1
|
Hosseini P, Keniya MV, Sagatova AA, Toepfer S, Müller C, Tyndall JDA, Klinger A, Fleischer E, Monk BC. The Molecular Basis of the Intrinsic and Acquired Resistance to Azole Antifungals in Aspergillus fumigatus. J Fungi (Basel) 2024; 10:820. [PMID: 39728316 DOI: 10.3390/jof10120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Aspergillus fumigatus is intrinsically resistant to the widely used antifungal fluconazole, and therapeutic failure can result from acquired resistance to voriconazole, the primary treatment for invasive aspergillosis. The molecular basis of substrate specificity and innate and acquired resistance of A. fumigatus to azole drugs were addressed using crystal structures, molecular models, and expression in Saccharomyces cerevisiae of the sterol 14α-demethylase isoforms AfCYP51A and AfCYP51B targeted by azole drugs, together with their cognate reductase AfCPRA2 and AfERG6 (sterol 24-C-methyltransferase). As predicted by molecular modelling, functional expression of CYP51A and B required eburicol and not lanosterol. A crowded conformationally sensitive region involving the BC-loop, helix I, and the heme makes AfCYP51A T289 primarily responsible for resistance to fluconazole, VT-1161, and the agrochemical difenoconazole. The Y121F T289A combination was required for higher level acquired resistance to fluconazole, VT-1161, difenoconazole, and voriconazole, and confirms posaconazole, isavuconazole and possibly ravuconazole as preferred treatments for target-based azole-resistant aspergillosis due to such a combination of mutations.
Collapse
Affiliation(s)
- Parham Hosseini
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Alia A Sagatova
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie Toepfer
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilian University Munich, 81377 Munich, Germany
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Anette Klinger
- MicroCombiChem GmbH, iNovaParc, 56283 Halsenbach, Germany
| | | | - Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Ali B, Chauhan A, Kumar M, Kumar P, Carolus H, Lobo Romero C, Vergauwen R, Singh A, Banerjee A, Prakash A, Rudramurthy SM, Van Dijck P, Ibrahim AS, Prasad R. A Comprehensive Analysis of the Lipidomic Signatures in Rhizopus delemar. J Fungi (Basel) 2024; 10:760. [PMID: 39590679 PMCID: PMC11595932 DOI: 10.3390/jof10110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Certain species of Mucorales have been identified as causative agents of mucormycosis, a rare yet often lethal fungal infection. Notably, these fungi exhibit intrinsic resistance to common azole drugs, which target lipids. Given the pivotal role of lipids in drug resistance and their contribution to innate resistance to azoles, this study provides a comprehensive overview of key lipid classes, including sphingolipids (SLs), glycerophospholipids (GPLs), and sterols, in Rhizopus delemar 99-880, a well-characterized reference strain among Mucorales. Using shotgun lipidomics as well as liquid- and gas-chromatography-based mass spectrometric analyses, we identified the lipid intermediates and elucidated the biosynthetic pathways of SLs, PGLs, and sterols. The acidic SLs were not found, probably because the acidic branch of the SL biosynthesis pathway terminates at α-hydroxy phytoceramides, as evident by their high abundance. Intermediates in the neutral SL pathway incorporated higher levels of 16:0 fatty acid compared to other pathogenic fungi. A strikingly high phosphatidylethanolamine (PE)/phosphatdylcholine (PC) ratio was observed among GPLs. Ergosterol remains the major sterol, similar to other fungi, and our analysis confirms the existence of alternate ergosterol biosynthesis pathways. The total lipidomic profile of R. delemar 99-880 offers insights into its lipid metabolism and potential implications for studying pathogenesis and drug resistance mechanisms.
Collapse
Affiliation(s)
- Basharat Ali
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Chauhan
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Praveen Kumar
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Rudy Vergauwen
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Atanu Banerjee
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Amresh Prakash
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity University Gurugram, Gurugram 122413, India
- Amity Institute of Biotechnology, Amity University Gurugram, Gurugram 122413, India
| |
Collapse
|
3
|
Gupta L, Kumar P, Sen P, Sharma A, Kumar L, Sengupta A, Vijayaraghavan P. Integrating In-silico and In-vitro approaches to identify plant-derived bioactive molecules against spore coat protein CotH3 and high affinity iron permease FTR1 of Rhizopus oryzae. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100270. [PMID: 39280237 PMCID: PMC11401113 DOI: 10.1016/j.crmicr.2024.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Rhizopus oryzae is one of the major causative agents of mucormycosis. The disease has a poor prognosis with a high mortality rate, and resistance towards current antifungal drugs poses additional concern. The disease treatment is complicated with antifungals; therefore, surgical approach is preferred in many cases. A comprehensive understanding of the pathogenicity-associated virulence factors of R. oryzae is essential to develop new antifungals against this fungus. Virulence factors in R. oryzae include cell wall proteins, spore germination proteins and enzymes that evade host immunity. The spore coat protein (CotH3) and high-affinity iron permease (FTR1) have been identified as promising therapeutic targets in R. oryzae. In-silico screening is a preferred approach to identify hit molecules for further in-vitro studies. In the present study, twelve bioactive molecules were docked within the active site of CotH3 and FTR1. Further, molecular dynamics simulation analysis of best-docked protein-ligand structures revealed the dynamics information of their stability in the biological system. Eugenol and isoeugenol exhibited significant binding scores with both the protein targets of R. oryzae and followed the Lipinski rule of drug-likeness. To corroborate the in-silico results, in-vitro studies were conducted using bioactive compounds eugenol, isoeugenol, and myristicin against R. oryzae isolated from the soil sample. Eugenol, isoeugenol exhibited antifungal activity at 156 µg/mL whereas myristicin at 312 µg/mL. Hence, the study suggested that eugenol and isoeugenol could be explored further as potential antifungal molecules against R. oryzae.
Collapse
Affiliation(s)
- Lovely Gupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Pawan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Sen
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Aniket Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| | - Lokesh Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Abhishek Sengupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Pooja Vijayaraghavan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| |
Collapse
|
4
|
de Sousa Cutrim TA, Barcelos FF, Meireles LM, Rodrigues Gazolla PA, Almeida Lima ÂM, Teixeira RR, Moreira LC, de Queiroz VT, Almeida Barbosa LC, Bezerra Morais PA, do Nascimento CJ, Junker J, Costa AV, Fronza M, Scherer R. Design, synthesis, docking studies and bioactivity evaluation of 1,2,3-triazole eugenol derivatives. Future Med Chem 2024; 16:1883-1897. [PMID: 39157870 PMCID: PMC11486170 DOI: 10.1080/17568919.2024.2385292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Aim: The design, synthesis, docking studies and evaluation of the in vitro antifungal and cytotoxic properties of eugenol (EUG) containing 1,2,3-triazole derivatives are reported. Most of the derivatives have not been reported.Materials & methods: The EUG derivatives were synthesized, molecular docked and tested for their antifungal activity.Results: The compounds showed potent antifungal activity against Trichophyton rubrum, associated with dermatophytosis. Compounds 2a and 2i exhibited promising results, with 2a being four-times more potent than EUG. The binding mode prediction was similar to itraconazole in the lanosterol-14-α-demethylase wild-type and G73E mutant binding sites. Additionally, the pharmacokinetic profile prediction suggests good gastrointestinal absorption and potential oral administration.Conclusion: Compound 2a is a promising antifungal agent against dermatophytosis caused by T. rubrum.
Collapse
Affiliation(s)
- Thiago Antonio de Sousa Cutrim
- Universidade de Vila Velha, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
| | - Fernando Fontes Barcelos
- Universidade de Vila Velha, Programa de Pós-Graduação em Biotecnologia Vegetal, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
| | - Leandra Martins Meireles
- Universidade de Vila Velha, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
| | - Poliana Aparecida Rodrigues Gazolla
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal do Espírito Santo, Alto Universitário, s/n, Alegre, Espírito Santo State, 29500-000, Brazil
| | - Ângela Maria Almeida Lima
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal do Espírito Santo, Alto Universitário, s/n, Alegre, Espírito Santo State, 29500-000, Brazil
| | - Róbson Ricardo Teixeira
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/nViçosa, Minas Gerais State, 36570-900, Brazil
| | - Luiza Carvalheira Moreira
- Departamento de Química, Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/nViçosa, Minas Gerais State, 36570-900, Brazil
| | - Vagner Tebaldi de Queiroz
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal do Espírito Santo, Alto Universitário, s/n, Alegre, Espírito Santo State, 29500-000, Brazil
| | - Luiz Cláudio Almeida Barbosa
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Pedro Alves Bezerra Morais
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal do Espírito Santo, Alto Universitário, s/n, Alegre, Espírito Santo State, 29500-000, Brazil
| | - Cláudia Jorge do Nascimento
- Departamento de Ciências Naturais, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pauster, Rio de Janeiro, Rio de Janeiro State, 22290-240, Brazil
| | - Jochen Junker
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, Rio de Janeiro State, 21040-900, Brazil
| | - Adilson Vidal Costa
- Departamento de Química e Física, Grupo de Pesquisa de Estudos Aplicados em Produtos Naturais e Síntese Orgânica (GEAPS), Universidade Federal do Espírito Santo, Alto Universitário, s/n, Alegre, Espírito Santo State, 29500-000, Brazil
| | - Marcio Fronza
- Universidade de Vila Velha, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
- Universidade de Vila Velha, Programa de Pós-Graduação em Biotecnologia Vegetal, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
| | - Rodrigo Scherer
- Universidade de Vila Velha, Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
- Universidade de Vila Velha, Programa de Pós-Graduação em Biotecnologia Vegetal, Av. Comissário José Dantas de Melo, 21, Vila Velha, Espírito Santo State, 29102-770, Brazil
| |
Collapse
|
5
|
Navarro-Mendoza MI, Pérez-Arques C, Parker J, Xu Z, Kelly S, Heitman J. Alternative ergosterol biosynthetic pathways confer antifungal drug resistance in the human pathogens within the Mucor species complex. mBio 2024; 15:e0166124. [PMID: 38980037 PMCID: PMC11323496 DOI: 10.1128/mbio.01661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and, consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis. IMPORTANCE The Mucor species complex comprises a variety of opportunistic pathogens known to cause mucormycosis, a potentially lethal fungal infection with limited therapeutic options. The only effective first-line treatments against mucormycosis consist of liposomal formulations of amphotericin B and the triazoles posaconazole and isavuconazole, all of which target components within the ergosterol biosynthetic pathway. This study uncovered M. circinelloides Erg3 and Erg6a as key enzymes to produce ergosterol, a vital constituent of fungal membranes. Absence of any of those enzymes leads to decreased ergosterol and consequently, resistance to ergosterol-binding polyenes such as amphotericin B. Particularly, losing Erg6a function poses a higher threat as the ergosterol pathway is channeled into alternative sterols similar to cholesterol, which maintain membrane permeability. As a result, erg6a mutants survive within the host and disseminate the infection, indicating that Erg6a deficiency may arise during human infections and confer resistance to the most effective treatment against mucormycoses.
