1
|
Ku KC, Zhong J, Song E, Fong CHY, Lam KSL, Xu A, Lee CH, Cheung CYY. Clinical utility of glycated albumin and 1,5-anhydroglucitol in the screening and prediction of diabetes: A multi-center study. World J Diabetes 2025; 16:102867. [PMID: 40236844 PMCID: PMC11947923 DOI: 10.4239/wjd.v16.i4.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/24/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Despite being the gold standard, the use of glycated hemoglobin (HbA1c) and fasting plasma glucose (FPG) for diagnosing dysglycemia is imperfect. In particular, a low level of agreement between HbA1c and FPG in detecting prediabetes and diabetes has led to difficulties in clinical interpretation. Glycated albumin (GA) and 1,5-anhydroglucitol (1,5-AG) may potentially serve as biomarkers for the detection and prediction of diabetes, as well as glycemic monitoring. AIM To explore the diagnostic performance of GA and 1,5-AG for screening dysglycemia; assess whether they can be used for glycemic monitoring in Chinese morbidly-obese patients; and examine their predictive ability for incident diabetes in a Chinese community-based cohort. METHODS GA and 1,5-AG concentrations were measured in 462 morbidly-obese patients from the Obese Chinese Cohort (OCC). A sub-group of diabetes subjects (n = 24) was prospectively followed-up after bariatric surgery. Differences between baseline and post-surgery biomarker values were converted to percentage change from baseline to assess the response to glycemic control. Predictive ability of the biomarkers was assessed in 132 incident diabetes cases and 132 matched non-diabetes controls in the community-based Cardiovascular Risk Factor Prevalence Study (CRISPS). A prediction model was developed and compared with clinical models based on conventional risk factors. RESULTS GA exhibited an excellent diagnostic value with an area under the receiver operating characteristic curve (AUC) of 0.919 (95%CI: 0.884-0.955) for identifying diabetes and a high agreement in the classification of diabetes with both FPG and HbA1c in the OCC. GA demonstrated the fastest response to glycemic control. In CRISPS, the 'B3A' prediction model, which consisted of body mass index (BMI) and 3 biomarkers (HbA1c, GA and 1,5-AG), achieved a comparable predictive value [AUC (95%CI): 0.793 (0.744-0.843)] to that of a clinical model comprising BMI, HbA1c, FPG and 2-hour glucose (2hG) [AUC (95%CI): 0.783 (0.733-0.834); DeLong P value = 0.736]. The 'B3A' was significantly superior to a clinical model including BMI, HbA1c, FPG and triglycerides [AUC (95%CI): 0.729 (0.673-0.784); DeLong P value = 0.027]. CONCLUSION GA and 1,5-AG have the potential to act as robust biomarkers for the screening and risk prediction of diabetes. FPG and 2hG may be replaced by GA and 1,5-AG in future diabetes predictions.
Collapse
Affiliation(s)
- Kam-Ching Ku
- Department of Medicine, University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Institute of Metabolic Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Junda Zhong
- Department of Medicine, University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Institute of Metabolic Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Erfei Song
- Department of Medicine, University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Institute of Metabolic Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Carol Ho-Yi Fong
- Department of Medicine, University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Institute of Metabolic Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Karen Siu-Ling Lam
- Department of Medicine, University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Institute of Metabolic Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Aimin Xu
- Department of Medicine, University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Institute of Metabolic Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Chi-Ho Lee
- Department of Medicine, University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Institute of Metabolic Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Chloe Yu-Yan Cheung
- Department of Medicine, University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong 999077, China
- Guangdong-Hong Kong Joint Institute of Metabolic Medicine, University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
2
|
Mir MM, Alghamdi M, BinAfif WF, Alharthi MH, Alshahrani AM, Alamri MMS, Alfaifi J, Ameer AYA, Mir R. Emerging biomarkers in type 2 diabetes mellitus. Adv Clin Chem 2025; 126:155-198. [PMID: 40185534 DOI: 10.1016/bs.acc.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Diabetes mellitus is a chronic condition caused by high blood glucose resulting from insufficient insulin production or cellular resistance to insulin action or both. It is one of the fastest-growing public health concerns worldwide. Development of long-term nephropathy, retinopathy, neuropathy, and cardiovascular disease are some of the complications commonly associated with poor blood glycemic control. Type 2 diabetes mellitus (T2DM), the most prevalent type of diabetes, accounts for around 95 % of all cases globally. Although middle-aged or older adults are more likely to develop T2DM, its prevalence has grown in children and young people due to increased obesity, sedentary lifestyle and poor nutrition. Furthermore, it is believed that more than 50 % of cases go undiagnosed annually. Routine screening is essential to ensure early detection and reduce risk of life-threatening complications. Herein, we review traditional biomarkers and highlight the ongoing pursuit of novel and efficacious biomarkers driven by the objective of achieving early, precise and prompt diagnoses. It is widely acknowledged that individual biomarkers will inevitably have certain limitations necessitating the need for integrating multiple markers in screening.
Collapse
Affiliation(s)
- Mohammad Muzaffar Mir
- Departments of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha, Saudi Arabia.
| | - Mushabab Alghamdi
- Internal Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Waad Fuad BinAfif
- Internal Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Abdullah M Alshahrani
- Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Jaber Alfaifi
- Child Health, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
3
|
Al-Lahham Y, Volanski W, Signorini L, do Prado AL, Valdameri G, Moure VR, Welter M, Alves AC, Sari MHM, Rego FGDM, Picheth G. Reference Interval for Glycated Albumin, 1,5-AG/GA, and GA/HbA1c Ratios and Cut-Off Values for Type 1, Type 2, and Gestational Diabetes: A Cross-Sectional Study. Biomedicines 2024; 12:2651. [PMID: 39767558 PMCID: PMC11673511 DOI: 10.3390/biomedicines12122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Glycated albumin (GA) serves as a biomarker for short-term glycemic control (2-3 weeks), playing a role in diabetes management. Our goal was to establish reference intervals (RIs) for serum GA, and the ratios of 1,5-anhydroglucitol to GA (AGI) and GA to HbA1c in a Euro-Brazilian pediatric population (10 y, n = 299), adults (43.5 y; n = 290), and pregnant women (26 y, n = 406; 26.5 ± 3.1 gestation weeks). Methods: Receiver operating characteristic curve analysis was employed to determine RIs for type 1 diabetes (T1D) in children (n = 148) and adults (n = 81), type 2 diabetes (T2D, n = 283), and gestational diabetes mellitus (GDM, n = 177). Results: Both non-pregnant and pregnant women exhibited GA RIs of 10.0-13.3% and 10.6-14.7%, respectively. The AGI ratio varied from 1.2-4.3 in children, 0.9-3.6 in adults, and 0.8-3.1 in pregnant women. Meanwhile, the GA/HbA1c ratio ranged from 1.8-2.6 in children and adults to 2.3-3.6 in pregnant women. GA and AGI ratios accurately differentiated between T1D and T2D, demonstrating high sensitivity (>84%) and specificity (>97%), with AGI showing superior performance (AUC > 0.99). The GA/HbA1c ratio exhibited moderate discriminatory power (AUC > 0.733) but was less effective in distinguishing adult-onset T1D and T2D, suggesting its limited utility in certain groups. Conclusions: The proposed RIs are consistent with those of other Caucasian populations, affirming their relevance for Euro-Brazilian patients. The GA and AGI ratios emerge as valuable diagnostic tools for T1D and T2D, though their reduced sensitivity in diagnosing GDM warrants further investigation. Clinicians might leverage GA and AGI ratios for more tailored diabetes management, especially when HbA1c results are not optimal.
