1
|
Ewald JD, Lu Y, Ellis CE, Worton J, Kolic J, Sasaki S, Zhang D, dos Santos T, Spigelman AF, Bautista A, Dai XQ, Lyon JG, Smith NP, Wong JM, Rajesh V, Sun H, Sharp SA, Rogalski JC, Moravcova R, Cen HH, Manning Fox JE, Atlas E, Bruin JE, Mulvihill EE, Verchere CB, Foster LJ, Gloyn AL, Johnson JD, Pepper AR, Lynn FC, Xia J, MacDonald PE. HumanIslets: An integrated platform for human islet data access and analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599613. [PMID: 38948734 PMCID: PMC11212983 DOI: 10.1101/2024.06.19.599613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Comprehensive molecular and cellular phenotyping of human islets can enable deep mechanistic insights for diabetes research. We established the Human Islet Data Analysis and Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data from human islets isolated from donors with and without diabetes at the Alberta Diabetes Institute (ADI) IsletCore. Here we introduce HumanIslets.com, an open resource for the research community. This platform, which presently includes data on 547 human islet donors, allows users to access linked datasets describing molecular profiles, islet function and donor phenotypes, and to perform various statistical and functional analyses at the donor, islet and single-cell levels. As an example of the analytic capacity of this resource we show a dissociation between cell culture effects on transcript and protein expression, and an approach to correct for exocrine contamination found in hand-picked islets. Finally, we provide an example workflow and visualization that highlights links between type 2 diabetes status, SERCA3b Ca2+-ATPase levels at the transcript and protein level, insulin secretion and islet cell phenotypes. HumanIslets.com provides a growing and adaptable set of resources and tools to support the metabolism and diabetes research community.
Collapse
Affiliation(s)
- Jessica D. Ewald
- Institute of Parasitology, McGill University, Montreal, QC
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yao Lu
- Institute of Parasitology, McGill University, Montreal, QC
| | - Cara E. Ellis
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Jessica Worton
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Shugo Sasaki
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Dahai Zhang
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Theodore dos Santos
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
| | - Xiao-Qing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - James G. Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
| | - Nancy P. Smith
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | - Jordan M. Wong
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Varsha Rajesh
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Han Sun
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Seth A. Sharp
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - Jason C. Rogalski
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Renata Moravcova
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Haoning H Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Jocelyn E. Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| | | | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON
| | - Jennifer E. Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON
| | - Erin E. Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON
- University of Ottawa Heart Institute, Ottawa, ON
| | - C. Bruce Verchere
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, BC
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, BC
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Anna L. Gloyn
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Surgery, University of Alberta, Edmonton, AB
| | - Francis C. Lynn
- Diabetes Research Group, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, QC
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB
- Department of Pharmacology, University of Alberta, Edmonton, AB
| |
Collapse
|
2
|
Moon JH, Choe HJ, Lim S. Pancreatic beta-cell mass and function and therapeutic implications of using antidiabetic medications in type 2 diabetes. J Diabetes Investig 2024; 15:669-683. [PMID: 38676410 PMCID: PMC11143426 DOI: 10.1111/jdi.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, the focus of diabetes treatment has switched from lowering the glucose level to preserving glycemic homeostasis and slowing the disease progression. The main pathophysiology of both type 1 diabetes and long-standing type 2 diabetes is pancreatic β-cell mass loss and dysfunction. According to recent research, human pancreatic β-cells possess the ability to proliferate in response to elevated insulin demands. It has been demonstrated that in insulin-resistant conditions in humans, such as obesity or pregnancy, the β-cell mass increases. This ability could be helpful in developing novel treatment approaches to restore a functional β-cell mass. Treatment strategies aimed at boosting β-cell function and mass may be a useful tool for managing diabetes mellitus and stopping its progression. This review outlines the processes of β-cell failure and detail the many β-cell abnormalities that manifest in people with diabetes mellitus. We also go over standard techniques for determining the mass and function of β-cells. Lastly, we provide the therapeutic implications of utilizing antidiabetic drugs in controlling the mass and function of pancreatic β-cells.
Collapse
Affiliation(s)
- Joon Ho Moon
- Department of Internal MedicineSeoul National University College of MedicineSeongnamSouth Korea
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| | - Hun Jee Choe
- Department of Internal MedicineHallym University Dongtan Sacred Heart HospitalHwaseongSouth Korea
| | - Soo Lim
- Department of Internal MedicineSeoul National University College of MedicineSeongnamSouth Korea
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| |
Collapse
|
3
|
Mishra P, Sahu A, Naik PK, Ravi PK. Islet Dimensions and Its Impact on the Cellular Composition and Insulin-Secreting Capacity: Insights Into the Role of Non-beta Cells. Cureus 2024; 16:e52428. [PMID: 38371125 PMCID: PMC10870337 DOI: 10.7759/cureus.52428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Studies have underscored the significance of islet dimensions, encompassing i) the necessity for islets to maintain an optimal diameter to sustain functional activity; ii) larger islets exhibit an intermingled architecture of alpha and beta cells, enhancing functional activity through paracrine effects; iii) non-alpha/beta (NAB) cells play a significant role in regulating beta cells; and iv) there is a preferential loss of larger islets in cases of type 2 diabetes mellitus. To delve deeper into these aspects, the authors documented the cellular composition in islets of various dimensions and regions of the pancreas, along with their secreting capacity, using the expression of the myosin Va motor protein in nine non-diabetic adult human pancreases. The proportion of NAB cells was found to be higher in intermediate islets and significantly lower in smaller and larger islets. By comparing the differences in islet composition, where NAB cells increase from smaller to intermediate islets, leading to a decrease in the proportion of alpha and beta cells, and in larger islets, there is a higher proportion of beta and alpha cells similar to smaller islets, we propose the hypothesis that NAB cells proliferate as islets increase in size. Furthermore, in larger islets, these NAB cells convert into alpha and beta cells, resulting in the scattered, intermingled arrangement observed in larger islets. The higher intensity of myosin Va expression in the islets of the tail region, along with a similar proportion of NAB cells in intermediate islets of the tail region compared to larger islets, leads to decreased inhibitory stimuli to beta cells and an increased insulin-secreting capacity.