Collapse
Affiliation(s)
- María Isabel Navarro-Mendoza
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carlos Pérez-Arques
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Josie Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Steven Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
6
|
de Almeida OGG, von Zeska Kress MR. Harnessing Machine Learning to Uncover Hidden Patterns in Azole-Resistant CYP51/ERG11 Proteins. Microorganisms 2024; 12:1525. [PMID: 39203367 PMCID: PMC11356363 DOI: 10.3390/microorganisms12081525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Fungal resistance is a public health concern due to the limited availability of antifungal resources and the complexities associated with treating persistent fungal infections. Azoles are thus far the primary line of defense against fungi. Specifically, azoles inhibit the conversion of lanosterol to ergosterol, producing defective sterols and impairing fluidity in fungal plasmatic membranes. Studies on azole resistance have emphasized specific point mutations in CYP51/ERG11 proteins linked to resistance. Although very insightful, the traditional approach to studying azole resistance is time-consuming and prone to errors during meticulous alignment evaluation. It relies on a reference-based method using a specific protein sequence obtained from a wild-type (WT) phenotype. Therefore, this study introduces a machine learning (ML)-based approach utilizing molecular descriptors representing the physiochemical attributes of CYP51/ERG11 protein isoforms. This approach aims to unravel hidden patterns associated with azole resistance. The results highlight that descriptors related to amino acid composition and their combination of hydrophobicity and hydrophilicity effectively explain the slight differences between the resistant non-wild-type (NWT) and WT (nonresistant) protein sequences. This study underscores the potential of ML to unravel nuanced patterns in CYP51/ERG11 sequences, providing valuable molecular signatures that could inform future endeavors in drug development and computational screening of resistant and nonresistant fungal lineages.
Collapse
Affiliation(s)
| | - Marcia Regina von Zeska Kress
- Faculdade de Ciências Farmacêuticas de Ribeirao Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, SP, Brazil;
| |
Collapse
|
7
|
Navarro-Mendoza MI, Pérez-Arques C, Parker J, Xu Z, Kelly S, Heitman J. Alternative ergosterol biosynthetic pathways confer antifungal drug resistance in the human pathogens within the Mucor species complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569667. [PMID: 38076934 PMCID: PMC10705545 DOI: 10.1101/2023.12.01.569667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis.
Collapse
|
8
|
Lax C, Nicolás FE, Navarro E, Garre V. Molecular mechanisms that govern infection and antifungal resistance in Mucorales. Microbiol Mol Biol Rev 2024; 88:e0018822. [PMID: 38445820 PMCID: PMC10966947 DOI: 10.1128/mmbr.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
SUMMARYThe World Health Organization has established a fungal priority pathogens list that includes species critical or highly important to human health. Among them is the order Mucorales, a fungal group comprising at least 39 species responsible for the life-threatening infection known as mucormycosis. Despite the continuous rise in cases and the poor prognosis due to innate resistance to most antifungal drugs used in the clinic, Mucorales has received limited attention, partly because of the difficulties in performing genetic manipulations. The COVID-19 pandemic has further escalated cases, with some patients experiencing the COVID-19-associated mucormycosis, highlighting the urgent need to increase knowledge about these fungi. This review addresses significant challenges in treating the disease, including delayed and poor diagnosis, the lack of accurate global incidence estimation, and the limited treatment options. Furthermore, it focuses on the most recent discoveries regarding the mechanisms and genes involved in the development of the disease, antifungal resistance, and the host defense response. Substantial advancements have been made in identifying key fungal genes responsible for invasion and tissue damage, host receptors exploited by the fungus to invade tissues, and mechanisms of antifungal resistance. This knowledge is expected to pave the way for the development of new antifungals to combat mucormycosis. In addition, we anticipate significant progress in characterizing Mucorales biology, particularly the mechanisms involved in pathogenesis and antifungal resistance, with the possibilities offered by CRISPR-Cas9 technology for genetic manipulation of the previously intractable Mucorales species.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Francisco E. Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
9
|
Osorio-Concepción M, Lax C, Lorenzo-Gutiérrez D, Cánovas-Márquez JT, Tahiri G, Navarro E, Binder U, Nicolás FE, Garre V. H3K4 methylation regulates development, DNA repair, and virulence in Mucorales. IMA Fungus 2024; 15:6. [PMID: 38481304 PMCID: PMC10938801 DOI: 10.1186/s43008-023-00136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/13/2023] [Indexed: 03/17/2024] Open
Abstract
Mucorales are basal fungi that opportunistically cause a potentially fatal infection known as mucormycosis (black fungus disease), which poses a significant threat to human health due to its high mortality rate and its recent association with SARS-CoV-2 infections. On the other hand, histone methylation is a regulatory mechanism with pleiotropic effects, including the virulence of several pathogenic fungi. However, the role of epigenetic changes at the histone level never has been studied in Mucorales. Here, we dissected the functional role of Set1, a histone methyltransferase that catalyzes the methylation of H3K4, which is associated with the activation of gene transcription and virulence. A comparative analysis of the Mucor lusitanicus genome (previously known as Mucor circinelloides f. lusitanicus) identified only one homolog of Set1 from Candida albicans and Saccharomyces cerevisiae that contains the typical SET domain. Knockout strains in the gene set1 lacked H3K4 monomethylation, dimethylation, and trimethylation enzymatic activities. These strains also showed a significant reduction in vegetative growth and sporulation. Additionally, set1 null strains were more sensitive to SDS, EMS, and UV light, indicating severe impairment in the repair process of the cell wall and DNA lesions and a correlation between Set1 and these processes. During pathogen-host interactions, strains lacking the set1 gene exhibited shortened polar growth within the phagosome and attenuated virulence both in vitro and in vivo. Our findings suggest that the histone methyltransferase Set1 coordinates several cell processes related to the pathogenesis of M. lusitanicus and may be an important target for future therapeutic strategies against mucormycosis.
Collapse
Affiliation(s)
- Macario Osorio-Concepción
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Damaris Lorenzo-Gutiérrez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | - Ghizlane Tahiri
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
10
|
Pintye A, Bacsó R, Kovács GM. Trans-kingdom fungal pathogens infecting both plants and humans, and the problem of azole fungicide resistance. Front Microbiol 2024; 15:1354757. [PMID: 38410389 PMCID: PMC10896089 DOI: 10.3389/fmicb.2024.1354757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Azole antifungals are abundantly used in the environment and play an important role in managing fungal diseases in clinics. Due to the widespread use, azole resistance is an emerging global problem for all applications in several fungal species, including trans-kingdom pathogens, capable of infecting plants and humans. Azoles used in agriculture and clinics share the mode of action and facilitating cross-resistance development. The extensive use of azoles in the environment, e.g., for plant protection and wood preservation, contributes to the spread of resistant populations and challenges using these antifungals in medical treatments. The target of azoles is the cytochrome p450 lanosterol 14-α demethylase encoded by the CYP51 (called also as ERG11 in the case of yeasts) gene. Resistance mechanisms involve mainly the mutations in the coding region in the CYP51 gene, resulting in the inadequate binding of azoles to the encoded Cyp51 protein, or mutations in the promoter region causing overexpression of the protein. The World Health Organization (WHO) has issued the first fungal priority pathogens list (FPPL) to raise awareness of the risk of fungal infections and the increasingly rapid spread of antifungal resistance. Here, we review the main issues about the azole antifungal resistance of trans-kingdom pathogenic fungi with the ability to cause serious human infections and included in the WHO FPPL. Methods for the identification of these species and detection of resistance are summarized, highlighting the importance of these issues to apply the proper treatment.
Collapse
Affiliation(s)
- Alexandra Pintye
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Renáta Bacsó
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
| | - Gábor M. Kovács
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
11
|
Bauer K, Rafael B, Vágó B, Kiss-Vetráb S, Molnár A, Szebenyi C, Varga M, Szekeres A, Vágvölgyi C, Papp T, Nagy G. Characterization of the Sterol 24-C-Methyltransferase Genes Reveals a Network of Alternative Sterol Biosynthetic Pathways in Mucor lusitanicus. Microbiol Spectr 2023; 11:e0031523. [PMID: 37036336 PMCID: PMC10269636 DOI: 10.1128/spectrum.00315-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/18/2023] [Indexed: 04/11/2023] Open
Abstract
Certain members of the order Mucorales can cause a life-threatening, often-fatal systemic infection called mucormycosis. Mucormycosis has a high mortality rate, which can reach 96 to 100% depending on the underlying condition of the patient. Mucorales species are intrinsically resistant to most antifungal agents, such as most of the azoles, which makes mucormycosis treatment challenging. The main target of azoles is the lanosterol 14α-demethylase (Erg11), which is responsible for an essential step in the biosynthesis of ergosterol, the main sterol component of the fungal membrane. Mutations in the erg11 gene can be associated with azole resistance; however, resistance can also be mediated by loss of function or mutation of other ergosterol biosynthetic enzymes, such as the sterol 24-C-methyltransferase (Erg6). The genome of Mucor lusitanicus encodes three putative erg6 genes (i.e., erg6a, erg6b, and erg6c). In this study, the role of erg6 genes in azole resistance of Mucor was analyzed by generating and analyzing knockout mutants constructed using the CRISPR-Cas9 technique. Susceptibility testing of the mutants suggested that one of the three genes, erg6b, plays a crucial role in the azole resistance of Mucor. The sterol composition of erg6b knockout mutants was significantly altered compared to that of the original strain, and it revealed the presence of at least four alternative sterol biosynthesis pathways leading to formation of ergosterol and other alternative, nontoxic sterol products. Dynamic operation of these pathways and the switching of biosynthesis from one to the other in response to azole treatment could significantly contribute to avoiding the effects of azoles by these fungi. IMPORTANCE The fungal membrane contains ergosterol instead of cholesterol, which offers a specific point of attack for the defense against pathogenic fungi. Indeed, most antifungal agents target ergosterol or its biosynthesis. Mucormycoses-causing fungi are resistant to most antifungal agents, including most of the azoles. For this reason, the drugs of choice to treat such infections are limited. The exploration of ergosterol biosynthesis is therefore of fundamental importance to understand the azole resistance of mucormycosis-causing fungi and to develop possible new control strategies. Characterization of sterol 24-C-methyltransferase demonstrated its role in the azole resistance and virulence of M. lusitanicus. Moreover, our experiments suggest that there are at least four alternative pathways for the biosynthesis of sterols in Mucor. Switching between pathways may contribute to the maintenance of azole resistance.