Collapse
Affiliation(s)
- Yusra Al-Lahham
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil (W.V.); (L.S.); (G.V.); (V.R.M.); (M.H.M.S.); (F.G.d.M.R.)
| | - Waldemar Volanski
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil (W.V.); (L.S.); (G.V.); (V.R.M.); (M.H.M.S.); (F.G.d.M.R.)
- Laboratory Division, Curitiba City Hall, Curitiba 80530-908, Brazil
| | - Liana Signorini
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil (W.V.); (L.S.); (G.V.); (V.R.M.); (M.H.M.S.); (F.G.d.M.R.)
- Laboratory Division, Curitiba City Hall, Curitiba 80530-908, Brazil
| | - Ademir Luiz do Prado
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil (W.V.); (L.S.); (G.V.); (V.R.M.); (M.H.M.S.); (F.G.d.M.R.)
- Federal Institute of Parana, Colombo 83403-515, Brazil
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil (W.V.); (L.S.); (G.V.); (V.R.M.); (M.H.M.S.); (F.G.d.M.R.)
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil (W.V.); (L.S.); (G.V.); (V.R.M.); (M.H.M.S.); (F.G.d.M.R.)
| | - Marciane Welter
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil (W.V.); (L.S.); (G.V.); (V.R.M.); (M.H.M.S.); (F.G.d.M.R.)
| | - Alexessander C. Alves
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Marcel Henrique Marcondes Sari
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil (W.V.); (L.S.); (G.V.); (V.R.M.); (M.H.M.S.); (F.G.d.M.R.)
| | - Fabiane Gomes de Moraes Rego
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil (W.V.); (L.S.); (G.V.); (V.R.M.); (M.H.M.S.); (F.G.d.M.R.)
| | - Geraldo Picheth
- Graduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil (W.V.); (L.S.); (G.V.); (V.R.M.); (M.H.M.S.); (F.G.d.M.R.)
| |
Collapse
|
4
|
Xu H, Chen R, Hou X, Li N, Han Y, Ji S. The clinical potential of 1,5-anhydroglucitol as biomarker in diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1471577. [PMID: 39544236 PMCID: PMC11560458 DOI: 10.3389/fendo.2024.1471577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024] Open
Abstract
A crucial measure of diabetes management is to monitor blood glucose, which often requires continuous blood collection, leading to economic burden and discomfort. Blood glucose and glycated hemoglobin A1c serve as traditional indicators of glucose monitoring. But now glycated albumin, fructosamine, and 1,5-anhydroglucitol (1,5-AG) have been gaining more attention. 1,5-AG is a chemically stable monosaccharide that exists in the human body. Its serum concentration remains stable when blood glucose levels are normal. However, it decreases when blood glucose exceeds the renal glucose threshold. Studies have shown that 1.5-AG reflects blood glucose changes in 1 to 2 weeks; therefore, decreased levels of serum 1,5-AG can serve as a clinical indicator of short-term blood glucose disturbances. Recent studies have shown that 1,5-AG can be used not only for the screening and managing of diabetes but also for predicting diabetes-related adverse events and islet β cell function in prediabetic patients. In addition, saliva 1,5-AG demonstrates potential value in the screening and diagnosis of diabetes. This review focuses on the biological characteristics, detection methods, and clinical application of 1,5-AG to promote understanding and applicable research of 1,5-AG in the future.
Collapse
Affiliation(s)
- Haiying Xu
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Renyin Chen
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Xiaoli Hou
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Na Li
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Yanwei Han
- Hospital Laboratory Department, Rehabilitation Hospital of Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Shaoping Ji
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
5
|
Jaagura M, Kronberg J, Reigo A, Aasmets O, Nikopensius T, Võsa U, Bomba L, Estrada K, Wuster A, Esko T, Org E. Comorbidities confound metabolomics studies of human disease. Sci Rep 2024; 14:24810. [PMID: 39438584 PMCID: PMC11496539 DOI: 10.1038/s41598-024-75556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The co-occurrence of multiple chronic conditions, termed multimorbidity, presents an expanding global health challenge, demanding effective diagnostics and treatment strategies. Chronic ailments such as obesity, diabetes, and cardiovascular diseases have been linked to metabolites interacting between the host and microbiota. In this study, we investigated the impact of co-existing conditions on risk estimations for 1375 plasma metabolites in 919 individuals from population-based Estonian Biobank cohort using liquid chromatography mass spectrometry (LC-MS) method. We leveraged annually linked national electronic health records (EHRs) data to delineate comorbidities in incident cases and controls for the 14 common chronic conditions. Among the 254 associations observed across 13 chronic conditions, we primarily identified disease-specific risk factors (92%, 217/235), with most predictors (93%, 219/235) found to be related to the gut microbiome upon cross-referencing recent literature data. Accounting for comorbidities led to a reduction of common metabolite predictors across various conditions. In conclusion, our study underscores the potential of utilizing biobank-linked retrospective and prospective EHRs for the disease-specific profiling of diverse multifactorial chronic conditions.
Collapse
Affiliation(s)
- Madis Jaagura
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Jaanika Kronberg
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Anu Reigo
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Oliver Aasmets
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Tiit Nikopensius
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Urmo Võsa
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | | | | | | | - Tõnu Esko
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Elin Org
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia.
| |
Collapse
|
6
|
Yu H, Park C, Shin K, Woo H, Park H, Sung E, Kwon M. Cutoff Values for Glycated Albumin, 1,5-Anhydroglucitol, and Fructosamine as Alternative Markers for Hyperglycemia. J Clin Lab Anal 2024; 38:e25097. [PMID: 39405334 PMCID: PMC11520936 DOI: 10.1002/jcla.25097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Glycated albumin (GA), 1,5-anhydroglucitol (1,5-AG), and fructosamine have attracted considerable interest as markers of hyperglycemia. This study aimed to evaluate the optimal cutoff values for GA, 1,5-AG, and fructosamine and to determine their respective diagnostic efficacies in relation to hyperglycemia. METHODS We enrolled 6012 individuals who had undergone fasting blood glucose (FBG) and Hemoglobin A1c (HbA1c) tests along with at least one alternative glycemic marker. Receiver operating characteristic (ROC) curves and the upper or lower limit of the reference range (97.5 or 2.5 percentiles) were used to ascertain the optimal cutoff values. Follow-up data from healthy individuals were used to identify patients who developed diabetes mellitus (DM). RESULTS The ROC cutoff values for GA, 1,5-AG, and fructosamine were 13.9%, 13.3 μg/mL, and 278 μmol/L, respectively, with corresponding area under the curve (AUC) values of 0.860, 0.879, and 0.834. The upper limits of the reference intervals for GA and fructosamine were 15.1% and 279 μmol/L, respectively, and the lower limit for 1,5-AG was 5.3 μg/mL. Among the GA cutoff values, the ROC cutoff had the highest sensitivity. Analyzing the follow-up data showed that lowering the GA cutoff from 16.0% to 13.9% identified an additional 40 people with DM progression. CONCLUSIONS Lowering the GA cutoff values significantly increased the sensitivity of DM diagnosis and enhanced its potential as a screening marker by identifying more individuals with diabetes progression. Conversely, modifications to the cutoff values for 1,5-AG and fructosamine did not confer any discernible diagnostic or predictive advantages.
