to recommend levodopa-treated patients to substitute themselves with methyl group-donating vitamins. This is harmless in terms of application of folic acid, methylcobalamin or hydroxocobalamin. Moreover, we suggest a crucial discussion on the value of the various popular hypotheses on Parkinson's disease-generating mechanisms. Findings from studies with acute levodopa exposure describe oxidative stress generation and impaired methylation capacity, which causes gene dysfunction. Their repeated occurrences contribute to onset of mitochondrial dysfunction, iron enrichment and pathologic protein accumulation in the long term. Current research underestimates these epigenetic, metabolic consequences of chronic levodopa application. Supplementary treatment strategies are recommended to avoid levodopa-related side effects.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstr. 1, 13088, Berlin, Germany.
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel Platz 1, 97080, Würzburg, Germany
| |
Collapse
|
6
|
Zavvarian MM, Modi AD, Sadat S, Hong J, Fehlings MG. Translational Relevance of Secondary Intracellular Signaling Cascades Following Traumatic Spinal Cord Injury. Int J Mol Sci 2024; 25:5708. [PMID: 38891894 PMCID: PMC11172219 DOI: 10.3390/ijms25115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akshat D. Modi
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Department of Biological Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada
- Department of Human Biology, University of Toronto, Toronto, ON M5S 3J6, Canada
| | - Sarah Sadat
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Hong
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
| | - Michael G. Fehlings
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
7
|
Fischer G, Bättig L, Stienen MN, Curt A, Fehlings MG, Hejrati N. Advancements in neuroregenerative and neuroprotective therapies for traumatic spinal cord injury. Front Neurosci 2024; 18:1372920. [PMID: 38812974 PMCID: PMC11133582 DOI: 10.3389/fnins.2024.1372920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
Traumatic spinal cord injuries (SCIs) continue to be a major healthcare concern, with a rising prevalence worldwide. In response to this growing medical challenge, considerable scientific attention has been devoted to developing neuroprotective and neuroregenerative strategies aimed at improving the prognosis and quality of life for individuals with SCIs. This comprehensive review aims to provide an up-to-date and thorough overview of the latest neuroregenerative and neuroprotective therapies currently under investigation. These strategies encompass a multifaceted approach that include neuropharmacological interventions, cell-based therapies, and other promising strategies such as biomaterial scaffolds and neuro-modulation therapies. In addition, the review discusses the importance of acute clinical management, including the role of hemodynamic management as well as timing and technical aspects of surgery as key factors mitigating the secondary injury following SCI. In conclusion, this review underscores the ongoing scientific efforts to enhance patient outcomes and quality of life, focusing on upcoming strategies for the management of traumatic SCI. Each section provides a working knowledge of the fundamental preclinical and patient trials relevant to clinicians while underscoring the pathophysiologic rationale for the therapies.
Collapse
Affiliation(s)
- Gregor Fischer
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Linda Bättig
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Martin N. Stienen
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nader Hejrati
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
8
|
Annevelink CE, Westra J, Sala-Vila A, Harris WS, Tintle NL, Shearer GC. A Genome-Wide Interaction Study of Erythrocyte ω-3 Polyunsaturated Fatty Acid Species and Memory in the Framingham Heart Study Offspring Cohort. J Nutr 2024; 154:1640-1651. [PMID: 38141771 PMCID: PMC11347816 DOI: 10.1016/j.tjnut.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Cognitive decline, and more specifically Alzheimer's disease, continues to increase in prevalence globally, with few, if any, adequate preventative approaches. Several tests of cognition are utilized in the diagnosis of cognitive decline that assess executive function, short- and long-term memory, cognitive flexibility, and speech and motor control. Recent studies have separately investigated the genetic component of both cognitive health, using these measures, and circulating fatty acids. OBJECTIVES We aimed to examine the potential moderating effect of main species of ω-3 polyunsaturated fatty acids (PUFAs) on an individual's genetically conferred risk of cognitive decline. METHODS The Offspring cohort from the Framingham Heart Study was cross-sectionally analyzed in this genome-wide interaction study (GWIS). Our sample included all individuals with red blood cell ω-3 PUFA, genetic, cognitive testing (via Trail Making Tests [TMTs]), and covariate data (N = 1620). We used linear mixed effects models to predict each of the 3 cognitive measures (TMT A, TMT B, and TMT D) by each ω-3 PUFA, single nucleotide polymorphism (SNP) (0, 1, or 2 minor alleles), ω-3 PUFA by SNP interaction term, and adjusting for sex, age, education, APOE ε4 genotype status, and kinship (relatedness). RESULTS Our analysis identified 31 unique SNPs from 24 genes reaching an exploratory significance threshold of 1×10-5. Fourteen of the 24 genes have been previously associated with the brain/cognition, and 5 genes have been previously associated with circulating lipids. Importantly, 8 of the genes we identified, DAB1, SORCS2, SERINC5, OSBPL3, CPA6, DLG2, MUC19, and RGMA, have been associated with both cognition and circulating lipids. We identified 22 unique SNPs for which individuals with the minor alleles benefit substantially from increased ω-3 fatty acid concentrations and 9 unique SNPs for which the common homozygote benefits. CONCLUSIONS In this GWIS of ω-3 PUFA species on cognitive outcomes, we identified 8 unique genes with plausible biology suggesting individuals with specific polymorphisms may have greater potential to benefit from increased ω-3 PUFA intake. Additional replication in prospective settings with more diverse samples is needed.
Collapse
Affiliation(s)
- Carmen E Annevelink
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jason Westra
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States
| | - Aleix Sala-Vila
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Cardiovascular Risk and Nutrition, Hospital del Mar Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - William S Harris
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
| | - Nathan L Tintle
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Department of Population Health Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, United States
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
9
|
Ozcicek I, Aysit N, Balcikanli Z, Ayturk NU, Aydeger A, Baydas G, Aydin MS, Altintas E, Erim UC. Development of BDNF/NGF/IKVAV Peptide Modified and Gold Nanoparticle Conductive PCL/PLGA Nerve Guidance Conduit for Regeneration of the Rat Spinal Cord Injury. Macromol Biosci 2024; 24:e2300453. [PMID: 38224015 DOI: 10.1002/mabi.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Spinal cord injuries are very common worldwide, leading to permanent nerve function loss with devastating effects in the affected patients. The challenges and inadequate results in the current clinical treatments are leading scientists to innovative neural regenerative research. Advances in nanoscience and neural tissue engineering have opened new avenues for spinal cord injury (SCI) treatment. In order for designed nerve guidance conduit (NGC) to be functionally useful, it must have ideal scaffold properties and topographic features that promote the linear orientation of damaged axons. In this study, it is aimed to develop channeled polycaprolactone (PCL)/Poly-D,L-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, modify their surfaces by IKVAV pentapeptide/gold nanoparticles (AuNPs) or polypyrrole (PPy) and investigate the behavior of motor neurons on the designed scaffold surfaces in vitro under static/bioreactor conditions. Their potential to promote neural regeneration after implantation into the rat SCI by shaping the film scaffolds modified with neural factors into a tubular form is also examined. It is shown that channeled groups decorated with AuNPs highly promote neurite orientation under bioreactor conditions and also the developed optimal NGC (PCL/PLGA G1-IKVAV/BDNF/NGF-AuNP50) highly regenerates SCI. The results indicate that the designed scaffold can be an ideal candidate for spinal cord regeneration.
Collapse
Affiliation(s)
- Ilyas Ozcicek
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Nese Aysit
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Zeynep Balcikanli
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Nilufer Ulas Ayturk
- Department of Histology and Embryology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Asel Aydeger
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Gulsena Baydas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Mehmet Serif Aydin
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Esra Altintas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Umit Can Erim
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, 34815, Turkey
| |
Collapse
|
10
|
Wang XF, Vigouroux R, Syonov M, Baglaenko Y, Nikolakopoulou AM, Ringuette D, Rus H, DiStefano PV, Dufour S, Shabanzadeh AP, Lee S, Mueller BK, Charish J, Harada H, Fish JE, Wither J, Wälchli T, Cloutier JF, Zlokovic BV, Carlen PL, Monnier PP. The liver and muscle secreted HFE2-protein maintains central nervous system blood vessel integrity. Nat Commun 2024; 15:1037. [PMID: 38310100 PMCID: PMC10838306 DOI: 10.1038/s41467-024-45303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Liver failure causes breakdown of the Blood CNS Barrier (BCB) leading to damages of the Central-Nervous-System (CNS), however the mechanisms whereby the liver influences BCB-integrity remain elusive. One possibility is that the liver secretes an as-yet to be identified molecule(s) that circulate in the serum to directly promote BCB-integrity. To study BCB-integrity, we developed light-sheet imaging for three-dimensional analysis. We show that liver- or muscle-specific knockout of Hfe2/Rgmc induces BCB-breakdown, leading to accumulation of toxic-blood-derived fibrinogen in the brain, lower cortical neuron numbers, and behavioral deficits in mice. Soluble HFE2 competes with its homologue RGMa for binding to Neogenin, thereby blocking RGMa-induced downregulation of PDGF-B and Claudin-5 in endothelial cells, triggering BCB-disruption. HFE2 administration in female mice with experimental autoimmune encephalomyelitis, a model for multiple sclerosis, prevented paralysis and immune cell infiltration by inhibiting RGMa-mediated BCB alteration. This study has implications for the pathogenesis and potential treatment of diseases associated with BCB-dysfunction.
Collapse
Affiliation(s)
- Xue Fan Wang
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Institute of Biomedical and Biomaterial Engineering, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | - Robin Vigouroux
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | - Michal Syonov
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | - Yuriy Baglaenko
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
| | - Angeliki M Nikolakopoulou
- Department of Physiology and Neuroscience, The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Dene Ringuette
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | - Horea Rus
- University of Maryland, School of Medicine, Department of Neurology, Baltimore, MD, 21201, USA
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, 101 College St. Rm 3-308, Toronto, M5L 1L7, ON, Canada
| | - Suzie Dufour
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
| | - Alireza P Shabanzadeh
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
| | - Seunggi Lee
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | | | - Jason Charish
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
| | - Hidekiyo Harada
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 101 College St. Rm 3-308, Toronto, M5L 1L7, ON, Canada
| | - Joan Wither
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
| | - Thomas Wälchli
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Group of CNS Angiogenesis and Neurovascular Link, and Physician-Scientist Program, Institute for Regenerative Medicine, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Jean-François Cloutier
- The Neuro - Montreal Neurological Institute and Hospital, 3801 Rue Université, Montréal, QC, H3A 2B4, Canada
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada
- Institute of Biomedical and Biomaterial Engineering, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada
- Department of Physiology and Neuroscience, The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Philippe P Monnier
- Krembil Research Institute, University Health Network, Krembil Discovery Tower, 60 Leonard St.,, Toronto, M5T 2O8, ON, Canada.
