1
|
Bai Y, Liu Y, Wang Y, Liu X, Wang Y, Liu H, Yi H, Xu C, Zhang F. IL-18BP Therapy Ameliorates Reproductive and Metabolic Phenotypes in a PCOS Mouse Model by Relieving Inflammation, Fibrosis and Endoplasmic Reticulum Stress. Reprod Sci 2024; 31:3595-3608. [PMID: 38977641 DOI: 10.1007/s43032-024-01631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/22/2024] [Indexed: 07/10/2024]
Abstract
There is a chronic inflammation in PCOS patients, which is correlated with the pathogenesis of PCOS. IL-18 and IL-18BP are related with some inflammatory diseases, while less explored in PCOS. Whether IL-18BP could be a potential drug of PCOS remains unknown.IL-18 and testosterone levels were evaluated in serum of 10 non-PCOS control patients and 20 PCOS patients. Female C57/BL6 mice were gavaged with letrozole to induce PCOS mouse model and IL-18 level was evaluated in the serum of PCOS mouse model, and IL-18 is intraperitoneally injected in female mice, IL-18BP is intraperitoneally injected in the PCOS mice models. Then the body weights, estrous cycles, reproductive hormones and morphology of ovaries were analyzed. The level of ovarian chronic inflammation, fibrosis and endoplasmic reticulum (ER) stress are evaluated.IL-18 levels are increased in the serum of PCOS patients and PCOS mice models respectively. The serum DHEAS, iWAT weight and adipocyte size were increased in IL-18 group compared to the control group (P < 0.05). In the PCOS mouse model treated with IL-18BP, the body weight and serum LH/FSH ratio was decreased compared to the PCOS group (P < 0.05). The expression levels of inflammatory factors and fibrosis-related genes, the expression level of endoplasmic reticulum stress-related genes, and the ROS positive area of ovarian tissue was decreased (P < 0.05).IL-18 is involved in inducing PCOS phenotypes, while IL-18BP relieves PCOS phenotypes by alleviating ovarian chronic inflammation, fibrosis and ER stress in PCOS mice.
Collapse
Affiliation(s)
- Yixuan Bai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yan Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Yuhui Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xitong Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yang Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Haiou Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Huan Yi
- National Key Gynecology Clinical Specialty Construction Unit of China, Fujian Maternity and Child Health Hospital, Fuzhou, China.
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China.
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Alahmadi H, Martinez S, Farrell R, Bikienga R, Arinzeh N, Potts C, Li Z, Warner GR. Mixtures of phthalates disrupt expression of genes related to lipid metabolism and peroxisome proliferator-activated receptor signaling in mouse granulosa cells. Toxicol Sci 2024; 202:69-84. [PMID: 39150890 PMCID: PMC11514836 DOI: 10.1093/toxsci/kfae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
Abstract
Phthalates are a class of known endocrine-disrupting chemicals that are found in common everyday products. Several studies associate phthalate exposure with detrimental effects on ovarian function, including growth and development of the follicle and production of steroid hormones. We hypothesized that dysregulation of the ovary by phthalates may be mediated by phthalate toxicity towards granulosa cells, a major cell type in ovarian follicles responsible for key steps of hormone production and nourishing the developing oocyte. To test the hypothesis that phthalates target granulosa cells, we harvested granulosa cells from adult CD-1 mouse ovaries and cultured them for 96 h in vehicle control, a phthalate mixture, or a phthalate metabolite mixture (0.1 to 100 μg/ml). After culture, we measured metabolism of the phthalate mixture into monoester metabolites by the granulosa cells, finding that granulosa cells do not significantly contribute to ovarian metabolism of phthalates. Immunohistochemistry of phthalate metabolizing enzymes in whole ovaries confirmed that these enzymes are not strongly expressed in granulosa cells of antral follicles and that ovarian metabolism of phthalates likely occurs primarily in the stroma. RNA sequencing of treated granulosa cells identified 407 differentially expressed genes, with overrepresentation of genes from lipid metabolic processes, cholesterol metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Expression of significantly differentially expressed genes related to these pathways was confirmed using qPCR. Our results agree with previous findings that phthalates and phthalate metabolites have different effects on the ovary, but both interfere with PPAR signaling in granulosa cells.
Collapse
Affiliation(s)
- Hanin Alahmadi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07103, United States
| | - Stephanie Martinez
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07103, United States
| | - Rivka Farrell
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07103, United States
| | - Rafiatou Bikienga
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07103, United States
| | - Nneka Arinzeh
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07103, United States
| | - Courtney Potts
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07103, United States
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07103, United States
| |
Collapse
|
3
|
Zaniker EJ, Zhang J, Russo D, Huang R, Suritis K, Drake RS, Barlow-Smith E, Shalek AK, Woodruff TK, Xiao S, Goods BA, Duncan FE. Follicle-intrinsic and spatially distinct molecular programs drive follicle rupture and luteinization during ex vivo mammalian ovulation. Commun Biol 2024; 7:1374. [PMID: 39443665 PMCID: PMC11500180 DOI: 10.1038/s42003-024-07074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
During ovulation, the apical wall of the preovulatory follicle breaks down to facilitate gamete release. In parallel, the residual follicle wall differentiates into a progesterone-producing corpus luteum. Disruption of ovulation, whether through contraceptive intervention or infertility, has implications for women's health. In this study, we harness the power of an ex vivo ovulation model and machine-learning guided microdissection to identify differences between the ruptured and unruptured sides of the follicle wall. We demonstrate that the unruptured side exhibits clear markers of luteinization after ovulation while the ruptured side exhibits cell death signals. RNA-sequencing of individual follicle sides reveals 2099 differentially expressed genes (DEGs) between follicle sides without ovulation induction, and 1673 DEGs 12 h after induction of ovulation. Our model validates molecular patterns consistent with known ovulation biology even though this process occurs in the absence of the ovarian stroma, vasculature, and immune cells. We further identify previously unappreciated pathways including amino acid transport and Jag-Notch signaling on the ruptured side and glycolysis, metal ion processing, and IL-11 signaling on the unruptured side of the follicle. This study yields key insights into follicle-inherent, spatially-defined pathways that underlie follicle rupture, which may further understanding of ovulation physiology and advance women's health.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Daniela Russo
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Ruixu Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Kristine Suritis
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Riley S Drake
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Alex K Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Zhao Y, Wu X, Meng F, Liu X, Yuan J, Zhang X, Tian G, Wu X. ER stress-induced LINC00173 promotes the apoptosis of ovarian granulosa cells by regulating the HRK/PI3K/AKT pathway in polycystic ovary syndrome. Sci Rep 2024; 14:24636. [PMID: 39428498 PMCID: PMC11491470 DOI: 10.1038/s41598-024-75178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder and metabolic abnormality disease that mainly affects women of reproductive age. LINC00173, a novel long noncoding RNA (lncRNA), has emerged as an important factor in the development of PCOS. However, the role of LINC00173 in PCOS development and its specific upstream and downstream mechanisms remain to be further clarified. Here, we found that LINC00173 was significantly upregulated in granulosa cells (GCs) of PCOS patients, and played a crucial role in promoting apoptosis of GCs. Mechanistically, we observed the activation of endoplasmic reticulum (ER) stress in the GCs of PCOS patients, and the ER stress sensor ATF4 could directly induce LINC00173 expression by binding to its promoter. LINC00173 further upregulated the expression of Harakiri (HRK) and subsequently inhibited downstream PI3K/AKT pathway. In conclusions, our study uncovered that ER stress-induced upregulation of LINC00173 leads to increased HRK expression and inhibition of the PI3K/AKT pathway, thereby promoting the progression of PCOS. These findings provide a new therapeutic strategy for the treatment of PCOS.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), 206 East Zhongshan Road, Chang-An District, Shijiazhuang, 050011, Hebei, China
- The Institute of Reproductive Health and Infertility, Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, 050011, Hebei, China
| | - Xiaoqian Wu
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), 206 East Zhongshan Road, Chang-An District, Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, 050011, Hebei, China
| | - Fanyu Meng
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), 206 East Zhongshan Road, Chang-An District, Shijiazhuang, 050011, Hebei, China
- Embryo Laboratory of Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, 050011, Hebei, China
| | - Xiaorong Liu
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), 206 East Zhongshan Road, Chang-An District, Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, 050011, Hebei, China
| | - Jingchuan Yuan
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), 206 East Zhongshan Road, Chang-An District, Shijiazhuang, 050011, Hebei, China
- Embryo Laboratory of Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, 050011, Hebei, China
| | - Xuhui Zhang
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), 206 East Zhongshan Road, Chang-An District, Shijiazhuang, 050011, Hebei, China
- Embryo Laboratory of Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, 050011, Hebei, China
| | - Geng Tian
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), 206 East Zhongshan Road, Chang-An District, Shijiazhuang, 050011, Hebei, China
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, 050011, Hebei, China
| | - Xiaohua Wu
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang (Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University), 206 East Zhongshan Road, Chang-An District, Shijiazhuang, 050011, Hebei, China.
- The Institute of Reproductive Health and Infertility, Shijiazhuang, 050011, Hebei, China.
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
5
|
Karagul MI, Yildirim A, Demiray Asoglu Z, Dogan S, Aktas S, Un I, Barlas IO. Endoplasmic Reticulum Stress in Myometrial Smooth Muscle Cells and Spontaneous Contraction Changes in the Uterus of Dehydroepiandrosterone-induced Polycystic Ovary Syndrome Rats. Cell Biochem Biophys 2024:10.1007/s12013-024-01521-4. [PMID: 39259408 DOI: 10.1007/s12013-024-01521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Myometrial changes in polycystic ovary syndrome (PCOS) are poorly investigated. Thus, we aimed to investigate endoplasmic reticulum (ER) stress in myometrial smooth muscle cells and changes in spontaneous uterine contraction in PCOS. Twenty-one female Sprague-Dawley rats (21 days old) were divided into control (n = 7), vehicle (n = 7) and PCOS (n = 7) groups. While the control group was not injected subcutaneously, the vehicle group was injected subcutaneously with sesame oil (0.2 ml/day) for 20 consecutive days. The PCOS group was injected subcutaneously with dehydroepiandrosterone (6 mg/100 g/day dissolved in 0.2 ml sesame oil) for 20 consecutive days. Blood samples were collected for the measurement of follicle stimulating-hormone (FSH), luteinizing hormone (LH), testosterone (T), estradiol (E2) and glucose-regulated protein 78 (GRP78). The mRNA expression of GRP78 in the uterine tissue samples was analysed by quantitative real-time polymerase chain reaction. GRP78 protein expression was assessed by immunohistochemistry. Myometrial smooth muscle cells were examined by transmission electron microscopy. Uterine contractions were evaluated with isolated organ bath experiments. In the PCOS group, T and LH levels increased significantly, although FSH and E2 levels decreased, but this decrease was not statistically significant. Additionally, GRP78 levels increased significantly in the PCOS group. In the PCOS group, the mRNA level, immunostaining intensity of GRP78, and ER damage grade increased, but the uterine tissue calcium levels, and the frequency and amplitude of spontaneous uterine contractions decreased. The results indicated that increased ER stress in myometrial smooth muscle cells may play a causative role in the decreased spontaneous uterine contractions in PCOS.