Collapse
Affiliation(s)
- Kitti Bauer
- Department of Microbiology, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathomechanisms Research Group, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bence Rafael
- Department of Microbiology, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathomechanisms Research Group, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bernadett Vágó
- Department of Microbiology, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathomechanisms Research Group, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Sándor Kiss-Vetráb
- Department of Microbiology, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathomechanisms Research Group, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anna Molnár
- Department of Microbiology, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathomechanisms Research Group, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csilla Szebenyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathomechanisms Research Group, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mónika Varga
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathomechanisms Research Group, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Papp
- Department of Microbiology, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathomechanisms Research Group, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Microbiology, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathomechanisms Research Group, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Pham D, Howard-Jones AR, Sparks R, Stefani M, Sivalingam V, Halliday CL, Beardsley J, Chen SCA. Epidemiology, Modern Diagnostics, and the Management of Mucorales Infections. J Fungi (Basel) 2023; 9:659. [PMID: 37367595 DOI: 10.3390/jof9060659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Mucormycosis is an uncommon, yet deadly invasive fungal infection caused by the Mucorales moulds. These pathogens are a WHO-assigned high-priority pathogen group, as mucormycosis incidence is increasing, and there is unacceptably high mortality with current antifungal therapies. Current diagnostic methods have inadequate sensitivity and specificity and may have issues with accessibility or turnaround time. Patients with diabetes mellitus and immune compromise are predisposed to infection with these environmental fungi, but COVID-19 has established itself as a new risk factor. Mucorales also cause healthcare-associated outbreaks, and clusters associated with natural disasters have also been identified. Robust epidemiological surveillance into burden of disease, at-risk populations, and emerging pathogens is required. Emerging serological and molecular techniques may offer a faster route to diagnosis, while newly developed antifungal agents show promise in preliminary studies. Equitable access to these emerging diagnostic techniques and antifungal therapies will be key in identifying and treating mucormycosis, as delayed initiation of therapy is associated with higher mortality.
Collapse
Affiliation(s)
- David Pham
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Annaleise R Howard-Jones
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sparks
- Douglass Hanly Moir Pathology, Sydney, NSW 2113, Australia
| | - Maurizio Stefani
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Varsha Sivalingam
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Justin Beardsley
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Cánovas-Márquez JT, Lax C, Tahiri G, Navarro E, Nicolás FE, Garre V. Advances in understanding infections caused by the basal fungus Mucor. PLoS Pathog 2023; 19:e1011394. [PMID: 37262085 DOI: 10.1371/journal.ppat.1011394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Affiliation(s)
- José T Cánovas-Márquez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ghizlane Tahiri
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
14
|
Mucorales and Mucormycosis: Recent Insights and Future Prospects. J Fungi (Basel) 2023; 9:jof9030335. [PMID: 36983503 PMCID: PMC10058716 DOI: 10.3390/jof9030335] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The classification of Mucorales encompasses a collection of basal fungi that have traditionally demonstrated an aversion to modern genetic manipulation techniques. This aversion led to a scarcity of knowledge regarding their biology compared to other fungal groups. However, the emergence of mucormycosis, a fungal disease caused by Mucorales, has attracted the attention of the clinical field, mainly because available therapies are ineffective for decreasing the fatal outcome associated with the disease. This revitalized curiosity about Mucorales and mucormycosis, also encouraged by the recent COVID-19 pandemic, has spurred a significant and productive effort to uncover their mysteries in recent years. Here, we elaborate on the most remarkable breakthroughs related to the recently discovered genetic advances in Mucorales and mucormycosis. The utilization of a few genetic study models has enabled the identification of virulence factors in Mucorales that were previously described in other pathogens. More notably, recent investigations have identified novel genes and mechanisms controlling the pathogenic potential of Mucorales and their interactions with the host, providing fresh avenues to devise new strategies against mucormycosis. Finally, new study models are allowing virulence studies that were previously hampered in Mucorales, predicting a prolific future for the field.
Collapse
|
15
|
Kottarathil M, Thayanidhi P, P S, Jyoti Kindo A. Rise of mucormycosis during the COVID-19 pandemic and the challenges faced. Curr Med Mycol 2023; 9:44-55. [PMID: 37867589 PMCID: PMC10590187 DOI: 10.18502/cmm.2023.345032.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 10/24/2023] Open
Abstract
Mucormycosis (previously called zygomycosis) is a diverse group of increasingly recognized and frequently fatal mycotic diseases caused by members of the class zygomycetes. Mucormycosis is around 80 times more common in India, compared to other developed countries, with a frequency of 0.14 cases per 1,000 population. The most frequent causative agent of mucormycosis is the following genera from the Order Mucorales Rhizopus, Mucor, Rhizomucor, Absidia, Apophysomyces, Cunninghamella, and Saksenaea. The major risk factors for the development of mucormycosis are diabetic ketoacidosis, deferoxamine treatment, cancer, solid organ or bone marrow transplantations, prolonged steroid use, extreme malnutrition, and neutropenia. The common clinical forms of mucormycosis are rhino-orbital-cerebral, pulmonary, cutaneous, and gastrointestinal. During the second wave of COVID-19, there was a rapid increase in mucormycosis with more severity than before. Amphotericin B is currently found to be an effective drug as it is found to have a broad-spectrum activity and posaconazole is used as a salvage therapy. Newer triazole isavuconazole is also found effective against mucormycosis. This study aimed to review various studies on the laboratory diagnosis and treatment of mucormycosis.
Collapse
Affiliation(s)
- Malavika Kottarathil
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Premamalini Thayanidhi
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sathyamurthy P
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Anupma Jyoti Kindo
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
16
|
Serine/Threonine Phosphatase Calcineurin Orchestrates the Intrinsic Resistance to Micafungin in the Human-Pathogenic Fungus Mucor circinelloides. Antimicrob Agents Chemother 2023; 67:e0068622. [PMID: 36688672 PMCID: PMC9933632 DOI: 10.1128/aac.00686-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Procedures such as solid-organ transplants and cancer treatments can leave many patients in an immunocompromised state. This leads to their increased susceptibility to opportunistic diseases such as fungal infections. Mucormycosis infections are continually emerging and pose a serious threat to immunocompromised patients. Recently there has been a sharp increase in mucormycosis cases as a secondary infection in patients battling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Mucorales fungi are notorious for presenting resistance to most antifungal drugs. The absence of effective means to treat these infections results in mortality rates approaching 100% in cases of disseminated infection. One of the most effective antifungal drug classes currently available is the echinocandins. Echinocandins seem to be efficacious in the treatment of many other fungal infections. Unfortunately, susceptibility testing has found that echinocandins have little to no effect on Mucorales fungi. In this study, we found that the model Mucorales Mucor circinelloides genome carries three copies of the genes encoding the echinocandin target protein β-(1,3)-d-glucan synthase (fksA, fksB, and fksC). Interestingly, we found that exposing M. circinelloides to micafungin significantly increased the expression of the fksA and fksB genes, resulting in an increased accumulation of β-(1,3)-d-glucan on the cell walls. However, this overexpression of the fks genes is not directly connected to the intrinsic resistance. Subsequent investigation discovered that the serine/threonine phosphatase calcineurin regulates the expression of fksA and fksB, and the deletion of calcineurin results in a decrease in expression of all three fks genes. Deletion of calcineurin also results in a lower minimum effective concentration (MEC) of micafungin. In addition, we found that duplication of the fks gene is also responsible for the intrinsic resistance, in which lack of either fksA or fksB led a lower MEC of micafungin. Together, these findings demonstrate that calcineurin and fks gene duplication contribute to the intrinsic resistance to micafungin we observe in M. circinelloides.
Collapse
|
17
|
Prakash S, Kumar A. Mucormycosis threats: A systemic review. J Basic Microbiol 2023; 63:119-127. [PMID: 36333107 DOI: 10.1002/jobm.202200334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/28/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
During the catastrophic wave of Coronavirus disease 2019, health agencies started to report an infrequent but lethal mucormycosis or black fungal infection. Primarily, it causes sinusitis by affecting nasal, oral, lung, brain, ocular, and other body tissues. It becomes more fatal, especially in diabetic, cancer, and immune-compromised patients. Before 2020, the prevalence of mucormycosis was very rare but it has rapidly emerged globally from late 2020 to mid-2021. Recently, the mucormycosis got worse and epidemic with more than 30,000 cases reported across India. The etiology of infection can be diagnosed by molecular, serological, microscopic, and clinical methods. However, early diagnosis of this ailment is still a challenging task due to no standalone diagnostic tool available along with clinical manifestations of the ailment resembling other fungal diseases. The treatment of mucormycosis is also challenging and frequently requires long-term treatment. Amphotericin B was found to be an effective antifungal for preventing mucormycosis but it failed if infection disseminated to necrotizing tissues or adjacent organs. Removal of infected tissue/organ by surgery is an alternative treatment to control mucormycosis. In addition, reversal of underlying predisposing conditions based on therapy is also in practice for its prevention. This review highlights different aspects of mucormycosis such as pathogenesis, diagnosis, treatment, and their challenges and so on. We also emphasized the epidemiological shift during the recent outbreak and its influence on the different regions of India.
Collapse
Affiliation(s)
- Shaurya Prakash
- Department of Biochemistry, Central University of Haryana, Haryana, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of Haryana, Haryana, India
| |
Collapse
|
18
|
Promising Antifungal Molecules against Mucormycosis Agents Identified from Pandemic Response Box ®: In Vitro and In Silico Analyses. J Fungi (Basel) 2023; 9:jof9020187. [PMID: 36836302 PMCID: PMC9959553 DOI: 10.3390/jof9020187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Mucormycosis is considered concerning invasive fungal infections due to its high mortality rates, difficult diagnosis and limited treatment approaches. Mucorales species are highly resistant to many antifungal agents and the search for alternatives is an urgent need. In the present study, a library with 400 compounds called the Pandemic Response Box® was used and four compounds were identified: alexidine and three non-commercial molecules. These compounds showed anti-biofilm activity, as well as alterations in fungal morphology and cell wall and plasma membrane structure. They also induced oxidative stress and mitochondrial membrane depolarization. In silico analysis revealed promising pharmacological parameters. These results suggest that these four compounds are potent candidates to be considered in future studies for the development of new approaches to treat mucormycosis.