Collapse
Affiliation(s)
- Pravash Mishra
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, IND
| | - Abhijit Sahu
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, IND
| | - Pradeep K Naik
- Biotechnology and Bioinformatics, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Burla, IND
| | | |
Collapse
|
4
|
Nakagawa R, Minamiguchi S, Kataoka TR, Fujikura J, Masui T, Fujimoto M, Yamada Y, Takeuchi Y, Teramoto Y, Ito H, Saka M, Kitamura K, Otsuki S, Nishijima R, Haga H. Circularity of islets is a distinct marker for the pathological diagnosis of adult non-neoplastic hyperinsulinemic hypoglycemia using surgical specimens. Diagn Pathol 2023; 18:115. [PMID: 37864201 PMCID: PMC10588153 DOI: 10.1186/s13000-023-01403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Adult non-neoplastic hyperinsulinemic hypoglycemia (ANHH), also known as adult-onset nesidioblastosis, is a rare cause of endogenous hyperinsulinemic hypoglycemia in adults. This disease is characterized by diffuse hyperplasia of pancreatic endocrine cells and is diagnosed by a pathological examination. While diagnostic criteria for this disease have already been proposed, we established more quantitative criteria for evaluating islet morphology. METHODS We measured the number, maximum diameter, total area, and circularity (representing how closely islets resemble perfect spheres) of islets contained in representative sections of ANHH (n = 4) and control cases (n = 5) using the NIS-Elements software program. We also measured the average cell size, percentage of cells with enlarged nuclei, and percentage of cells with recognizable nucleoli for each of three representative islets. We also assessed the interobserver diagnostic concordance of ANHH between five experienced and seven less-experienced pathologists. RESULTS There was no significant difference in the number, maximum diameter, or total area of islets between the two groups, even after correcting for these parameters per unit area. However, the number of islets with low circularity (< 0.71) per total area of the pancreatic parenchyma was significantly larger in ANHH specimens than in controls. We also found that the percentage of cells with recognizable nucleoli was significantly higher in the ANHH group than in the controls. There were no significant differences in the average cell size or the number of cells with enlarged nuclei between the groups. The correct diagnosis rate with the blind test was 47.5% ± 6.12% for experienced pathologists and 50.0% ± 8.63% for less-experienced pathologists, with no significant differences noted. CONCLUSIONS Low circularity, which indicates an irregular islet shape, referred to as "irregular shape and occasional enlargement of islets" and "lobulated islet structure" in a previous report, is a useful marker for diagnosing ANHH. An increased percentage of recognizable nucleoli, corresponding to "macronucleoli in β-cells," has potential diagnostic value.
Collapse
Affiliation(s)
- Ryota Nakagawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Tatsuki R Kataoka
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshihiko Masui
- Department of Department of Hepatobiliary Pancreatic Surgery and Transplantation, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhide Takeuchi
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuki Teramoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroaki Ito
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Manduwa Saka
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kyohei Kitamura
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinya Otsuki
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryohei Nishijima
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Aldous N, Moin ASM, Abdelalim EM. Pancreatic β-cell heterogeneity in adult human islets and stem cell-derived islets. Cell Mol Life Sci 2023; 80:176. [PMID: 37270452 DOI: 10.1007/s00018-023-04815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Recent studies reported that pancreatic β-cells are heterogeneous in terms of their transcriptional profiles and their abilities for insulin secretion. Sub-populations of pancreatic β-cells have been identified based on the functionality and expression of specific surface markers. Under diabetes condition, β-cell identity is altered leading to different β-cell sub-populations. Furthermore, cell-cell contact between β-cells and other endocrine cells within the islet play an important role in regulating insulin secretion. This highlights the significance of generating a cell product derived from stem cells containing β-cells along with other major islet cells for treating patients with diabetes, instead of transplanting a purified population of β-cells. Another key question is how close in terms of heterogeneity are the islet cells derived from stem cells? In this review, we summarize the heterogeneity in islet cells of the adult pancreas and those generated from stem cells. In addition, we highlight the significance of this heterogeneity in health and disease conditions and how this can be used to design a stem cell-derived product for diabetes cell therapy.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
| | - Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
6
|
Karami F, Asgari Abibeiglou B, Pahlavanneshan S, Farrokhi A, Tamadon A, Basiri M, Khalooghi K, Fallahi M, Tahamtani Y. Enhanced characterization of beta cell mass in a Tg( Pdx1-GFP) mouse model. BIOIMPACTS : BI 2022; 12:463-470. [PMID: 36381631 PMCID: PMC9596880 DOI: 10.34172/bi.2022.23840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/12/2021] [Accepted: 10/28/2021] [Indexed: 06/16/2023]
Abstract