- Institute of Biomedical and Biomaterial Engineering, University of Toronto, 1 King's College circle,, Toronto, M5S 1A8, ON, Canada.
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, 340 College St.,, ON, Toronto, M5T 3A9, Canada.
| |
Collapse
|
11
|
Kalluri HV, Rosebraugh MR, Boehm N, Locke C, Ziemann A, Xiong H. Comparability of Elezanumab Safety, Tolerability, and Pharmacokinetics in Healthy Japanese, Chinese, and White Participants. Clin Pharmacol Drug Dev 2024; 13:180-189. [PMID: 38191982 DOI: 10.1002/cpdd.1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 01/10/2024]
Abstract
Elezanumab is a fully human monoclonal antibody, which is directed against repulsive guidance molecule A. The safety, tolerability, pharmacokinetics (PK), and immunogenicity of elezanumab were assessed in 2 Phase 1 clinical studies. The objective of this study was to assess the PK, safety, tolerability, and immunogenicity following intravenous infusion of elezanumab in healthy adult Japanese, Han Chinese, and Caucasian participants as well as Western participants from the single-ascending-dose study. Elezanumab exposures were approximately 20% higher in Japanese and Han Chinese participants compared to White participants without controlling for body weight. After statistically controlling for body weight by including it as a covariate, the PK of elezanumab in White participants were comparable to those in Japanese and Han Chinese participants. The clinical implications of these exposure differences are yet to be determined. All adverse events were assessed by the investigator as having no reasonable possibility of being related to the study drugs and were mild in severity. No positive immunogenicity effect was observed that impacted elezanumab exposure or safety.
Collapse
Affiliation(s)
- Hari V Kalluri
- Clinical Pharmacology, AbbVie Inc, North Chicago, IL, USA
| | | | - Nils Boehm
- DMPK-BA, AbbVie Inc, North Chicago, IL, USA
| | | | - Adam Ziemann
- Neuroscience Development, AbbVie Inc, North Chicago, IL, USA
| | - Hao Xiong
- Clinical Pharmacology, AbbVie Inc, North Chicago, IL, USA
| |
Collapse
|
12
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Shimizu M, Shiraishi N, Tada S, Sasaki T, Beck G, Nagano S, Kinoshita M, Sumi H, Sugimoto T, Ishida Y, Koda T, Ishikura T, Sugiyama Y, Kihara K, Kanakura M, Nakajima T, Takeda S, Takahashi MP, Yamashita T, Okuno T, Mochizuki H. RGMa collapses the neuronal actin barrier against disease-implicated protein and exacerbates ALS. SCIENCE ADVANCES 2023; 9:eadg3193. [PMID: 37992159 PMCID: PMC10665002 DOI: 10.1126/sciadv.adg3193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Repulsive guidance molecule A (RGMa) was originally identified as a neuronal growth cone-collapsing factor. Previous reports have demonstrated the multifunctional roles of RGMa mediated by neogenin1. However, the pathogenic involvement of RGMa in amyotrophic lateral sclerosis (ALS) remains unclear. Here, we demonstrated that RGMa concentration was elevated in the cerebrospinal fluid of both patients with ALS and transgenic mice overexpressing the mutant human superoxide dismutase1 (mSOD1 mice). Treatment with humanized anti-RGMa monoclonal antibody ameliorated the clinical symptoms in mSOD1 mice. Histochemical analysis revealed that the anti-RGMa antibody significantly decreased mutant SOD1 protein accumulation in the motor neurons of mSOD1 mice via inhibition of actin depolymerization. In vitro analysis revealed that the anti-RGMa antibody inhibited the cellular uptake of the mutant SOD1 protein, presumably by reinforcing the neuronal actin barrier. Collectively, these data suggest that RGMa leads to the collapse of the neuronal actin barrier and promotes aberrant protein deposition, resulting in exacerbation of the ALS pathology.
Collapse
Affiliation(s)
- Mikito Shimizu
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoyuki Shiraishi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoru Tada
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Clinical Research, National Hospital Organization Osaka-Minami Medical Center, Kawachinagano, Osaka, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Goichi Beck
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurotherapeutics, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisae Sumi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Tomoyuki Sugimoto
- Graduate School of Data Science, Shiga University, Hikone, Shiga, Japan
| | - Yoko Ishida
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Teruyuki Ishikura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keigo Kihara
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Minami Kanakura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsuneo Nakajima
- Department of Geriatric and General Medicine, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka, Japan
| | - Masanori P. Takahashi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
14
|
Punjani N, Deska-Gauthier D, Hachem LD, Abramian M, Fehlings MG. Neuroplasticity and regeneration after spinal cord injury. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 15:100235. [PMID: 37416090 PMCID: PMC10320621 DOI: 10.1016/j.xnsj.2023.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition with significant personal, societal, and economic burden. The highest proportion of traumatic injuries occur at the cervical level, which results in severe sensorimotor and autonomic deficits. Following the initial physical damage associated with traumatic injuries, secondary pro-inflammatory, excitotoxic, and ischemic cascades are initiated further contributing to neuronal and glial cell death. Additionally, emerging evidence has begun to reveal that spinal interneurons undergo subtype specific neuroplastic circuit rearrangements in the weeks to months following SCI, contributing to or hindering functional recovery. The current therapeutic guidelines and standards of care for SCI patients include early surgery, hemodynamic regulation, and rehabilitation. Additionally, preclinical work and ongoing clinical trials have begun exploring neuroregenerative strategies utilizing endogenous neural stem/progenitor cells, stem cell transplantation, combinatorial approaches, and direct cell reprogramming. This review will focus on emerging cellular and noncellular regenerative therapies with an overview of the current available strategies, the role of interneurons in plasticity, and the exciting research avenues enhancing tissue repair following SCI.
Collapse
Affiliation(s)
- Nayaab Punjani
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dylan Deska-Gauthier
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laureen D. Hachem
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
| | - Madlene Abramian
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
15
|
Lawrence JM, Schardien K, Wigdahl B, Nonnemacher MR. Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol Commun 2023; 11:42. [PMID: 36915214 PMCID: PMC10009953 DOI: 10.1186/s40478-023-01526-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
In the contexts of aging, injury, or neuroinflammation, activated microglia signaling with TNF-α, IL-1α, and C1q induces a neurotoxic astrocytic phenotype, classified as A1, A1-like, or neuroinflammatory reactive astrocytes. In contrast to typical astrocytes, which promote neuronal survival, support synapses, and maintain blood-brain barrier integrity, these reactive astrocytes downregulate supportive functions and begin to secrete neurotoxic factors, complement components like C3, and chemokines like CXCL10, which may facilitate recruitment of immune cells across the BBB into the CNS. The proportion of pro-inflammatory reactive astrocytes increases with age through associated microglia activation, and these pro-inflammatory reactive astrocytes are particularly abundant in neurodegenerative disorders. As the identification of astrocyte phenotypes progress, their molecular and cellular effects are characterized in a growing array of neuropathologies.
Collapse
Affiliation(s)
- Jill M Lawrence
- Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kayla Schardien
- Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Gu G, Zhu B, Ren J, Song X, Fan B, Ding H, Shang J, Wu H, Li J, Wang H, Li J, Wei Z, Feng S. Ang-(1-7)/MasR axis promotes functional recovery after spinal cord injury by regulating microglia/macrophage polarization. Cell Biosci 2023; 13:23. [PMID: 36739421 PMCID: PMC9899400 DOI: 10.1186/s13578-023-00967-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/19/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory response is an essential part of secondary injury after spinal cord injury (SCI). During this period, the injury may be exacerbated through the release of a large number of inflammatory factors and the polarization of infiltrating macrophages and microglia towards M1. Ang-(1-7), mainly generated by Ang II via angiotensin-converting enzyme 2 (ACE2), can specifically bind to the G protein-coupled receptor Mas (MasR) and plays an important role in regulating inflammation and alleviating oxidative stress. METHODS We aimed to investigate whether activating the Ang-(1-7)/MasR axis in rats after SCI can regulate local neuroinflammation to achieve functional recovery and obtain its potential mechanism. MasR expression of bone marrow-derived macrophages was determined by Western blot. Immunofluorescence, Western blot, Flow cytometry, and RT-qPCR were applied to evaluate the polarization of Ang-(1-7) on macrophages and the regulation of inflammatory cytokines. Previous evaluation of the spinal cord and bladder after SCI was conducted by hematoxylin-eosin staining, Basso, Beattie, and Bresnahan (BBB) score, inclined plate test, electrophysiology, and catwalk were used to evaluate the functional recovery of rats. RESULTS MasR expression increased in macrophages under inflammatory conditions and further elevated after Ang-(1-7) treatment. Both in vivo and in vitro results confirmed that Ang-(1-7) could regulate the expression of inflammatory cytokines by down-regulating proinflammatory cytokines and up-regulating anti-inflammatory cytokines, and bias the polarization direction of microglia/macrophages to M2 phenotypic. After SCI, Ang-(1-7) administration in situ led to better histological and functional recovery in rats, and this recovery at least partly involved the TLR4/NF-κB signaling pathway. CONCLUSION As shown in our data, activating Ang-(1-7)/MasR axis can effectively improve the inflammatory microenvironment after spinal cord injury, promote the polarization of microglia/macrophages towards the M2 phenotype, and finally support the recovery of motor function. Therefore, we suggest using Ang-(1-7) as a feasible treatment strategy for spinal cord injury to minimize the negative consequences of the inflammatory microenvironment after spinal cord injury.