Collapse
Affiliation(s)
- Meryem Ilkay Karagul
- Department of Histology and Embryology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Ayse Yildirim
- Department of Histology and Embryology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Zehra Demiray Asoglu
- Department of Histology and Embryology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Serdar Dogan
- Department of Medical Biochemistry, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Savas Aktas
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ismail Un
- Department of Medical Pharmacology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ibrahim Omer Barlas
- Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
6
|
Ding H, Xiang Y, Zhu Q, Wu H, Xu T, Huang Z, Ge H. Endoplasmic reticulum stress-mediated ferroptosis in granulosa cells contributes to follicular dysfunction of polycystic ovary syndrome driven by hyperandrogenism. Reprod Biomed Online 2024; 49:104078. [PMID: 39024925 DOI: 10.1016/j.rbmo.2024.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
RESEARCH QUESTION Does hyperandrogenaemia affect the function of ovarian granulosa cells by activating ferroptosis, and could this process be regulated by endoplasmic reticulum stress? DESIGN Levels of ferroptosis and endoplasmic reticulum stress in granulosa cells were detected in women with and without polycystic ovary syndrome (PCOS) undergoing IVF. Ferroptosis and endoplasmic reticulum stress levels of ovarian tissue and follicle development were detected in control mice and PCOS-like mice models, induced by dehydroepiandrosterone. An in-vitro PCOS model of KGN cells was constructed with testosterone and ferroptosis inhibitor Fer-1. Endoplasmic reticulum stress inhibitor, tauroursodeoxycholate (TUDCA), determined the potential mechanism associated with excessive induction of ferroptosis in granulosa cells related to PCOS, and levels of ferroptosis and endoplasmic reticulum stress were detected. RESULTS Activation of ferroptosis and endoplasmic reticulum stress occurred in granulosa cells of women with PCOS and the varies of PCOS-like mice. The findings in KGN cells demonstrated that testosterone treatment results in elevation of oxidative stress levels, particularly lipid peroxidation, and intracellular iron accumulation in granulosa cells. The expression of genes and proteins associated with factors related to ferroptosis, mitochondrial membrane potential and ultrastructure showed that testosterone activated ferroptosis, whereas Fer-1 reversed these alterations. During in-vitro experiments, activation of endoplasmic reticulum stress induced by testosterone treatment was detected in granulosa cells. In granulosa cells, TUDCA, an inhibitor of endoplasmic reticulum stress, significantly mitigated testosterone-induced ferroptosis. CONCLUSIONS Ferroptosis plays a part in reproductive injury mediated by hyperandrogens associated with PCOS, and may be regulated by endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Huimin Ding
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Yu Xiang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Qi Zhu
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing Medical University, Nanjing, China
| | - Honghui Wu
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Dalian Medical University, Liaoning, China
| | - Tianyue Xu
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Zichao Huang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Hongshan Ge
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China; Graduate School, Nanjing Medical University, Nanjing, China; Graduate School, Dalian Medical University, Liaoning, China.
| |
Collapse
|
7
|
Zhang Y, Wang J. BRD4 absence inactivates endoplasmic reticulum stress to retard dehydroepiandrosterone-triggered ovarian granular cell apoptosis in polycystic ovary syndrome via GRP78. Tissue Cell 2024; 91:102531. [PMID: 39216305 DOI: 10.1016/j.tice.2024.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a hormonal disorder and significantly affects reproductive and metabolic function. Bromodomain-containing protein 4 (BRD4) is reported to promote ovarian fibrosis in PCOS. The present work was conducted to investigate the detailed role of BRD4 and the corresponding functional mechanism in PCOS. Functional experiments including CCK-8 method, EDU staining and TUNEL staining were used to detect the key cellular processes. Western blot examined the expression of BRD4, apoptosis- and endoplasmic reticulum stress (ERS)-associated proteins. HDOCK server predicted the binding of BRD4 with Glucose-Regulated Protein 78 (GRP78), which was validated by Co-IP assay. BRD4 expression was increased and ERS was activated in dehydroepiandrosterone (DHEA)-induced KGN cells. Inhibition of BRD4 improved the viability whereas it inhibited the apoptosis and ERS of KGN cells induced by DHEA. In addition, BRD4 bound to GRP78. GRP78 elevation or ERS activator tunicamycin (TM) partly abolished the impacts of BRD4 silencing on the ERS, proliferation and apoptosis in DHEA-treated KGN cells. Anyway, knockdown of BRD4 may reduce DHEA-induced ovarian granular cell damage in PCOS via inactivating GRP78-mediated ERS.
Collapse
Affiliation(s)
- Yi Zhang
- Department of gynaecology and obstetrics, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang 315012, China
| | - Jianjun Wang
- Department of gynaecology and obstetrics, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China.
| |
Collapse
|
8
|
Zeng Y, Wang C, Yang C, Shan X, Meng XQ, Zhang M. Unveiling the role of chronic inflammation in ovarian aging: insights into mechanisms and clinical implications. Hum Reprod 2024; 39:1599-1607. [PMID: 38906835 DOI: 10.1093/humrep/deae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/14/2024] [Indexed: 06/23/2024] Open
Abstract
Ovarian aging, a natural process in women and various other female mammals as they age, is characterized by a decline in ovarian function and fertility due to a reduction in oocyte reserve and quality. This phenomenon is believed to result from a combination of genetic, hormonal, and environmental factors. While these factors collectively contribute to the shaping of ovarian aging, the substantial impact and intricate interplay of chronic inflammation in this process have been somewhat overlooked in discussions. Chronic inflammation, a prolonged and sustained inflammatory response persisting over an extended period, can exert detrimental effects on tissues and organs. This review delves into the novel hallmark of aging-chronic inflammation-to further emphasize the primary characteristics of ovarian aging. It endeavors to explore not only the clinical symptoms but also the underlying mechanisms associated with this complex process. By shining a spotlight on chronic inflammation, the aim is to broaden our understanding of the multifaceted aspects of ovarian aging and its potential clinical implications.
Collapse
Affiliation(s)
- Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Chun Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Cuiting Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Xudong Shan
- Genital Medicine Center, The Third People's Hospital of Cheng, Sichuan, China
| | - Xiang-Qian Meng
- Department of Reproductive Medicine, Sichuan Jinxin Xinan Woman & Children Hospital, Chengdu, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Jabarpour M, Amidi F, Aleyasin A, Nashtaei MS, Marghmaleki MS. Randomized clinical trial of astaxanthin supplement on serum inflammatory markers and ER stress-apoptosis gene expression in PBMCs of women with PCOS. J Cell Mol Med 2024; 28:e18464. [PMID: 39036884 PMCID: PMC11261353 DOI: 10.1111/jcmm.18464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/23/2024] Open
Abstract
Polycystic ovarian syndrome (PCOS) is related to pro-apoptotic and pro-inflammatory conditions generated by Endoplasmic reticulum (ER) stress. This study aimed to determine the effect of Astaxanthin (ASX), as carotenoid with potent antioxidant and anti-inflammatory properties, on serum inflammatory markers, apoptotic factors and ER stress-apoptotic genes in peripheral blood mononuclear cells (PBMCs) of women with PCOS. This randomized, double-blind clinical trial included 56 PCOS patients aged 18-40. For 8 weeks, subjects were randomly assigned to one of two groups: either 12 mg ASX (n = 28) or placebo (n = 28). Real-time PCR was used to quantify gene expression associated with ER stress-apoptosis in PCOS women's PBMCs. The levels of TNF-α, IL18, IL6 and CRP were determined by obtaining blood samples from all patients before and after the intervention using Enzyme-linked immunosorbent assay (ELISA). Also, the levels of active caspase-3 and caspase-8 were detected in the PBMC by ELISA kit. Furthermore, we evaluated the efficacy of ASX on disease symptoms. Following the 8-week intervention, ASX supplementation was able to reduce the expression of GRP78 (p = 0.051), CHOP (p = 0.008), XBP1 (p = 0.002), ATF4 (0.038), ATF6 (0.157) and DR5 (0.016) when compared to the placebo. However, this decrease was not statistically significant for ATF6 (p = 0.067) and marginally significant for GRP78 (p = 0.051). The levels of TNF-α (p = 0.009), IL-18 (p = 0.003), IL-6 (p = 0.013) and active caspase-3 (p = 0.012) were also statistically significant lower in the therapy group. However, there was no significant difference in CRP (p = 0.177) and caspase-8 (p = 0.491) levels between the treatment and control groups. In our study, ASX had no significant positive effect on BMI, hirsutism, hair loss and regularity of the menstrual cycle. It appears that ASX may benefit PCOS by changing the ER stress-apoptotic pathway and reducing serum inflammatory markers; however, additional research is required to determine this compound's potential relevance.
Collapse
Affiliation(s)
- Masoome Jabarpour
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Fardin Amidi
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Yas HospitalTehran University of Medical SciencesTehranIran
| | - Ashraf Aleyasin
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | | |
Collapse
|
10
|
Zaniker EJ, Zhang M, Hughes L, La Follette L, Atazhanova T, Trofimchuk A, Babayev E, Duncan FE. Shear wave elastography to assess stiffness of the human ovary and other reproductive tissues across the reproductive lifespan in health and disease†. Biol Reprod 2024; 110:1100-1114. [PMID: 38609185 PMCID: PMC11180622 DOI: 10.1093/biolre/ioae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The ovary is one of the first organs to show overt signs of aging in the human body, and ovarian aging is associated with a loss of gamete quality and quantity. The age-dependent decline in ovarian function contributes to infertility and an altered endocrine milieu, which has ramifications for overall health. The aging ovarian microenvironment becomes fibro-inflammatory and stiff with age, and this has implications for ovarian physiology and pathology, including follicle growth, gamete quality, ovulation dynamics, and ovarian cancer. Thus, developing a non-invasive tool to measure and monitor the stiffness of the human ovary would represent a major advance for female reproductive health and longevity. Shear wave elastography is a quantitative ultrasound imaging method for evaluation of soft tissue stiffness. Shear wave elastography has been used clinically in assessment of liver fibrosis and characterization of tendinopathies and various neoplasms in thyroid, breast, prostate, and lymph nodes as a non-invasive diagnostic and prognostic tool. In this study, we review the underlying principles of shear wave elastography and its current clinical uses outside the reproductive tract as well as its successful application of shear wave elastography to reproductive tissues, including the uterus and cervix. We also describe an emerging use of this technology in evaluation of human ovarian stiffness via transvaginal ultrasound. Establishing ovarian stiffness as a clinical biomarker of ovarian aging may have implications for predicting the ovarian reserve and outcomes of Assisted Reproductive Technologies as well as for the assessment of the efficacy of emerging therapeutics to extend reproductive longevity. This parameter may also have broad relevance in other conditions where ovarian stiffness and fibrosis may be implicated, such as polycystic ovarian syndrome, late off target effects of chemotherapy and radiation, premature ovarian insufficiency, conditions of differences of sexual development, and ovarian cancer. Summary sentence: Shear Wave Elastography is a non-invasive technique to study human tissue stiffness, and here we review its clinical applications and implications for reproductive health and disease.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Man Zhang
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lydia Hughes
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Tomiris Atazhanova
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexis Trofimchuk
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
11
|
Kouchakzadeh F, Ebrahimi-Barough S, Aflatoonian B, Ai J, Mazaheri F, Montazeri F, Hajizadeh-Tafti F, Golzadeh J, Naser R, Sepehri M, Kalantar SM. Therapeutic potential of endometrial stem cells encapsulated in alginate/gelatin hydrogel to treat of polycystic ovary syndrome. Regen Ther 2024; 26:693-707. [PMID: 39286642 PMCID: PMC11403143 DOI: 10.1016/j.reth.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in women, often leading to infertility due to anovulation. Recent advances suggest that endometrial stem cells (EnSCs) hold considerable promise for tissue regeneration, which could be pivotal in treating PCOS. To enhance the survival and stabilization of EnSCs within the ovary, the EnSCs were encapsulated in an injectable alginate/gelatin hydrogel (SC-H), which has excellent biocompatibility to support the survival of EnSCs. Polycystic ovary syndrome was induced in female Wistar rats using intraperitoneal injection of letrozole over 21 days. Then the rats were treated with SC, SC-H and clomiphene citrate for one-month post-PCOS induction. The effects of these treatments were evaluated based on changes in body and ovarian weights, inflammatory markers, endocrine profiles, and ovarian histology. The Induction of PCOS led to a significant increase in body and ovarian cyst weight, elevated serum levels of testosterone, luteinizing hormone (LH), and anti-Müllerian hormone (AMH), alongside reduced follicle-stimulating hormone (FSH) and progesterone levels. Histologically, there was a decrease in granulosa cells, immature follicles, and corpus luteum numbers. Treatment with SC and SC-H significantly mitigated these alterations, indicating improved PCOS conditions. Our findings demonstrate that SC and SC-H treatments can effectively ameliorate the symptoms of letrozole-induced PCOS in rats, primarily through their anti-inflammatory effects. This study lays the groundwork for potential clinical applications of EnSCs encapsulated in alginate/gelatin hydrogel as a novel therapeutic strategy for PCOS, highlighting the importance of biomaterials in stem cell-based therapies.