Introduction: Measurement of pancreatic beta cell mass in animal models is a common assay in diabetes researches. Novel whole-organ clearance methods in conjunction with transgenic mouse models hold tremendous promise to improve beta cell mass measurement methods. Here, we proposed a refined method to estimate the beta cell mass using a new transgenic Tg(Pdx1-GFP) mouse model and a recently developed free-of-acrylamide clearing tissue (FACT) protocol. Methods: First, we generated and evaluated a Tg(Pdx1-GFP) transgenic mouse model. Using the FACT protocol in our model, we could quantify the beta cell mass and alloxan-induced beta cell destruction in whole pancreas specimens. Results: Compiled fluorescent images of pancreas resulted in enhanced beta cell mass characterization in FACT-cleared sections (2928869±120215 AU) compared to No-FACT cleared sections (1292372±325632 AU). Additionally, the total number of detected islets with this method was significantly higher than the other clearance methods (155.7 and 109, respectively). Using this method, we showed green fluorescent protein (GFP) expression confined to beta cells in Tg(Pdx1-GFP) transgenic. This enhanced GFP expression enabled us to accurately measure beta cell loss in a beta cell destruction model. The results suggest that our proposed method can be used as a simple, and rapid assay for beta cell mass measurement in islet biology and diabetes studies. Conclusion: The Tg(Pdx1-GFP) transgenic mouse in conjunction with the FACT protocol can enhance large-scale screening studies in the field of diabetes.
Collapse
Affiliation(s)
- Fatemeh Karami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Behrouz Asgari Abibeiglou
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saghar Pahlavanneshan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Farrokhi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amin Tamadon
- Persian Gulf Marine Biotechnology Research Center, Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Keynoosh Khalooghi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Majid Fallahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
7
|
Khan D, Moffett RC, Flatt PR, Tarasov AI. Classical and non-classical islet peptides in the control of β-cell function. Peptides 2022; 150:170715. [PMID: 34958851 DOI: 10.1016/j.peptides.2021.170715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
The dual role of the pancreas as both an endocrine and exocrine gland is vital for food digestion and control of nutrient metabolism. The exocrine pancreas secretes enzymes into the small intestine aiding digestion of sugars and fats, whereas the endocrine pancreas secretes a cocktail of hormones into the blood, which is responsible for blood glucose control and regulation of carbohydrate, protein and fat metabolism. Classical islet hormones, insulin, glucagon, pancreatic polypeptide and somatostatin, interact in an autocrine and paracrine manner, to fine-tube the islet function and insulin secretion to the needs of the body. Recently pancreatic islets have been reported to express a number of non-classical peptide hormones involved in metabolic signalling, whose major production site was believed to reside outside pancreas, e.g. in the small intestine. We highlight the key non-classical islet peptides, and consider their involvement, together with established islet hormones, in regulation of stimulus-secretion coupling as well as proliferation, survival and transdifferentiation of β-cells. We furthermore focus on the paracrine interaction between classical and non-classical islet hormones in the maintenance of β-cell function. Understanding the functional relationships between these islet peptides might help to develop novel, more efficient treatments for diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrei I Tarasov
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
8
|
Mukherjee N, Lin L, Contreras CJ, Templin AT. β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites 2021; 11:796. [PMID: 34822454 PMCID: PMC8620854 DOI: 10.3390/metabo11110796] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Christopher J. Contreras
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew T. Templin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Fan F, Wu Y, Hara M, Rizk A, Ji C, Nerad D, Tamarina N, Lou X. Dynamin deficiency causes insulin secretion failure and hyperglycemia. Proc Natl Acad Sci U S A 2021; 118:e2021764118. [PMID: 34362840 PMCID: PMC8364113 DOI: 10.1073/pnas.2021764118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β cells operate with a high rate of membrane recycling for insulin secretion, yet endocytosis in these cells is not fully understood. We investigate this process in mature mouse β cells by genetically deleting dynamin GTPase, the membrane fission machinery essential for clathrin-mediated endocytosis. Unexpectedly, the mice lacking all three dynamin genes (DNM1, DNM2, DNM3) in their β cells are viable, and their β cells still contain numerous insulin granules. Endocytosis in these β cells is severely impaired, resulting in abnormal endocytic intermediates on the plasma membrane. Although insulin granules are abundant, their release upon glucose stimulation is blunted in both the first and second phases, leading to hyperglycemia and glucose intolerance in mice. Dynamin triple deletion impairs insulin granule exocytosis and decreases intracellular Ca2+ responses and granule docking. The docking defect is correlated with reduced expression of Munc13-1 and RIM1 and reorganization of cortical F-actin in β cells. Collectively, these findings uncover the role of dynamin in dense-core vesicle endocytosis and secretory capacity. Insulin secretion deficiency in the absence of dynamin-mediated endocytosis highlights the risk of impaired membrane trafficking in endocrine failure and diabetes pathogenesis.