Collapse
Affiliation(s)
- Hui‐Jin Yu
- Department of Laboratory MedicineSeoul Medical CenterSeoulKorea
| | - Chang‐Hun Park
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon HospitalSoonchunhyang University College of MedicineBucheonKorea
| | - Kangsu Shin
- Department of Laboratory Medicine, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulKorea
| | - Hee‐Yeon Woo
- Department of Laboratory Medicine, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulKorea
| | - Hyosoon Park
- Department of Laboratory Medicine, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulKorea
| | - Eunju Sung
- Department of Family Medicine, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulKorea
| | - Min‐Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung HospitalSungkyunkwan University School of MedicineSeoulKorea
| |
Collapse
|
7
|
Zhang F, Shan S, Fu C, Guo S, Liu C, Wang S. Advanced Mass Spectrometry-Based Biomarker Identification for Metabolomics of Diabetes Mellitus and Its Complications. Molecules 2024; 29:2530. [PMID: 38893405 PMCID: PMC11173766 DOI: 10.3390/molecules29112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
Over the years, there has been notable progress in understanding the pathogenesis and treatment modalities of diabetes and its complications, including the application of metabolomics in the study of diabetes, capturing attention from researchers worldwide. Advanced mass spectrometry, including gas chromatography-tandem mass spectrometry (GC-MS/MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS), etc., has significantly broadened the spectrum of detectable metabolites, even at lower concentrations. Advanced mass spectrometry has emerged as a powerful tool in diabetes research, particularly in the context of metabolomics. By leveraging the precision and sensitivity of advanced mass spectrometry techniques, researchers have unlocked a wealth of information within the metabolome. This technology has enabled the identification and quantification of potential biomarkers associated with diabetes and its complications, providing new ideas and methods for clinical diagnostics and metabolic studies. Moreover, it offers a less invasive, or even non-invasive, means of tracking disease progression, evaluating treatment efficacy, and understanding the underlying metabolic alterations in diabetes. This paper summarizes advanced mass spectrometry for the application of metabolomics in diabetes mellitus, gestational diabetes mellitus, diabetic peripheral neuropathy, diabetic retinopathy, diabetic nephropathy, diabetic encephalopathy, diabetic cardiomyopathy, and diabetic foot ulcers and organizes some of the potential biomarkers of the different complications with the aim of providing ideas and methods for subsequent in-depth metabolic research and searching for new ways of treating the disease.
Collapse
Affiliation(s)
- Feixue Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
| | - Shan Shan
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China;
| | - Chenlu Fu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
- School of Pharmacy, Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
8
|
Gradisteanu Pircalabioru G, Musat M, Elian V, Iliescu C. Liquid Biopsy: A Game Changer for Type 2 Diabetes. Int J Mol Sci 2024; 25:2661. [PMID: 38473908 DOI: 10.3390/ijms25052661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
As the burden of type 2 diabetes (T2D) continues to escalate globally, there is a growing need for novel, less-invasive biomarkers capable of early diabetes detection and monitoring of disease progression. Liquid biopsy, recognized for its minimally invasive nature, is increasingly being applied beyond oncology, and nevertheless shows its potential when the collection of the tissue biopsy is not possible. This diagnostic approach involves utilizing liquid biopsy markers such as cell-free nucleic acids, extracellular vesicles, and diverse metabolites for the molecular diagnosis of T2D and its related complications. In this context, we thoroughly examine recent developments in T2D liquid biopsy research. Additionally, we discuss the primary challenges and future prospects of employing liquid biopsy in the management of T2D. Prognosis, diagnosis and monitoring of T2D through liquid biopsy could be a game-changing technique for personalized diabetes management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050094 Bucharest, Romania
| | - Madalina Musat
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| | - Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 5-7 Ion Movila Street, 030167 Bucharest, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Prof. Dr. N. C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Ciprian Iliescu
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050094 Bucharest, Romania
- National Research and Development Institute in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania
| |
Collapse
|
9
|
Diederich J, Mounkoro P, Tirado HA, Chevalier N, Van Schaftingen E, Veiga-da-Cunha M. SGLT5 is the renal transporter for 1,5-anhydroglucitol, a major player in two rare forms of neutropenia. Cell Mol Life Sci 2023; 80:259. [PMID: 37594549 PMCID: PMC10439028 DOI: 10.1007/s00018-023-04884-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023]
Abstract
Neutropenia and neutrophil dysfunction in glycogen storage disease type 1b (GSD1b) and severe congenital neutropenia type 4 (SCN4), associated with deficiencies of the glucose-6-phosphate transporter (G6PT/SLC37A4) and the phosphatase G6PC3, respectively, are the result of the accumulation of 1,5-anhydroglucitol-6-phosphate in neutrophils. This is an inhibitor of hexokinase made from 1,5-anhydroglucitol (1,5-AG), an abundant polyol in blood. 1,5-AG is presumed to be reabsorbed in the kidney by a sodium-dependent-transporter of uncertain identity, possibly SGLT4/SLC5A9 or SGLT5/SLC5A10. Lowering blood 1,5-AG with an SGLT2-inhibitor greatly improved neutrophil counts and function in G6PC3-deficient and GSD1b patients. Yet, this effect is most likely mediated indirectly, through the inhibition of the renal 1,5-AG transporter by glucose, when its concentration rises in the renal tubule following inhibition of SGLT2. To identify the 1,5-AG transporter, both human and mouse SGLT4 and SGLT5 were expressed in HEK293T cells and transport measurements were performed with radiolabelled compounds. We found that SGLT5 is a better carrier for 1,5-AG than for mannose, while the opposite is true for human SGLT4. Heterozygous variants in SGLT5, associated with a low level of blood 1,5-AG in humans cause a 50-100% reduction in 1,5-AG transport activity tested in model cell lines, indicating that SGLT5 is the predominant kidney 1,5-AG transporter. These and other findings led to the conclusion that (1) SGLT5 is the main renal transporter of 1,5-AG; (2) frequent heterozygous mutations (allelic frequency > 1%) in SGLT5 lower blood 1,5-AG, favourably influencing neutropenia in G6PC3 or G6PT deficiency; (3) the effect of SGLT2-inhibitors on blood 1,5-AG level is largely indirect; (4) specific SGLT5-inhibitors would be more efficient to treat these neutropenias than SGLT2-inhibitors.