Collapse
Affiliation(s)
- Fatemeh Kouchakzadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahime Mazaheri
- Medical Nanotechnology and Tissue Engineering Research Centre, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Hajizadeh-Tafti
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Jalal Golzadeh
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Reza Naser
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sepehri
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
12
|
Babu A, Devi Rajeswari V, Ganesh V, Das S, Dhanasekaran S, Usha Rani G, Ramanathan G. Gut Microbiome and Polycystic Ovary Syndrome: Interplay of Associated Microbial-Metabolite Pathways and Therapeutic Strategies. Reprod Sci 2024; 31:1508-1520. [PMID: 38228976 DOI: 10.1007/s43032-023-01450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted disease with an intricate etiology affecting reproductive-aged women. Despite attempts to unravel the pathophysiology, the molecular mechanism of PCOS remains unknown. There are no effective or suitable therapeutic strategies available to ameliorate PCOS; however, the symptoms can be managed. In recent years, a strong association has been found between the gut microbiome and PCOS, leading to the formulation of novel ideas on the genesis and pathological processes of PCOS. Further, gut microbiome dysbiosis involving microbial metabolites may trigger PCOS symptoms via many mechanistic pathways including those associated with carbohydrates, short-chain fatty acids, lipopolysaccharides, bile acids, and gut-brain axis. We present the mechanistic pathways of PCOS-related microbial metabolites and therapeutic opportunities available to treat PCOS, such as prebiotics, probiotics, and fecal microbiota therapy. In addition, the current review highlights the emerging treatment strategies available to alleviate the symptoms of PCOS.
Collapse
Affiliation(s)
- Achsha Babu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Ganesh
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sivaraman Dhanasekaran
- Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - G Usha Rani
- Department of Obstetrics And Gynecology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
13
|
Yu S, Hou C, Zhang X, Wei Z. Mesencephalic astrocyte-derived neurotrophic factor ameliorates inflammatory response in polycystic ovary syndrome via inhibiting TLR4-NF-κB-NLRP3 pathway. Biochem Biophys Res Commun 2024; 707:149782. [PMID: 38493745 DOI: 10.1016/j.bbrc.2024.149782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder in women of reproductive age, which often leads to female infertility. Chronic inflammation is a significant factor in the development of PCOS. Our study aimed to explore the impact of mesencephalic astrocyte-derived neurotrophic factor (MANF), a scientifically validated anti-inflammatory factor, on 99 diagnosed PCOS patients. We also investigated its effects on PCOS mice induced with dehydroepiandrosterone (DHEA) and KGN cells induced with dihydrotestosterone (DHT). Our findings revealed a decrease in serum MANF levels in PCOS patients, which were negatively associated with serum tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels. The administration of recombinant human MANF (rhMANF) in PCOS mice demonstrated a decrease in pro-inflammatory cytokines and monocytes/macrophages in both peripheral blood and ovarian tissues. Furthermore, the inclusion of rhMANF notably ameliorated DHEA-induced ovarian dysfunction and fibrosis by negatively regulating the toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB)-NLR family, pyrin domain containing protein 3 (NLRP3) pathway. Additionally, in vitro experiments showed that the up-regulation of MANF offset DHT-induced inhibition of viability and apoptosis in KGN cells. Collectively, this study highlights the anti-inflammatory properties of MANF in PCOS and suggests its potential as a therapeutic approach for the management of PCOS.
Collapse
Affiliation(s)
- Shujun Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chao Hou
- School of Basic Medical Science, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinru Zhang
- School of Basic Medical Science, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
14
|
Alahmadi H, Martinez S, Farrell R, Bikienga R, Arinzeh N, Potts C, Li Z, Warner GR. Mixtures of phthalates disrupt expression of genes related to lipid metabolism and peroxisome proliferator-activated receptor signaling in mouse granulosa cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592217. [PMID: 38746167 PMCID: PMC11092572 DOI: 10.1101/2024.05.02.592217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Phthalates are a class of known endocrine disrupting chemicals that are found in common everyday products. Several studies associate phthalate exposure with detrimental effects on ovarian functions, including growth and development of the follicle and production of steroid hormones. We hypothesized that dysregulation of the ovary by phthalates may be mediated by phthalate toxicity towards granulosa cells, a major cell type in ovarian follicles responsible for key steps of hormone production and nourishing the developing oocyte. To test the hypothesis that phthalates target granulosa cells, we harvested granulosa cells from adult CD-1 mouse ovaries and cultured them for 96 hours in vehicle control, a phthalate mixture, or a phthalate metabolite mixture (0.1-100 μg/mL). After culture, we measured metabolism of the phthalate mixture into monoester metabolites by the granulosa cells, finding that granulosa cells do not significantly contribute to ovarian metabolism of phthalates. Immunohistochemistry of phthalate metabolizing enzymes in whole ovaries confirmed that these enzymes are not strongly expressed in granulosa cells of antral follicles and that ovarian metabolism of phthalates likely occurs primarily in the stroma. RNA sequencing of treated granulosa cells identified 407 differentially expressed genes, with overrepresentation of genes from lipid metabolic processes, cholesterol metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Expression of significantly differentially expressed genes related to these pathways were confirmed using qPCR. Our results agree with previous findings that phthalates and phthalate metabolites have different effects on the ovary and interfere with PPAR signaling in granulosa cells.
Collapse
|
15
|
Tanaka T, Urata Y, Harada M, Kunitomi C, Kusamoto A, Koike H, Xu Z, Sakaguchi N, Tsuchida C, Komura A, Teshima A, Takahashi N, Wada-Hiraike O, Hirota Y, Osuga Y. Cellular senescence of granulosa cells in the pathogenesis of polycystic ovary syndrome. Mol Hum Reprod 2024; 30:gaae015. [PMID: 38603629 PMCID: PMC11060870 DOI: 10.1093/molehr/gaae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, but its pathology has not been fully characterized and the optimal treatment strategy remains unclear. Cellular senescence is a permanent state of cell-cycle arrest that can be induced by multiple stresses. Senescent cells contribute to the pathogenesis of various diseases, owing to an alteration in secretory profile, termed 'senescence-associated secretory phenotype' (SASP), including with respect to pro-inflammatory cytokines. Senolytics, a class of drugs that selectively eliminate senescent cells, are now being used clinically, and a combination of dasatinib and quercetin (DQ) has been extensively used as a senolytic. We aimed to investigate whether cellular senescence is involved in the pathology of PCOS and whether DQ treatment has beneficial effects in patients with PCOS. We obtained ovaries from patients with or without PCOS, and established a mouse model of PCOS by injecting dehydroepiandrosterone. The expression of the senescence markers p16INK4a, p21, p53, γH2AX, and senescence-associated β-galactosidase and the SASP-related factor interleukin-6 was significantly higher in the ovaries of patients with PCOS and PCOS mice than in controls. To evaluate the effects of hyperandrogenism and DQ on cellular senescence in vitro, we stimulated cultured human granulosa cells (GCs) with testosterone and treated them with DQ. The expression of markers of senescence and a SASP-related factor was increased by testosterone, and DQ reduced this increase. DQ reduced the expression of markers of senescence and a SASP-related factor in the ovaries of PCOS mice and improved their morphology. These results indicate that cellular senescence occurs in PCOS. Hyperandrogenism causes cellular senescence in GCs in PCOS, and senolytic treatment reduces the accumulation of senescent GCs and improves ovarian morphology under hyperandrogenism. Thus, DQ might represent a novel therapy for PCOS.
Collapse
Affiliation(s)
- Tsurugi Tanaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Urata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akari Kusamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Koike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zixin Xu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nanoka Sakaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Tsuchida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Airi Komura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayaka Teshima
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Lan H, Dong Z, Zhang M, Li W, Chong C, Wu Y, Wang Z, Liu J, Liu Z, Qin X, Jiang T, Song J. Sinapic acid modulates oxidative stress and metabolic disturbances to attenuate ovarian fibrosis in letrozole-induced polycystic ovary syndrome SD rats. Food Sci Nutr 2024; 12:2917-2931. [PMID: 38628198 PMCID: PMC11016395 DOI: 10.1002/fsn3.3973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 04/19/2024] Open
Abstract
Sinapic acid (SA) is renowned for its many pharmacological activities as a polyphenolic compound. The cause of polycystic ovary syndrome (PCOS), a commonly encountered array of metabolic and hormonal abnormalities in females, has yet to be determined. The present experiment was performed to evaluate the antifibrotic properties of SA in rats with letrozole-induced PCOS-related ovarian fibrosis. SA treatment successfully mitigated the changes induced by letrozole in body weight (BW) (p < .01) and relative ovary weight (p < .05). Histological observation revealed that SA reduced the number of atretic and cystic follicles (AFs) and (CFs) (p < .01), as well as ovarian fibrosis, in PCOS rats. Additionally, SA treatment impacted the serum levels of sex hormones in PCOS rats. Luteinizing hormone (LH) and testosterone (T) levels were decreased (p < .01, p < .05), and follicle-stimulating hormone (FSH) levels were increased (p < .05). SA administration also decreased triglyceride (TG) (p < .01) and total cholesterol (TC) levels (p < .05) and increased high-density lipoprotein cholesterol (HDL-C) levels (p < .01), thereby alleviating letrozole-induced metabolic dysfunction in PCOS rats. Furthermore, SA treatment targeted insulin resistance (IR) and increased the messenger RNA (mRNA) levels of antioxidant enzymes in the ovaries of PCOS rats. Finally, SA treatment enhanced the activity of peroxisome proliferator-activated receptor-γ (PPAR-γ), reduced the activation of transforming growth factor-β1 (TGF-β1)/Smads, and decreased collagen I, α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF) levels in the ovaries of PCOS rats. These observations suggest that SA significantly ameliorates metabolic dysfunction and oxidative stress and ultimately reduces ovarian fibrosis in rats with letrozole-induced PCOS.
Collapse
Affiliation(s)
- Huan Lan
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
- College of Chinese Material MedicaGuangzhou University of Chinese MedicineGuangzhouGuangzhouChina
| | - Zhe‐Wen Dong
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
- College of PharmacyShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Ming‐Yu Zhang
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Wan‐Ying Li
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Chao‐Jie Chong
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Ya‐Qi Wu
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Zi‐Xian Wang
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Jun‐Yang Liu
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Zhi‐Qiang Liu
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Xiao‐Hui Qin
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Tie‐Min Jiang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child HealthGuilin University of TechnologyGuilinGuangxiChina
| | - Jia‐Le Song
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child HealthGuilin University of TechnologyGuilinGuangxiChina
- Department of Obstetrics and Clinical NutritionThe Second Affiliated Hospital of Guilin Medical UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
| |
Collapse
|
17
|
Adhikari M, Biswas C, Mazumdar P, Sarkar S, Pramanick K. Evaluating the potential of daily intake of polystyrene microplastics via drinking water in inducing PCOS and its ovarian fibrosis progression using female zebrafish. NANOIMPACT 2024; 34:100507. [PMID: 38663500 DOI: 10.1016/j.impact.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Polystyrene microplastics, extensively considered endocrine disrupting chemicals, disturb the reproductive system of living organisms. Polycystic ovary syndrome (PCOS), the reproductive endocrinopathy, is longstanding concern due to its eternal impacts as reproductive disorder and infertility. Despite several reports in reproductive and endocrine toxicity, there is inadequate literature regarding the daily intake of polystyrene-microplastics via drinking water in causing PCOS and leading to ovarian fibrosis in long-term. The present study investigated whether daily consumption of polystyrene-microplastics at doses equivalent to human exposure can cause PCOS and progress to ovarian fibrosis, using female zebrafish as model. Resembling letrozole-PCOS zebrafish model, daily intake of polystyrene-microplastics displayed hallmark PCOS pathophysiology; like excess body weight and %Gonadosomatic index, decreased Follicle Stimulating Hormone and β-estradiol, increased Luteinising Hormone, brain and ovarian Testosterone (39.3% and 75% respectively). Correspondingly, ovarian histology revealed more developing (stage I and II) oocytes and less mature oocytes alongwith cystic lesions; like follicular membrane disorganization, zona pellucida invagination, theca hypertrophy, basophilic granular accumulation and oocyte buddings. Lipid deposition in intestinal and ovarian tissues was evidenced and increased fasting blood glucose manifesting insulin resistance. The expression of PCOS biomarkers (tox3, dennd1a, fem1a) was significantly disturbed. Polystyrene microplastics played vital role in inducing PCOS further enhancing oxidative stress, which positively influences inflammation and aggravate ovarian mitophagy, shedding light on its ability to harshen PCOS into ovarian fibrosis, which is characterized by collagen deposition and upregulation of pro-fibrogenic biomarker genes. These findings illustrate the potential of daily microplastics intake via drinking water in triggering PCOS and its progression to ovarian fibrosis.