Collapse
Affiliation(s)
- Fan Fan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yumei Wu
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Departments of Neuroscience and Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Manami Hara
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Adam Rizk
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Chen Ji
- Synapses and Circuits section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
| | - Dan Nerad
- Emergency Medicine, Carl R. Darnall Army Medical Center, Fort Hood, TX 76544
| | - Natalia Tamarina
- Department of Medicine, The Kovler Diabetes Center, University of Chicago, Chicago, IL 60637
| | - Xuelin Lou
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226;
| |
Collapse
|
11
|
Yu X, Zhang P, He Y, Lin E, Ai H, Ramasubramanian MK, Wang Y, Xing Y, Oberholzer J. A Smartphone-Fluidic Digital Imaging Analysis System for Pancreatic Islet Mass Quantification. Front Bioeng Biotechnol 2021; 9:692686. [PMID: 34350161 PMCID: PMC8326521 DOI: 10.3389/fbioe.2021.692686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022] Open
Abstract
Islet beta-cell viability, function, and mass are three decisive attributes that determine the efficacy of human islet transplantation for type 1 diabetes mellitus (T1DM) patients. Islet mass is commonly assessed manually, which often leads to error and bias. Digital imaging analysis (DIA) system has shown its potential as an alternative, but it has some associated limitations. In this study, a Smartphone-Fluidic Digital Imaging Analysis (SFDIA) System, which incorporates microfluidic techniques and Python-based video processing software, was developed for islet mass assessment. We quantified islets by tracking multiple moving islets in a microfluidic channel using the SFDIA system, and we achieved a relatively consistent result. The counts from the SFDIA and manual counting showed an average difference of 2.91 ± 1.50%. Furthermore, our software can analyze and extract key human islet mass parameters, including quantity, size, volume, IEq, morphology, and purity, which are not fully obtainable from traditional manual counting methods. Using SFDIA on a representative islet sample, we measured an average diameter of 99.88 ± 53.91 µm, an average circularity of 0.591 ± 0.133, and an average solidity of 0.853 ± 0.107. Via analysis of dithizone-stained islets using SFDIA, we found that a higher islet tissue percentage is associated with top-layer islets as opposed to middle-layer islets (0.735 ± 0.213 and 0.576 ± 0.223, respectively). Our results indicate that the SFDIA system can potentially be used as a multi-parameter islet mass assay that is superior in accuracy and consistency, when compared to conventional manual techniques.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Pu Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| | - Yi He
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Emily Lin
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Huiwang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Melur K Ramasubramanian
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Yuan Xing
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - José Oberholzer
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Ravi PK, Singh SR, Mishra PR. Redefining the tail of pancreas based on the islets microarchitecture and inter-islet distance: An immunohistochemical study. Medicine (Baltimore) 2021; 100:e25642. [PMID: 33907122 PMCID: PMC8084047 DOI: 10.1097/md.0000000000025642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Researchers divided the pancreas distal to the neck into 2 equal parts as the body and tail region by an arbitrary line. Surgeons considered the part of the pancreas, left to the aorta as the tail region. We performed this study to identify the transition zone of low-density to high-density islet cells for redefining the tail region.We quantified islets area proportion, beta-cell area proportion, and inter-islet distance in 9 Indian-adult-human non-diabetic pancreases from autopsy by using anti-synaptophysin and anti-insulin antibodies. Data were categorized under 3 regions like the proximal body, distal body, and distal part of the pancreas.Islet and beta-cell area proportion are progressively increased from head to tail region of the pancreas with a significant reduction in inter-islet distance and beta-cell percentage distal to the aorta. There is no significant difference in inter-islet distance and beta-cell percentage of the distal part of the body and tail region.Crowding of islets with intermingled microarchitecture begins in the pancreas distal to the aorta, which may be the beginning of the actual tail region. This study will provide insight into the preservation of islets-rich part of the pancreas during pancreatectomy and future prediction of new-onset diabetes.
Collapse
Affiliation(s)
- Praveen Kumar Ravi
- Department of Anatomy, Trichy SRM Medical College Hospital & Research Centre, Tiruchirappalli, Tamil Nadu
| | | | - Pravash Ranjan Mishra
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
13
|
Miranda MA, Macias-Velasco JF, Lawson HA. Pancreatic β-cell heterogeneity in health and diabetes: classes, sources, and subtypes. Am J Physiol Endocrinol Metab 2021; 320:E716-E731. [PMID: 33586491 PMCID: PMC8238131 DOI: 10.1152/ajpendo.00649.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cells perform glucose-stimulated insulin secretion, a process at the center of type 2 diabetes etiology. Efforts to understand how β-cells behave in healthy and stressful conditions have revealed a wide degree of morphological, functional, and transcriptional heterogeneity. Sources of heterogeneity include β-cell topography, developmental origin, maturation state, and stress response. Advances in sequencing and imaging technologies have led to the identification of β-cell subtypes, which play distinct roles in the islet niche. This review examines β-cell heterogeneity from morphological, functional, and transcriptional perspectives, and considers the relevance of topography, maturation, development, and stress response. It also discusses how these factors have been used to identify β-cell subtypes, and how heterogeneity is impacted by diabetes. We examine open questions in the field and discuss recent technological innovations that could advance understanding of β-cell heterogeneity in health and disease.