Collapse
Affiliation(s)
- Jennifer Diederich
- Metabolic Research Group, de Duve Institute and UCLouvain, de Duve Institute, 75, Av. Hippocrate, 1200, Brussels, Belgium
| | - Pierre Mounkoro
- Metabolic Research Group, de Duve Institute and UCLouvain, de Duve Institute, 75, Av. Hippocrate, 1200, Brussels, Belgium
| | - Hernan A Tirado
- Metabolic Research Group, de Duve Institute and UCLouvain, de Duve Institute, 75, Av. Hippocrate, 1200, Brussels, Belgium
| | - Nathalie Chevalier
- Metabolic Research Group, de Duve Institute and UCLouvain, de Duve Institute, 75, Av. Hippocrate, 1200, Brussels, Belgium
| | - Emile Van Schaftingen
- Metabolic Research Group, de Duve Institute and UCLouvain, de Duve Institute, 75, Av. Hippocrate, 1200, Brussels, Belgium
| | - Maria Veiga-da-Cunha
- Metabolic Research Group, de Duve Institute and UCLouvain, de Duve Institute, 75, Av. Hippocrate, 1200, Brussels, Belgium.
| |
Collapse
|
10
|
Veiga-da-Cunha M, Wortmann SB, Grünert SC, Van Schaftingen E. Treatment of the Neutropenia Associated with GSD1b and G6PC3 Deficiency with SGLT2 Inhibitors. Diagnostics (Basel) 2023; 13:1803. [PMID: 37238286 PMCID: PMC10217388 DOI: 10.3390/diagnostics13101803] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Glycogen storage disease type Ib (GSD1b) is due to a defect in the glucose-6-phosphate transporter (G6PT) of the endoplasmic reticulum, which is encoded by the SLC37A4 gene. This transporter allows the glucose-6-phosphate that is made in the cytosol to cross the endoplasmic reticulum (ER) membrane and be hydrolyzed by glucose-6-phosphatase (G6PC1), a membrane enzyme whose catalytic site faces the lumen of the ER. Logically, G6PT deficiency causes the same metabolic symptoms (hepatorenal glycogenosis, lactic acidosis, hypoglycemia) as deficiency in G6PC1 (GSD1a). Unlike GSD1a, GSD1b is accompanied by low neutrophil counts and impaired neutrophil function, which is also observed, independently of any metabolic problem, in G6PC3 deficiency. Neutrophil dysfunction is, in both diseases, due to the accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases, which is slowly formed in the cells from 1,5-anhydroglucitol (1,5-AG), a glucose analog that is normally present in blood. Healthy neutrophils prevent the accumulation of 1,5-AG6P due to its hydrolysis by G6PC3 following transport into the ER by G6PT. An understanding of this mechanism has led to a treatment aimed at lowering the concentration of 1,5-AG in blood by treating patients with inhibitors of SGLT2, which inhibits renal glucose reabsorption. The enhanced urinary excretion of glucose inhibits the 1,5-AG transporter, SGLT5, causing a substantial decrease in the concentration of this polyol in blood, an increase in neutrophil counts and function and a remarkable improvement in neutropenia-associated clinical signs and symptoms.
Collapse
Affiliation(s)
- Maria Veiga-da-Cunha
- Metabolic Research Group, de Duve Institute and UCLouvain, B-1200 Brussels, Belgium
| | - Saskia B. Wortmann
- University Children’s Hospital, Paracelsus Medical University, 5020 Salzburg, Austria;
- Amalia Children’s Hospital, Radboudumc, 6525 Nijmegen, The Netherlands
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | | |
Collapse
|
11
|
Jiménez-Sánchez C, Mezza T, Sinturel F, Li L, Di Giuseppe G, Quero G, Jornayvaz FR, Guessous I, Dibner C, Schrauwen P, Alfieri S, Giaccari A, Maechler P. Circulating 1,5-Anhydroglucitol as a Biomarker of ß-cell Mass Independent of a Diabetes Phenotype in Human Subjects. J Clin Endocrinol Metab 2022; 107:2833-2843. [PMID: 35867405 DOI: 10.1210/clinem/dgac444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT During an asymptomatic prediabetic state, the functional ß-cell mass decreases to a critical threshold, triggering diabetes and related symptoms. To date, there are no reliable readouts able to capture in vivo a potential drop of the ß-cell mass. OBJECTIVE Beside its use as a short-term marker of glycemic control, the deoxyhexose 1,5-anhydroglucitol was identified in rodents as a circulating biomarker of the functional ß-cell mass already in the asymptomatic prediabetic stage. The present study investigated the putative corresponding relevance of circulating 1,5-anhydroglucitol in different human cohorts. METHODS We analyzed clinical and blood parameters in patients with established type 2 diabetes and subjects considered at high risk of developing diabetes, as well as patients with no history of diabetes scheduled for pancreaticoduodenectomy. RESULTS Circulating 1,5-anhydroglucitol was reduced in type 2 diabetic patients, negatively correlating with fasting plasma glucose (P < 0.0001) and hemoglobin A1c (P < 0.0001). In healthy subjects, 1,5-AG levels positively correlated with body mass index (P = 0.004) and Homeostatic Model Assessment of Insulin Resistance %S (P < 0.03) and was particularly high in nondiabetic obese individuals, potentially accounting for compensatory ß-cell expansion. Patients with no history of diabetes undergoing pancreaticoduodenectomy exhibited a 50% reduction of circulating 1,5-anhydroglucitol levels following surgery leading to an acute loss of their ß-cell mass (P = 0.002), regardless their glucose tolerance status. CONCLUSION In summary, plasma concentration of 1,5-anhydroglucitol follows the ß-cell mass and its noninvasive monitoring may alert about the loss of ß cells in subjects at risk for diabetes, an event that cannot be captured by other clinical parameters of glycemic control.
Collapse
Affiliation(s)
- Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1206 Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland
| | - Teresa Mezza
- Pancreas Unit, CEMAD, Department of Internal medicine & Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Flore Sinturel
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1206 Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland
- Department of Surgery, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Lingzi Li
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1206 Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland
| | - Gianfranco Di Giuseppe
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Endocrine and Metabolic Diseases Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Giuseppe Quero
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreatic Surgery Unit, Department of Surgery, Gemelli Pancreatic Center, CRMPG (Advanced Pancreatic Research Center), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - François R Jornayvaz
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1206 Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland
- Department of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Idris Guessous
- Department of Primary Care Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Charna Dibner
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1206 Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland
- Department of Surgery, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, 6200MD Maastricht, The Netherlands
| | - Sergio Alfieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Pancreatic Surgery Unit, Department of Surgery, Gemelli Pancreatic Center, CRMPG (Advanced Pancreatic Research Center), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Endocrine and Metabolic Diseases Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1206 Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland
| |
Collapse
|
12
|
Boulanger C, Stephenne X, Diederich J, Mounkoro P, Chevalier N, Ferster A, Van Schaftingen E, Veiga‐da‐Cunha M. Successful use of empagliflozin to treat neutropenia in two G6PC3-deficient children: Impact of a mutation in SGLT5. J Inherit Metab Dis 2022; 45:759-768. [PMID: 35506446 PMCID: PMC9540799 DOI: 10.1002/jimd.12509] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Neutropenia and neutrophil dysfunction found in deficiencies in G6PC3 and in the glucose-6-phosphate transporter (G6PT/SLC37A4) are due to accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), an inhibitor of hexokinase made from 1,5-anhydroglucitol (1,5-AG), an abundant polyol present in blood. Lowering blood 1,5-AG with an SGLT2 inhibitor greatly improved neutrophil counts and function in G6PC3-deficient mice and in patients with G6PT-deficiency. We evaluate this treatment in two G6PC3-deficient children. While neutropenia was severe in one child (PT1), which was dependent on granulocyte cololony-stimulating factor (GCSF), it was significantly milder in the other one (PT2), which had low blood 1,5-AG levels and only required GCSF during severe infections. Treatment with the SGLT2-inhibitor empagliflozin decreased 1,5-AG in blood and 1,5-AG6P in neutrophils and improved (PT1) or normalized (PT2) neutrophil counts, allowing to stop GCSF. On empagliflozin, both children remained infection-free (>1 year - PT2; >2 years - PT1) and no side effects were reported. Remarkably, sequencing of SGLT5, the gene encoding the putative renal transporter for 1,5-AG, disclosed a rare heterozygous missense mutation in PT2, replacing the extremely conserved Arg401 by a histidine. The higher urinary clearance of 1,5-AG explains the more benign neutropenia and the outstanding response to empagliflozin treatment found in this child. Our data shows that SGLT2 inhibitors are an excellent alternative to treat the neutropenia present in G6PC3-deficiency.