Collapse
|
19
|
Complement, but Not Platelets, Plays a Pivotal Role in the Outcome of Mucormycosis In Vivo. J Fungi (Basel) 2023; 9:jof9020162. [PMID: 36836277 PMCID: PMC9965864 DOI: 10.3390/jof9020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Mucormycetes, a heterogeneous group of fungi, induce a life-threatening disease called mucormycosis. Immune deficiencies represent a major risk factor; hence, we wanted to illuminate the role of complement and platelets in the defense against mucormycetes. METHODS Rhizopus arrhizus (Ra), Rhizopus microsporus (Rm), Lichtheimia ramosa (Lr), Lichtheimia corymbifera (Lc), Rhizomucor pusillus (Rmp), and Mucor circinelloides (Mc) spores were opsonized with human and mouse serum, and C1q, C3c, and terminal complement complex (C5b-9) deposition was measured. Additionally, thrombocytopenic, C3-deficient, or C6-deficient mice were intravenously infected with selected isolates. Survival and immunological parameters were monitored, and fungal burden was determined and compared to that of immunocompetent and neutropenic mice. RESULTS In vitro experiments showed significant differences in complement deposition between mucormycetes. Mc isolates bound up to threefold more human C5b-9 than other mucormycetes. Lr, Lc, and Mc bound high levels of murine C3c, whereas human C3c deposition was reduced on Mc compared to Lr and Lc. Murine C3c deposition negatively correlated with virulence. Complement deficiencies and neutropenia, but not thrombocytopenia, were shown to be a risk factor for a lethal outcome. CONCLUSION Complement deposition varies between mucormycetes. Additionally, we demonstrated that complement and neutrophilic granulocytes, but not platelets, play an important role in a murine model of disseminated mucormycosis.
Collapse
|
20
|
Acosta-España JD, Voigt K. An old confusion: Entomophthoromycosis versus mucormycosis and their main differences. Front Microbiol 2022; 13:1035100. [PMID: 36406416 PMCID: PMC9670544 DOI: 10.3389/fmicb.2022.1035100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Fungal diseases were underestimated for many years. And the global burden of fungal infections is substantial and has increased in recent years. Invasive fungal infections have been linked to several risk factors in humans which basically depend on the individual homeostasis of the patients. However, many fungi can infect even apparently healthy people. Knowledge of these pathogens is critical in reducing or stopping morbidity and/or mortality statistics due to fungal pathogens. Successful therapeutic strategies rely on rapid diagnosis of the causative fungal agent and the underlying disease. However, the terminology of the diseases was updated to existing phylogenetic classifications and led to confusion in the definition of mucormycosis, conidiobolomycosis, and basidiobolomycosis, which were previously grouped under the now-uncommon term zygomycosis. Therefore, the ecological, taxonomic, clinical, and diagnostic differences are addressed to optimize the understanding and definition of these diseases. The term "coenocytic hyphomycosis" is proposed to summarize all fungal infections caused by Mucorales and species of Basidiobolus and Conidiobolus.
Collapse
Affiliation(s)
- Jaime David Acosta-España
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany,Postgraduate Program in Infectious Diseases, School of Medicine, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany,*Correspondence: Kerstin Voigt,
| |
Collapse
|
21
|
Ju C, Lian Q, Chen A, Zhao B, Zhou S, Cai Y, Xie H, Wei L, Li S, He J. Antifungal prophylactic effectiveness and intrapulmonary concentrations of voriconazole versus posaconazole in lung transplant recipients. Med Mycol 2022; 60:6678431. [PMID: 36036471 PMCID: PMC9437723 DOI: 10.1093/mmy/myac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Invasive fungal diseases (IFDs) are one of the leading causes of death in lung transplant recipients. This study aimed to compare the antifungal prophylactic effectiveness, intrapulmonary and plasma levels of voriconazole with posaconazole in lung transplant recipients. This retrospective cohort study analyzed adult recipients who underwent lung transplantation between June 2017 and December 2020. Voriconazole oral tablets or posaconazole oral suspension were used for prophylaxis against posttransplant IFD. Drug concentrations in bronchoalveolar lavage fluid (BALF) and plasma were measured by using liquid chromatography-mass spectrometry. The 182 recipients included 142 in the voriconazole group and 40 in the posaconazole group. The trough plasma levels were comparable between voriconazole and posaconazole (1.65 ± 0.09 vs. 1.69 ± 0.03 μg/ml, p = 0.55). However, the BALF levels were significantly higher for posaconazole than voriconazole (17.47 ± 11.51 vs. 0.56 ± 0.49 μg/ml, p < 0.001). There was no significant difference in the total incidence of breakthrough IFDs between the voriconazole and posaconazole groups (10.6% vs. 7.5%, p = 0.77). The intrapulmonary concentrations of posaconazole were significantly higher than voriconazole. The two agents had comparable antifungal prophylactic effectiveness.
Collapse
Affiliation(s)
- Chunrong Ju
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaoyan Lian
- Department of Organ Transplant, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ao Chen
- Department of Organ Transplant, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shouning Zhou
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhang Cai
- Department of Organ Transplant, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Xie
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Wei
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
First Molecular Identification of Three Clinical Isolates of Fungi Causing Mucormycosis in Honduras. Infect Dis Rep 2022; 14:258-265. [PMID: 35447883 PMCID: PMC9027499 DOI: 10.3390/idr14020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Mucormycoses are rare but serious opportunistic fungal infections caused by filamentous organisms of the order Mucorales. Here we report the first molecular identification of Rhizopus oryzae (heterotypic synonym Rhizopus arrhizus), R. delemar, and Apophysomyces ossiformis as the etiological agents of three cases of severe mucormycosis in Honduras. Conventional microbiological cultures were carried out, and DNA was extracted from both clinical samples and axenic cultures. The ITS ribosomal region was amplified and sequenced. Molecular tools are suitable strategies for diagnosing and identifying Mucorales in tissues and cultures, especially in middle-income countries lacking routine diagnostic strategies.
Collapse
|
23
|
Jing R, Morrissey I, Xiao M, Sun TS, Zhang G, Kang W, Guo DW, Aram JA, Wang J, Utt EA, Wang Y, Xu YC. In vitro Activity of Isavuconazole and Comparators Against Clinical Isolates of Molds from a Multicenter Study in China. Infect Drug Resist 2022; 15:2101-2113. [PMID: 35498631 PMCID: PMC9041355 DOI: 10.2147/idr.s360191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Ran Jing
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | | | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Tian-Shu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ge Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Wei Kang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Da-Wen Guo
- Department of Laboratory Medicine, the First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | | | - Jeffrey Wang
- Clinical Development, Pfizer, Beijing, People’s Republic of China
| | - Eric A Utt
- Medical Affairs, Pfizer Inc, Groton, CT, USA
| | - Yao Wang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Ying-Chun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
- Correspondence: Ying-Chun Xu; Yao Wang, Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Number 1, Shuaifuyuan Road, Dongcheng District, Beijing, People’s Republic of China, Fax +86 10 69159766, Email ;
| |
Collapse
|
24
|
Lax C, Cánovas-Márquez JT, Tahiri G, Navarro E, Garre V, Nicolás FE. Genetic Manipulation in Mucorales and New Developments to Study Mucormycosis. Int J Mol Sci 2022; 23:3454. [PMID: 35408814 PMCID: PMC8998210 DOI: 10.3390/ijms23073454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
The study of the Mucoralean fungi physiology is a neglected field that the lack of effective genetic tools has hampered in the past. However, the emerging fungal infection caused by these fungi, known as mucormycosis, has prompted many researchers to study the pathogenic potential of Mucorales. The main reasons for this current attraction to study mucormycosis are its high lethality, the lack of effective antifungal drugs, and its recent increased incidence. The most contemporary example of the emergence character of mucormycosis is the epidemics declared in several Asian countries as a direct consequence of the COVID-19 pandemic. Fortunately, this pressure to understand mucormycosis and develop new treatment strategies has encouraged the blossoming of new genetic techniques and methodologies. This review describes the history of genetic manipulation in Mucorales, highlighting the development of methods and how they allowed the main genetic studies in these fungi. Moreover, we have emphasized the recent development of new genetic models to study mucormycosis, a landmark in the field that will configure future research related to this disease.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (G.T.); (E.N.); (V.G.)
| | | | | | | | | | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (G.T.); (E.N.); (V.G.)
| |
Collapse
|
25
|
Garre V. Recent Advances and Future Directions in the Understanding of Mucormycosis. Front Cell Infect Microbiol 2022; 12:850581. [PMID: 35281441 PMCID: PMC8907824 DOI: 10.3389/fcimb.2022.850581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mucormycosis is an emerging infection caused by fungi of the order Mucorales that has recently gained public relevance due to the high incidence among COVID-19 patients in some countries. The reduced knowledge about Mucorales pathogenesis is due, in large part, to the historically low interest for these fungi fostered by their reluctance to be genetically manipulated. The recent introduction of more tractable genetic models together with an increasing number of available whole genome sequences and genomic analyses have improved our understanding of Mucorales biology and mucormycosis in the last ten years. This review summarizes the most significant advances in diagnosis, understanding of the innate and acquired resistance to antifungals, identification of new virulence factors and molecular mechanisms involved in the infection. The increased awareness about the disease and the recent successful genetic manipulation of previous intractable fungal models using CRISPR-Cas9 technology are expected to fuel the characterization of Mucorales pathogenesis, facilitating the development of effective treatments to fight this deadly infection.