Collapse
Affiliation(s)
- Mario A Miranda
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Juan F Macias-Velasco
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
14
|
Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol 2021; 22:142-158. [PMID: 33398164 DOI: 10.1038/s41580-020-00317-7] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Metabolic homeostasis in mammals is tightly regulated by the complementary actions of insulin and glucagon. The secretion of these hormones from pancreatic β-cells and α-cells, respectively, is controlled by metabolic, endocrine, and paracrine regulatory mechanisms and is essential for the control of blood levels of glucose. The deregulation of these mechanisms leads to various pathologies, most notably type 2 diabetes, which is driven by the combined lesions of impaired insulin action and a loss of the normal insulin secretion response to glucose. Glucose stimulates insulin secretion from β-cells in a bi-modal fashion, and new insights about the underlying mechanisms, particularly relating to the second or amplifying phase of this secretory response, have been recently gained. Other recent work highlights the importance of α-cell-produced proglucagon-derived peptides, incretin hormones from the gastrointestinal tract and other dietary components, including certain amino acids and fatty acids, in priming and potentiation of the β-cell glucose response. These advances provide a new perspective for the understanding of the β-cell failure that triggers type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.,Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. .,Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA. .,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
15
|
Henquin JC. Paracrine and autocrine control of insulin secretion in human islets: evidence and pending questions. Am J Physiol Endocrinol Metab 2021; 320:E78-E86. [PMID: 33103455 DOI: 10.1152/ajpendo.00485.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin secretion by β-cells is largely controlled by circulating nutrients, hormones, and neurotransmitters. However, recent years have witnessed the multiplication of studies investigating whether local regulation also takes place within pancreatic islets, in which β-cells cohabit with several other cell types. The cell composition and architectural organization of human islets differ from those of rodent islets and are particularly favorable to cellular interactions. An impressive number of hormonal (glucagon, glucagon-like peptide-1, somatostatin, etc.) and nonhormonal products (ATP, acetylcholine, γ-aminobutyric acid, dopamine, etc.) are released by islet cells and have been implicated in a local control of insulin secretion. This review analyzes reports directly testing paracrine and autocrine control of insulin secretion in isolated human islets. Many of these studies were designed on background information collected in rodent islets. However, the perspective of the review is not to highlight species similarities or specificities but to contrast established and speculative mechanisms in human islets. It will be shown that the current evidence is convincing only for a minority of candidates for a paracrine function whereas arguments supporting a physiological role of others do not stand up to scrutiny. Several pending questions await further investigation.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
16
|
Dybala MP, Butterfield JK, Hendren-Santiago BK, Hara M. Pancreatic Islets and Gestalt Principles. Diabetes 2020; 69:1864-1874. [PMID: 32669392 PMCID: PMC7458033 DOI: 10.2337/db20-0304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
The human brain has inherent methodology to efficiently interpret complex environmental stimuli into understanding. This visual perception is governed by the law of simplicity, which is fundamental to Gestalt theory. First introduced in a seminal article by Wertheimer in 1923, the theory explains how the mind groups similar images and fills in gaps in order to perceive an amenable version of reality. The world we see consists of complex visual scenes, but rarely is the entire picture visible to us. Since it is inefficient for all visual data to be analyzed at once, certain patterns are given higher importance and made to stand out from the rest of the field in our brain. Here we propose that Gestalt theory may explain why rodent islet architecture has historically been seen as having a core-mantle arrangement. By filling in apparent gaps in the non-β-cell lining, the mind interprets it as a "whole" mantle, which may have further led to widely accepted notions regarding islet microcirculation, intra-islet signaling, and islet development. They are largely based on the prevailing stereotypic islet architecture in which an enclosed structure is presumed. Three-dimensional analysis provides more integrated views of islet and pancreatic microcirculation.