Collapse
Affiliation(s)
- Guangjin Gu
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Bin Zhu
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Jie Ren
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Xiaomeng Song
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Baoyou Fan
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Han Ding
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Jun Shang
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Heng Wu
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Junjin Li
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Hongda Wang
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Jinze Li
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Zhijian Wei
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China ,Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong China
| | - Shiqing Feng
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China ,Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong China
| |
Collapse
|
17
|
Almeida F, Marques S, Santos A, Prins C, Cardoso F, Heringer L, Mendonça H, Martinez A. Molecular approaches for spinal cord injury treatment. Neural Regen Res 2023; 18:23-30. [PMID: 35799504 PMCID: PMC9241396 DOI: 10.4103/1673-5374.344830] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.
Collapse
|
18
|
Development of Neurogenic Detrusor Overactivity after Thoracic Spinal Cord Injury Is Accompanied by Time-Dependent Changes in Lumbosacral Expression of Axonal Growth Regulators. Int J Mol Sci 2022; 23:ijms23158667. [PMID: 35955811 PMCID: PMC9368817 DOI: 10.3390/ijms23158667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Thoracic spinal cord injury (SCI) results in urinary dysfunction, which majorly affects the quality of life of SCI patients. Abnormal sprouting of lumbosacral bladder afferents plays a crucial role in this condition. Underlying mechanisms may include changes in expression of regulators of axonal growth, including chondroitin sulphate proteoglycans (CSPGs), myelin-associated inhibitors (MAIs) and repulsive guidance molecules, known to be upregulated at the injury site post SCI. Here, we confirmed lumbosacral upregulation of the growth-associated protein GAP43 in SCI animals with bladder dysfunction, indicating the occurrence of axonal sprouting. Neurocan and Phosphacan (CSPGs), as well as Nogo-A (MAI), at the same spinal segments were upregulated 7 days post injury (dpi) but returned to baseline values 28 dpi. In turn, qPCR analysis of the mRNA levels for receptors of those repulsive molecules in dorsal root ganglia (DRG) neurons showed a time-dependent decrease in receptor expression. In vitro assays with DRG neurons from SCI rats demonstrated that exposure to high levels of NGF downregulated the expression of some, but not all, receptors for those regulators of axonal growth. The present results, therefore, show significant molecular changes at the lumbosacral cord and DRGs after thoracic lesion, likely critically involved in neuroplastic events leading to urinary impairment.
Collapse
|
19
|
Liu D, Zusman BE, Shaffer JR, Li Y, Arockiaraj AI, Liu S, Weeks DE, Desai SM, Kochanek PM, Puccio AM, Okonkwo DO, Conley YP, Jha RM. Decreased DNA Methylation of RGMA is Associated with Intracranial Hypertension After Severe Traumatic Brain Injury: An Exploratory Epigenome-Wide Association Study. Neurocrit Care 2022; 37:26-37. [PMID: 35028889 PMCID: PMC9287123 DOI: 10.1007/s12028-021-01424-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cerebral edema and intracranial hypertension are major contributors to unfavorable prognosis in traumatic brain injury (TBI). Local epigenetic changes, particularly in DNA methylation, may influence gene expression and thus host response/secondary injury after TBI. It remains unknown whether DNA methylation in the central nervous system is associated with cerebral edema severity or intracranial hypertension post TBI. We sought to identify epigenome-wide DNA methylation patterns associated with these forms of secondary injury after TBI. METHODS We obtained genome-wide DNA methylation profiles of DNA extracted from ventricular cerebrospinal fluid samples at three different postinjury time points from a prospective cohort of patients with severe TBI (n = 89 patients, 254 samples). Cerebral edema and intracranial pressure (ICP) measures were clustered to generate composite end points of cerebral edema and ICP severity. We performed an unbiased epigenome-wide association study (EWAS) to test associations between DNA methylation at 419,895 cytosine-phosphate-guanine (CpG) sites and cerebral edema/ICP severity categories. Given inflated p values, we conducted permutation tests for top CpG sites to filter out potential false discoveries. RESULTS Our data-driven hierarchical clustering across six cerebral edema and ICP measures identified two groups differing significantly in ICP based on the EWAS-identified CpG site cg22111818 in RGMA (Repulsive guidance molecule A, permutation p = 4.20 × 10-8). At 3-4 days post TBI, patients with severe intracranial hypertension had significantly lower levels of methylation at cg22111818. CONCLUSIONS We report a novel potential relationship between intracranial hypertension after TBI and an acute, nonsustained reduction in DNA methylation at cg22111818 in the RGMA gene. To our knowledge, this is the largest EWAS in severe TBI. Our findings are further strengthened by previous findings that RGMA modulates axonal repair in other central nervous system disorders, but a role in intracranial hypertension or TBI has not been previously identified. Additional work is warranted to validate and extend these findings, including assessment of its possible role in risk stratification, identification of novel druggable targets, and ultimately our ability to personalize therapy in TBI.
Collapse
Affiliation(s)
- Dongjing Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Benjamin E Zusman
- School of Medicine, University of Pittsburgh, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15213, USA
| | - Yunqi Li
- Institute for Public Health Genetics, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Annie I Arockiaraj
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Shuwei Liu
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Shashvat M Desai
- Department of Neurology, Neurobiology and Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, John G Rangos Research Center, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Ava M Puccio
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - David O Okonkwo
- School of Nursing, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15261, USA
| | - Yvette P Conley
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
- School of Nursing, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15261, USA.
| | - Ruchira M Jha
- Department of Neurology, Neurobiology and Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, 240 West Thomas Road, Phoenix, AZ, 85013, USA.
- St Joseph's Hospital and Medical Center, 240 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
20
|
Mothe AJ, Jacobson PB, Caprelli M, Ulndreaj A, Rahemipour R, Huang L, Monnier PP, Fehlings MG, Tator CH. Delayed administration of elezanumab, a human anti-RGMa neutralizing monoclonal antibody, promotes recovery following cervical spinal cord injury. Neurobiol Dis 2022; 172:105812. [PMID: 35810963 DOI: 10.1016/j.nbd.2022.105812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) elicits a cascade of degenerative events including cell death, axonal degeneration, and the upregulation of inhibitory molecules which limit repair. Repulsive guidance molecule A (RGMa) is an axon growth inhibitor which is also involved in neuronal cell death and differentiation. SCI causes upregulation of RGMa in the injured rodent, non-human primate, and human spinal cord. Recently, we showed that delayed administration of elezanumab, a high affinity human RGMa-specific monoclonal antibody, promoted neuroprotective and regenerative effects following thoracic SCI. Since most human traumatic SCI is at the cervical level, and level-dependent anatomical and molecular differences may influence pathophysiological responses to injury and treatment, we examined the efficacy of elezanumab and its therapeutic time window of administration in a clinically relevant rat model of cervical impact-compression SCI. Pharmacokinetic analysis of plasma and spinal cord tissue lysate showed comparable levels of RGMa antibodies with delayed administration following cervical SCI. At 12w after SCI, elezanumab promoted long term benefits including perilesional sparing of motoneurons and increased neuroplasticity of key descending pathways involved in locomotion and fine motor function. Elezanumab also promoted growth of corticospinal axons into spinal cord gray matter and enhanced serotonergic innervation of the ventral horn to form synaptic connections caudal to the cervical lesion. Significant recovery in grip and trunk/core strength, locomotion and gait, and spontaneous voiding ability was found in rats treated with elezanumab either immediately post-injury or at 3 h post-SCI, and improvements in specific gait parameters were found when elezanumab was delayed to 24 h post-injury. We also developed a new locomotor score, the Cervical Locomotor Score, a simple and sensitive measure of trunk/core and limb strength and stability during dynamic locomotion.
Collapse
Affiliation(s)
- Andrea J Mothe
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada.
| | - Peer B Jacobson
- Department of Translational Sciences, AbbVie Inc., North Chicago, IL 60064, USA
| | - Mitchell Caprelli
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Antigona Ulndreaj
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Radmehr Rahemipour
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Lili Huang
- AbbVie Biologics, AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | - Philippe P Monnier
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, M5S 3H6, ON, Canada
| | - Michael G Fehlings
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T 2S8, ON, Canada
| | - Charles H Tator
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T 2S8, ON, Canada.
| |
Collapse
|
21
|
Hirata T, Itokazu T, Sasaki A, Sugihara F, Yamashita T. Humanized Anti-RGMa Antibody Treatment Promotes Repair of Blood-Spinal Cord Barrier Under Autoimmune Encephalomyelitis in Mice. Front Immunol 2022; 13:870126. [PMID: 35784362 PMCID: PMC9241446 DOI: 10.3389/fimmu.2022.870126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of established biomarkers which reflect dynamic neuropathological alterations in multiple sclerosis (MS) makes it difficult to determine the therapeutic response to the tested drugs and to identify the key biological process that mediates the beneficial effect of them. In the present study, we applied high-field MR imaging in locally-induced experimental autoimmune encephalomyelitis (EAE) mice to evaluate dynamic changes following treatment with a humanized anti-repulsive guidance molecule-a (RGMa) antibody, a potential drug for MS. Based on the longitudinal evaluation of various MRI parameters including white matter, axon, and myelin integrity as well as blood-spinal cord barrier (BSCB) disruption, anti-RGMa antibody treatment exhibited a strong and prompt therapeutic effect on the disrupted BSCB, which was paralleled by functional improvement. The antibody’s effect on BSCB repair was also suggested via GeneChip analysis. Moreover, immunohistochemical analysis revealed that EAE-induced vascular pathology which is characterized by aberrant thickening of endothelial cells and perivascular type I/IV collagen deposits were attenuated by anti-RGMa antibody treatment, further supporting the idea that the BSCB is one of the key therapeutic targets of anti-RGMa antibody. Importantly, the extent of BSCB disruption detected by MRI could predict late-phase demyelination, and the predictability of myelin integrity based on the extent of acute-phase BSCB disruption was compromised following anti-RGMa antibody treatment. These results strongly support the concept that longitudinal MRI with simultaneous DCE-MRI and DTI analysis can be used as an imaging biomarker and is useful for unbiased prioritization of the key biological process that mediates the therapeutic effect of tested drugs.