Collapse
Affiliation(s)
- Madhuchhanda Adhikari
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Chayan Biswas
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Piyali Mazumdar
- Reproductive Endocrinology and Stem Cell Biology Laboratory, Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Shampa Sarkar
- Reproductive Endocrinology and Stem Cell Biology Laboratory, Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata 700073, India.
| |
Collapse
|
18
|
Okan A, Demir N, Doğanyiğit Z. Linagliptin in combination with insulin suppresses apoptotic unfolded protein response in ovaries exposed to type 1 diabetes. Cell Biochem Funct 2024; 42:e3898. [PMID: 38088568 DOI: 10.1002/cbf.3898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 03/14/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is one of the main causes of ovarian atresia, but its molecular effect on the ovaries is not fully understood. Accumulating evidence suggests that T1DM causes excessive endoplasmic reticulum (ER) stress and insufficient adaptive unfolded protein response that triggers proapoptotic signaling pathways in ovarian tissue. In addition, problems such as amenorrhea and infertility, which are frequently seen in women with T1DM, continue despite the intensification of insulin therapy and improvement of metabolic control. Therefore new, and adjunctive treatments for women with T1DM need to be explored. We aimed to examine how the use of linagliptin, which has blood sugar-lowering effects and high antioxidant activity, together with insulin affects the expression levels of proteins and genes that play a role in ER stress in type 1 diabetic mouse ovaries. Eighty-four Balb/C 6-week-old female mice were randomly divided into seven groups: control, vehicle, diabetes + insulin, diabetes + linagliptin, diabetes + linagliptin + insulin, diabetes + TUDCA, and diabetes + TUDCA + insulin. TUDCA (an inhibitor of ER stress) groups are positive control groups created to compare linagliptin groups in terms of ER stress. Linagliptin and TUDCA were given by oral gavage and 1U insulin was administered subcutaneously for 2 weeks. A significant decrease was observed in the MDA and NOX1 levels and the number of atretic follicles in the ovaries of the diabetes + linagliptin + insulin group compared to the diabetes + insulin group. The use of linagliptin and insulin increased the expression of pro-survival XBP1s transmembrane protein and decreased the expression of proapoptotic ATF4, pJNK1/2, cleaved caspase 12, and cleaved caspase 3 in mouse ovaries. Our study provides new therapeutic evidence that linagliptin administered in addition to insulin induces ER stress mechanism-dependent survival in ovaries with type 1 diabetes.
Collapse
Affiliation(s)
- Aslı Okan
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Züleyha Doğanyiğit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
19
|
Kordowitzki P, Graczyk S, Haghani A, Klutstein M. Oocyte Aging: A Multifactorial Phenomenon in A Unique Cell. Aging Dis 2024; 15:5-21. [PMID: 37307833 PMCID: PMC10796106 DOI: 10.14336/ad.2023.0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
The oocyte is considered to be the largest cell in mammalian species. Women hoping to become pregnant face a ticking biological clock. This is becoming increasingly challenging as an increase in life expectancy is accompanied by the tendency to conceive at older ages. With advancing maternal age, the fertilized egg will exhibit lower quality and developmental competence, which contributes to increased chances of miscarriage due to several causes such as aneuploidy, oxidative stress, epigenetics, or metabolic disorders. In particular, heterochromatin in oocytes and with it, the DNA methylation landscape undergoes changes. Further, obesity is a well-known and ever-increasing global problem as it is associated with several metabolic disorders. More importantly, both obesity and aging negatively affect female reproduction. However, among women, there is immense variability in age-related decline of oocytes' quantity, developmental competence, or quality. Herein, the relevance of obesity and DNA-methylation will be discussed as these aspects have a tremendous effect on female fertility, and it is a topic of continuous and widespread interest that has yet to be fully addressed for the mammalian oocyte.
Collapse
Affiliation(s)
- Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Szymon Graczyk
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Liu B, Jia Q, Hong IS, Dang X, Wu Z, Wang H, Cheng JC, Fang L. TGF-β1 and TGF-β3, but not TGF-β2, are upregulated in the ovaries of ovarian hyperstimulation syndrome†. Biol Reprod 2024; 110:116-129. [PMID: 37801702 DOI: 10.1093/biolre/ioad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is a life-threatening and potentially fatal complication during in vitro fertilization treatment. The levels of transforming growth factor-β1 (TGF-β1) are upregulated in human follicular fluid and granulosa-lutein cells (hGL) of OHSS patients and could contribute to the development of OHSS by downregulating steroidogenic acute regulatory protein (StAR) expression. However, whether the same is true for the other two members of the TGF-β family, TGF-β2 and -β3, remains unknown. We showed that all three TGF-β isoforms were expressed in human follicular fluid. In comparison, TGF-β1 was expressed at the highest level, followed by TGF-β2 and TGF-β3. Compared to non-OHSS patients, follicular fluid levels of TGF-β1 and TGF-β3 were significantly upregulated in OHSS patients. The same results were observed in mRNA levels of TGF-β isoforms in hGL cells and ovaries of OHSS rats. In addition, StAR mRNA levels were upregulated in hGL cells of OHSS patients and the ovaries of OHSS rats. Treatment cells with TGF-β isoforms downregulated the StAR expression with a comparable effect. Moreover, activations of SMAD3 signaling were required for TGF-β isoforms-induced downregulation of StAR expression. This study indicates that follicular fluid TGF-β1 and TGF-β3 levels could be used as biomarkers and therapeutic targets for the OHSS.
Collapse
Affiliation(s)
- Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Xuan Dang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hailong Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Bril F, Ezeh U, Amiri M, Hatoum S, Pace L, Chen YH, Bertrand F, Gower B, Azziz R. Adipose Tissue Dysfunction in Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2023; 109:10-24. [PMID: 37329216 PMCID: PMC10735305 DOI: 10.1210/clinem/dgad356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is a complex genetic trait and the most common endocrine disorder of women, clinically evident in 5% to 15% of reproductive-aged women globally, with associated cardiometabolic dysfunction. Adipose tissue (AT) dysfunction appears to play an important role in the pathophysiology of PCOS even in patients who do not have excess adiposity. METHODS We undertook a systematic review concerning AT dysfunction in PCOS, and prioritized studies that assessed AT function directly. We also explored therapies that targeted AT dysfunction for the treatment of PCOS. RESULTS Various mechanisms of AT dysfunction in PCOS were identified including dysregulation in storage capacity, hypoxia, and hyperplasia; impaired adipogenesis; impaired insulin signaling and glucose transport; dysregulated lipolysis and nonesterified free fatty acids (NEFAs) kinetics; adipokine and cytokine dysregulation and subacute inflammation; epigenetic dysregulation; and mitochondrial dysfunction and endoplasmic reticulum and oxidative stress. Decreased glucose transporter-4 expression and content in adipocytes, leading to decreased insulin-mediated glucose transport in AT, was a consistent abnormality despite no alterations in insulin binding or in IRS/PI3K/Akt signaling. Adiponectin secretion in response to cytokines/chemokines is affected in PCOS compared to controls. Interestingly, epigenetic modulation via DNA methylation and microRNA regulation appears to be important mechanisms underlying AT dysfunction in PCOS. CONCLUSION AT dysfunction, more than AT distribution and excess adiposity, contributes to the metabolic and inflammation abnormalities of PCOS. Nonetheless, many studies provided contradictory, unclear, or limited data, highlighting the urgent need for additional research in this important field.
Collapse
Affiliation(s)
- Fernando Bril
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Uche Ezeh
- California IVF Fertility Center, Sacramento, CA 95833, USA
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Mina Amiri
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Lauren Pace
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Yen-Hao Chen
- Department of Research, Biomere-West, Richmond, CA 94806, USA
| | - Fred Bertrand
- Department of Clinical and Diagnostic Sciences, School of Health Professions, UAB, Birmingham, AL 35294, USA
| | - Barbara Gower
- Department of Nutrition Sciences, School of Health Professions, UAB, Birmingham, AL 35294, USA
| | - Ricardo Azziz
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
- Department of Healthcare Organization and Policy, School of Public Health, UAB, Birmingham, AL 35233, USA
- Department of Health Policy, Management and Behavior, School of Public Health, University at Albany, SUNY, Rensselaer, NY 12144, USA
| |
Collapse
|
22
|
Orisaka M, Mizutani T, Miyazaki Y, Shirafuji A, Tamamura C, Fujita M, Tsuyoshi H, Yoshida Y. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Front Endocrinol (Lausanne) 2023; 14:1324429. [PMID: 38192421 PMCID: PMC10773729 DOI: 10.3389/fendo.2023.1324429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
The ovarian microenvironment is critical for follicular development and oocyte maturation. Maternal conditions, including polycystic ovary syndrome (PCOS), endometriosis, and aging, may compromise the ovarian microenvironment, follicular development, and oocyte quality. Chronic low-grade inflammation can induce oxidative stress and tissue fibrosis in the ovary. In PCOS, endometriosis, and aging, pro-inflammatory cytokine levels are often elevated in follicular fluids. In women with obesity and PCOS, hyperandrogenemia and insulin resistance induce ovarian chronic low-grade inflammation, thereby disrupting follicular development by increasing oxidative stress. In endometriosis, ovarian endometrioma-derived iron overload can induce chronic inflammation and oxidative stress, leading to ovarian ferroptosis and fibrosis. In inflammatory aging (inflammaging), senescent cells may secrete senescence-associated secretory phenotype factors, causing chronic inflammation and oxidative stress in the ovary. Therefore, controlling chronic low-grade inflammation and fibrosis in the ovary would present a novel therapeutic strategy for improving the follicular microenvironment and minimizing ovarian dysfunction.
Collapse
Affiliation(s)
- Makoto Orisaka
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Mizutani
- Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Fukui, Japan
| | - Yumiko Miyazaki
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Aya Shirafuji
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Chiyo Tamamura
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Fujita
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Obstetrics and Gynecology, Ishikawa Prefectural Central Hospital, Ishikawa, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
23
|
Xiang Y, Wang H, Ding H, Xu T, Liu X, Huang Z, Wu H, Ge H. Hyperandrogenism drives ovarian inflammation and pyroptosis: A possible pathogenesis of PCOS follicular dysplasia. Int Immunopharmacol 2023; 125:111141. [PMID: 37918087 DOI: 10.1016/j.intimp.2023.111141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Hyperandrogenemia and persistent chronic inflammation, two main striking features of polycystic ovary syndrome (PCOS), have been proven involved in follicular dysgenesis in PCOS. However, the association between hyperandrogenism and inflammation activation in PCOS is not fully understood. Excess testosterone(T) induces inflammation and pyroptosis activation in a mouse model of PCOS, leading to ovarian dysfunction and fibrosis. Excessive endoplasmic reticulum (ER) stress is present in ovarian granulosa cells (GCs), testosterone-induced PCOS mouse and cellular models. This study found higher levels of interleukin (IL)-1β, IL-8, IL-17, and IL-18 in the follicular fluid of PCOS patients with hyperandrogenemia undergoing IVF treatment. In addition, pyroptosis in GCs was demonstrated, which was significantly elevated in PCOS patients. To clarify the association of hyperandrogenism, inflammation, and pyroptosis activation in PCOS, dehydroepiandrosterone(DHEA)-treated mouse PCOS model and T-treated KGN cell line were explored for PCOS mechanism. Markers of inflammatory activation and pyroptosis were significantly increased after DHEA treatment in mice and T treatment in KGN cells. In addition, ER stress sensor proteins were increased simultaneously. However, suppression of inflammation by genipin(GP) led to decreased pyroptosis in KGN cells but no variation in ER stress sensor proteins. In contrast, when treated with tauroursodeoxycholic acid(TUDCA) to attenuate ER stress, the markers of inflammatory factors were significantly reduced, accompanied by a reduction in pyroptosis. Our results suggest that persistent hyperandrogenemia of PCOS promotes local inflammatory activation of the ovary, and the imbalanced inflammatory microenvironment leads to pyroptosis of GCs, which is mediated by ER stress activation.