Collapse
Affiliation(s)
- Victoriano Garre
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
26
|
Characterisation of Candida parapsilosis CYP51 as a Drug Target Using Saccharomyces cerevisiae as Host. J Fungi (Basel) 2022; 8:jof8010069. [PMID: 35050009 PMCID: PMC8781857 DOI: 10.3390/jof8010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
The fungal cytochrome P450 lanosterol 14α-demethylase (CYP51) is required for the biosynthesis of fungal-specific ergosterol and is the target of azole antifungal drugs. Despite proven success as a clinical target for azole antifungals, there is an urgent need to develop next-generation antifungals that target CYP51 to overcome the resistance of pathogenic fungi to existing azole drugs, toxic adverse reactions and drug interactions due to human drug-metabolizing CYPs. Candida parapsilosis is a readily transmitted opportunistic fungal pathogen that causes candidiasis in health care environments. In this study, we have characterised wild type C. parapsilosis CYP51 and its clinically significant, resistance-causing point mutation Y132F by expressing these enzymes in a Saccharomyces cerevisiae host system. In some cases, the enzymes were co-expressed with their cognate NADPH-cytochrome P450 reductase (CPR). Constitutive expression of CpCYP51 Y132F conferred a 10- to 12-fold resistance to fluconazole and voriconazole, reduced to ~6-fold resistance for the tetrazoles VT-1161 and VT-1129, but did not confer resistance to the long-tailed triazoles. Susceptibilities were unchanged in the case of CpCPR co-expression. Type II binding spectra showed tight triazole and tetrazole binding by affinity-purified recombinant CpCYP51. We report the X-ray crystal structure of ScCYP51 in complex with VT-1129 obtained at a resolution of 2.1 Å. Structural analysis of azole—enzyme interactions and functional studies of recombinant CYP51 from C. parapsilosis have improved understanding of their susceptibility to azole drugs and will help advance structure-directed antifungal discovery.
Collapse
|
27
|
Lax C, Navarro-Mendoza MI, Pérez-Arques C, Navarro E, Nicolás FE, Garre V. Stable and reproducible homologous recombination enables CRISPR-based engineering in the fungus Rhizopus microsporus. CELL REPORTS METHODS 2021; 1:100124. [PMID: 35475217 PMCID: PMC9017206 DOI: 10.1016/j.crmeth.2021.100124] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 04/22/2023]
Abstract
Mucormycosis is a lethal and emerging disease that has lacked a genetic model fulfilling both high virulence and the possibility of performing stable and reproducible gene manipulation by homologous recombination (HR). Here, we developed a new methodology to successfully perform HR in Rhizopus microsporus. We isolated an uracil auxotrophic recipient strain and optimized the critical steps in the genetic transformation of this fungus. This was followed by an adaptation of a plasmid-free CRISPR-Cas9 system coupled with microhomology repair templates. We reproducibly generated stable mutants in the genes leuA and crgA, encoding a 3-isopropylmalate dehydratase and an ubiquitin ligase, respectively. Our new genetic model showed that mutations in the gene pyrF, a key virulence gene in several bacterial and fungal pathogens, correlated with an avirulent phenotype in an immunocompetent murine host. This was reverted by gene complementation, showing the broad possibilities of our methodology.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | | | - Carlos Pérez-Arques
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
28
|
Macedo D, Leonardelli F, Cabeza MS, Gamarra S, Garcia-Effron G. The natural occurring Y129F polymorphism in Rhizopus oryzae (R. arrhizus) Cyp51Ap accounts for its intrinsic voriconazole resistance. Med Mycol 2021; 59:1202-1209. [PMID: 34550395 DOI: 10.1093/mmy/myab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/14/2021] [Indexed: 11/12/2022] Open
Abstract
Rhizopus oryzae (heterotypic synonym: R. arrhizus) intrinsic voriconazole and fluconazole resistance has been linked to its CYP51A gene. However, the amino acid residues involved in this phenotype have not yet been established. A comparison between R. oryzae and Aspergillus fumigatus Cyp51Ap sequences showed differences in several amino acid residues. Some of them were already linked with voriconazole resistance in A. fumigatus. The objective of this work was to analyze the role of two natural polymorphisms in the intrinsic voriconazole resistance phenotype of R. oryzae (Y129F and T290A, equivalent to Y121F and T289A seen in triazole-resistant A. fumigatus). We have generated A. fumigatus chimeric strains harboring different R. oryzae CYP51A genes (wild-type and mutants). These mutant R. oryzae CYP51A genes were designed to carry nucleotide changes that produce mutations at Cyp51Ap residues 129 and 290 (emulating the Cyp51Ap protein of azole susceptible A. fumigatus). Antifungal susceptibilities were evaluated for all the obtained mutants. The polymorphism T290A (alone or in combination with Y129F) had no impact on triazole MIC. On the other hand, a > 8-fold decrease in voriconazole MICs was observed in A. fumigatus chimeric strains harboring the RoCYP51Ap-F129Y. This phenotype supports the assumption that the naturally occurring polymorphism Y129F at R. oryzae Cyp51Ap is responsible for its voriconazole resistance phenotype. In addition, these chimeric mutants were posaconazole hypersusceptible. Thus, our experimental data demonstrate that the RoCYP51Ap-F129 residue strongly impacts VRC susceptibility and that it would be related with posaconazole-RoCYP51Ap interaction. LAY SUMMARY Rhizopus oryzae is intrinsically resistant to voriconazole, a commonly used antifungal agent. In this work, we analyze the role of two natural polymorphisms present in the target of azole drugs. We established that F129 residue is responsible of the intrinsic voriconazole resistance in this species.
Collapse
Affiliation(s)
- Daiana Macedo
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, C.P. 3000, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), CCT, Santa Fe, C.P. 3000, Argentina
| | - Florencia Leonardelli
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, C.P. 3000, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), CCT, Santa Fe, C.P. 3000, Argentina
| | - Matias S Cabeza
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, C.P. 3000, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), CCT, Santa Fe, C.P. 3000, Argentina
| | - Soledad Gamarra
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, C.P. 3000, Argentina
| | - Guillermo Garcia-Effron
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, C.P. 3000, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), CCT, Santa Fe, C.P. 3000, Argentina
| |
Collapse
|
29
|
Idnurm A, Xu M. Identification of the ergC gene involved in polyene drug sensitivity in the Mucorales species Phycomyces blakesleeanus. Mol Biol Rep 2021; 49:981-987. [PMID: 34741705 DOI: 10.1007/s11033-021-06917-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND A strain of Phycomyces blakesleeanus (Mucorales, Mucoromycota) that was previously isolated after ultraviolet mutagenesis has altered responses to polyene antifungal drugs, sterol profiles, and phototropism of its sporangia. In this study, the genetic basis for these changes was sought. METHODS AND RESULTS Two base pair substitutions were identified in the mutant within a P. blakelesleeanus gene that is homologous to others characterized from fungi, such as the Saccharomyces cerevisiae ERG3 gene, encoding sterol Δ5,6-desaturase. The polyene resistance and growth reduction phenotypes co-segregated with mutations in the gene in genetic crosses. The P. blakelesleeanus wild type ergC gene complemented a S. cerevisiae deletion strain of ERG3. CONCLUSIONS This gene discovery may contribute towards better antifungal use in treating mucormycoses diseases caused by related species in the order Mucorales.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, the University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Melvin Xu
- School of BioSciences, the University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
30
|
Cánovas-Márquez JT, Navarro-Mendoza MI, Pérez-Arques C, Lax C, Tahiri G, Pérez-Ruiz JA, Lorenzo-Gutiérrez D, Calo S, López-García S, Navarro E, Nicolás FE, Garre V, Murcia L. Role of the Non-Canonical RNAi Pathway in the Antifungal Resistance and Virulence of Mucorales. Genes (Basel) 2021; 12:genes12040586. [PMID: 33920552 PMCID: PMC8072676 DOI: 10.3390/genes12040586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Mucorales are the causal agents for the lethal disease known as mucormycosis. Mortality rates of mucormycosis can reach up to 90%, due to the mucoralean antifungal drug resistance and the lack of effective therapies. A concerning urgency among the medical and scientific community claims to find targets for the development of new treatments. Here, we reviewed different studies describing the role and machinery of a novel non-canonical RNAi pathway (NCRIP) only conserved in Mucorales. Its non-canonical features are the independence of Dicer and Argonaute proteins. Conversely, NCRIP relies on RNA-dependent RNA Polymerases (RdRP) and an atypical ribonuclease III (RNase III). NCRIP regulates the expression of mRNAs by degrading them in a specific manner. Its mechanism binds dsRNA but only cuts ssRNA. NCRIP exhibits a diversity of functional roles. It represses the epimutational pathway and the lack of NCRIP increases the generation of drug resistant strains. NCRIP also regulates the control of retrotransposons expression, playing an essential role in genome stability. Finally, NCRIP regulates the response during phagocytosis, affecting the multifactorial process of virulence. These critical NCRIP roles in virulence and antifungal drug resistance, along with its exclusive presence in Mucorales, mark this pathway as a promising target to fight against mucormycosis.
Collapse
Affiliation(s)
- José Tomás Cánovas-Márquez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (C.L.); (G.T.); (J.A.P.-R.); (D.L.-G.); (S.L.-G.); (E.N.); (F.E.N.); (V.G.)
| | - María Isabel Navarro-Mendoza
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; (M.I.N.-M.); (C.P.-A.)
| | - Carlos Pérez-Arques
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; (M.I.N.-M.); (C.P.-A.)
| | - Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (C.L.); (G.T.); (J.A.P.-R.); (D.L.-G.); (S.L.-G.); (E.N.); (F.E.N.); (V.G.)
| | - Ghizlane Tahiri
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (C.L.); (G.T.); (J.A.P.-R.); (D.L.-G.); (S.L.-G.); (E.N.); (F.E.N.); (V.G.)
| | - José Antonio Pérez-Ruiz
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (C.L.); (G.T.); (J.A.P.-R.); (D.L.-G.); (S.L.-G.); (E.N.); (F.E.N.); (V.G.)
| | - Damaris Lorenzo-Gutiérrez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (C.L.); (G.T.); (J.A.P.-R.); (D.L.-G.); (S.L.-G.); (E.N.); (F.E.N.); (V.G.)
| | - Silvia Calo
- School of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros 51033, Dominican Republic;
| | - Sergio López-García
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (C.L.); (G.T.); (J.A.P.-R.); (D.L.-G.); (S.L.-G.); (E.N.); (F.E.N.); (V.G.)
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (C.L.); (G.T.); (J.A.P.-R.); (D.L.-G.); (S.L.-G.); (E.N.); (F.E.N.); (V.G.)
| | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (C.L.); (G.T.); (J.A.P.-R.); (D.L.-G.); (S.L.-G.); (E.N.); (F.E.N.); (V.G.)