Collapse
Affiliation(s)
- Takeshi Hirata
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Takahide Itokazu
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Toshihide Yamashita, ; Takahide Itokazu,
| | - Atsushi Sasaki
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Molecular Neuroscience, World Premier International Research Center Initiative (WPI)-Immunology Frontier Research Center, Osaka University, Suita, Japan
- *Correspondence: Toshihide Yamashita, ; Takahide Itokazu,
| |
Collapse
|
22
|
Nieraad H, de Bruin N, Arne O, Hofmann MCJ, Pannwitz N, Resch E, Luckhardt S, Schneider AK, Trautmann S, Schreiber Y, Gurke R, Parnham MJ, Till U, Geisslinger G. The Roles of Long-Term Hyperhomocysteinemia and Micronutrient Supplementation in the AppNL–G–F Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:876826. [PMID: 35572151 PMCID: PMC9094364 DOI: 10.3389/fnagi.2022.876826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
A causal contribution of hyperhomocysteinemia to cognitive decline and Alzheimer’s disease (AD), as well as potential prevention or mitigation of the pathology by dietary intervention, have frequently been subjects of controversy. In the present in vivo study, we attempted to further elucidate the impact of elevated homocysteine (HCys) and homocysteic acid (HCA) levels, induced by dietary B-vitamin deficiency, and micronutrient supplementation on AD-like pathology, which was simulated using the amyloid-based AppNL–G–F knock-in mouse model. For this purpose, cognitive assessment was complemented by analyses of ex vivo parameters in whole blood, serum, CSF, and brain tissues from the mice. Furthermore, neurotoxicity of HCys and HCA was assessed in a separate in vitro assay. In confirmation of our previous study, older AppNL–G–F mice also exhibited subtle phenotypic impairment and extensive cerebral amyloidosis, whereas dietary manipulations did not result in significant effects. As revealed by proximity extension assay-based proteome analysis, the AppNL–G–F genotype led to an upregulation of AD-characteristic neuronal markers. Hyperhomocysteinemia, in contrast, indicated mainly vascular effects. Overall, since there was an absence of a distinct phenotype despite both a significant amyloid-β burden and serum HCys elevation, the results in this study did not corroborate the pathological role of amyloid-β according to the “amyloid hypothesis,” nor of hyperhomocysteinemia on cognitive performance. Nevertheless, this study aided in further characterizing the AppNL–G–F model and in elucidating the role of HCys in diverse biological processes. The idea of AD prevention with the investigated micronutrients, however, was not supported, at least in this mouse model of the disease.
Collapse
Affiliation(s)
- Hendrik Nieraad
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- *Correspondence: Natasja de Bruin,
| | - Olga Arne
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Martine C. J. Hofmann
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Nina Pannwitz
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Eduard Resch
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Sonja Luckhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Ann-Kathrin Schneider
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals, Reykjavík, Iceland
| | - Uwe Till
- Former Institute of Pathobiochemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Müller T. Perspective: cell death mechanisms and early diagnosis as precondition for disease modification in Parkinson's disease: are we on the right track? Expert Rev Mol Diagn 2022; 22:403-409. [PMID: 35400295 DOI: 10.1080/14737159.2022.2065198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Current research paradigms on biomarkers for chronic neurodegenerative diseases, such as Parkinson's disease, focus on identification of reliable, easy-to-apply tools for diagnostic screening and progression assessment. AREAS COVERED This perspective discusses possible misconceptions of biomarker research in chronic neurodegeneration from a clinician's view based on a not systematic literature search. Multifactorial disease triggers, heterogeneity of symptom and their progression are main reasons for the still missing availability of biomarkers. EXPERT OPINION Onset of chronic neurodegenerative disease entities may probably result from a decompensated endogenous repair machinery in the central nervous system, for example the neogenin receptor associated repulsive guidance molecule pathway. Future clinical research is warranted on these repair structures and aim to identify markers for the imbalance between damage and repair, which hypothetically contributes to generation of disease. An assignment to a specific chronic neurodegenerative disease entity probably appears to be secondary. Decryption of probable molecular signals of an impaired repair potential will enable an earlier diagnosis, better monitoring of disease progress and of treatment response. This concept will hopefully provide better preconditions for prevention, cure or therapeutic beneficial disease modification. These unmet therapeutic needs may be achieved for example via antagonism of repulsive guidance molecule A.
Collapse
Affiliation(s)
- Thomas Müller
- Department of NeurologySt. Joseph Hospital Berlin-Weißensee, Gartenstr.1 Berlin, Germany
| |
Collapse
|
24
|
Bebo BF, Allegretta M, Landsman D, Zackowski KM, Brabazon F, Kostich WA, Coetzee T, Ng AV, Marrie RA, Monk KR, Bar-Or A, Whitacre CC. Pathways to cures for multiple sclerosis: A research roadmap. Mult Scler 2022; 28:331-345. [PMID: 35236198 PMCID: PMC8948371 DOI: 10.1177/13524585221075990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Multiple Sclerosis (MS) is a growing global health challenge affecting nearly 3 million people. Progress has been made in the understanding and treatment of MS over the last several decades, but cures remain elusive. The National MS Society is focused on achieving cures for MS. Objectives: Cures for MS will be hastened by having a roadmap that describes knowledge gaps, milestones, and research priorities. In this report, we share the Pathways to Cures Research Roadmap and recommendations for strategies to accelerate the development of MS cures. Methods: The Roadmap was developed through engagement of scientific thought leaders and people affected by MS from North America and the United Kingdom. It also included the perspectives of over 300 people living with MS and was endorsed by many leading MS organizations. Results: The Roadmap consist of three distinct but overlapping cure pathways: (1) stopping the MS disease process, (2) restoring lost function by reversing damage and symptoms, and (3) ending MS through prevention. Better alignment and focus of global resources on high priority research questions are also recommended. Conclusions: We hope the Roadmap will inspire greater collaboration and alignment of global resources that accelerate scientific breakthroughs leading to cures for MS.
Collapse
Affiliation(s)
- Bruce F Bebo
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Mark Allegretta
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Douglas Landsman
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Kathy M Zackowski
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Fiona Brabazon
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Walter A Kostich
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Timothy Coetzee
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | | | - Ruth Ann Marrie
- Department of Internal Medicine (Neurology), University of Manitoba, Winnipeg, MB, Canada
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
25
|
Varadarajan SG, Hunyara JL, Hamilton NR, Kolodkin AL, Huberman AD. Central nervous system regeneration. Cell 2022; 185:77-94. [PMID: 34995518 PMCID: PMC10896592 DOI: 10.1016/j.cell.2021.10.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Neurons of the mammalian central nervous system fail to regenerate. Substantial progress has been made toward identifying the cellular and molecular mechanisms that underlie regenerative failure and how altering those pathways can promote cell survival and/or axon regeneration. Here, we summarize those findings while comparing the regenerative process in the central versus the peripheral nervous system. We also highlight studies that advance our understanding of the mechanisms underlying neural degeneration in response to injury, as many of these mechanisms represent primary targets for restoring functional neural circuits.
Collapse
Affiliation(s)
| | - John L Hunyara
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natalie R Hamilton
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Huang L, Fung E, Bose S, Popp A, Böser P, Memmott J, Kutskova YA, Miller R, Tarcsa E, Klein C, Veldman GM, Mueller BK, Cui YF. Elezanumab, a clinical stage human monoclonal antibody that selectively targets repulsive guidance molecule A to promote neuroregeneration and neuroprotection in neuronal injury and demyelination models. Neurobiol Dis 2021; 159:105492. [PMID: 34478849 DOI: 10.1016/j.nbd.2021.105492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Repulsive guidance molecule A (RGMa) is a potent inhibitor of axonal growth and a regulator of neuronal cell death. It is up-regulated following neuronal injury and accumulates in chronic neurodegenerative diseases. Neutralizing RGMa has the potential to promote neuroregeneration and neuroprotection. Previously we reported that a rat anti-N terminal RGMa (N-RGMa) antibody r5F9 and its humanized version h5F9 (ABT-207) promote neuroprotection and neuroregeneration in preclinical neurodegenerative disease models. However, due to its cross-reactivity to RGMc/hemojuvelin, ABT-207 causes iron accumulation in vivo, which could present a safety liability. Here we report the generation and characterization of a novel RGMa-selective anti-N-RGMa antibody elezanumab, which is currently under Phase 2 clinical evaluation in multiple disease indications. Elezanumab, a human monoclonal antibody generated by in vitro PROfusion mRNA display technology, competes with ABT-207 in binding to N-RGMa but lacks RGMc cross-reactivity with no impact on iron metabolism. It neutralizes repulsive activity of soluble RGMa in vitro and blocks membrane RGMa mediated BMP signaling. In the optic nerve crush and optic neuritis models, elezanumab promotes axonal regeneration and prevents retinal nerve fiber layer degeneration. In the spinal targeted experimental autoimmune encephalomyelitis (EAE) model, elezanumab promotes axonal regeneration and remyelination, decreases inflammatory lesion area and improves functional recovery. Finally, in the mouse cuprizone model, elezanumab reduces demyelination, which is consistent with its inhibitory effect on BMP signaling. Taken together, these preclinical data demonstrate that elezanumab has neuroregenerative and neuroprotective activities without impact on iron metabolism, thus providing a compelling rationale for its clinical development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lili Huang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Emma Fung
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Sahana Bose
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Andreas Popp
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - Preethne Böser
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - John Memmott
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Yuliya A Kutskova
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Renee Miller
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Edit Tarcsa
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Corinna Klein
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | | | - Bernhard K Mueller
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - Yi-Fang Cui
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| |
Collapse
|
27
|
A review of emerging neuroprotective and neuroregenerative therapies in traumatic spinal cord injury. Curr Opin Pharmacol 2021; 60:331-340. [PMID: 34520943 DOI: 10.1016/j.coph.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Traumatic spinal cord injuries (SCIs) have far-reaching physical, social, and financial consequences. While medical advancements have improved supportive therapeutic measures for SCI patients, no effective neuroregenerative therapeutic options exist to date. Instead, the paradigm of SCI therapy is inevitably directed towards damage control rather than the restoration of a state of functional independence. Facing a continuous increase in the prevalence of spinal cord injured patients, neuroprotective and neuroregenerative strategies have earned tremendous scientific interest. This review intends to provide a robust summary of the most promising neuroprotective and neuroregenerative therapies currently under investigation. While we highlight encouraging neuroprotective strategies as well, the focus of this review lies on neuroregenerative therapies, including neuropharmacological and cell-based approaches. We finally point to the exciting investigational areas of biomaterial scaffolds and neuromodulation therapies.