Collapse
Affiliation(s)
- Yu Xiang
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Hua Wang
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Third Clinical Medical College, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Huimin Ding
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Tianyue Xu
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Xiu Liu
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Dalian Medical University, Liaoning, China
| | - Zichao Huang
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China
| | - Honghui Wu
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Dalian Medical University, Liaoning, China
| | - Hongshan Ge
- Reproduction Medicine Centre, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Graduate School, Nanjing University Of Chinese Medicine, Nanjing, China; Graduate School, Dalian Medical University, Liaoning, China.
| |
Collapse
|
24
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Chiang YF, Lin IC, Huang KC, Chen HY, Ali M, Huang YJ, Hsia SM. Caffeic acid's role in mitigating polycystic ovary syndrome by countering apoptosis and ER stress triggered by oxidative stress. Biomed Pharmacother 2023; 166:115327. [PMID: 37619480 DOI: 10.1016/j.biopha.2023.115327] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that affects women of reproductive age, characterized by androgen-induced oxidative stress leading to several metabolic disorders. In this study, we investigated the potential therapeutic effect of caffeic acid on PCOS and its underlying molecular mechanism. We used a human ovarian granulosa cell line (KGN cells) induced by hydrogen peroxide (H2O2) to examine how caffeic acid influences the protein expression of oxidative stress-induced apoptosis-related markers. Our results indicate that caffeic acid significantly inhibits intracellular reactive oxygen species (ROS) generation and safeguards KGN cells against oxidative stress. For the in vivo aspect of our study, female Sprague-Dawley (SD) rats were utilized to induce the PCOS model using dehydroepiandrosterone (DHEA). Caffeic acid was then administered to the rats for a duration of 6 weeks. The outcomes revealed that caffeic acid effectively improved irregular estrous cycles, fasting blood glucose levels, liver function, and lipid profiles in DHEA-induced PCOS rats. Additionally, it mitigated hyperandrogenism, enhanced steroidogenesis enzyme expression, and modulated apoptosis-related protein expression. Our findings strongly suggest that caffeic acid holds promising potential in reducing oxidative stress-induced damage and ameliorating PCOS-related complications by modulating ER stress.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Cheng Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt; Deaprtment of Obstertrics and Gynecology, University of Chicago, 60637 Chicago, IL, USA
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan City 710301, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
26
|
Wang D, Zhu Z, Fu Y, Zhang Q, Zhang Y, Wang T, Weng Y, Wen Y, Cao W, Tao G, Wang Y. Bromodomain-containing protein 4 activates androgen receptor transcription and promotes ovarian fibrosis in PCOS. Cell Rep 2023; 42:113090. [PMID: 37669164 DOI: 10.1016/j.celrep.2023.113090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and the main cause of anovulatory infertility, in which persistent activation of androgen receptor (AR) due to aberrant acetylation modifications of transcription is a potential trigger; however, the precise mechanisms of AR activation are poorly understood. In this study, AR activation in dehydroepiandrosterone- and letrozole-induced rat PCOS ovaries coincided with a marked increase of a chromatin acetylation "reader" BRD4. Further bioinformatic analysis showed that the AR promoter contained highly conserved binding motifs of BRD4 and HIF-1α. BRD4 and HIF-1α inducibly bound to the histone 3/4 acetylation-modified AR promoter, while administration of a BRD4-selective inhibitor JQ1 reduced the binding and AR transcription and improved the adverse expression of the core fibrotic mediators in PCOS ovaries and DHT-treated granulosa cells. Our data indicate that BRD4 upregulation and the resultant AR transcriptional activation constitute an important regulatory pathway that promotes ovarian fibrosis in PCOS.
Collapse
Affiliation(s)
- Daojuan Wang
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; Department of Pain Management, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhengquan Zhu
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yu Fu
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Qiong Zhang
- Department of Obstetrics and Gynecology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yi Zhang
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Tingyu Wang
- Department of Pain Management, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yajing Weng
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yanting Wen
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Wangsen Cao
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China; Department of Nephrology, Yangzhou Precision Research Institute of Kidney Disease, Northern Jiangsu People's Hospital, Teaching Hospital of Nanjing University Medical School, Yangzhou 225009, China.
| | - Gaojian Tao
- Department of Pain Management, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yong Wang
- The Affiliated Nanjing Drum Tower Hospital, and State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
27
|
Roodbari AS, Solhjoo S, Palmerini MG, Mansouri M, Ezzatabadipour M. The effect of human menstrual blood-derived stem cells on ovarian folliculogenesis, angiogenesis and collagen volume in female rats affected by the polycystic ovary syndrome. J Ovarian Res 2023; 16:170. [PMID: 37608312 PMCID: PMC10463952 DOI: 10.1186/s13048-023-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Infertility is one of the common problems among couples, affecting millions of people worldwide. Polycystic ovary syndrome (PCOS) is one of the main causes of infertility in women and is associated with abnormal folliculogenesis, angiogenesis and fibrosis. Common treatments may lead to numerous adverse effects on the patient's quality of life. The present study aimed to investigate the effects of human menstrual blood-derived stem cells on the ovarian histology of a PCOS model of Wistar rats. RESULTS Based on the Papanicolaou test and H&E staining results, the number of primary, secondary and antral follicles in the PCOS and PCOS-Sham groups significantly increased compared to the control group, while they significantly decreased in the PCOS + Stem cells group compared to the PCOS and PCOS-Sham groups. Further, the number of atretic follicles in both PCOS and PCOS-Sham groups significantly increased in comparison with the control group and decreased in the PCOS + Stem cells group, compared to the two mentioned groups. Moreover, the Graafian follicles number was decreased in the PCOS and PCOS-Sham groups to significantly increase in the PCOS + Stem cells group. Based on Masson's trichrome staining, the number of blood vessels in PCOS and PCOS-Sham groups significantly increased compared to the control group, while a decrease was observed in the PCOS + Stem cells group, compared to PCOS and PCOS-Sham groups. CONCLUSION The administration of MenSCs improved folliculogenesis in rats with polycystic ovaries. Also, MenSCs could ameliorate PCOS symptoms by improving fibrosis as well as angiogenesis and weight gain.
Collapse
Affiliation(s)
- Ali Sarhadi Roodbari
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Solhjoo
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mahna Mansouri
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
28
|
Meng L, McLuskey A, Dunaif A, Visser JA. Functional analysis of rare anti-Müllerian hormone protein-altering variants identified in women with PCOS. Mol Hum Reprod 2023; 29:gaad011. [PMID: 37004205 PMCID: PMC10148690 DOI: 10.1093/molehr/gaad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Indexed: 04/03/2023] Open
Abstract
Recently, rare heterozygous AMH protein-altering variants were identified in women with polycystic ovary syndrome (PCOS), causing reduced anti-Müllerian hormone (AMH) signaling. However, the exact functional mechanism remains unknown. Here, we analyzed the processing, secretion, and signaling of these AMH variants. Functional analysis of six PCOS-specific AMH variants (V12G, P151S, P270S, P352S, P362S, H506Q) and one control-specific variant (A519V) was performed in the mouse granulosa cell-line KK-1. Human (h) AMH-151S and hAMH-506Q have ∼90% decreased AMH signaling compared to wild-type (wt) AMH signaling. Coexpression of hAMH-151S or hAMH-506Q with wt-hAMH dose-dependently inhibited wt-hAMH signaling. Western blotting revealed that hAMH-151S and hAMH-506Q proteins were detected in the cell lysate but not in the supernatant. Confocal microscopy showed that HEK293 cells expressing hAMH-151S and hAMH-506Q had higher cellular AMH protein levels with endoplasmic reticulum (ER) retention compared to cells expressing wt-hAMH. Using two AMH ELISA kits, hAMH-151S was detected in the cell lysate, while only very low levels were detected in the supernatant. Both hAMH-362S and hAMH-519V were detectable using the automated AMH ELISA but showed severely reduced immunoactivity in the manual ELISA. Surprisingly, hAMH-506Q was undetectable in both the cell lysate and supernatant using either ELISA. However, in PCOS cases, heterozygous carriers of the P151S and H506Q variants still had detectable AMH in both assays. Thus, P151S and H506Q disrupt normal processing and secretion of AMH, causing ER retention. Additionally, AMH variants can impair the AMH immunoactivity. An AMH variant may be considered when serum AMH levels are relatively low in PCOS cases.
Collapse
Affiliation(s)
- L Meng
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A McLuskey
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Divya S, Ravanan P. Cellular battle against endoplasmic reticulum stress and its adverse effect on health. Life Sci 2023; 323:121705. [PMID: 37075943 DOI: 10.1016/j.lfs.2023.121705] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle and a reliable performer for precisely folded proteins. To maintain its function and integrity, arrays of sensory and quality control systems enhance protein folding fidelity and resolve the highest error-prone areas. Yet numerous internal and external factors disrupt its homeostasis and trigger ER stress responses. Cells try to reduce the number of misfolded proteins via the UPR mechanism, and ER-related garbage disposals systems like ER-associated degradation (ERAD), ER-lysosome-associated degradation (ERLAD), ER-Associated RNA Silencing (ERAS), extracellular chaperoning, and autophagy systems, which activates and increase the cell survival rate by degrading misfolded proteins, prevent the aggregated proteins and remove the dysfunctional organelles. Throughout life, organisms must confront environmental stress to survive and develop. Communication between the ER & other organelles, signaling events mediated by calcium, reactive oxygen species, and inflammation are linked to diverse stress signaling pathways and regulate cell survival or cell death mechanisms. Unresolved cellular damages can cross the threshold limit of their survival, resulting in cell death or driving for various diseases. The multifaceted ability of unfolded protein response facilitates the therapeutic target and a biomarker for various diseases, helping with early diagnosis and detecting the severity of diseases.
Collapse
Affiliation(s)
- Subramaniyan Divya
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India.
| |
Collapse
|
30
|
Nakanishi N, Osuka S, Kono T, Kobayashi H, Ikeda S, Bayasula B, Sonehara R, Murakami M, Yoshita S, Miyake N, Muraoka A, Kasahara Y, Murase T, Nakamura T, Goto M, Iwase A, Kajiyama H. Upregulated Ribosomal Pathway Impairs Follicle Development in a Polycystic Ovary Syndrome Mouse Model: Differential Gene Expression Analysis of Oocytes. Reprod Sci 2023; 30:1306-1315. [PMID: 36194357 DOI: 10.1007/s43032-022-01095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/21/2022] [Indexed: 10/10/2022]
Abstract
Polycystic ovary syndrome (PCOS), a common endocrine disorder, is associated with impaired oocyte development, leading to infertility. However, the pathogenesis of PCOS has not been completely elucidated. This study aimed to determine the differentially expressed genes (DEGs) and epigenetic changes in the oocytes from a PCOS mouse model to identify the etiological factors. RNA-sequencing analysis revealed that 90 DEGs were upregulated and 27 DEGs were downregulated in mice with PCOS compared with control mice. DNA methylation analysis revealed 30 hypomethylated and 10 hypermethylated regions in the PCOS group. However, the DNA methylation status did not correlate with differential gene expression. The pathway enrichment analysis revealed that five DEGs (Rps21, Rpl36, Rpl36a, Rpl37a, and Rpl22l1) were enriched in ribosome-related pathways in the oocytes of mice with PCOS, and the immunohistochemical analysis revealed significantly upregulated expression levels of Rps21 and Rpl36. These results suggest that differential gene expression in the oocytes of mice in PCOS is related to impaired folliculogenesis. These findings improve our understanding of PCOS pathogenesis.