Collapse
Affiliation(s)
- Cécile Boulanger
- Biologie HématologiqueCliniques Universitaires Saint‐Luc, UCLouvainBrusselsBelgium
| | - Xavier Stephenne
- Service de Gastro‐Entérologie et Hépatologie PédiatriqueCliniques Universitaires Saint‐Luc, UCLouvainBrusselsBelgium
| | - Jennifer Diederich
- Groupe de Recherches Metaboliquesde Duve Institute, UCLouvainBrusselsBelgium
| | - Pierre Mounkoro
- Groupe de Recherches Metaboliquesde Duve Institute, UCLouvainBrusselsBelgium
| | - Nathalie Chevalier
- Groupe de Recherches Metaboliquesde Duve Institute, UCLouvainBrusselsBelgium
| | - Alina Ferster
- Department of Hematology/OncologyHôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrusselsBelgium
| | | | | |
Collapse
|
13
|
Qian J, Chen C, Wang X, Tan Y, Yang J, Yuan Y, Chen J, Guo H, Wang B, Sun Z, Wang Y. HbA 1c combined with glycated albumin or 1,5-anhydroglucitol improves the efficiency of diabetes screening in a Chinese population. Diabet Med 2022; 39:e14685. [PMID: 34473869 DOI: 10.1111/dme.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/19/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to evaluate the ability of HbA1c combined with glycated albumin (GA) or 1,5-anhydroglucitol (1,5-AG) to detect diabetes in residents of Jiangsu, China. METHODS The oral glucose tolerance test (OGTT) was performed on 2184 people in Jiangsu. HbA1c , GA, 1,5-AG and other serum biochemical parameters were measured. Receiver operating characteristic curves were plotted to determine the optimal thresholds of HbA1c , GA and 1,5-AG according to the Youden index. RESULTS (1) The optimal thresholds of HbA1c , GA and 1,5-AG for the screening of diabetes were ≥45 mmol/mol (6.3%), ≥13.0% and ≤23.0 μg/ml, respectively. (2) The sensitivities of HbA1c combined with GA and 1,5-AG were both 85%, higher than that of HbA1c (70%, p < 0.001). CONCLUSIONS This study is suitable for cases where plasma glucose is unavailable. Among the residents of Jiangsu, HbA1c combined with GA or 1,5-AG can improve the sensitivity of diabetes screening, reduce the miss rate and save the use of OGTT. GA and 1,5-AG are superior in individuals with mild glucose metabolism disorder. GA enhances the detection of diabetes in the nonobese, and 1,5-AG enhances the detection in those with hyperuricaemia.
Collapse
Affiliation(s)
- Junyi Qian
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, China
| | - Cheng Chen
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, China
| | - Xiaohang Wang
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, China
| | - Yuanyuan Tan
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, China
| | - Jiao Yang
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, China
| | - Yuexing Yuan
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, China
| | - Juan Chen
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, China
| | - Haijian Guo
- Department of Integrated Services, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Bei Wang
- Department of Epidemiology and Statistics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Zilin Sun
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, China
| | - Yao Wang
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Institute of Diabetes, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Ortiz-Martínez M, González-González M, Martagón AJ, Hlavinka V, Willson RC, Rito-Palomares M. Recent Developments in Biomarkers for Diagnosis and Screening of Type 2 Diabetes Mellitus. Curr Diab Rep 2022; 22:95-115. [PMID: 35267140 PMCID: PMC8907395 DOI: 10.1007/s11892-022-01453-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus is a complex, chronic illness characterized by elevated blood glucose levels that occurs when there is cellular resistance to insulin action, pancreatic β-cells do not produce sufficient insulin, or both. Diabetes prevalence has greatly increased in recent decades; consequently, it is considered one of the fastest-growing public health emergencies globally. Poor blood glucose control can result in long-term micro- and macrovascular complications such as nephropathy, retinopathy, neuropathy, and cardiovascular disease. Individuals with diabetes require continuous medical care, including pharmacological intervention as well as lifestyle and dietary changes. RECENT FINDINGS The most common form of diabetes mellitus, type 2 diabetes (T2DM), represents approximately 90% of all cases worldwide. T2DM occurs more often in middle-aged and elderly adults, and its cause is multifactorial. However, its incidence has increased in children and young adults due to obesity, sedentary lifestyle, and inadequate nutrition. This high incidence is also accompanied by an estimated underdiagnosis prevalence of more than 50% worldwide. Implementing successful and cost-effective strategies for systematic screening of diabetes mellitus is imperative to ensure early detection, lowering patients' risk of developing life-threatening disease complications. Therefore, identifying new biomarkers and assay methods for diabetes mellitus to develop robust, non-invasive, painless, highly-sensitive, and precise screening techniques is essential. This review focuses on the recent development of new clinically validated and novel biomarkers as well as the methods for their determination that represent cost-effective alternatives for screening and early diagnosis of T2DM.
Collapse
Affiliation(s)
- Margarita Ortiz-Martínez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Mirna González-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México.
| | - Alexandro J Martagón
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Victoria Hlavinka
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Richard C Willson
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México
| |
Collapse
|
15
|
Lv P, Yang Y, Li S, Tan CS, Ming D. Biological nanopore approach for single‐molecule analysis of nucleobase modifications. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Pengrui Lv
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Yongyi Yang
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Cherie S. Tan
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
- Department of Biomedical Engineering College of Precision Instruments and Optoelectronics Engineering Tianjin University Tianjin China
| |
Collapse
|
16
|
Ying L, Jian C, Ma X, Ge K, Zhu W, Wang Y, Zhao A, Zhou J, Jia W, Bao Y. Saliva 1,5-anhydroglucitol is associated with early-phase insulin secretion in Chinese patients with type 2 diabetes. BMJ Open Diabetes Res Care 2021; 9:9/1/e002199. [PMID: 34167955 PMCID: PMC8231033 DOI: 10.1136/bmjdrc-2021-002199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Saliva collection is a non-invasive test and is convenient. 1,5-anhydroglucitol (1,5-AG) is a new indicator reflecting short-term blood glucose levels. This study aimed to explore the relationship between saliva 1,5-AG and insulin secretion function and insulin sensitivity. RESEARCH DESIGN AND METHODS Adult patients with type 2 diabetes who were hospitalized were enrolled. Based on blood glucose and C-peptide, homeostasis model assessment 2 for β cell secretion function, C-peptidogenic index (CGI), △2-hour C-peptide (2hCP)/△2-hour postprandial glucose (2hPG), ratio of 0-30 min area under the curve for C-peptide and area under the curve for glucose (AUCCP30/AUCPG30), and AUC2hCP/AUC2hPG were calculated to evaluate insulin secretion function, while indicators such as homeostasis model assessment 2 for insulin resistance were used to assess insulin sensitivity. RESULTS We included 284 subjects (178 men and 106 women) with type 2 diabetes aged 20-70 years. The saliva 1,5-AG level was 0.133 (0.089-0.204) µg/mL. Spearman's correlation analysis revealed a significantly negative correlation between saliva 1,5-AG and 0, 30, and 120 min blood glucose, glycated hemoglobin A1c, and glycated albumin (all p<0.05), and a significantly positive association between saliva 1,5-AG and CGI (r=0.171, p=0.004) and AUC CP30 /AUC PG30 (r=0.174, p=0.003). The above correlations still existed after adjusting for age, sex, body mass index, and diabetes duration. In multiple linear regression, saliva 1,5-AG was an independent factor of CGI (standardized β=0.135, p=0.015) and AUC CP30 /AUC PG30 (standardized β=0.110, p=0.020). CONCLUSIONS Saliva 1,5-AG was related to CGI and AUCCP30/AUCPG30 in patients with type 2 diabetes. TRIAL REGISTRATION NUMBER ChiCTR-SOC-17011356.