Collapse
|
28
|
Park JM, Han YM, Oh JY, Lee DY, Choi SH, Hahm KB. Transcriptome profiling implicated in beneficiary actions of kimchi extracts against Helicobacter pylori infection. J Clin Biochem Nutr 2021; 69:171-187. [PMID: 34616109 PMCID: PMC8482382 DOI: 10.3164/jcbn.20-116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary intervention to prevent Helicobacter pylori (H. pylori)-gastric cancer might be ideal because of no risk of bacterial resistance, safety, and rejuvenating action of atrophic gastritis. We have published data about the potential of fermented kimchi as nutritional approach for H. pylori. Hence recent advances in RNAseq analysis lead us to investigate the transcriptome analysis to explain these beneficiary actions of kimchi. gastric cells were infected with either H. pylori or H. pylori plus kimchi. 943 genes were identified as significantly increased or decreased genes according to H. pylori infection and 68 genes as significantly changed between H. pylori infection and H. pylori plus kimchi (p<0.05). Gene classification and Medline database showed DLL4, FGF18, PTPRN, SLC7A11, CHAC1, FGF21, ASAN, CTH, and CREBRF were identified as significantly increased after H. pylori, but significantly decreased with kimchi and NEO1, CLDN8, KLRG1, and IGFBP1 were identified as significantly decreased after H. pylori, but increased with kimchi. After KEGG and STRING-GO analysis, oxidative stress, ER stress, cell adhesion, and apoptosis genes were up-regulated with H. pylori infection but down-regulated with kimchi, whereas tissue regeneration, cellular anti-oxidative response, and anti-inflammation genes were reversely regulated with kimchi (p<0.01). Conclusively, transcriptomes of H. pylori plus kimchi showed significant biological actions.
Collapse
Affiliation(s)
- Jong Min Park
- Daejeon University School of Oriental Medicine, Daejeon, 34520, Korea
| | - Young Min Han
- Seoul Center, Korea Basic Science Institute, Seoul, 02456, Korea
| | - Ji Young Oh
- CJ Food Research Center, Suwon, 16471, Korea
| | | | | | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, Pangyo, 13497, Korea
- Medpacto Research Institute, Medpacto, Seoul, 06668, Korea
| |
Collapse
|
29
|
Müller T. View Point: Disease Modification and Cell Secretome Based Approaches in Parkinson's Disease: Are We on the Right Track? Biologics 2021; 15:307-316. [PMID: 34349499 PMCID: PMC8328382 DOI: 10.2147/btt.s267281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022]
Abstract
The term idiopathic Parkinson's disease describes an entity of various not well-characterized disorders resembling each other. They are characterized by chronic neuronal dying originating from various disease mechanisms. They result in the onset of motor and related non-motor features, both of which respond to administration of personalized drug combinations and surgical therapies. The unmet need is beneficial disease course modification with repair and neurogenesis. Objectives are to discuss the value of cell secretome based treatments including neuronal graft transplantation and to suggest as an alternative the stimulation of an endogenous available approach for neuronal repair. Chronic neurodegenerative processes result from different heterogeneous, but complementing metabolic, pathological cascade sequences. Accumulated evidence from experimental research suggested neuron transplantation, stem cell application and cell secretome-based therapies as a promising future treatment with cure as an ultimate goal. To date, clinical testing of disease-modifying treatments has focused on substitution or repair of the remaining dopamine synthesizing neurons following diagnosis. At diagnosis, many of the still surviving and functioning, but already affected neurons have lost most of their axons and are primed for cell death. A more promising therapeutic concept may be the stimulation of an existing, endogenous repair system in the peripheral and central nervous systems. The abundant protein repulsive guidance molecule A blocks restoration and neurogenesis, both of which are mediated via the neogenin receptor. Inhibition of the physiological effects of repulsive guidance molecule A is an endogenous available repair pathway in chronic neurodegeneration. Antagonism of this protein with antibodies or stimulation of the neogenin receptor should be considered as an initial repair step. It is an alternative to cell replacement, stem cell or associated cell secretome concepts.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, 13088, Germany
| |
Collapse
|
30
|
Tator CH. Spinal Cord Injury: Journey of Discovery. Neurosurg Clin N Am 2021; 32:xi-xvii. [PMID: 34053730 DOI: 10.1016/j.nec.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Charles H Tator
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Suite 4W-422, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
31
|
Roy A, Pathak Z, Kumar H. Strategies to neutralize RhoA/ROCK pathway after spinal cord injury. Exp Neurol 2021; 343:113794. [PMID: 34166685 DOI: 10.1016/j.expneurol.2021.113794] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 01/22/2023]
Abstract
Regeneration is bungled following CNS injuries, including spinal cord injury (SCI). Inherent decay of permissive conditions restricts the regrowth of the mature CNS after an injury. Hypertrophic scarring, insignificant intrinsic axon-growth activity, and axon-growth inhibitory molecules such as myelin inhibitors and scar inhibitors constitute a significant hindrance to spinal cord repair. Besides these molecules, a combined absence of various mechanisms responsible for axonal regeneration is the main reason behind the dereliction of the adult CNS to regenerate. The neutralization of specific inhibitors/proteins by stymieing antibodies or encouraging enzymatic degradation results in improved axon regeneration. Previous efforts to induce regeneration after SCI have stimulated axonal development in or near lesion sites, but not beyond them. Several pathways are responsible for the axonal growth obstruction after a CNS injury, including SCI. Herein, we summarize the axonal, glial, and intrinsic factor which impedes the regeneration. We have also discussed the methods to stabilize microtubules and through this to maintain the proper cytoskeletal dynamics of growth cone as disorganized microtubules lead to the failure of axonal regeneration. Moreover, we primarily focus on diverse inhibitors of axonal growth and molecular approaches to counteract them and their downstream intracellular signaling through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
32
|
An enhanced therapeutic effect of repetitive transcranial magnetic stimulation combined with antibody treatment in a primate model of spinal cord injury. PLoS One 2021; 16:e0252023. [PMID: 34077429 PMCID: PMC8172028 DOI: 10.1371/journal.pone.0252023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/10/2021] [Indexed: 11/30/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex (MI) is expected to provide a therapeutic impact on spinal cord injury (SCI). On the other hand, treatment with antibody against repulsive guidance molecule-a (RGMa) has been shown to ameliorate motor deficits after SCI in rodents and primates. Facilitating activity of the corticospinal tract (CST) by rTMS following rewiring of CST fibers by anti-RGMa antibody treatment may exert an enhanced effect on motor recovery in a primate model of SCI. To address this issue, we examined whether such a combined therapeutic strategy could contribute to accelerating functional restoration from SCI. In our SCI model, unilateral lesions were made between the C6 and the C7 level. Two macaque monkeys were used for each of the combined therapy and antibody treatment alone, while one monkey was for rTMS alone. The antibody treatment was continuously carried out for four weeks immediately after SCI, and rTMS trials applying a thermoplastic mask and a laser distance meter lasted ten weeks. Behavioral assessment was performed over 14 weeks after SCI to investigate the extent to which motor functions were restored with the antibody treatment and/or rTMS. While rTMS without the preceding antibody treatment produced no discernible sign for functional recovery, a combination of the antibody and rTMS exhibited a greater effect, especially at an early stage of rTMS trials, on restoration of dexterous hand movements. The present results indicate that rTMS combined with anti-RGMa antibody treatment may exert a synergistic effect on motor recovery from SCI.
Collapse
|
33
|
Jacobson PB, Goody R, Lawrence M, Mueller BK, Zhang X, Hooker BA, Pfleeger K, Ziemann A, Locke C, Barraud Q, Droescher M, Bernhard J, Popp A, Boeser P, Huang L, Mollon J, Mordashova Y, Cui YF, Savaryn JP, Grinnell C, Dreher I, Gold M, Courtine G, Mothe A, Tator CH, Guest JD. Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity, and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates. Neurobiol Dis 2021; 155:105385. [PMID: 33991647 DOI: 10.1016/j.nbd.2021.105385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition characterized by loss of function, secondary to damaged spinal neurons, disrupted axonal connections, and myelin loss. Spontaneous recovery is limited, and there are no approved pharmaceutical treatments to reduce ongoing damage or promote repair. Repulsive guidance molecule A (RGMa) is upregulated following injury to the central nervous system (CNS), where it is believed to induce neuronal apoptosis and inhibit axonal growth and remyelination. We evaluated elezanumab, a human anti-RGMa monoclonal antibody, in a novel, newly characterized non-human primate (NHP) hemicompression model of thoracic SCI. Systemic intravenous (IV) administration of elezanumab over 6 months was well tolerated and associated with significant improvements in locomotor function. Treatment of animals for 16 weeks with a continuous intrathecal infusion of elezanumab below the lesion was not efficacious. IV elezanumab improved microstructural integrity of extralesional tissue as reflected by higher fractional anisotropy and magnetization transfer ratios in treated vs. untreated animals. IV elezanumab also reduced SCI-induced increases in soluble RGMa in cerebrospinal fluid, and membrane bound RGMa rostral and caudal to the lesion. Anterograde tracing of the corticospinal tract (CST) from the contralesional motor cortex following 20 weeks of IV elezanumab revealed a significant increase in the density of CST fibers emerging from the ipsilesional CST into the medial/ventral gray matter. There was a significant sprouting of serotonergic (5-HT) fibers rostral to the injury and in the ventral horn of lower thoracic regions. These data demonstrate that 6 months of intermittent IV administration of elezanumab, beginning within 24 h after a thoracic SCI, promotes neuroprotection and neuroplasticity of key descending pathways involved in locomotion. These findings emphasize the mechanisms leading to improved recovery of neuromotor functions with elezanumab in acute SCI in NHPs.