Collapse
Affiliation(s)
- Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hisato Kobayashi
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Shinya Ikeda
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Bayasula Bayasula
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Reina Sonehara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mayuko Murakami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Sayako Yoshita
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Natsuki Miyake
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ayako Muraoka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yukiyo Kasahara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
31
|
Jabarpour M, Aleyasin A, Nashtaei MS, Lotfi S, Amidi F. Astaxanthin treatment ameliorates ER stress in polycystic ovary syndrome patients: a randomized clinical trial. Sci Rep 2023; 13:3376. [PMID: 36854788 PMCID: PMC9974957 DOI: 10.1038/s41598-023-28956-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
Astaxanthin (ASX), as a natural carotenoid compound, exists in various types of seafood and microorganisms. It has several possible beneficial therapeutic effects for patients with polycystic ovary syndrome (PCOS). Patients with PCOS also suffer from endoplasmic reticulum (ER) stress. In the present work, it was hypothesized that ER stress could be improved by ASX in PCOS patients. Granulosa cells (GCs) were obtained from 58 PCOS patients. The patients were classified into ASX treatment (receiving 12 mg/day for 60 days) and placebo groups. The expression levels of ER stress pathway genes and proteins were explored using Western blotting and quantitative polymerase chain reaction. To assess oxidative stress markers, follicular fluid (FF) was gained from all patients. The Student's t test was used to perform statistical analysis. After the intervention, ASX led to a considerable reduction in the expression levels of 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), and X-box-binding protein 1 compared to the placebo group, though the reduction in the messenger RNA (mRNA) expression level of activating transcription factor 6 was not statistically significant. However, ASX significantly increased the ATF4 expression level. GRP78 and CHOP protein levels represented a considerable decrease in the treatment group after the intervention. In addition, a statistically significant increase was found in the FF level of total antioxidant capacity in the treatment group. Based on clinical outcomes, no significant differences were found between the groups in terms of the oocyte number, fertilization rate, and fertility rate, but the ASX group had higher rates of high-quality oocytes, high-quality embryo, and oocyte maturity compared to the placebo group. Our findings demonstrated that ER stress in the GCs of PCOS patients could be modulated by ASX by changing the expression of genes and proteins included in the unfolding protein response.Trial registration This study was retrospectively registered on the Iranian Registry of Clinical Trials website ( www.irct.ir ; IRCT-ID: IRCT20201029049183N, 2020-11-27).
Collapse
Affiliation(s)
- Masoome Jabarpour
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran
| | - Ashraf Aleyasin
- grid.415646.40000 0004 0612 6034Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran ,grid.415646.40000 0004 0612 6034Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Lotfi
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955, Iran. .,Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Abedal-Majed MA, Abuajamieh M, Al-Qaisi M, Sargent KM, Titi HH, Alnimer MA, Abdelqader A, Shamoun AI, Cupp AS. Sheep with ovarian androgen excess have fibrosis and follicular arrest with increased mRNA abundance for steroidogenic enzymes and gonadotropin receptors. J Anim Sci 2023; 101:skad082. [PMID: 37061806 PMCID: PMC10184696 DOI: 10.1093/jas/skad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/15/2023] [Indexed: 04/17/2023] Open
Abstract
An androgen excess ovarian micro-environment may limit follicle progression in sheep. Two populations of ewes with divergent follicular fluid androstenedione (A4) were identified in a flock in Jordan: High A4; (A4) ≥ 30 ng/mL, (N = 12) or Control A4 (Control); A4 ≤ 15 ng/mL; (N = 12). We hypothesized High A4 ewes would have increased steroidogenic enzyme mRNA abundance, inflammation, and follicular arrest. Messenger RNA abundance for steroidogenic enzymes StAR, CYP17A1, CYP11A1, and HSD3B1 were increased in theca cells while CYP17A1, CYP19A1, and HSD3B1 were increased in granulosa cells in High A4 ewes compared to Control. Gonadotropin receptor mRNA expression for LHCGR was increased in theca and FSHR in granulosa in High A4 ewes. Messenger RNA expression of FOS when reduced, increases expression of CYP17A1 which was observed in High A4 granulosa cells compared to Control. Furthermore, High A4 ewes had greater numbers of primordial follicles (P < 0.001) and fewer developing follicles compared to Control before, and after 7 d of culture, indicating follicular arrest was not alleviated by cortex culture. Increased fibrosis in the ovarian cortex was detected in High A4 ewes relative to Control (P < 0.001) suggesting increased inflammation and altered extracellular matrix deposition. Thus, this High A4 ewes population has similar characteristics to High A4 cows and women with polycystic ovary syndrome suggesting that naturally occurring androgen excess occurs in multiple species and may be a causative factor in follicular arrest and subsequent female sub- or infertility.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mohannad Abuajamieh
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mohmmad Al-Qaisi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Kevin M Sargent
- Department of Agriculture, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
| | - Hosam H Titi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mufeed A Alnimer
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Anas Abdelqader
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Ahmad I Shamoun
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln (UNL), Nebraska 68583, USA
| |
Collapse
|
33
|
Koike H, Harada M, Kusamoto A, Xu Z, Tanaka T, Sakaguchi N, Kunitomi C, Azhary JMK, Takahashi N, Urata Y, Osuga Y. Roles of endoplasmic reticulum stress in the pathophysiology of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1124405. [PMID: 36875481 PMCID: PMC9975510 DOI: 10.3389/fendo.2023.1124405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women, affecting up to 15% of women in this group, and the most common cause of anovulatory infertility. Although its etiology remains unclear, recent research has revealed the critical role of endoplasmic reticulum (ER) stress in the pathophysiology of PCOS. ER stress is defined as a condition in which unfolded or misfolded proteins accumulate in the ER because of an imbalance in the demand for protein folding and the protein-folding capacity of the ER. ER stress results in the activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which regulates various cellular activities. In principle, the UPR restores homeostasis and keeps the cell alive. However, if the ER stress cannot be resolved, it induces programmed cell death. ER stress has recently been recognized to play diverse roles in both physiological and pathological conditions of the ovary. In this review, we summarize current knowledge of the roles of ER stress in the pathogenesis of PCOS. ER stress pathways are activated in the ovaries of both a mouse model of PCOS and in humans, and local hyperandrogenism in the follicular microenvironment associated with PCOS is responsible for activating these. The activation of ER stress contributes to the pathophysiology of PCOS through multiple effects in granulosa cells. Finally, we discuss the potential for ER stress to serve as a novel therapeutic target for PCOS.
Collapse
Affiliation(s)
- Hiroshi Koike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Miyuki Harada,
| | - Akari Kusamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zixin Xu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsurugi Tanaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nanoka Sakaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jerilee M. K. Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Urata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Effects of phytoestrogens on reproductive organ health. Arch Pharm Res 2022; 45:849-864. [DOI: 10.1007/s12272-022-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
|
35
|
Alexandre-Santos B, Martins FFTR, da Silva Gonçalves L, de Oliveira Guimarães C, Carla-Ruggiero F, Magliano DC. Potential role of endoplasmic reticulum stress in the pathophysiology of polycystic ovary syndrome. Horm Mol Biol Clin Investig 2022; 44:105-112. [PMID: 36018673 DOI: 10.1515/hmbci-2022-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder that affects million women worldwide, presenting a complex pathophysiology that has not been fully elucidated yet. Recently, it has been suggested that PCOS triggers the endoplasmic reticulum (ER) stress, thus being associated with unfolded protein response (UPR) activation. Indeed, the UPR response has been associated with several pathological conditions, including in the reproductive system. Several studies demonstrated that ovarian UPR markers are upregulated in PCOS, being associated with worst ovarian outcomes, and this was ameliorated by ER stress inhibition. In this review, we aim to summarize the main findings from previous studies covering this topic, in an attempt to clarify the potential role of ER stress and the UPR response in the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Beatriz Alexandre-Santos
- Histology and Embryology League, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.,Research Center on Morphology and Metabolism, Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Larissa da Silva Gonçalves
- Histology and Embryology League, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Fernanda Carla-Ruggiero
- Histology and Embryology League, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Histology and Embryology League, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.,Research Center on Morphology and Metabolism, Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| |
Collapse
|
36
|
Notch Signaling Induced by Endoplasmic Reticulum Stress Regulates Cumulus-Oocyte Complex Expansion in Polycystic Ovary Syndrome. Biomolecules 2022; 12:biom12081037. [PMID: 36008931 PMCID: PMC9405998 DOI: 10.3390/biom12081037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Endoplasmic reticulum (ER) stress activated in granulosa cells contributes to the pathophysiology of polycystic ovary syndrome (PCOS). In addition, recent studies have demonstrated that Notch signaling plays multiple roles in the ovary via cell-to-cell interactions. We hypothesized that ER stress activated in granulosa cells of antral follicles in PCOS induces Notch signaling in these cells, and that activated Notch signaling induces aberrant cumulus-oocyte complex (COC) expansion. Expression of Notch2 and Notch-target transcription factors was increased in granulosa cells of PCOS patients and model mice. ER stress increased expression of Notch2 and Notch-target transcription factors in cultured human granulosa-lutein cells (GLCs). Inhibition of Notch signaling abrogated ER stress-induced expression of genes associated with COC expansion in cultured human GLCs, as well as ER stress-enhanced expansion of cumulus cells in cultured murine COCs. Furthermore, inhibition of Notch signaling reduced the areas of COCs in PCOS model mice with activated ER stress in the ovary, indicating that Notch signaling regulates COC expansion in vivo. Our findings suggest that Notch2 signaling is activated in granulosa cells in PCOS and regulates COC expansion. It remains to be elucidated whether aberrant COC expansion induced by the ER stress-Notch pathway is associated with ovulatory dysfunction in PCOS patients.
Collapse
|
37
|
Abedal-Majed MA, Springman SA, Jafar HD, Bell BE, Kurz SG, Wilson KE, Cupp AS. Naturally occurring androgen excess cows are present in dairy and beef herds and have similar characteristics to women with PCOS. J Anim Sci 2022; 100:6596684. [PMID: 35648128 DOI: 10.1093/jas/skac151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Beef cows with excess androstenedione (A4; High A4) in follicular fluid (FF) and secreted by the ovarian cortex have been reported from the University of Nebraska-Lincoln physiology herd displaying characteristics reminiscent of polycystic ovary syndrome (PCOS). Thus, we hypothesized that naturally occurring High A4 cows were present in other dairy and beef herds. Fourteen Jordan (Amman, Jordon) dairy heifers and 16 U.S. Meat Animal Research Center beef heifers were classified by FF (High A4: A4 > 40 ng/mL and Control: A4 < 20 ng/mL) and/or cortex culture media (High A4 > 1 ng/mL/d or Control < 1 ng/mL/d). High A4 dairy heifers (n = 6) had greater A4 concentrations (7.6-fold) in FF and (98-fold) greater in ovarian cortex culture media with greater numbers of primordial and fewer later-stage follicles than Controls (n = 8) even after 7 d of culture. Also, the ovarian cortex had greater staining for Picro Sirius red in High A4 dairy heifers compared with Controls indicating increased fibrosis. Thecal cells from High A4 dairy heifers had greater STAR, LHCGR, CYP17A, CD68, and PECAM mRNA expression with increased mRNA abundance of CYP17A1 and CD68 in the ovarian cortex cultures compared with Control dairy heifers. Similarly, cortex culture media from High A4 beef heifers (n = 10) had increased A4 (290-fold; P ≤ 0.001), testosterone (1,427-fold; P ≤ 0.001), and progesterone (9-fold; P ≤ 0.01) compared with Control heifers with increased primordial follicles and decreased later-stage follicles even after 7 d of culture, indicating abnormal follicular development. High A4 ovarian cortex cultures from beef heifers also had increased fibrosis markers and greater expression of PECAM (P = 0.01) with a tendency for increased vascular endothelial cadherin compared with Controls (n = 6). These two trials support our hypothesis that naturally occurring androgen excess cows are present in other dairy and beef herds. The ability to identify these females that have excess A4 ovarian microenvironments may allow for their use in understanding factors causing abnormal follicle development linked to androgen excess and inflammation.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Shelby A Springman
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Hanan D Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Brooke E Bell
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Scott G Kurz
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kyle E Wilson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
38
|
Rhamnocitrin Attenuates Ovarian Fibrosis in Rats with Letrozole-Induced Experimental Polycystic Ovary Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5558599. [PMID: 35663203 PMCID: PMC9162838 DOI: 10.1155/2022/5558599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/04/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine-related cause of infertility in women and has an unknown etiology. Studies have shown that rhamnocitrin (Rha) exhibits positive effects on the reproductive system. This study investigated Rha's antifibrotic effects on PCOS rats and revealed its underlying mechanisms. Female SD rats were randomized into 4 groups (n = 8, each); the control group received tea oil by intraperitoneal injection and 1% w/v CMC by oral gavage; the PCOS group received letrozole (1 mg/kg); the PCOS+Rha group received letrozole and Rha (5 mg/kg); the PCOS+Met group received letrozole and Met (265 mg/kg) for 21 days. At the study end, Rha treatment restored letrozole-induced alterations in the relative ovarian weights, body weight, and relative weights of uterine and visceral adipose tissues. Histological observation showed that Rha ameliorates ovarian structure and fibrosis in PCOS. Administration of Rha reduced letrozole-induced metabolic dysfunction by ameliorating the levels of TC, TG, and HDL-C in the PCOS rats. Rha treatment also modulated the serum levels of sex hormones, which decreased T, E2, and LH and increased FSH in PCOS rats. In addition, Rha treatment modulated insulin resistance and increased gene expression of antioxidant enzymes (Cat, Sod2, Gpx3, Mgst1, Prdx3, Gsta4, Gsr, and Sod1) in the ovaries of the PCOS rats. Finally, Rha treatment appeared to increase the activity of PPAR-γ and inhibit the TGF-β1/Smad pathway in the ovaries of the PCOS rats. Our findings suggest that Rha significantly ameliorated metabolic disturbances and ovarian fibrosis in the PCOS rats. Rha perhaps is an effective compound for preventing ovarian fibrosis in the future.