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (C.L.); (G.T.); (J.A.P.-R.); (D.L.-G.); (S.L.-G.); (E.N.); (F.E.N.); (V.G.)
| | - Laura Murcia
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.T.C.-M.); (C.L.); (G.T.); (J.A.P.-R.); (D.L.-G.); (S.L.-G.); (E.N.); (F.E.N.); (V.G.)
- Correspondence:
| |
Collapse
|
31
|
Nagy G, Kiss S, Varghese R, Bauer K, Szebenyi C, Kocsubé S, Homa M, Bodai L, Zsindely N, Nagy G, Vágvölgyi C, Papp T. Characterization of Three Pleiotropic Drug Resistance Transporter Genes and Their Participation in the Azole Resistance of Mucor circinelloides. Front Cell Infect Microbiol 2021; 11:660347. [PMID: 33937100 PMCID: PMC8079984 DOI: 10.3389/fcimb.2021.660347] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 02/04/2023] Open
Abstract
Mucormycosis is a life-threatening opportunistic infection caused by certain members of the fungal order Mucorales. This infection is associated with high mortality rate, which can reach nearly 100% depending on the underlying condition of the patient. Treatment of mucormycosis is challenging because these fungi are intrinsically resistant to most of the routinely used antifungal agents, such as most of the azoles. One possible mechanism of azole resistance is the drug efflux catalyzed by members of the ATP binding cassette (ABC) transporter superfamily. The pleiotropic drug resistance (PDR) transporter subfamily of ABC transporters is the most closely associated to drug resistance. The genome of Mucor circinelloides encodes eight putative PDR-type transporters. In this study, transcription of the eight pdr genes has been analyzed after azole treatment. Only the pdr1 showed increased transcript level in response to all tested azoles. Deletion of this gene caused increased susceptibility to posaconazole, ravuconazole and isavuconazole and altered growth ability of the mutant. In the pdr1 deletion mutant, transcript level of pdr2 and pdr6 significantly increased. Deletion of pdr2 and pdr6 was also done to create single and double knock out mutants for the three genes. After deletion of pdr2 and pdr6, growth ability of the mutant strains decreased, while deletion of pdr2 resulted in increased sensitivity against posaconazole, ravuconazole and isavuconazole. Our result suggests that the regulation of the eight pdr genes is interconnected and pdr1 and pdr2 participates in the resistance of the fungus to posaconazole, ravuconazole and isavuconazole.
Collapse
Affiliation(s)
- Gábor Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Sándor Kiss
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Rakesh Varghese
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Kitti Bauer
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csilla Szebenyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mónika Homa
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
32
|
Pérez-Arques C, Navarro-Mendoza MI, Murcia L, Navarro E, Garre V, Nicolás FE. The RNAi Mechanism Regulates a New Exonuclease Gene Involved in the Virulence of Mucorales. Int J Mol Sci 2021; 22:ijms22052282. [PMID: 33668930 PMCID: PMC7956310 DOI: 10.3390/ijms22052282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mucormycosis is a lethal disease caused by Mucorales, which are emerging as human causes that explain the high mortality for this disease. Consequently, the research community is searching for virulence determinants that could be repurposed as targets to develop new treatments against mucormycosis. Our work explores an RNA interference (RNAi)-based approach to find targets involved in the virulence of Mucorales. A transcriptomewide analysis compared sRNAs and their target mRNAs in two Mucor lusitanicus different pathotypes, virulent and avirulent, generating a list of 75 loci selected by their differential sRNA accumulation in these strains. As a proof of concept and validity, an experimental approach characterized two loci showing opposite behavior, confirming that RNAi activity causes their differential expression in the two pathotypes. We generated deletion mutants for two loci and a knockin-strain overexpressing for one of these loci. Their functional analysis in murine virulence assays identified the gene wex1, a putative DEDDy exonuclease with RNase domains, as an essential factor for virulence. The identification of wex1 showed the potential of our approach to discover virulence factors not only in Mucorales but also in any other fungal model with an active RNAi machinery. More importantly, it adds a new layer to the biological processes controlled by RNAi in M. lusitanicus, confirming that the Dicer-dependent RNAi pathway can silence gene expression to promote virulence.
Collapse
|
33
|
Pérez-Arques C, Navarro-Mendoza MI, Murcia L, Lax C, Sanchis M, Capilla J, Navarro E, Garre V, Nicolás FE. A Mucoralean White Collar-1 Photoreceptor Controls Virulence by Regulating an Intricate Gene Network during Host Interactions. Microorganisms 2021; 9:459. [PMID: 33672193 PMCID: PMC7927057 DOI: 10.3390/microorganisms9020459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/02/2023] Open
Abstract
Mucolares are an ancient group of fungi encompassing the causal agents for the lethal infection mucormycosis. The high lethality rates, the emerging character of this disease, and the broad antifungal resistance of its causal agents are mucormycosis features that are alarming clinicians and researchers. Thus, the research field around mucormycosis is currently focused on finding specific weaknesses and targets in Mucorales for developing new treatments. In this work, we tested the role of the white-collar genes family in the virulence potential of Mucor lusitanicus. Study of the three genes of this family, mcwc-1a, mcwc-1b, and mcwc-1c, resulted in a marked functional specialization, as only mcwc-1a was essential to maintain the virulence potential of M. lusitanicus. The traditional role of wc-1 genes regulating light-dependent responses is a thoroughly studied field, whereas their role in virulence remains uncharacterized. In this work, we investigated the mechanism involving mcwc-1a in virulence from an integrated transcriptomic and functional approach during the host-pathogen interaction. Our results revealed mcwc-1a as a master regulator controlling an extensive gene network. Further dissection of this gene network clustering its components by type of regulation and functional criteria disclosed a multifunctional mechanism depending on diverse pathways. In the absence of phagocytic cells, mcwc-1a controlled pathways related to cell motility and the cytoskeleton that could be associated with the essential tropism during tissue invasion. After phagocytosis, several oxidative response pathways dependent on mcwc-1a were activated during the germination of M. lusitanicus spores inside phagocytic cells, which is the first stage of the infection. The third relevant group of genes involved in virulence and regulated by mcwc-1a belonged to the "unknown function," indicating that new and hidden pathways are involved in virulence. The unknown function category is especially pertinent in the study of mucormycosis, as it is highly enriched in specific fungal genes that represent the most promising targets for developing new antifungal compounds. These results unveil a complex multifunctional mechanism used by wc-1 genes to regulate the pathogenic potential in Mucorales that could also apply to other fungal pathogens.
Collapse
Affiliation(s)
- Carlos Pérez-Arques
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - María Isabel Navarro-Mendoza
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - Laura Murcia
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - Carlos Lax
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - Marta Sanchis
- Unidad de Microbiología, Universitat Rovira i Virgili, IISPV, 43003 Tarragona, Spain; (M.S.); (J.C.)
| | - Javier Capilla
- Unidad de Microbiología, Universitat Rovira i Virgili, IISPV, 43003 Tarragona, Spain; (M.S.); (J.C.)
| | - Eusebio Navarro
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - Victoriano Garre
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| | - Francisco Esteban Nicolás
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.P.-A.); (M.I.N.-M.); (L.M.); (C.L.); (E.N.)
| |
Collapse
|
34
|
Monk BC, Keniya MV. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J Fungi (Basel) 2021; 7:67. [PMID: 33498194 PMCID: PMC7908997 DOI: 10.3390/jof7020067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antifungal drugs and antifungal agrochemicals have significant limitations. These include several unintended consequences of their use including the growing importance of intrinsic and acquired resistance. These problems underpin an increasingly urgent need to improve the existing classes of antifungals and to discover novel antifungals. Structural insights into drug targets and their complexes with both substrates and inhibitory ligands increase opportunity for the discovery of more effective antifungals. Implementation of this promise, which requires multiple skill sets, is beginning to yield candidates from discovery programs that could more quickly find their place in the clinic. This review will describe how structural biology is providing information for the improvement and discovery of inhibitors targeting the essential fungal enzyme sterol 14α-demethylase.
Collapse
Affiliation(s)
- Brian C. Monk
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| | | |
Collapse
|
35
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
36
|
Rosam K, Monk BC, Lackner M. Sterol 14α-Demethylase Ligand-Binding Pocket-Mediated Acquired and Intrinsic Azole Resistance in Fungal Pathogens. J Fungi (Basel) 2020; 7:jof7010001. [PMID: 33374996 PMCID: PMC7822023 DOI: 10.3390/jof7010001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
The fungal cytochrome P450 enzyme sterol 14α-demethylase (SDM) is a key enzyme in the ergosterol biosynthesis pathway. The binding of azoles to the active site of SDM results in a depletion of ergosterol, the accumulation of toxic intermediates and growth inhibition. The prevalence of azole-resistant strains and fungi is increasing in both agriculture and medicine. This can lead to major yield loss during food production and therapeutic failure in medical settings. Diverse mechanisms are responsible for azole resistance. They include amino acid (AA) substitutions in SDM and overexpression of SDM and/or efflux pumps. This review considers AA affecting the ligand-binding pocket of SDMs with a primary focus on substitutions that affect interactions between the active site and the substrate and inhibitory ligands. Some of these interactions are particularly important for the binding of short-tailed azoles (e.g., voriconazole). We highlight the occurrence throughout the fungal kingdom of some key AA substitutions. Elucidation of the role of these AAs and their substitutions may assist drug design in overcoming some common forms of innate and acquired azole resistance.
Collapse
Affiliation(s)
- Katharina Rosam
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria;
| | - Brian C. Monk
- Sir John Walsh Research Institute and Department of Oral Biology, Faculty of Dentistry, University of Otago, PO Box 56, 9054 Dunedin, New Zealand;
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria;
- Correspondence: ; Tel.: +43-512-003-70725
| |
Collapse
|
37
|
Stanford FA, Voigt K. Iron Assimilation during Emerging Infections Caused by Opportunistic Fungi with emphasis on Mucorales and the Development of Antifungal Resistance. Genes (Basel) 2020; 11:genes11111296. [PMID: 33143139 PMCID: PMC7693903 DOI: 10.3390/genes11111296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is a key transition metal required by most microorganisms and is prominently utilised in the transfer of electrons during metabolic reactions. The acquisition of iron is essential and becomes a crucial pathogenic event for opportunistic fungi. Iron is not readily available in the natural environment as it exists in its insoluble ferric form, i.e., in oxides and hydroxides. During infection, the host iron is bound to proteins such as transferrin, ferritin, and haemoglobin. As such, access to iron is one of the major hurdles that fungal pathogens must overcome in an immunocompromised host. Thus, these opportunistic fungi utilise three major iron acquisition systems to overcome this limiting factor for growth and proliferation. To date, numerous iron acquisition pathways have been fully characterised, with key components of these systems having major roles in virulence. Most recently, proteins involved in these pathways have been linked to the development of antifungal resistance. Here, we provide a detailed review of our current knowledge of iron acquisition in opportunistic fungi, and the role iron may have on the development of resistance to antifungals with emphasis on species of the fungal basal lineage order Mucorales, the causative agents of mucormycosis.