Collapse
Affiliation(s)
- Peer B Jacobson
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America.
| | - Robin Goody
- Virscio, New Haven, CT, United States of America
| | | | - Bernhard K Mueller
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Xiaomeng Zhang
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Bradley A Hooker
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Kimberly Pfleeger
- Department of Neuroscience Development, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Adam Ziemann
- Department of Neuroscience Development, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Charles Locke
- Department of Biometrics, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Defitech Center for Interventional Neurotherapies, (NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Mathias Droescher
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Joerg Bernhard
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Andreas Popp
- Department of Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Preethne Boeser
- Department of Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Lili Huang
- AbbVie Biologics, AbbVie Bioresearch Center, 381 Plantation St., Worcester, MA 01605, United States of America
| | - Jennifer Mollon
- Data and Statistical Sciences, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Yulia Mordashova
- Data and Statistical Sciences, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Yi-Fang Cui
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - John P Savaryn
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Christine Grinnell
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Ingeborg Dreher
- Department of Bioanalytics, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Michael Gold
- Department of Neuroscience Development, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Defitech Center for Interventional Neurotherapies, (NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Andrea Mothe
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles H Tator
- Division of Neurosurgery, Toronto Western Hospital, and University of Toronto, Toronto, Canada
| | - James D Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
34
|
Repulsive Guidance Molecule-a and Central Nervous System Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5532116. [PMID: 33997000 PMCID: PMC8112912 DOI: 10.1155/2021/5532116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Repulsive guidance molecule-a (RGMa) is a member of glycosylphosphatidylinositol- (GPI-) anchored protein family, which has axon guidance function and is widely involved in the development and pathological processes of the central nervous system (CNS). On the one hand, the binding of RGMa and its receptor Neogenin can regulate axonal guidance, differentiation of neural stem cells into neurons, and the survival of these cells; on the other hand, RGMa can inhibit functional recovery of CNS by inhibiting axonal growth. A number of studies have shown that RGMa may be involved in the pathogenesis of CNS diseases, such as multiple sclerosis, neuromyelitis optica spectrum diseases, cerebral infarction, spinal cord injury, Parkinson's disease, and epilepsy. Targeting RGMa can enhance the functional recovery of CNS, so it may become a promising target for the treatment of CNS diseases. This article will comprehensively review the research progression of RGMa in various CNS diseases up to date.
Collapse
|
35
|
Robinson RA, Griffiths SC, van de Haar LL, Malinauskas T, van Battum EY, Zelina P, Schwab RA, Karia D, Malinauskaite L, Brignani S, van den Munkhof MH, Düdükcü Ö, De Ruiter AA, Van den Heuvel DMA, Bishop B, Elegheert J, Aricescu AR, Pasterkamp RJ, Siebold C. Simultaneous binding of Guidance Cues NET1 and RGM blocks extracellular NEO1 signaling. Cell 2021; 184:2103-2120.e31. [PMID: 33740419 PMCID: PMC8063088 DOI: 10.1016/j.cell.2021.02.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.
Collapse
Affiliation(s)
- Ross A Robinson
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Samuel C Griffiths
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eljo Y van Battum
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Rebekka A Schwab
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lina Malinauskaite
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sara Brignani
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Marleen H van den Munkhof
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Özge Düdükcü
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Anna A De Ruiter
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Dianne M A Van den Heuvel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jonathan Elegheert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
36
|
Perspective: Treatment for Disease Modification in Chronic Neurodegeneration. Cells 2021; 10:cells10040873. [PMID: 33921342 PMCID: PMC8069143 DOI: 10.3390/cells10040873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Symptomatic treatments are available for Parkinson's disease and Alzheimer's disease. An unmet need is cure or disease modification. This review discusses possible reasons for negative clinical study outcomes on disease modification following promising positive findings from experimental research. It scrutinizes current research paradigms for disease modification with antibodies against pathological protein enrichment, such as α-synuclein, amyloid or tau, based on post mortem findings. Instead a more uniform regenerative and reparative therapeutic approach for chronic neurodegenerative disease entities is proposed with stimulation of an endogenously existing repair system, which acts independent of specific disease mechanisms. The repulsive guidance molecule A pathway is involved in the regulation of peripheral and central neuronal restoration. Therapeutic antagonism of repulsive guidance molecule A reverses neurodegeneration according to experimental outcomes in numerous disease models in rodents and monkeys. Antibodies against repulsive guidance molecule A exist. First clinical studies in neurological conditions with an acute onset are under way. Future clinical trials with these antibodies should initially focus on well characterized uniform cohorts of patients. The efficiency of repulsive guidance molecule A antagonism and associated stimulation of neurogenesis should be demonstrated with objective assessment tools to counteract dilution of therapeutic effects by subjectivity and heterogeneity of chronic disease entities. Such a research concept will hopefully enhance clinical test strategies and improve the future therapeutic armamentarium for chronic neurodegeneration.
Collapse
|
37
|
Chakraborty A, Ciciriello AJ, Dumont CM, Pearson RM. Nanoparticle-Based Delivery to Treat Spinal Cord Injury-a Mini-review. AAPS PharmSciTech 2021; 22:101. [PMID: 33712968 PMCID: PMC8733957 DOI: 10.1208/s12249-021-01975-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
There is an increasing need to develop improved and non-invasive strategies to treat spinal cord injury (SCI). Nanoparticles (NPs) are an enabling technology to improve drug delivery, modulate inflammatory responses, and restore functional responses following SCI. However, the complex pathophysiology associated with SCI presents several distinct challenges that must be overcome for sufficient NP drug delivery to the spinal cord. The objective of this mini-review is to highlight the physiological challenges and cell types available for modulation and discuss several promising advancements using NPs to improve SCI treatment. We will focus our discussion on recent innovative approaches in NP drug delivery and how the implementation of multifactorial approaches to address the proinflammatory and complex immune dysfunction in SCI offers significant potential to improve outcomes in SCI.
Collapse
Affiliation(s)
- Atanu Chakraborty
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland, 21201, USA
| | - Andrew J Ciciriello
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida, 33156, USA
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida, 33136, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida, 33156, USA.
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida, 33136, USA.
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, Maryland, 21201, USA.
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Maryland, 21201, Baltimore, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
38
|
An N, Yang J, Wang H, Sun S, Wu H, Li L, Li M. Mechanism of mesenchymal stem cells in spinal cord injury repair through macrophage polarization. Cell Biosci 2021; 11:41. [PMID: 33622388 PMCID: PMC7903655 DOI: 10.1186/s13578-021-00554-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Treatment and rehabilitation of spinal cord injury (SCI) is a major problem in clinical medicine. Modern medicine has achieved minimal progress in improving the functions of injured nerves in patients with SCI, mainly due to the complex pathophysiological changes that present after injury. Inflammatory reactions occurring after SCI are related to various functions of immune cells over time at different injury sites. Macrophages are important mediators of inflammatory reactions and are divided into two different subtypes (M1 and M2), which play important roles at different times after SCI. Mesenchymal stem cells (MSCs) are characterized by multi-differentiation and immunoregulatory potentials, and different treatments can have different effects on macrophage polarization. MSC transplantation has become a promising method for eliminating nerve injury caused by SCI and can help repair injured nerve tissues. Therapeutic effects are related to the induced formation of specific immune microenvironments, caused by influencing macrophage polarization, controlling the consequences of secondary injury after SCI, and assisting with function recovery. Herein, we review the mechanisms whereby MSCs affect macrophage-induced specific immune microenvironments, and discuss potential avenues of investigation for improving SCI treatment.
Collapse
Affiliation(s)
- Nan An
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The Second Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jiaxu Yang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hequn Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Shengfeng Sun
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Hao Wu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.,The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
39
|
Oda W, Fujita Y, Baba K, Mochizuki H, Niwa H, Yamashita T. Inhibition of repulsive guidance molecule-a protects dopaminergic neurons in a mouse model of Parkinson's disease. Cell Death Dis 2021; 12:181. [PMID: 33589594 PMCID: PMC7884441 DOI: 10.1038/s41419-021-03469-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/26/2022]
Abstract
Repulsive guidance molecule-a (RGMa), a glycosylphosphatidylinositol-anchored membrane protein, has diverse functions in axon guidance, cell patterning, and cell survival. Inhibition of RGMa attenuates pathological dysfunction in animal models of central nervous system (CNS) diseases including spinal cord injury, multiple sclerosis, and neuromyelitis optica. Here, we examined whether antibody-based inhibition of RGMa had therapeutic effects in a mouse model of Parkinson's disease (PD). We treated mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and found increased RGMa expression in the substantia nigra (SN). Intraventricular, as well as intravenous, administration of anti-RGMa antibodies reduced the loss of tyrosine hydroxylase (TH)-positive neurons and accumulation of Iba1-positive microglia/macrophages in the SN of MPTP-treated mice. Selective expression of RGMa in TH-positive neurons in the SN-induced neuronal loss/degeneration and inflammation, resulting in a progressive movement disorder. The pathogenic effects of RGMa overexpression were attenuated by treatment with minocycline, which inhibits microglia and macrophage activation. Increased RGMa expression upregulated pro-inflammatory cytokine expression in microglia. Our observations suggest that the upregulation of RGMa is associated with the PD pathology; furthermore, inhibitory RGMa antibodies are a potential therapeutic option.