Collapse
|
39
|
Huang L, Hou Y, Li H, Wu H, Hu J, Lu Y, Liu X. Endoplasmic reticulum stress is involved in small white follicular atresia in chicken ovaries. Theriogenology 2022; 184:140-152. [DOI: 10.1016/j.theriogenology.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/26/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
|
40
|
Wang C, Zhang Y. Endoplasmic Reticulum Stress: A New Research Direction for Polycystic Ovary Syndrome? DNA Cell Biol 2022; 41:356-367. [PMID: 35353637 DOI: 10.1089/dna.2021.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrine disorders, with sporadic ovulation, excessive androgens, and polycystic ovarian changes as the main clinical manifestations. Due to the high heterogeneity of its clinical manifestations, the discussion on its pathogenesis has not been unified. Current research has found that genetic factors, hyperandrogenism, chronic inflammation and oxidative stress, insulin resistance, and obesity are strongly associated with PCOS. Recently, when studying the specific mechanisms of the abovementioned factors in PCOS, the biological response process of endoplasmic reticulum stress (ERS) has gradually come to researchers' attention, and several studies have confirmed the involvement of ERS in the pathogenesis of PCOS and the improvement of a series of pathological manifestations of PCOS after the application of ERS inhibitors, which may be a new entry point for the treatment of PCOS. In this article, we review the relationship between ERS and various pathogenic factors of PCOS.
Collapse
Affiliation(s)
- Chengzhe Wang
- Department of Gynecology of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, China
| | - Yingjie Zhang
- Department of Gynecology of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, China
| |
Collapse
|
41
|
Li Y, Wu X, Miao S, Cao Q. MiR-383-5p promotes apoptosis of ovarian granulosa cells by targeting CIRP through the PI3K/AKT signaling pathway. Arch Gynecol Obstet 2022; 306:501-512. [PMID: 35226160 DOI: 10.1007/s00404-022-06461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To detect miR-383-5p and cold-inducible RNA binding protein (CIRBP, CIRP) expression in patients with polycystic ovary syndrome (PCOS) and explore the mechanism underlying their effect on apoptosis in ovarian granulosa cells (GCs). METHODS GCs were extracted from follicular fluid from 101 patients. MiR-383-5p and CIRP expression were assessed by quantitative real time polymerase chain reaction analysis. Correlation between them was assessed by Spearman correlation analysis. The potential of using miR-383-5p expression for discriminating PCOS and non-PCOS patients was predicted by receiver operating characteristic curve analysis. Proliferation and apoptosis of KGN cells transfected for miR-383-5p overexpression or knockdown was evaluated using cell counting kit-8 assay, flow cytometry, and western blot analysis. CIRP was identified as a direct target of miR-383-5p, and verified by dual-luciferase reporter assay. RESULTS The expression level of miR-383-5p was decreased and CIRP mRNA was increased in PCOS patients. The expression of miR-383-5p was correlated negatively with body-mass index, basal luteinizing hormone and testosterone levels, luteinizing hormone/follicle-stimulating hormone ratio, and the number of retrieved and metaphase II oocytes. MiR-383-5p had sufficient potential for prediction of PCOS. There was a negative correlation between the expression of miR-383-5p and CIRP. Overexpression of miR-383-5p enhanced the apoptosis of KGN cells. CIRP reversed the effect of miR-383-5p on promotion of apoptosis. MiR-383-5p mimics could suppress the PI3K/AKT signaling pathway, which was activated by the CIRP overexpressing plasmid. CONCLUSIONS MiR-383-5p promoted apoptosis of ovarian GCs through the PI3K/AKT signaling pathway by targeting CIRP.
Collapse
Affiliation(s)
- Yunying Li
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, China.,Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Xiaohua Wu
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Suibing Miao
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Qinying Cao
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, China. .,Department of Obstetrics and Gynecology, Shijiazhuang People's Hospital Affiliated to Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
42
|
Abedal-Majed MA, Springman SA, Sutton CM, Snider AP, Bell BE, Hart M, Kurz SG, Bergman J, Summers AF, McFee RM, Davis JS, Wood JR, Cupp AS. VEGFA165 can rescue excess steroid secretion, inflammatory markers, and follicle arrest in the ovarian cortex of High A4 cows†. Biol Reprod 2022; 106:118-131. [PMID: 34726240 PMCID: PMC9630404 DOI: 10.1093/biolre/ioab201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A population of cows with excess androstenedione (A4; High A4) in follicular fluid, with follicular arrest, granulosa cell dysfunction, and a 17% reduction in calving rate was previously identified. We hypothesized that excess A4 in the ovarian microenvironment caused the follicular arrest in High A4 cows and that vascular endothelial growth factor A would rescue the High A4 phenotype. In trial 1, prior to culture, High A4 ovarian cortex (n = 9) had greater numbers of early stage follicles (primordial) and fewer later-stage follicles compared to controls (n = 11). Culture for 7 days did not relieve this follicular arrest; instead, High A4 ovarian cortex had increased indicators of inflammation, anti-Mullerian hormone, and A4 secretion compared to controls. In trial 2, we tested if vascular endothelial growth factor A isoforms could rescue the High A4 phenotype. High A4 (n = 5) and control (n = 5) ovarian cortex was cultured with (1) PBS, (2) VEGFA165 (50 ng/mL), (3) VEGFA165B (50 ng/mL), or (4) VEGFA165 + VEGFA165B (50 ng/mL each) for 7 days. Follicular progression increased with VEGFA165 in High A4 cows with greater early primary, primary, and secondary follicles than controls. Similar to trial 1, High A4 ovarian cortex secreted greater concentrations of A4 and other steroids and had greater indicators of inflammation compared to controls. However, VEGFA165 rescued steroidogenesis, oxidative stress, and fibrosis. The VEGFA165 and VEGFA165b both reduced IL-13, INFα, and INFβ secretion in High A4 cows to control levels. Thus, VEGFA165 may be a potential therapeutic to restore the ovarian steroidogenic microenvironment and may promote folliculogenesis.
Collapse
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, University of Jordan, Amman-Jordan, Jordan
| | - Shelby A Springman
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Courtney M Sutton
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexandria P Snider
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brooke E Bell
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Scott G Kurz
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeff Bergman
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Adam F Summers
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Renee M McFee
- School of Veterinary and Biomedical Sciences, Veterinary Medicine and Biomedical Sciences Hall (VBS), University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John S Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, Animal Science Building, University of Nebraska-Lincoln, Lincoln, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
43
|
Sumbul HE, Avci BS, Bankir M, Pekoz BC, Gulumsek E, Koc AS. Ovarian Stiffness Is Significantly Increased in Polycystic Ovary Syndrome and Related With Anti-Mullerian Hormone: A Point Shear Wave Elastography Study. Ultrasound Q 2022; 38:83-88. [PMID: 35020692 DOI: 10.1097/ruq.0000000000000592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Parenchymal stiffness obtained by point shear-wave elastography (pSWE) in solid organs is used as a sign of damage in these organs. However, its clinical use and whether patients with polycystic ovary syndrome (PCOS) have increased ovarian tissue stiffness are still unclear. The aim of this study is to determine the parameters related to ovarian stiffness and whether there is an increase in ovarian stiffness in patients with PCOS compared with healthy controls. METHODS Forty-five women who were followed up regularly with the diagnosis of PCOS and 30 healthy controls similar to age and sex were included in this study. In addition to the routine follow-up parameters for PCOS, serum homeostatic model assessment of insulin resistance and anti-Mullerian hormone (AMH) levels were examined in all patients, and pSWE examination was performed with pelvic ultrasound (US) and ElastPQ technique. RESULTS Serum dehydroepiandrosterone sulfate, luteinizing hormone/follicle-stimulating hormone, testosterone, homeostatic model assessment of insulin resistance, and AMH were higher in PCOS compared with healthy controls (P < 0.001). Right, left, and mean ovary stiffness and volumes were significantly higher in PCOS group than healthy controls (P < 0.001). Correlation analysis was performed between mean ovary stiffness and dehydroepiandrosterone sulfate, luteinizing hormone/follicle-stimulating hormone, testosterone, homeostatic model assessment, and AMH and ovary volumes (P < 0.01 for each one). In linear regression analysis, only AMH was found to be related to mean ovary stiffness (P < 0.001 and β = 0.734). CONCLUSIONS Ovarian stiffness value obtained by ElastPQ technique and pSWE method increases in PCOS patients compared with healthy controls and is closely related to serum AMH levels. In patients with PCOS, in addition to the conventional US, ovarian stiffness measured by pSWE may be an auxiliary examination in the follow-up of the disease. However, it was concluded that the ovarian stiffness measurement obtained in our current study should be supported by studies involving more patients and the transvaginal US method.
Collapse
Affiliation(s)
| | | | | | - Burcak Cakir Pekoz
- Department of Radiology, Adana City Research and Training Hospital, Health Science University, Adana
| | | | - Ayse Selcan Koc
- Department of Radiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
44
|
Song T, Li P, Wang Q, Hao B, Wang Y, Bian Y, Shi Y. Comprehensive Assessment of the STIMs and Orais Expression in Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2022; 13:874987. [PMID: 35669690 PMCID: PMC9165061 DOI: 10.3389/fendo.2022.874987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disease characterized by irregular menstrual, hyperandrogenism, and polycystic ovaries. The definitive mechanism of the disorder is not fully elucidated. Store-operated Ca2+ entry (SOCE) plays a role in glucose and lipid metabolism, inflammation, hormone secretion, and cell proliferation. STIMs and Orais are the main elements of SOCE. The potential role of SOCE in PCOS pathogenesis remains unclear. METHODS The expression of STIMs and Orais in granulosa cells (GCs) derived from 83 patients with PCOS and 83 controls were analyzed, respectively, by using quantitative reverse transcription polymerase chain reaction. Binary regression analysis was used to identify the factors affecting PCOS after adjusted by body mass index and age. Pearson correlation analysis was used to determine the association between PCOS phenotypes and SOCE genes expression. RESULTS Significantly increased expression of STIM1, STIM2, Orai1, and Orai2 were observed in patients with PCOS compared with controls (P = 0.037, P = 0.004, P ≤ 0.001, and P = 0.013, respectively), whereas the expression of Orai3 was decreased (P = 0.003). In addition, the expression levels of STIMs and Orais were identified as the factors affecting PCOS (P < 0.05). The expressions of these genes were correlated with hormone level and antral follicle count (P < 0.05). CONCLUSIONS For the first time, our findings indicated that the elements of SOCE were differently expressed, where STIM1, STIM2, Orai1, and Orai2 significantly increased, whereas Orai3 decreased in PCOS GCs, which might be dominantly involved in dysfunction of ovarian GCs and hormonal changes in PCOS.