Collapse
Affiliation(s)
- Felicia Adelina Stanford
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena Microbial Resource Collection Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Correspondence: ; Tel.: +49-3641-532-1395; Fax: +49-3641-532-2395
| |
Collapse
|
38
|
Vellanki S, Garcia AE, Lee SC. Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens. Front Mol Biosci 2020; 7:588913. [PMID: 33195437 PMCID: PMC7596385 DOI: 10.3389/fmolb.2020.588913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades advances in modern medicine have resulted in a global increase in the prevalence of fungal infections. Particularly people undergoing organ transplants or cancer treatments with a compromised immune system are at an elevated risk for lethal fungal infections such as invasive candidiasis, aspergillosis, cryptococcosis, etc. The emergence of drug resistance in fungal pathogens poses a serious threat to mankind and it is critical to identify new targets for the development of antifungals. Calcineurin and TOR proteins are conserved across eukaryotes including pathogenic fungi. Two small molecules FK506 and rapamycin bind to FKBP12 immunophilin and the resulting complexes (FK506-FKBP12 and rapamycin-FKBP12) target calcineurin and TOR, respectively in both humans and fungi. However, due to their immunosuppressive nature these drugs in the current form cannot be used as an antifungal. To overcome this, it is important to identify key differences between human and fungal FKBP12, calcineurin, and TOR proteins which will facilitate the development of new small molecules with higher affinity toward fungal components. The current review highlights FK506/rapamycin-FKBP12 interactions with calcineurin/TOR kinase in human and fungi, and development of non-immunosuppressive analogs of FK506, rapamycin, and novel small molecules in inhibition of fungal calcineurin and TOR kinase.
Collapse
Affiliation(s)
- Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Alexis E Garcia
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
39
|
Assessment of Children’s Potential Exposure to Bioburden in Indoor Environments. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The exposure to particles and bioaerosols has been associated with the increase in health effects in children. The objective of this study was to assess the indoor exposure to bioburden in the indoor microenvironments more frequented by children. Air particulate matter (PM) and settled dust were sampled in 33 dwellings and four schools with a medium volume sampler and with a passive method using electrostatic dust collectors (EDC), respectively. Settled dust collected by EDC was analyzed by culture-based methods (including azole resistance profile) and using qPCR. Results showed that the PM2.5 and PM10 concentrations in classrooms (31.15 μg/m3 and 57.83 μg/m3, respectively) were higher than in homes (15.26 μg/m3 and 18.95 μg/m3, respectively) and highly exceeded the limit values established by the Portuguese legislation for indoor air quality. The fungal species most commonly found in bedrooms was Penicillium sp. (91.79%), whereas, in living rooms, it was Rhizopus sp. (37.95%). Aspergillus sections with toxigenic potential were found in bedrooms and living rooms and were able to grow on VOR. Although not correlated with PM, EDC provided information regarding the bioburden. Future studies, applying EDC coupled with PM assessment, should be implemented to allow for a long-term integrated sample of organic dust.
Collapse
|
40
|
Nicolás FE, Murcia L, Navarro E, Navarro-Mendoza MI, Pérez-Arques C, Garre V. Mucorales Species and Macrophages. J Fungi (Basel) 2020; 6:E94. [PMID: 32604972 PMCID: PMC7344864 DOI: 10.3390/jof6020094] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Mucormycosis is an emerging fungal infection caused by Mucorales with an unacceptable high mortality rate. Mucorales is a complex fungal group, including eleven different genera that can infect humans. This heterogeneity is associated with species-specific invasion pathways and responses to the host defense mechanisms. The host innate immune system plays a major role in preventing Mucorales growth and host invasion. In this system, macrophages are the main immune effector cells in controlling these fungi by rapid and efficient phagocytosis of the spores. However, Mucorales have evolved mechanisms to block phagosomal maturation and species-specific mechanisms to either survive as dormant spores inside the macrophage, as Rhizopus species, or geminate and escape, as Mucor species. Classical fungal models of mucormycosis, mostly Rhizopus, have made important contributions to elucidate key aspects of the interaction between Mucorales and macrophages, but they lack robust tools for genetic manipulation. The recent introduction of the genetically tractable Mucor circinelloides as a model of mucormycosis offers the possibility to analyze gene function. This has allowed the identification of regulatory pathways that control the fungal response to phagocytosis, including a non-canonical RNAi pathway (NCRIP) that regulates the expression of most genes regulated by phagocytosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (F.E.N.); (L.M.); (E.N.); (M.I.N.-M.); (C.P.-A.)
| |
Collapse
|
41
|
First reported case of Gilbertella persicaria in human stool: outcome of a community study from Segamat, Johor, Malaysia. Braz J Microbiol 2020; 51:2067-2075. [PMID: 32572838 DOI: 10.1007/s42770-020-00323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022] Open
Abstract
Species of fungi belonging to the order Mucorales can be found everywhere in the environment. Gilbertella persicaria, which belongs to this order, have often been isolated from fruits and in water systems. However, there has been no report of isolation of this fungus from human samples. During a gut mycobiome study, from the Segamat community, Gilbertella persicaria was isolated from a human fecal sample and was characterized through a series of morphological assessment, biochemical tests, and molecular techniques. The isolate produced a white velvety surface that turned grayish after 24 h. Although no biofilm production was observed, the results indicated that the isolate could form calcium oxalate crystals, produced urease, and was resistant to low pH. The isolate was sensitive to amphotericin but resistant to voriconazole and itraconazole. The features of this fungus that could help in its survival in the human gut are also discussed.
Collapse
|
42
|
Lax C, Pérez-Arques C, Navarro-Mendoza MI, Cánovas-Márquez JT, Tahiri G, Pérez-Ruiz JA, Osorio-Concepción M, Murcia-Flores L, Navarro E, Garre V, Nicolás FE. Genes, Pathways, and Mechanisms Involved in the Virulence of Mucorales. Genes (Basel) 2020; 11:E317. [PMID: 32188171 PMCID: PMC7140881 DOI: 10.3390/genes11030317] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
The order Mucorales is a group of ancient fungi with limited tools for gene manipulation. The main consequence of this manipulation unwillingness is the limited knowledge about its biology compared to other fungal groups. However, the emerging of mucormycosis, a fungal infection caused by Mucorales, is attracting the medical spotlight in recent years because the treatments available are not efficient in reducing the high mortality associated with this disease. The result of this renewed interest in Mucorales and mucormycosis is an extraordinarily productive effort to unveil their secrets during the last decade. In this review, we describe the most compelling advances related to the genetic study of virulence factors, pathways, and molecular mechanisms developed in these years. The use of a few genetic study models has allowed the characterization of virulence factors in Mucorales that were previously described in other pathogens, such as the uptake iron systems, the mechanisms of dimorphism, and azole resistances. More importantly, recent studies are identifying new genes and mechanisms controlling the pathogenic potential of Mucorales and their interactions with the host, offering new alternatives to develop specific strategies against mucormycosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.L.); (C.P.-A.); (M.I.N.-M.); (J.T.C.-M.); (G.T.); (J.A.P.-R.); (M.O.-C.); (L.M.-F.); (V.G.)
| |
Collapse
|
43
|
Houšť J, Spížek J, Havlíček V. Antifungal Drugs. Metabolites 2020; 10:metabo10030106. [PMID: 32178468 PMCID: PMC7143493 DOI: 10.3390/metabo10030106] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
We reviewed the licensed antifungal drugs and summarized their mechanisms of action, pharmacological profiles, and susceptibility to specific fungi. Approved antimycotics inhibit 1,3-β-d-glucan synthase, lanosterol 14-α-demethylase, protein, and deoxyribonucleic acid biosynthesis, or sequestrate ergosterol. Their most severe side effects are hepatotoxicity, nephrotoxicity, and myelotoxicity. Whereas triazoles exhibit the most significant drug–drug interactions, echinocandins exhibit almost none. The antifungal resistance may be developed across most pathogens and includes drug target overexpression, efflux pump activation, and amino acid substitution. The experimental antifungal drugs in clinical trials are also reviewed. Siderophores in the Trojan horse approach or the application of siderophore biosynthesis enzyme inhibitors represent the most promising emerging antifungal therapies.
Collapse
|
44
|
Lebreton A, Corre E, Jany JL, Brillet-Guéguen L, Pèrez-Arques C, Garre V, Monsoor M, Debuchy R, Le Meur C, Coton E, Barbier G, Meslet-Cladière L. Comparative genomics applied to Mucor species with different lifestyles. BMC Genomics 2020; 21:135. [PMID: 32039703 PMCID: PMC7011435 DOI: 10.1186/s12864-019-6256-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Despite a growing number of investigations on early diverging fungi, the corresponding lineages have not been as extensively characterized as Ascomycota or Basidiomycota ones. The Mucor genus, pertaining to one of these lineages is not an exception. To this date, a restricted number of Mucor annotated genomes is publicly available and mainly correspond to the reference species, Mucor circinelloides, and to medically relevant species. However, the Mucor genus is composed of a large number of ubiquitous species as well as few species that have been reported to specifically occur in certain habitats. The present study aimed to expand the range of Mucor genomes available and identify potential genomic imprints of adaptation to different environments and lifestyles in the Mucor genus. RESULTS In this study, we report four newly sequenced genomes of Mucor isolates collected from non-clinical environments pertaining to species with contrasted lifestyles, namely Mucor fuscus and Mucor lanceolatus, two species used in cheese production (during ripening), Mucor racemosus, a recurrent cheese spoiler sometimes described as an opportunistic animal and human pathogen, and Mucor endophyticus, a plant endophyte. Comparison of these new genomes with those previously available for six Mucor and two Rhizopus (formerly identified as M. racemosus) isolates allowed global structural and functional description such as their TE content, core and species-specific genes and specialized genes. We proposed gene candidates involved in iron metabolism; some of these genes being known to be involved in pathogenicity; and described patterns such as a reduced number of CAZymes in the species used for cheese ripening as well as in the endophytic isolate that might be related to adaptation to different environments and lifestyles within the Mucor genus. CONCLUSIONS This study extended the descriptive data set for Mucor genomes, pointed out the complexity of obtaining a robust phylogeny even with multiple genes families and allowed identifying contrasting potentially lifestyle-associated gene repertoires. The obtained data will allow investigating further the link between genetic and its biological data, especially in terms of adaptation to a given habitat.