Collapse
Affiliation(s)
| | | | | | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
17
|
Loss of Caveolin-1 Is Associated with a Decrease in Beta Cell Death in Mice on a High Fat Diet. Int J Mol Sci 2020; 21:ijms21155225. [PMID: 32718046 PMCID: PMC7432291 DOI: 10.3390/ijms21155225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Elevated free fatty acids (FFAs) impair beta cell function and reduce beta cell mass as a consequence of the lipotoxicity that occurs in type 2 diabetes (T2D). We previously reported that the membrane protein caveolin-1 (CAV1) sensitizes to palmitate-induced apoptosis in the beta pancreatic cell line MIN6. Thus, our hypothesis was that CAV1 knock-out (CAV1 KO) mice subjected to a high fat diet (HFD) should suffer less damage to beta cells than wild type (WT) mice. Here, we evaluated the in vivo response of beta cells in the pancreatic islets of 8-week-old C57Bl/6J CAV1 KO mice subjected to a control diet (CD, 14% kcal fat) or a HFD (60% kcal fat) for 12 weeks. We observed that CAV1 KO mice were resistant to weight gain when on HFD, although they had high serum cholesterol and FFA levels, impaired glucose tolerance and were insulin resistant. Some of these alterations were also observed in mice on CD. Interestingly, KO mice fed with HFD showed an adaptive response of the pancreatic beta cells and exhibited a significant decrease in beta cell apoptosis in their islets compared to WT mice. These in vivo results suggest that although the CAV1 KO mice are metabolically unhealthy, they adapt better to a HFD than WT mice. To shed light on the possible signaling pathway(s) involved, MIN6 murine beta cells expressing (MIN6 CAV) or not expressing (MIN6 Mock) CAV1 were incubated with the saturated fatty acid palmitate in the presence of mitogen-activated protein kinase inhibitors. Western blot analysis revealed that CAV1 enhanced palmitate-induced JNK, p38 and ERK phosphorylation in MIN6 CAV1 cells. Moreover, all the MAPK inhibitors partially restored MIN6 viability, but the effect was most notable with the ERK inhibitor. In conclusion, our results suggest that CAV1 KO mice adapted better to a HFD despite their altered metabolic state and that this may at least in part be due to reduced beta cell damage. Moreover, they indicate that the ability of CAV1 to increase sensitivity to FFAs may be mediated by MAPK and particularly ERK activation.
Collapse
|
18
|
Abstract
Background Human pancreatic β-cells are heterogeneous. This has been known for a long time and is based on various functional and morphological readouts. β-Cell heterogeneity could reflect fixed subpopulations with distinct functions. However, recent pseudotime analysis of large-scale RNA sequencing data suggest that human β-cell subpopulations may rather reflect dynamic interchangeable states characterized by low expression of genes involved in the unfolded protein response (UPR) and low insulin gene expression, low UPR and high insulin expression or high UPR and low insulin expression. Scope of review This review discusses findings obtained by single-cell RNA sequencing combined with pseudotime analysis that human β-cell heterogeneity represents dynamic interchangeable functional states. The physiological significance and potential implications of β-cell heterogeneity in the development and progression of diabetes is highlighted. Major conclusions The existence of dynamic functional states allow β-cells to transition between periods of high insulin production and UPR-mediated stress recovery. The recovery state is important since proinsulin is a misfolding-prone protein, making its biosynthesis in the endoplasmic reticulum a stressful event. The transition of β-cells between dynamic states is likely controlled at multiple levels and influenced by the microenvironment within the pancreatic islets. Disturbances in the ability of the β-cells to transition between periods of high insulin biosynthesis and UPR-mediated stress recovery may contribute to diabetes development. Diabetes medications that restore the ability of the β-cells to transition between the functional states should be considered.
Collapse
Affiliation(s)
| | - Yurong Xin
- Regeneron Pharmaceutics, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Jesper Gromada
- Exonics Therapeutics, Inc, 490 Arsenal Way, Watertown, MA, 02472, USA.
| |
Collapse
|
19
|
Weir GC, Gaglia J, Bonner-Weir S. Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes Endocrinol 2020; 8:249-256. [PMID: 32006519 PMCID: PMC7098467 DOI: 10.1016/s2213-8587(20)30022-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
For patients with type 1 diabetes, it is accepted among the scientific community that there is a marked reduction in β-cell mass; however, with type 2 diabetes, there is disagreement as to whether this reduction in mass occurs in every case. Some have argued that β-cell mass in some patients with type 2 diabetes is normal and that the cause of the hyperglycaemia in these patients is a functional abnormality of insulin secretion. In this Personal View, we argue that a deficient β-cell mass is essential for the development of type 2 diabetes. The main point is that there are enormous (≥10 fold) variations in insulin sensitivity and insulin secretion in the general population, with a very close correlation between these two factors for any individual. Although β-cell mass cannot be accurately measured in living patients, it is highly likely that it too is highly correlated with insulin sensitivity and secretion. Thus, our argument is that a person with type 2 diabetes can have a β-cell mass that is the same as a person without type 2 diabetes, but because they are insulin resistant, the mass is inadequate and responsible for their diabetes. Because the abnormal insulin secretion of diabetes is caused by dysglycaemia and can be largely reversed with glycaemic control, it is a less serious problem than the reduction in β-cell mass, which is far more difficult to restore.
Collapse
Affiliation(s)
- Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Jason Gaglia
- Section on Immunobiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Susan Bonner-Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Anti-diabetic activity of crude polysaccharide and rhamnose-enriched polysaccharide from G. lithophila on Streptozotocin (STZ)-induced in Wistar rats. Sci Rep 2020; 10:556. [PMID: 31953455 PMCID: PMC6969100 DOI: 10.1038/s41598-020-57486-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to elucidate the anti-diabetic effects of the crude polysaccharide and rhamnose-enriched polysaccharide derived from G. lithophila on streptozotocin (STZ)-induced diabetic Wistar rats. Treatment with crude polysaccharide and rhamnose-enriched polysaccharide showed increases in body weight and pancreatic insulin levels and a decrease in blood glucose levels compared with control diabetic rats. The blood concentrations of total cholesterol (TC), triglycerides (TGs), low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) decreased, and high-density lipoprotein (HDL) increased both in the crude polysaccharide- and rhamnose-enriched polysaccharide-treated rats. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels increased, and malondialdehyde (MDA) levels decreased in the livers, kidneys and pancreases of crude polysaccharide- and rhamnose-enriched polysaccharide-treated rats. Immunohistological examination further confirmed that restoration of the normal cellular size of the islets of Langerhans and the rebirth of β-cells were found to be greater in the body region than in the head and tail regions of the pancreas. The crude polysaccharide- and rhamnose-enriched polysaccharide-treated diabetic rats showed normal blood glucose levels and insulin production, and reversed cholesterol levels and enzymatic actions. Therefore, rhamnose-enriched polysaccharide from G. lithophila acts as a potent anti-diabetic agent to treat diabetes and can lead to the development of an alternative medicine for diabetes in the future.