Collapse
Affiliation(s)
- Lingwen Ying
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Chaohui Jian
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Kun Ge
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| |
Collapse
|
17
|
Bergman M, Abdul-Ghani M, DeFronzo RA, Manco M, Sesti G, Fiorentino TV, Ceriello A, Rhee M, Phillips LS, Chung S, Cravalho C, Jagannathan R, Monnier L, Colette C, Owens D, Bianchi C, Del Prato S, Monteiro MP, Neves JS, Medina JL, Macedo MP, Ribeiro RT, Filipe Raposo J, Dorcely B, Ibrahim N, Buysschaert M. Review of methods for detecting glycemic disorders. Diabetes Res Clin Pract 2020; 165:108233. [PMID: 32497744 PMCID: PMC7977482 DOI: 10.1016/j.diabres.2020.108233] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Prediabetes (intermediate hyperglycemia) consists of two abnormalities, impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) detected by a standardized 75-gram oral glucose tolerance test (OGTT). Individuals with isolated IGT or combined IFG and IGT have increased risk for developing type 2 diabetes (T2D) and cardiovascular disease (CVD). Diagnosing prediabetes early and accurately is critical in order to refer high-risk individuals for intensive lifestyle modification. However, there is currently no international consensus for diagnosing prediabetes with HbA1c or glucose measurements based upon American Diabetes Association (ADA) and the World Health Organization (WHO) criteria that identify different populations at risk for progressing to diabetes. Various caveats affecting the accuracy of interpreting the HbA1c including genetics complicate this further. This review describes established methods for detecting glucose disorders based upon glucose and HbA1c parameters as well as novel approaches including the 1-hour plasma glucose (1-h PG), glucose challenge test (GCT), shape of the glucose curve, genetics, continuous glucose monitoring (CGM), measures of insulin secretion and sensitivity, metabolomics, and ancillary tools such as fructosamine, glycated albumin (GA), 1,5- anhydroglucitol (1,5-AG). Of the approaches considered, the 1-h PG has considerable potential as a biomarker for detecting glucose disorders if confirmed by additional data including health economic analysis. Whether the 1-h OGTT is superior to genetics and omics in providing greater precision for individualized treatment requires further investigation. These methods will need to demonstrate substantially superiority to simpler tools for detecting glucose disorders to justify their cost and complexity.
Collapse
Affiliation(s)
- Michael Bergman
- NYU School of Medicine, NYU Diabetes Prevention Program, Endocrinology, Diabetes, Metabolism, VA New York Harbor Healthcare System, Manhattan Campus, 423 East 23rd Street, Room 16049C, NY, NY 10010, USA.
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Ralph A DeFronzo
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children Hospital, Rome, Italy.
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome Sapienza, Rome 00161, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Antonio Ceriello
- Department of Cardiovascular and Metabolic Diseases, Istituto Ricerca Cura Carattere Scientifico Multimedica, Sesto, San Giovanni (MI), Italy.
| | - Mary Rhee
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Lawrence S Phillips
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Stephanie Chung
- Diabetes Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Celeste Cravalho
- Diabetes Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ram Jagannathan
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Louis Monnier
- Institute of Clinical Research, University of Montpellier, Montpellier, France.
| | - Claude Colette
- Institute of Clinical Research, University of Montpellier, Montpellier, France.
| | - David Owens
- Diabetes Research Group, Institute of Life Science, Swansea University, Wales, UK.
| | - Cristina Bianchi
- University Hospital of Pisa, Section of Metabolic Diseases and Diabetes, University Hospital, University of Pisa, Pisa, Italy.
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Endocrinology, Diabetes and Metabolism, São João University Hospital Center, Porto, Portugal.
| | | | - Maria Paula Macedo
- CEDOC-Centro de Estudos de Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Diabetes Portugal, Education and Research Center (APDP-ERC), Lisboa, Portugal.
| | - Rogério Tavares Ribeiro
- Institute for Biomedicine, Department of Medical Sciences, University of Aveiro, APDP Diabetes Portugal, Education and Research Center (APDP-ERC), Aveiro, Portugal.
| | - João Filipe Raposo
- CEDOC-Centro de Estudos de Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Diabetes Portugal, Education and Research Center (APDP-ERC), Lisboa, Portugal.
| | - Brenda Dorcely
- NYU School of Medicine, Division of Endocrinology, Diabetes, Metabolism, NY, NY 10016, USA.
| | - Nouran Ibrahim
- NYU School of Medicine, Division of Endocrinology, Diabetes, Metabolism, NY, NY 10016, USA.
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University Clinic Saint-Luc, Brussels, Belgium.