Collapse
Affiliation(s)
- Wakana Oda
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- World Premier International, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- World Premier International, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
40
|
Uemura E, Tajima G, Murahashi S, Matsumoto N, Tokunaga A, Miura M, Murase T, Ikematsu K, Tasaki O. The expression of repulsive guidance molecule a after traumatic brain injury: Time-course changes in gene expression in a murine model of controlled cortical impact. J Trauma Acute Care Surg 2021; 90:281-286. [PMID: 33264266 DOI: 10.1097/ta.0000000000003041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Repulsive guidance molecule a (RGMa) is a key protein that negatively regulates neuronal regeneration as its inhibition enhances axonal growth and promotes functional recovery in animal models of spinal cord injury. However, the role of RGMa in traumatic brain injury (TBI) remains elusive. This study aimed to clarify TBI-responsive RGMa expression in a murine model. METHODS Adult male C57BL/6J mice were subjected to controlled cortical impact. Brains were extracted 6 hours and 1, 3, 7, 14 and 21 days after injury (n = 6 in each group). Changes in the messenger RNA (mRNA) expression of RGMa and its receptor, neogenin, were evaluated by quantitative polymerase chain reaction in the damaged area of the cortex and contralateral cortex, along with expression measurement of inflammation-related molecules. Neurological deficit was also assessed by the cylinder test. RESULTS Neurological score was consistently lower in the TBI group compared to the sham group throughout the experimental period. The mRNA expressions of representative inflammatory cytokine TNF-α and chemokine receptor CCR2 were remarkably increased in the injured cortex on day 1 and gradually decreased over time, although remaining at higher values at least until day 14. The mRNA expressions of RGMa and neogenin were significantly suppressed in the damaged cortex until day 3. Interestingly, RGMa expression was suppressed most on day 1 and recovered over time. CONCLUSION In the acute phase of TBI, gene expression of inflammatory cytokines significantly increased, and gene expressions of RGMa and neogenin significantly decreased in the inflammatory milieu of the damaged area. Despite the subsequent remission of inflammation, RGMa gene expression recovered to the normal level 1 week after TBI. Intrinsic regenerative response to acute brain injury might be hampered by the following recovery of RGMa expression, hinting at the possibility of functional RGMa inhibition as a new, effective maneuver against TBI.
Collapse
Affiliation(s)
- Eri Uemura
- From the Department of Emergency Medicine (E.U., S.M., N.M., O.T.), Nagasaki University Graduate School of Biomedical Sciences; Acute and Critical Care Center (E.U., G.T., S.M., N.M., A.T., M.M., O.T.), Nagasaki University Hospital; and Department of Forensic Pathology and Science (T.M., K.I.), Nagasaki University Graduate School of Biomedical Sciences Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Novel Lipid-Oligonucleotide Conjugates Containing Long-Chain Sulfonyl Phosphoramidate Groups: Synthesis and Biological Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New lipid conjugates of DNA and RNA incorporating one to four [(4-dodecylphenyl)sulfonyl]phosphoramidate or (hexadecylsulfonyl)phosphoramidate groups at internucleotidic positions near the 3′ or 5′-end were synthesized and characterized. Low cytotoxicity of the conjugates and their ability to be taken up into cells without transfection agents were demonstrated. Lipid-conjugated siRNAs targeting repulsive guidance molecules a (RGMa) have shown a comparable gene silencing activity in PK-59 cells to unmodified control siRNA when delivered into the cells via Lipofectamine mediated transfection.
Collapse
|
42
|
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2021; 14:619707. [PMID: 33505250 PMCID: PMC7829188 DOI: 10.3389/fncel.2020.619707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocyte cell death and subsequent loss of myelin, which can have serious consequences for functional recovery. Demyelination impairs neuronal function by decelerating signal transmission along the axon and has been implicated in many neurodegenerative diseases. After a traumatic injury, mechanisms of endogenous remyelination in the CNS are limited and often fail, for reasons that remain poorly understood. One area of research focuses on enhancing this endogenous response. Existing techniques include the use of small molecules, RNA interference (RNAi), and monoclonal antibodies that target specific signaling components of myelination for recovery. Cell-based replacement strategies geared towards replenishing oligodendrocytes and their progenitors have been utilized by several groups in the last decade as well. In this review article, we discuss the effects of traumatic injury on oligodendrocytes in the CNS, the lack of endogenous remyelination, translational studies in rodent models promoting remyelination, and finally human clinical studies on remyelination in the CNS after injury.
Collapse
Affiliation(s)
| | - Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan A. Brickner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
43
|
Shabanzadeh AP, Charish J, Tassew NG, Farhani N, Feng J, Qin X, Sugita S, Mothe AJ, Wälchli T, Koeberle PD, Monnier PP. Cholesterol synthesis inhibition promotes axonal regeneration in the injured central nervous system. Neurobiol Dis 2021; 150:105259. [PMID: 33434618 DOI: 10.1016/j.nbd.2021.105259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Neuronal regeneration in the injured central nervous system is hampered by multiple extracellular proteins. These proteins exert their inhibitory action through interactions with receptors that are located in cholesterol rich compartments of the membrane termed lipid rafts. Here we show that cholesterol-synthesis inhibition prevents the association of the Neogenin receptor with lipid rafts. Furthermore, we show that cholesterol-synthesis inhibition enhances axonal growth both on inhibitory -myelin and -RGMa substrates. Following optic nerve injury, lowering cholesterol synthesis with both drugs and siRNA-strategies allows for robust axonal regeneration and promotes neuronal survival. Cholesterol inhibition also enhanced photoreceptor survival in a model of Retinitis Pigmentosa. Our data reveal that Lovastatin leads to several opposing effects on regenerating axons: cholesterol synthesis inhibition promotes regeneration whereas altered prenylation impairs regeneration. We also show that the lactone prodrug form of lovastatin has differing effects on regeneration when compared to the ring-open hydroxy-acid form. Thus the association of cell surface receptors with lipid rafts contributes to axonal regeneration inhibition, and blocking cholesterol synthesis provides a potential therapeutic approach to promote neuronal regeneration and survival in the diseased Central Nervous System. SIGNIFICANCE STATEMENT: Statins have been intensively used to treat high levels of cholesterol in humans. However, the effect of cholesterol inhibition in both the healthy and the diseased brain remains controversial. In particular, it is unclear whether cholesterol inhibition with statins can promote regeneration and survival following injuries. Here we show that late stage cholesterol inhibition promotes robust axonal regeneration following optic nerve injury. We identified distinct mechanisms of action for activated vs non-activated Lovastatin that may account for discrepancies found in the literature. We show that late stage cholesterol synthesis inhibition alters Neogenin association with lipid rafts, thereby i) neutralizing the inhibitory function of its ligand and ii) offering a novel opportunity to promote CNS regeneration and survival following injuries.
Collapse
Affiliation(s)
- Alireza P Shabanzadeh
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Physiology, Donald K. Johnson Research Institute, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Anatomy, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Jason Charish
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Nardos G Tassew
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Physiology, Donald K. Johnson Research Institute, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada
| | - Nahal Farhani
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinjue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuzo Sugita
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada
| | - Andrea J Mothe
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada
| | - Thomas Wälchli
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada
| | - Paulo D Koeberle
- Department of Anatomy, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Philippe P Monnier
- Krembil Research Institute, KDT 8-417, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Physiology, Donald K. Johnson Research Institute, 60 Leonard St., Toronto M5T 2S8, Ontario, Canada; Department of Ophthalmology, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada.
| |
Collapse
|
44
|
Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 2020; 9:1509-1530. [PMID: 32691994 PMCID: PMC7695641 DOI: 10.1002/sctm.19-0135] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) are associated with tremendous physical, social, and financial costs for millions of individuals and families worldwide. Rapid delivery of specialized medical and surgical care has reduced mortality; however, long-term functional recovery remains limited. Cell-based therapies represent an exciting neuroprotective and neuroregenerative strategy for SCI. This article summarizes the most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools. Throughout, we emphasize the fundamental biology of cell-based therapies, critical features in the pathophysiology of spinal cord injury, and the strengths and limitations of each approach. We also highlight salient completed and ongoing clinical trials worldwide and the bidirectional translation of their findings. We then provide an overview of key adjunct strategies such as trophic factor support to optimize graft survival and differentiation, engineered biomaterials to provide a support scaffold, electrical fields to stimulate migration, and novel approaches to degrade the glial scar. We also discuss important considerations when initiating a clinical trial for a cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and transportation, and the delivery of cells into humans. We conclude with an outlook on the future of cell-based treatments for SCI and opportunities for interdisciplinary collaboration in the field.
Collapse
Affiliation(s)
- Christopher S. Ahuja
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Andrea Mothe
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Mohamad Khazaei
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Jetan H. Badhiwala
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Emily A. Gilbert
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Derek van der Kooy
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Cindi M. Morshead
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Charles Tator
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| |
Collapse
|
45
|
Yang W, Sun P. Promoting functions of microRNA-29a/199B in neurological recovery in rats with spinal cord injury through inhibition of the RGMA/STAT3 axis. J Orthop Surg Res 2020; 15:427. [PMID: 32948213 PMCID: PMC7501626 DOI: 10.1186/s13018-020-01956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Background The prognostic and therapeutic potential of microRNAs (miRNAs) in spinal cord injury (SCI) has aroused increasing concerns. This study aims to research the functions of miR-29a/199B in the neurological function recovery after SCI and the mechanical mechanism. Methods A rat model with SCI was induced with sham-operated ones as control. The locomotor function and coordination of rat hindlimbs were determined by a Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and a ladder-climbing test, respectively. Expression of a neurofilament protein NF-200 and synaptophysin in gray matter of rats was determined to evaluate neuronal recovery in a cellular perspective. Binding relationships between miR-29a/199B with RGMA were predicted and validated using luciferase assays. Altered expression of miR-29a/199B and RGMA was introduced to explore their functions in rat neurological functions. The protein level and phosphorylation of STAT3 in gray matter were measured by western blot analysis. Results miR-29a and miR-199B were poorly expressed, while RGMA was abundantly expressed in gray matter at injury sites. Either miR-29a or miR-199B could bind to RGMA. Overexpression of miR-29a/199B or silencing of RGMA led to an increase in BBB locomotor scores, hindlimb coordination ability, and the expression of NF-200 and synaptophysin in gray matter. Further inhibition in miR-29a/199B blocked the promoting roles of RGMA silencing in neurological recovery. Upregulation of miR-29a/199B or downregulation of RGMA suppressed the phosphorylation of STAT3. Conclusion This study evidenced that miR-29a and miR-199B negatively regulated RGMA to suppress STAT3 phosphorylation, therefore promoting the neurological function recovery in rats following SCI.