Collapse
Affiliation(s)
- Annie Lebreton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France
| | - Erwan Corre
- Station Biologique de Roscoff, Plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), Paris VI, Place Georges Teissier, 74 29682, Roscoff Cedex, BP, France
| | - Jean-Luc Jany
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France
| | - Loraine Brillet-Guéguen
- Station Biologique de Roscoff, Plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), Paris VI, Place Georges Teissier, 74 29682, Roscoff Cedex, BP, France
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, 29680, Roscoff, France
| | - Carlos Pèrez-Arques
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Victoriano Garre
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Misharl Monsoor
- Station Biologique de Roscoff, Plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), Paris VI, Place Georges Teissier, 74 29682, Roscoff Cedex, BP, France
| | - Robert Debuchy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, CEDEX 91198, Gif-sur-Yvette, France
| | - Christophe Le Meur
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France
| | - Emmanuel Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France
| | - Georges Barbier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France
| | - Laurence Meslet-Cladière
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| |
Collapse
|
45
|
Dannaoui E, Lackner M. Special Issue: Mucorales and Mucormycosis. J Fungi (Basel) 2019; 6:E6. [PMID: 31877973 PMCID: PMC7151165 DOI: 10.3390/jof6010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Mucormycosis is a life-threatening infection, occurring mainly in immunocompromised patients, but also in immunocompetent patients after traumatic injuries [...].
Collapse
Affiliation(s)
- Eric Dannaoui
- Service de Microbiologie, Unité de Parasitologie-Mycologie, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Faculté de Médecine, Université Paris Descartes, F-75006 Paris, France
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck (MUI), Schöpfstrasse 41, 6020 Innsbruck, Austria
| |
Collapse
|
46
|
Thornton CR. Detection of the 'Big Five' mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 110:1-61. [PMID: 32386603 DOI: 10.1016/bs.aambs.2019.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungi are an important but frequently overlooked cause of morbidity and mortality in humans. Life-threatening fungal infections mainly occur in immunocompromised patients, and are typically caused by environmental opportunists that take advantage of a weakened immune system. The filamentous fungus Aspergillus fumigatus is the most important and well-documented mold pathogen of humans, causing a number of complex respiratory diseases, including invasive pulmonary aspergillosis, an often fatal disease in patients with acute leukemia or in immunosuppressed bone marrow or solid organ transplant recipients. However, non-Aspergillus molds are increasingly reported as agents of disseminated diseases, with Fusarium, Scedosporium, Lomentospora and mucormycete species now firmly established as pathogens of immunosuppressed and immunocompetent individuals. Despite well-documented risk factors for invasive fungal diseases, and increased awareness of the risk factors for life-threatening infections, the number of deaths attributable to molds is likely to be severely underestimated driven, to a large extent, by the lack of readily accessible, cheap, and accurate tests that allow detection and differentiation of infecting species. Early diagnosis is critical to patient survival but, unlike Aspergillus diseases, where a number of CE-marked or FDA-approved biomarker tests are now available for clinical diagnosis, similar tests for fusariosis, scedosporiosis and mucormycosis remain experimental, with detection reliant on insensitive and slow culture of pathogens from invasive bronchoalveolar lavage fluid, tissue biopsy, or from blood. This review examines the ecology, epidemiology, and contemporary methods of detection of these mold pathogens, and the obstacles to diagnostic test development and translation of novel biomarkers to the clinical setting.
Collapse
|
47
|
Navarro-Mendoza MI, Pérez-Arques C, Panchal S, Nicolás FE, Mondo SJ, Ganguly P, Pangilinan J, Grigoriev IV, Heitman J, Sanyal K, Garre V. Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Curr Biol 2019; 29:3791-3802.e6. [PMID: 31679929 PMCID: PMC6925572 DOI: 10.1016/j.cub.2019.09.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Centromeres are rapidly evolving across eukaryotes, despite performing a conserved function to ensure high-fidelity chromosome segregation. CENP-A chromatin is a hallmark of a functional centromere in most organisms. Due to its critical role in kinetochore architecture, the loss of CENP-A is tolerated in only a few organisms, many of which possess holocentric chromosomes. Here, we characterize the consequence of the loss of CENP-A in the fungal kingdom. Mucor circinelloides, an opportunistic human pathogen, lacks CENP-A along with the evolutionarily conserved CENP-C but assembles a monocentric chromosome with a localized kinetochore complex throughout the cell cycle. Mis12 and Dsn1, two conserved kinetochore proteins, were found to co-localize to a short region, one in each of nine large scaffolds, composed of an ∼200-bp AT-rich sequence followed by a centromere-specific conserved motif that echoes the structure of budding yeast point centromeres. Resembling fungal regional centromeres, these core centromere regions are embedded in large genomic expanses devoid of genes yet marked by Grem-LINE1s, a novel retrotransposable element silenced by the Dicer-dependent RNAi pathway. Our results suggest that these hybrid features of point and regional centromeres arose from the absence of CENP-A, thus defining novel mosaic centromeres in this early-diverging fungus.
Collapse
Affiliation(s)
| | - Carlos Pérez-Arques
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Shweta Panchal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Francisco E Nicolás
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO 80521, USA
| | - Promit Ganguly
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94598, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - Victoriano Garre
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
48
|
Wagner L, de Hoog S, Alastruey-Izquierdo A, Voigt K, Kurzai O, Walther G. A Revised Species Concept for Opportunistic Mucor Species Reveals Species-Specific Antifungal Susceptibility Profiles. Antimicrob Agents Chemother 2019; 63:e00653-19. [PMID: 31182532 PMCID: PMC6658771 DOI: 10.1128/aac.00653-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Recently, the species concept of opportunistic Mucor circinelloides and its relatives has been revised, resulting in the recognition of its classical formae as independent species and the description of new species. In this study, we used isolates of all clinically relevant Mucor species and performed susceptibility testing using the EUCAST reference method to identify potential species-specific susceptibility patterns. In vitro susceptibility profiles of 101 mucoralean strains belonging to the genus Mucor (72), the closely related species Cokeromyces recurvatus (3), Rhizopus (12), Lichtheimia (10), and Rhizomucor (4) to six antifungals (amphotericin B, natamycin, terbinafine, isavuconazole, itraconazole, and posaconazole) were determined. The most active drug for all Mucorales was amphotericin B. Antifungal susceptibility profiles of pathogenic Mucor species were specific for isavuconazole, itraconazole, and posaconazole. The species formerly united in M. circinelloides showed clear differences in their antifungal susceptibilities. Cokeromyces recurvatus, Mucor ardhlaengiktus, Mucor lusitanicus (M. circinelloides f. lusitanicus), and Mucor ramosissimus exhibited high MICs to all azoles tested. Mucor indicus presented high MICs for isavuconazole and posaconazole, and Mucor amphibiorum and Mucor irregularis showed high MICs for isavuconazole. MIC values of Mucor spp. for posaconazole, isavuconazole, and itraconazole were high compared to those for Rhizopus and the Lichtheimiaceae (Lichtheimia and Rhizomucor). Molecular identification combined with in vitro susceptibility testing is recommended for Mucor species, especially if azoles are applied in treatment.
Collapse
Affiliation(s)
- Lysett Wagner
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biology and Pharmacy, Institute of Microbiology, Department of Microbiology and Molecular Biology, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Kurzai
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Grit Walther
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| |
Collapse
|
49
|
Patiño-Medina JA, Valle-Maldonado MI, Maldonado-Herrera G, Pérez-Arques C, Jácome-Galarza IE, Díaz-Pérez C, Díaz-Pérez AL, Araiza-Cervantes CA, Villagomez-Castro JC, Campos-García J, Ramírez-Díaz MI, Garre V, Meza-Carmen V. Role of Arf-like proteins (Arl1 and Arl2) of Mucor circinelloides in virulence and antifungal susceptibility. Fungal Genet Biol 2019; 129:40-51. [DOI: 10.1016/j.fgb.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 10/27/2022]
|
50
|
Schwarz P, Cornely OA, Dannaoui E. Antifungal combinations in Mucorales: A microbiological perspective. Mycoses 2019; 62:746-760. [PMID: 30830980 DOI: 10.1111/myc.12909] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022]
Abstract
Mucormycosis mostly affects immunocompromised patients and is associated with a high morbidity and mortality despite currently available treatments. In that context, combination therapy might be the key to a better outcome for these patients. Purpose of this review is to summarise and to discuss the current combination data obtained in vitro, in vivo in animal models of mucormycosis, and in patients. In vitro combination studies showed that most of the interactions between antifungal drugs were indifferent, even though that some synergistic interactions were achieved for the combination of echinocandins with either azoles or amphotericin B. Importantly, antagonism was never observed. Animal models of mucormycosis focused on infections caused by Rhizopus arrhizus, neglecting most other species responsible for human disease. In these experimental animal models, no strong interactions have been demonstrated, although a certain degree of synergism has been reported in some instances. Combinations of antifungals with non-antifungal drugs have also been largely explored in vitro and in animal models and yielded interesting results. In patients with ketoacidosis and rhino-orbito-cerebral infection, combination of polyene with caspofungin was effective. In contrast, despite promising experimental data, adjunctive therapy with the iron chelator deferasirox was unfavourable and was associated with a higher mortality than monotherapy with liposomal amphotericin B. More combinations have to be tested in vitro and a much larger panel of Mucorales species has to be tested in vivo to give a valuable statement if antifungal combination therapy could be an effective treatment strategy in patients with mucormycosis.
Collapse
Affiliation(s)
- Patrick Schwarz
- Department of Internal Medicine, Respiratory and Critical Care Medicine, University Hospital Marburg, Marburg, Germany.,Center for Invasive Mycoses and Antifungals, Philipps University Marburg, Marburg, Germany
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), ZKS Köln, University of Cologne, Cologne, Germany.,Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Eric Dannaoui
- Université Paris Descartes, Faculté de Médecine, AP-HP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, Paris, France.,Dynamyc Research Group (EA 7380), Paris Est Créteil University, Créteil, France
| |
Collapse
|