| |
Collapse
|
18
|
Chen C, Wang X, Tan Y, Yang J, Yuan Y, Chen J, Guo H, Wang B, Sun Z, Wang Y. Reference intervals for serum 1,5-anhydroglucitol of a population with normal glucose tolerance in Jiangsu Province. J Diabetes 2020; 12:447-454. [PMID: 31846192 DOI: 10.1111/1753-0407.13016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Serum 1,5-anhydroglucitol (1,5-AG) is a new glycemic marker which can reflect glucose fluctuation over 3 to 7 days and is now increasingly used to monitor glucose control and to screen for diabetes. However, 1,5-AG has not been widely used in China due to lack of epidemiological support. Our study aims to establish the reference intervals for a population with normal glucose tolerance in Jiangsu Province and to explore the determinants of these intervals. METHOD The study enrolled 646 healthy adults aged 20 to 70 years in Jiangsu Province in 2018 after oral glucose tolerance test. 1,5-AG, fasting and 2-hour glucose, UA, liver enzyme, serum lipid, creatinine, and glycosylated hemoglobin were measured. We calculated reference intervals using the parametric method and examined the relationship between 1,5-AG and influence factors. RESULTS The average age of the participants was 50.5 ± 9.0 years, and 69.5% of them were females. The reference intervals were 15.8 to 52.6 μg/mL for males and 14.3 to 48.0 μg/mL for females. Among females, the reference intervals were 13.9 to 45.3 and 14.6 to 49.6 μg/mL for menopausal and postmenopausal females, respectively. Males showed higher 1,5-AG concentrations than females, and postmenopausal females had higher 1,5-AG than menopausal females. There was a positive correlation between uric acid and 1,5-AG in both genders. Positive correlation between 1,5-AG and age was only observed in females. CONCLUSION We established reference intervals for 1,5-AG in Jiangsu Province, and the level of 1,5-AG is affected by sex, uric acid, and age.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Xiaohang Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Yuanyuan Tan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Jiao Yang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Yuexing Yuan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Juan Chen
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Haijian Guo
- Department of Integrated Services, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Bei Wang
- Department of Epidemiology and Statistics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ziling Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Yao Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Jian C, Zhao A, Ma X, Ge K, Lu W, Zhu W, Wang Y, Zhou J, Jia W, Bao Y. Diabetes Screening: Detection and Application of Saliva 1,5-Anhydroglucitol by Liquid Chromatography-Mass Spectrometry. J Clin Endocrinol Metab 2020; 105:5805160. [PMID: 32170297 DOI: 10.1210/clinem/dgaa114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Unlike other commonly used invasive blood glucose-monitoring methods, saliva detection prevents patients from suffering physical uneasiness. However, there are few studies on saliva 1,5-anhydroglucitol (1,5-AG) in patients with diabetes mellitus (DM). OBJECTIVE This study aimed to evaluate the effectiveness of saliva 1,5-AG in diabetes screening in a Chinese population. DESIGN AND PARTICIPANTS This was a population-based cross-sectional study. A total of 641 subjects without a valid diabetic history were recruited from September 2018 to June 2019. Saliva 1,5-AG was measured with liquid chromatography-mass spectrometry. MAIN OUTCOME MEASURES DM was defined per American Diabetes Association criteria. The efficiency of saliva 1,5-AG for diabetes screening was analyzed by receiver operating characteristic curves, and the optimal cutoff point was determined according to the Youden index. RESULTS Saliva 1,5-AG levels in subjects with DM were lower than those in subjects who did not have DM (both P < .05). Saliva 1,5-AG was positively correlated with serum 1,5-AG and negatively correlated with blood glucose and glycated hemoglobin (HbA1c) (all P < .05). The optimal cutoff points of saliva 1,5-AG0 and 1,5-AG120 for diabetes screening were 0.436 μg/mL (sensitivity: 63.58%, specificity: 60.61%) and 0.438 μg/mL (sensitivity: 62.25%, specificity: 60.41%), respectively. Fasting plasma glucose (FPG) combined with fasting saliva 1,5-AG reduced the proportion of people who required an oral glucose tolerance test by 47.22% compared with FPG alone. CONCLUSION Saliva 1,5-AG combined with FPG or HbA1c improved the efficiency of diabetes screening. Saliva 1,5-AG is robust in nonfasting measurements and a noninvasive and convenient tool for diabetes screening.
Collapse
Affiliation(s)
- Chaohui Jian
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Kun Ge
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| |
Collapse
|
20
|
Su H, Ma X, Shen Y, He X, Ying L, Zhu W, Wang Y, Bao Y, Zhou J. 1,5-Anhydroglucitol × glycated hemoglobin A 1c/100 as a potential biomarker for islet β-cell function among patients with type 2 diabetes. Acta Diabetol 2020; 57:439-446. [PMID: 31728736 DOI: 10.1007/s00592-019-01452-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
AIMS This study aimed to explore the level of and changes in the 1,5-anhydroglucitol × glycated hemoglobin A1c/100 (AH index, AHI) associated with different glucose metabolism statuses and to evaluate the islet function and insulin sensitivity of patients with type 2 diabetes (T2DM) with different AHI levels. METHODS Of the 3562 subjects enrolled in this study, 1697 had T2DM. The disposition index (DI) was the product of islet secretion function and insulin sensitivity-related indexes. RESULTS The mean AHI level was 1.0 (0.7-1.3) in the general population, while the mean AHI level in the T2DM group was 0.8 (0.5-1.2), which was significantly lower than that in the impaired glucose regulation and normal glucose tolerance group (both 1.2 (0.9-1.5), both P < 0.01). We further divided patients with T2DM into four subgroups according to the quartile of AHI. The results showed that with the increase in AHI level, the homeostasis model assessment of insulin resistance (HOMA-IR) decreased, while HOMA-β, insulin generation index, insulin sensitivity index, and DI increased (all Pfor trend < 0.01). Multivariate logistic regression showed that the odds ratios for a low DI for increasing levels of AHI were 1.00, 0.22 (0.16-0.29), 0.16 (0.11-0.22), and 0.09 (0.06-0.13), showing a decreasing trend (Pfor trend < 0.05). CONCLUSION The AHI could reflect the variation in glycemic disorder and the function of islet β cells. The lower the AHI, the worse the glycemic disorder, as well as the islet β-cell function.
Collapse
Affiliation(s)
- Hang Su
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yun Shen
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xingxing He
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Lingwen Ying
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
21
|
Ying L, Ma X, Shen Y, Lu J, Lu W, Zhu W, Wang Y, Bao Y, Zhou J. Serum 1,5-Anhydroglucitol to Glycated Albumin Ratio Can Help Early Distinguish Fulminant Type 1 Diabetes Mellitus from Newly Onset Type 1A Diabetes Mellitus. J Diabetes Res 2020; 2020:1243630. [PMID: 32280712 PMCID: PMC7115050 DOI: 10.1155/2020/1243630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fulminant type 1 diabetes mellitus (FT1DM) onsets abruptly and usually occurs within 1 week after the onset of hyperglycemic symptoms. Glycated albumin (GA) and 1,5-anhydroglucitol (1,5-AG) are indicators that reflect short-term glucose levels. This study was aimed at investigating whether the 1,5-AG/GA index (AGI) is a suitable indicator for early FT1DM identification. METHODS A total of 226 subjects were enrolled, all with glycated hemoglobin A1c (HbA1c) < 8.7%. FT1DM was diagnosed based on the 2012 Japan Diabetes Society criteria. RESULTS The AGI level was 0.54 (0.17-1.36) in the whole group. It was lower in FT1DM patients (0.16 [0.10-0.25]). Among the participants whose HbA1c did not exceed 7.0%, the AGI of FT1DM decreased significantly compared to type 1A diabetes (T1ADM) and latent autoimmune diabetes in adults (LADA) patients (0.16 [0.12-0.26] vs. 0.46 [0.24-0.72] vs. 0.46 [0.24-0.72] P < 0.05). The receiver operating characteristic (ROC) curve showed that AGI can be used to distinguish FT1DM and T1ADM patients with HbA1c < 8.7%. Diagnosing FT1DM based on AGI ≤ 0.3 only can help narrow down suspected FT1DM by up to 26.87%. If we diagnosed FT1DM when AGI was ≤0.3 and HbA1c was ≤7.0%, the success rate further increased to 86.57%, among which 85.00% of FT1DM and 87.23% of T1ADM patients were successfully identified. Therefore, using the combination criteria of AGI and HbA1c would improve the differential diagnosis efficacy by 61.11% compared with the AGI criterion only. CONCLUSION AGI can help facilitate the early differential diagnosis of FT1DM and T1ADM when HbA1c < 8.7%, with an optimal cut-off point of 0.3.