Collapse
Affiliation(s)
- Weijie Yang
- Department of Orthopedics, Shanghai Eighth People's Hospital, No.8, Caobao Road, Shanghai, 200235, People's Republic of China
| | - Ping Sun
- Department of Orthopedics, Shanghai Eighth People's Hospital, No.8, Caobao Road, Shanghai, 200235, People's Republic of China.
| |
Collapse
|
46
|
Malinauskas T, Peer TV, Bishop B, Mueller TD, Siebold C. Repulsive guidance molecules lock growth differentiation factor 5 in an inhibitory complex. Proc Natl Acad Sci U S A 2020; 117:15620-15631. [PMID: 32576689 PMCID: PMC7354924 DOI: 10.1073/pnas.2000561117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Repulsive guidance molecules (RGMs) are cell surface proteins that regulate the development and homeostasis of many tissues and organs, including the nervous, skeletal, and immune systems. They control fundamental biological processes, such as migration and differentiation by direct interaction with the Neogenin (NEO1) receptor and function as coreceptors for the bone morphogenetic protein (BMP)/growth differentiation factor (GDF) family. We determined crystal structures of all three human RGM family members in complex with GDF5, as well as the ternary NEO1-RGMB-GDF5 assembly. Surprisingly, we show that all three RGMs inhibit GDF5 signaling, which is in stark contrast to RGM-mediated enhancement of signaling observed for other BMPs, like BMP2. Despite their opposite effect on GDF5 signaling, RGMs occupy the BMP type 1 receptor binding site similar to the observed interactions in RGM-BMP2 complexes. In the NEO1-RGMB-GDF5 complex, RGMB physically bridges NEO1 and GDF5, suggesting cross-talk between the GDF5 and NEO1 signaling pathways. Our crystal structures, combined with structure-guided mutagenesis of RGMs and BMP ligands, binding studies, and cellular assays suggest that RGMs inhibit GDF5 signaling by competing with GDF5 type 1 receptors. While our crystal structure analysis and in vitro binding data initially pointed towards a simple competition mechanism between RGMs and type 1 receptors as a possible basis for RGM-mediated GDF5 inhibition, further experiments utilizing BMP2-mimicking GDF5 variants clearly indicate a more complex mechanism that explains how RGMs can act as a functionality-changing switch for two structurally and biochemically similar signaling molecules.
Collapse
Affiliation(s)
- Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom;
| | - Tina V Peer
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom;
| |
Collapse
|
47
|
Sami A, Selzer ME, Li S. Advances in the Signaling Pathways Downstream of Glial-Scar Axon Growth Inhibitors. Front Cell Neurosci 2020; 14:174. [PMID: 32714150 PMCID: PMC7346763 DOI: 10.3389/fncel.2020.00174] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Axon growth inhibitors generated by reactive glial scars play an important role in failure of axon regeneration after CNS injury in mature mammals. Among the inhibitory factors, chondroitin sulfate proteoglycans (CSPGs) are potent suppressors of axon regeneration and are important molecular targets for designing effective therapies for traumatic brain injury or spinal cord injury (SCI). CSPGs bind with high affinity to several transmembrane receptors, including two members of the leukocyte common antigen related (LAR) subfamily of receptor protein tyrosine phosphatases (RPTPs). Recent studies demonstrate that multiple intracellular signaling pathways downstream of these two RPTPs mediate the growth-inhibitory actions of CSPGs. A better understanding of these signaling pathways may facilitate development of new and effective therapies for CNS disorders characterized by axonal disconnections. This review will focus on recent advances in the downstream signaling pathways of scar-mediated inhibition and their potential as the molecular targets for CNS repair.
Collapse
Affiliation(s)
- Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
48
|
Mothe AJ, Coelho M, Huang L, Monnier PP, Cui YF, Mueller BK, Jacobson PB, Tator CH. Delayed administration of the human anti-RGMa monoclonal antibody elezanumab promotes functional recovery including spontaneous voiding after spinal cord injury in rats. Neurobiol Dis 2020; 143:104995. [PMID: 32590037 DOI: 10.1016/j.nbd.2020.104995] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022] Open
Abstract
Spinal cord injury (SCI) often results in permanent functional loss due to a series of degenerative events including cell death, axonal damage, and the upregulation of inhibitory proteins that impede regeneration. Repulsive Guidance Molecule A (RGMa) is a potent inhibitor of axonal growth that is rapidly upregulated following injury in both the rodent and human central nervous system (CNS). Previously, we showed that monoclonal antibodies that specifically block inhibitory RGMa signaling promote neuroprotective and regenerative effects when administered acutely in a clinically relevant rat model of thoracic SCI. However, it is unknown whether systemic administration of RGMa blocking antibodies are effective for SCI after delayed administration. Here, we administered elezanumab, a human monoclonal antibody targeting RGMa, intravenously either acutely or at 3 h or 24 h following thoracic clip impact-compression SCI. Rats treated with elezanumab acutely and at 3 h post-injury showed improvements in overground locomotion and fine motor function and gait. Rats treated 24 h post-SCI trended towards better recovery demonstrating significantly greater stride length and swing speed. Treated rats also showed greater tissue preservation with reduced lesion areas. As seen with acute treatment, delayed administration of elezanumab at 3 h post-SCI also increased perilesional neuronal sparing and serotonergic and corticospinal axonal plasticity. In addition, all elezanumab treated rats showed earlier spontaneous voiding ability and less post-trauma bladder wall hypertrophy. Together, our data demonstrate the therapeutic efficacy of delayed systemic administration of elezanumab in a rat model of SCI, and uncovers a new role for RGMa inhibition in bladder recovery following SCI.
Collapse
Affiliation(s)
- Andrea J Mothe
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5T 0S8, Canada.
| | - Marlon Coelho
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Lili Huang
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | - Philippe P Monnier
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5T 0S8, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Yi-Fang Cui
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Bernhard K Mueller
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Peer B Jacobson
- Integrated Sciences and Technology, AbbVie, North Chicago, IL 60064-6099, USA
| | - Charles H Tator
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5T 0S8, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
49
|
Buzoianu-Anguiano V, Rivera-Osorio J, Orozco-Suárez S, Vega-García A, García-Vences E, Sánchez-Torres S, Jiménez-Estrada I, Guizar-Sahagún G, Mondragon-Caso J, Fernández-Valverde F, Madrazo I, Grijalva I. Single vs. Combined Therapeutic Approaches in Rats With Chronic Spinal Cord Injury. Front Neurol 2020; 11:136. [PMID: 32210903 PMCID: PMC7076126 DOI: 10.3389/fneur.2020.00136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022] Open
Abstract
The regenerative capability of the central nervous system is limited after traumatic spinal cord injury (SCI) due to intrinsic and extrinsic factors that inhibit spinal cord regeneration, resulting in deficient functional recovery. It has been shown that strategies, such as pre-degenerated peripheral nerve (PPN) grafts or the use of bone marrow stromal cells (BMSCs) or exogenous molecules, such as chondroitinase ABC (ChABC) promote axonal growth and remyelination, resulting in an improvement in locomotor function. These treatments have been primarily assessed in acute injury models. The aim of the present study is to evaluate the ability of several single and combined treatments in order to modify the course of chronic complete SCI in rats. A complete cord transection was performed at the T9 level. One month later, animals were divided into five groups: original injury only (control group), and original injury plus spinal cord re-transection to create a gap to accommodate BMSCs, PPN, PPN + BMSCs, and PPN + BMSCs + ChABC. In comparison with control and single-treatment groups (PPN and BMSCs), combined treatment groups (PPN + BMSCs and PPN + BMSCs + ChABC) showed significative axonal regrowth, as revealed by an increase in GAP-43 and MAP-1B expression in axonal fibers, which correlated with an improvement in locomotor function. In conclusion, the combined therapies tested here improve locomotor function by enhancing axonal regeneration in rats with chronic SCI. Further studies are warranted to refine this promising line of research for clinical purposes.
Collapse
Affiliation(s)
- Vinnitsa Buzoianu-Anguiano
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Jared Rivera-Osorio
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Angélica Vega-García
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Elisa García-Vences
- Centro de Investigación en Ciencias de la Salud, Universidad Anahuac México Campus Norte, Mexico City, Mexico
| | - Stephanie Sánchez-Torres
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Ismael Jiménez-Estrada
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, IPN, Mexico City, Mexico
| | - Gabriel Guizar-Sahagún
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico.,Departamento de Cirugía Experimental, Proyecto Camina AC, Mexico City, Mexico
| | - Jose Mondragon-Caso
- Centro de Investigación en Ciencias de la Salud, Universidad Anahuac México Campus Norte, Mexico City, Mexico
| | | | - Ignacio Madrazo
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Israel Grijalva
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| |
Collapse
|
50
|
Rigby MJ, Gomez TM, Puglielli L. Glial Cell-Axonal Growth Cone Interactions in Neurodevelopment and Regeneration. Front Neurosci 2020; 14:203. [PMID: 32210757 PMCID: PMC7076157 DOI: 10.3389/fnins.2020.00203] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The developing nervous system is a complex yet organized system of neurons, glial support cells, and extracellular matrix that arranges into an elegant, highly structured network. The extracellular and intracellular events that guide axons to their target locations have been well characterized in many regions of the developing nervous system. However, despite extensive work, we have a poor understanding of how axonal growth cones interact with surrounding glial cells to regulate network assembly. Glia-to-growth cone communication is either direct through cellular contacts or indirect through modulation of the local microenvironment via the secretion of factors or signaling molecules. Microglia, oligodendrocytes, astrocytes, Schwann cells, neural progenitor cells, and olfactory ensheathing cells have all been demonstrated to directly impact axon growth and guidance. Expanding our understanding of how different glial cell types directly interact with growing axons throughout neurodevelopment will inform basic and clinical neuroscientists. For example, identifying the key cellular players beyond the axonal growth cone itself may provide translational clues to develop therapeutic interventions to modulate neuron growth during development or regeneration following injury. This review will provide an overview of the current knowledge about glial involvement in development of the nervous system, specifically focusing on how glia directly interact with growing and maturing axons to influence neuronal connectivity. This focus will be applied to the clinically-relevant field of regeneration following spinal cord injury, highlighting how a better understanding of the roles of glia in neurodevelopment can inform strategies to improve axon regeneration after injury.
Collapse
Affiliation(s)
- Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy M Gomez
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, United States
| |
Collapse
|