Collapse
|
21
|
Henquin JC. The challenge of correctly reporting hormones content and secretion in isolated human islets. Mol Metab 2019; 30:230-239. [PMID: 31767174 PMCID: PMC6829677 DOI: 10.1016/j.molmet.2019.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/28/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Background An increased access of research laboratories to isolated human islets has improved our understanding of the biology of the endocrine pancreas and hence the mechanisms causing diabetes. However, in vitro studies of human islets remain technically challenging, and optimal use of such precious material requires a minimum of rigor and coordination to optimize the reliability and share of the information. A detailed report of the demographics of pancreas donors and of the procedures of islet handling after isolation is important but insufficient. Correct characterization of islet basic functions (a token of quality) at the time of experimentation is also crucial. Scope of review I have analyzed the literature reporting measurements of insulin and glucagon in the human pancreas or isolated human islets. The published information is often fragmentary. Elementary features such as islet size, insulin content, or rate of hormone secretion are either unreported or incorrectly reported in many papers. Although internal comparisons between control and test groups may remain valid, comparisons with data from other laboratories are problematic. The drawbacks, pitfalls and errors of common ways of expressing hormone content or secretion rates are discussed and alternatives to harmonize data presentation are proposed. Major Conclusions Greater coherence and rigor in the report of in vitro studies using human islets are necessary to ensure optimal progress in our understanding of the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
22
|
Abstract
Pancreatic β-cells play a pivotal role in maintaining normoglycemia. Recent studies have revealed that the β-cell is not a homogeneous cell population but, rather, is heterogeneous in a number of properties such as electrical activity, gene expression, and cell surface markers. Identification of specific β-cell subpopulations altered in diabetic conditions would open a new avenue to develop targeted therapeutic interventions. As intense studies of β-cell heterogeneity are anticipated in the next decade, it is important that heterogeneity of the islet be recognized. Many studies in the past were undertaken with a small sample of islets, which might overlook important individual variance. In this study, by systematic analyses of the human islet in two and three dimensions, we demonstrate islet heterogeneity in size, number, architecture, cellular composition, and capillary density. There is no stereotypic human islet, and thus, a sufficient number of islets should be examined to ensure study reproducibility.
Collapse
Affiliation(s)
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
23
|
Henquin JC. Influence of organ donor attributes and preparation characteristics on the dynamics of insulin secretion in isolated human islets. Physiol Rep 2019. [PMID: 29536672 PMCID: PMC5849575 DOI: 10.14814/phy2.13646] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vitro studies of human pancreatic islets are critical for understanding normal insulin secretion and its perturbations in diabetic β-cells, but the influence of islet preparation characteristics and organ donor attributes in such experiments is poorly documented. Preparations from normal donors were tested with a standardized protocol evaluating dynamic insulin secretion induced by glucose, tolbutamide, and cAMP (forskolin). Secretion rates, normalized to insulin content (fractional insulin secretion), were analyzed as a function of preparation and donor characteristics. Low purity (25-45%) of the preparation (n = 8) blunted the first phase of insulin secretion induced by glucose or tolbutamide and increased basal secretion, resulting in threefold lower stimulation index than in more pure (55-95%) preparations (n = 43). In these more pure preparations, cold ischemia time (1-13 h) before pancreas digestion did not impact insulin secretion. Islet size (estimated by the islet size index) did not influence the dynamics of secretion, but fractional insulin secretion rates were greater in large than small islets, and positively correlated with islet size. Age of the donors (20-68 years) had no influence on islet size and insulin content or on dynamics and amplitude of insulin secretion, which were also similar in islets from male and female donors. In contrast, islet size and islet insulin content (normalized for size), and basal or stimulated insulin secretion positively correlated with Body-Mass Index (19-33). These results contradict previous reports on the impact of donor age and islet size and point to possible confounding effects of donor BMI in insulin secretion studies with isolated human islets.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium
| |
Collapse
|
24
|
Dybala MP, Olehnik SK, Fowler JL, Golab K, Millis JM, Golebiewska J, Bachul P, Witkowski P, Hara M. Pancreatic beta cell/islet mass and body mass index. Islets 2019; 11:1-9. [PMID: 30668226 PMCID: PMC6389280 DOI: 10.1080/19382014.2018.1557486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Body mass index (BMI) is widely used to define obesity. In studies of pancreatic beta-cell/islet mass, BMI is also a common standard for matching control subjects in comparative studies along with age and sex, based on the existing dogma of their significant positive correlation reported in the literature. We aimed to test the feasibility of BMI and BSA to assess obesity and predict beta-cell/islet mass. We used National Health and Nutrition Examination Survey (NHANES) data that provided dual-energy Xray absorptiometry (DXA)-measured fat mass (percent body fat; %BF), BMI, and BSA for adult subjects (20-75y; 4,879 males and 4,953 females). We then analyzed 152 cases of islet isolation performed at our center for correlation between islet yields and various donor anthropometric indices. From NHANES, over 50% of male subjects and 60% of female subjects with BMI:20.1-28.1 were obese as defined by %BF, indicating a poor correlation between BMI and %BF. BSA was also a poor indicator of %BF, as broad overlap was observed in different BSA ranges. Additionally, BMI and BSA ranges markedly varied between sex and race/ethnicity groups. From islet isolation, BMI and BSA accounted for only a small proportion of variance in islet equivalent (IEQ; r2 = 0.09 and 0.11, respectively). BMI and obesity were strongly correlated in cases of high BMI subjects. However, the critical populations were non-obese subjects with BMI ranging from 20.1-28.1, in which a substantial proportion of individuals may carry excess body fat. Correlations between BMI, BSA, pancreas weight and beta-cell/islet mass were low.