Collapse
Affiliation(s)
- Tian Song
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ping Li
- Department of Reproductive Medicine, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen, China
| | - Qiumin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Baozhen Hao
- Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Guangdong Provincial People’s Hospital, Guangzhou, China
- *Correspondence: Yuhua Shi,
| |
Collapse
|
45
|
Turathum B, Gao EM, Grataitong K, Liu YB, Wang L, Dai X, Chian RC. Dysregulated sphingolipid metabolism and autophagy in granulosa cells of women with endometriosis. Front Endocrinol (Lausanne) 2022; 13:906570. [PMID: 35992117 PMCID: PMC9381821 DOI: 10.3389/fendo.2022.906570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
We evaluated metabolic profiles between cumulus cells (CCs) and mural granulosa cells (MGCs) derived from women with endometriosis to identify their correlations with oocyte quality. CCs and MGCs were collected from women with and without endometriosis undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. The metabolomics of CCs and MGCs were measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed by a quantitative polymerase chain reaction to further confirm the genes involved in the metabolic results. LC-MS/MS analysis revealed differences in 24 metabolites of CCs and 71 metabolites of MGCs between groups. Among them, five metabolites were upregulated and 19 metabolites were downregulated in CCs with endometriosis, whereas three metabolites were upregulated and 68 metabolites were downregulated in MGCs with endometriosis. Metabolites related to sphingolipid metabolism, which included palmitic acid (PA) and docosahexaenoic acid, increased significantly only in CCs with endometriosis, whereas sphingosine and PA were significantly downregulated in MGCs with endometriosis compared with CCs and MGCs without endometriosis. Gene expression involved in ceramide synthesis (CERS1, SPTL1, and SMPD1) and autophagy (BECN1, LAMP, and PC3) were significantly higher in CCs with endometriosis according to FASN, BECN1, and LAMP protein expressions. However, gene expression involved in ceramide synthesis (SPHK1, ASAH1, and SGPP1) and autophagy (BECN1, LAMP, and PC3) were significantly lower in MGCs with endometriosis, whereas CERS1 and UGCG expression increased. There are differences in sphingolipid metabolites in CCs and MGCs with endometriosis compared with women without endometriosis. These differences seem to be involved in the regulation of autophagic cell death in preovulatory follicles.
Collapse
Affiliation(s)
- Bongkoch Turathum
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Er-Meng Gao
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
| | - Khwanthana Grataitong
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Yu-Bing Liu
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
| | - Ling Wang
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
| | - Xue Dai
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
| | - Ri-Cheng Chian
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
- *Correspondence: Ri-Cheng Chian,
| |
Collapse
|
46
|
Harada M. Pathophysiology of polycystic ovary syndrome revisited: Current understanding and perspectives regarding future research. Reprod Med Biol 2022; 21:e12487. [PMID: 36310656 PMCID: PMC9601867 DOI: 10.1002/rmb2.12487] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women and has lifelong effects on health. Methods In this review, I discuss the pathophysiology of PCOS. First, I summarize our current understanding of the etiology and pathology of PCOS, then, discuss details of two representative environmental factors involved in the pathogenesis of PCOS. Finally, I present perspectives regarding the directions of future research. Main findings The pathophysiology of PCOS is heterogeneous and shaped by the interaction of reproductive dysfunction and metabolic disorders. Hyperandrogenism and insulin resistance exacerbate one another during the development of PCOS, which is also affected by dysfunction of the hypothalamus-pituitary-ovarian axis. PCOS is a highly heritable disorder, and exposure to certain environmental factors causes individuals with predisposing genetic factors to develop PCOS. The environmental factors that drive the development of PCOS pathophysiology make a larger contribution than the genetic factors, and may include the intrauterine environment during the prenatal period, the follicular microenvironment, and lifestyle after birth. Conclusion On the basis of this current understanding, three areas are proposed to be subjects for future research, with the ultimate goals of developing therapeutic and preventive strategies and providing appropriate lifelong management, including preconception care.
Collapse
Affiliation(s)
- Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
47
|
Wang Y, Zhang X, Fu Y, Fu D, Zhen D, Xing A, Chen Y, Gong G, Wei C. 1, 8-cineole protects against ISO-induced heart failure by inhibiting oxidative stress and ER stress in vitro and in vivo. Eur J Pharmacol 2021; 910:174472. [PMID: 34481877 DOI: 10.1016/j.ejphar.2021.174472] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Sugemule-3 is widely adopted in clinical practice to manage cardio-cerebral diseases. 1, 8-cineole is the main ingredient of Sugemule-3, however, the underlying cellular mechanisms for its protective effect are poorly understood. 1, 8-cineole improved the survival of H9C2 cardiomyocytes during isoproterenol (ISO) injury and reduced ISO-induced apoptosis. Compared to the ISO group, 1, 8-cineole highly attenuated the generation of ISO-induced reactive oxygen species (ROS), the depolarization of △ψm, suppression of the Bax/Bcl-2 ratio, and p-caspase 3 expression, in vitro. Furthermore, 1, 8-cineole treatment in H9C2 cardiomyocytes lowered the expressions of 78-kDa glucose-regulated protein (GRP78), p-protein kinase-like ER kinase (PERK), activation of transcription factor (ATF) 4, and ER stress effector protein C/EBP and homologous protein (CHOP). These findings implied that 1, 8-cineole contribute to cardioprotection via the GRP78/CHOP pathways. Using animal models, 1, 8-cineole was revealed to markedly alleviate ISO-induced heart injury, and reduce cardiac hypertrophy, formation of the cytoplasmic vacuole, loss of myofiber, and fibrosis by inhibiting oxidative stress and ER stress. 1, 8-cineole reduces apoptosis by inhibiting signaling pathways related to oxidative stress and ER stress. These findings implicate 1, 8-cineole as a potential therapeutic target for cardiac hypertrophy-related heart diseases, including heart failure.
Collapse
Affiliation(s)
- Yu Wang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Xuan Zhang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Yao Fu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Danni Fu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Dong Zhen
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - An Xing
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Yu Chen
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Guohua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China; Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China.
| | - Chengxi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China.
| |
Collapse
|
48
|
Salahi E, Amidi F, Zahiri Z, Aghahosseini M, Mashayekhi F, Amani Abkenari S, Hosseinishenatal S, Sobhani A. The effect of mitochondria-targeted antioxidant MitoQ10 on redox signaling pathway components in PCOS mouse model. Arch Gynecol Obstet 2021; 305:985-994. [PMID: 34633506 DOI: 10.1007/s00404-021-06230-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/01/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Considerable evidence suggests that mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of Polycystic ovary syndrome (PCOS). We aimed to evaluate the effectiveness of mitochondria-targeted antioxidant, MitoQ10, on the redox signaling pathway's component in PCOS. METHOD We assessed TXNIP, TRX, and ASK1 expression in granulosa cells (GCs) of the DHEA-induced PCOS mouse model. Female BALB/c mice in five groups of Control, DHEA, and DHEA + MitoQ10 in three doses of 250, 500, and 750 μmol/L MitoQ10 were treated for 21 days. RESULTS Histological investigation showed a probable improvement in folliculogenesis; besides, ASK1 and TXNIP expression were significantly increased in GCs of the PCOS mouse F4Fmodel as compared to the control groups and decreased steadily in groups treated by MitoQ10. However, TRX expression showed a drop that was restored by MitoQ10 meaningfully (P ≤ 0.05). CONCLUSION The work presented herein suggests mitochondria-targeted antioxidant, MitoQ10, have modulating effects on folliculogenesis in the ovary and also on the redox signaling pathway in GCs of PCOS mouse model which may have potential to attenuate oxidative stress and its relative damages.
Collapse
Affiliation(s)
- Elnaz Salahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina ST, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina ST, Tehran, Iran
| | - Ziba Zahiri
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, Alzahra Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Marziye Aghahosseini
- Department of Obstetrics and Gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Showra Amani Abkenari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina ST, Tehran, Iran
| | - Shirzad Hosseinishenatal
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina ST, Tehran, Iran
| | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poursina ST, Tehran, Iran.
| |
Collapse
|
49
|
Bahçeci E, Kaya C, Karakaş S, Yıldız Ş, Hoşgören M, Ekin M. Serum X-box-binding protein 1 levels in PCOS patients. Gynecol Endocrinol 2021; 37:920-924. [PMID: 34160344 DOI: 10.1080/09513590.2021.1942449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE X-box binding protein-1 (XBP1) is a possible indicator of metabolic syndrome and diabetes. This study aimed to evaluate the relationship between serum XBP1 levels and polycystic ovary syndrome (PCOS). METHOD A prospective observational study was conducted with 88 patients. The first group was defined as the control group with ovulatory and normal-BMI patients (n = 28). The second group comprised of nonobese PCOS patients (n = 30). The third group included overweight/obese patients with PCOS (n = 30). Fasting plasma glucose, serum lipids, follicle stimulating hormone, luteinizing hormone, total testosterone, dehydroepiandrosterone and XBP1 levels l were evaluated in all groups. RESULTS There was a significant difference in XBP1 levels between the study groups, and higher levels were observed both in the nonobese and obese PCOS groups than in the healthy controls (p < .001). The median level of XBP1 was 73.7 pg/ml in the control group, 114.11 pg/ml in the nonobese PCOS group, and 151.61 pg/ml in the overweight/obese PCOS group. A cutoff level of XBP1 at 95.79 pg/ml level was determined with a significant AUC (area under the curve) level of 99% and high specificity and sensitivity rates to predict PCOS. Also, a significant positive correlation was observed between XBP1 levels and BMI, waist circumference, fasting plasma glucose and triglyceride levels (p < .05). CONCLUSIONS XBP1 levels were significantly higher in PCOS patients, particularly in overweight/obese PCOS patients, than in the controls. Also, the parameters associated with metabolic syndrome were related to XBP1 levels.
Collapse
Affiliation(s)
- Ece Bahçeci
- Dr. Sadi Konuk Education and Research Hospital, Obstetrics and Gynecology Clinic, University of Health Sciences, Bakirkoy, Istanbul
| | - Cihan Kaya
- Dr. Sadi Konuk Education and Research Hospital, Obstetrics and Gynecology Clinic, University of Health Sciences, Bakirkoy, Istanbul
| | - Sema Karakaş
- Dr. Sadi Konuk Education and Research Hospital, Obstetrics and Gynecology Clinic, University of Health Sciences, Bakirkoy, Istanbul
| | - Şükrü Yıldız
- Dr. Sadi Konuk Education and Research Hospital, Obstetrics and Gynecology Clinic, University of Health Sciences, Bakirkoy, Istanbul
| | - Murat Hoşgören
- Dr. Sadi Konuk Education and Research Hospital, Obstetrics and Gynecology Clinic, University of Health Sciences, Bakirkoy, Istanbul
| | - Murat Ekin
- Dr. Sadi Konuk Education and Research Hospital, Obstetrics and Gynecology Clinic, University of Health Sciences, Bakirkoy, Istanbul
| |
Collapse
|
50
|
Przygrodzka E, Plewes MR, Davis JS. Luteinizing Hormone Regulation of Inter-Organelle Communication and Fate of the Corpus Luteum. Int J Mol Sci 2021; 22:9972. [PMID: 34576135 PMCID: PMC8470545 DOI: 10.3390/ijms22189972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
The corpus luteum is an endocrine gland that synthesizes the steroid hormone progesterone. luteinizing hormone (LH) is a key luteotropic hormone that stimulates ovulation, luteal development, progesterone biosynthesis, and maintenance of the corpus luteum. Luteotropic and luteolytic factors precisely regulate luteal structure and function; yet, despite recent scientific progress within the past few years, the exact mechanisms remain largely unknown. In the present review, we summarize the recent progress towards understanding cellular changes induced by LH in steroidogenic luteal cells. Herein, we will focus on the effects of LH on inter-organelle communication and steroid biosynthesis, and how LH regulates key protein kinases (i.e., AMPK and MTOR) responsible for controlling steroidogenesis and autophagy in luteal cells.
Collapse
Affiliation(s)
- Emilia Przygrodzka
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
| | - Michele R. Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-3255, USA; (E.P.); (M.R.P.)
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| |
Collapse
|