Collapse
Affiliation(s)
- Lingwen Ying
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yun Shen
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Lu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
22
|
Liu J, Hu W, Sun M, Xiong O, Yu H, Feng H, Wu X, Tang L, Zhou Y. Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@Fe 2O 3 core-shell nanomaterials. ENVIRONMENTAL TECHNOLOGY 2019; 40:3632-3640. [PMID: 29862933 DOI: 10.1080/09593330.2018.1483972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
The degradation of norfloxacin by Fenton reagent with core-shell Fe@Fe2O3 nanomaterials was studied under neutral conditions in a closed batch system. Norfloxacin was significantly degraded (90%) in the Fenton system with Fe@Fe2O3 in 30 min at the initial pH 7.0, but slightly degraded in Fenton system without Fe@Fe2O3 under the same experimental conditions. The intermediate products were investigated by gas chromatography-mass spectrometry, and the possible Fenton oxidation pathway of norfloxacin in the presence of Fe@Fe2O3 nanowires was proposed. Electron spin resonance spectroscopy was used to identify and characterize the free radicals generated, and the mechanism for norfloxacin degradation was also revealed. Finally, the reusability and the stability of Fe@Fe2O3 nanomaterials were studied using x-ray diffraction and scanning electron microscope, which indicated that Fe@Fe2O3 is a stable catalyst and can be used repetitively in environmental pollution control.
Collapse
Affiliation(s)
- Jingyi Liu
- College of Biological Resources and Environmental Science, Jishou University , Hunan , People's Republic of China
- College of Resources and Environment, Hunan Agricultural University , Changsha , People's Republic of China
| | - Wenyong Hu
- College of Biological Resources and Environmental Science, Jishou University , Hunan , People's Republic of China
- College of Resources and Environment, Hunan Agricultural University , Changsha , People's Republic of China
| | - Maogui Sun
- College of Biological Resources and Environmental Science, Jishou University , Hunan , People's Republic of China
| | - Ouyang Xiong
- College of Biological Resources and Environmental Science, Jishou University , Hunan , People's Republic of China
| | - Haibin Yu
- College of Biological Resources and Environmental Science, Jishou University , Hunan , People's Republic of China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University , Changsha , People's Republic of China
| | - Xuan Wu
- College of Biological Resources and Environmental Science, Jishou University , Hunan , People's Republic of China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University , Changsha , People's Republic of China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University , Changsha , People's Republic of China
| |
Collapse
|
23
|
Ignatova YS, Karetnikova VN, Horlampenko AA, Gruzdeva OV, Dyleva YA, Barbarash OL. The marker of adverse prognosis 1.5-anhydroglucitol in patients with coronary heart disease in the long-term period after planned myocardial revascularization. TERAPEVT ARKH 2019; 91:48-52. [PMID: 31094476 DOI: 10.26442/00403660.2019.04.000174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AIM Determination of the prognostic value of 1.5-anhydroglucitol (1.5-AG) for the development of cardiovascular events in patients with coronary heart disease (CHD) within a year after a planned percutaneous coronary intervention (PCI). MATERIALS AND METHODS A prospective study was conducted in Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Disease among 149 patients admitted to planned PCI in the period from 2016 to 2017. Criteria for inclusion in the study: age up to 70 years, angina I-IV functional classes or post-infarction cardiosclerosis, the presence of indications for planned PCI. -Exclusion criteria from the study: previous myocardial revascularization; prosthetic heart valves; decompensation of chronic heart failure, anemia of any degree; acute coronary syndrome in index hospitalization; exacerbation of somatic diseases. The results of the research were processed by Statistica Windows 6.0. RESULTS During the year after planned PCI, 39 (26.14%) cardiovascular events were registered in patients with CHD, of whom more than half of the cases (51.28%) were associated with the presence of indications for PCI of de novo. Lower levels of 1.5-AG were observed in the group of patients with cardiovascular events (p=0.000). When patients were divided according to median of the studied marker patients with a concentration of 1.5-AG less 20.96 μg/ml (before PCI) were more likely to have PCI after restenosis of the stent, compared with patients whose median concentration of this marker was higher (p=0.028). The logistic regression method revealed a significant direct relationship reflecting the prognostic value of lower concentration of 1.5-AG in relation to the development of cardiovascular events in patients regardless of the presence of carbohydrate metabolism disorders [OR 0.25 (0.10-0.62)]. CONCLUSION According to the results of the study, the prognostic value of the concentration of 1.5-AG less 20.96 µg/ml was established in relation to the development of cardiovascular events in patients with CHD during the year after a planned PCI, regardless of the presence of carbohydrate metabolism disorders.
Collapse
Affiliation(s)
- Yu S Ignatova
- Kemerovo State Medical University of the Ministry of Health of the Russian Federation, Kemerovo, Russia
| | - V N Karetnikova
- Kemerovo State Medical University of the Ministry of Health of the Russian Federation, Kemerovo, Russia.,Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A A Horlampenko
- Kemerovo State Medical University of the Ministry of Health of the Russian Federation, Kemerovo, Russia
| | - O V Gruzdeva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Yu A Dyleva
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - O L Barbarash
- Kemerovo State Medical University of the Ministry of Health of the Russian Federation, Kemerovo, Russia.,Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
24
|
Colorimetric detection of 1,5-anhydroglucitol based on graphene quantum dots and enzyme-catalyzed reaction. Int J Biol Macromol 2018; 112:1217-1224. [DOI: 10.1016/j.ijbiomac.2018.02.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
|
25
|
Ying L, Ma X, Yin J, Wang Y, He X, Peng J, Bao Y, Zhou J, Jia W. The metabolism and transport of 1,5-anhydroglucitol in cells. Acta Diabetol 2018; 55:279-286. [PMID: 29318370 DOI: 10.1007/s00592-017-1093-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022]
Abstract
AIMS Our previous studies demonstrated that serum 1,5-anhydroglucitol (1,5-AG) levels increased slightly rather than declined after an acute glucose load. Therefore, the current study aims at exploring the transport and metabolic characteristics of 1,5-AG, as well as the effect of glucose on 1,5-AG transport. METHODS Km and Vmax were determined to measure the affinity of glucose oxidase (GOD) and hexokinase (HK) for 1,5-AG and glucose. HepG2, C2C12, and primary mouse hepatocytes were incubated for 2 h with 1,5-AG at concentrations of 0, 80, and 160 μg/mL. Then, intracellular and extracellular concentrations of 1,5-AG were measured before and after washing with PBS to evaluate the transport and metabolic rates of 1,5-AG. In addition, the influence of an acute glucose load on the transport of 1,5-AG was studied. RESULTS The affinity of GOD and HK for 1,5-AG is 5 and 42.5% of that for glucose, respectively. Moreover, there is no de novo synthesis of 1,5-AG, and its metabolic rate is < 3%. After a 2 h incubation with additional 1,5-AG, the intracellular levels of 1,5-AG were 50-80% of extracellular levels. Moreover, intracellular 1,5-AG concentrations decreased rapidly and reached zero following the removal of 1,5-AG from the external medium. In addition, an acute glucose load can affect the dynamic balance of 1,5-AG, causing the intracellular 1,5-AG levels to decline significantly and the extracellular levels to increase slightly in HepG2 cells. CONCLUSIONS Unlike glucose, 1,5-AG is hard to be metabolized in vivo, and its transport is influenced by an acute glucose load in hepatocytes.
Collapse
Affiliation(s)
- Lingwen Ying
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China.
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China
| | - Xingxing He
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China
| | - Jiahui Peng
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China.
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|