Collapse
Affiliation(s)
| | - Scott K. Olehnik
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jonas L. Fowler
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Karolina Golab
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | | | - Justyna Golebiewska
- Department of Surgery, The University of Chicago, Chicago, IL, USA
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Poland
| | - Piotr Bachul
- Department of Surgery, The University of Chicago, Chicago, IL, USA
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Witkowski
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- CONTACT Manami Hara Department of Medicine, The University of Chicago, 5841 South Maryland Avenue, MC1027, Chicago, IL 60637
| |
Collapse
|
25
|
Ravi PK, Purkait S, Agrawal U, Patra S, Patnaik M, Singh SR, Mishra PR. Regional variation of human pancreatic islets dimension and its impact on beta cells in Indian population. Islets 2019; 11:141-151. [PMID: 31743072 PMCID: PMC6930023 DOI: 10.1080/19382014.2019.1686323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background & objectives: Islet of Langerhans, the endocrine pancreas plays a significant role in glucose metabolism. Obesity and insulin resistance are the major factors responsible for beta cell dysfunction. Asian Indian population has increased susceptibility to diabetes in spite of having lower BMI. The morphology of islets plays a significant role in beta cell function. The present study was designed for better understanding the morphology, composition and distribution of islets in different parts of the pancreas and its impact on beta cell proportion. Methods: We observed islet morphology and beta cell area proportion by Large-scale computer-assisted analysis in 20 adult human pancreases in non-diabetic Indian population. Immunohistochemical staining with anti-synaptophysin and anti-insulin antibody was used to detect islet and beta cells respectively. Whole slide images were analyzed using ImageJ software. Results: Endocrine proportion were heterogeneously increasing from head to tail with maximum islet and beta cell distribution in the tail region. Larger islets were predominately confined to the tail region. The islets in Indian population were relatively smaller in size, but they have more beta cells (20%) when compared to American population. Interpretation & conclusions: The beta cells of larger islets are functionally more active than the smaller islets via paracrine effect. Thus, reduction in the number of larger islets may be one of the probable reasons for increased susceptibility of Indians to diabetes even at lower BMI. Knowledge about the regional distribution of islets will help the surgeons to preserve the islet rich regions during surgery.
Collapse
Affiliation(s)
- Praveen Kumar Ravi
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Suvendu Purkait
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Usha Agrawal
- Scientist F., National Institute of Pathology, ICMR, New Delhi, India
| | - Susama Patra
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Madhumita Patnaik
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sudipta Ranjan Singh
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pravash Ranjan Mishra
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, India
- CONTACT Pravash Ranjan Mishra Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
26
|
Gołębiewska JE, Bachul PJ, Wang LJ, Matosz S, Basto L, Kijek MR, Fillman N, Gołąb K, Tibudan M, Dębska-Ślizień A, Millis JM, Fung J, Witkowski P. Validation of a New North American Islet Donor Score for Donor Pancreas Selection and Successful Islet Isolation in a Medium-Volume Islet Transplant Center. Cell Transplant 2018; 28:185-194. [PMID: 30520321 PMCID: PMC6362524 DOI: 10.1177/0963689718816989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The selection of optimal pancreas donors is one of the key factors in determining the ultimate outcome of clinical islet isolation. North American Islet Donor Score (NAIDS) allows for estimating the chance of the success of islet isolation. It was developed based on the data from over 1000 donors from 11 islet isolation centers and validated in the University of Alberta, Edmonton, on the cohort from the most active islet transplant center. Now we aimed to also validate it in our much less active program. Areas under the receiver operating characteristic curves (AUROCs) and logistic regression analyses were obtained to test if NAIDS would better predict successful islet isolation (defined as post-purification islet yield >400,000 islet equivalents (IEQ)) than previously described Edmonton islet donor score (IDS) and our modified version of IDS. We analyzed the donor scores with reference to 82 of our islet isolation outcomes. The success rate increased proportionally as NAIDS increased, from 0% success in NAIDS < 50 points to 40% success in NAIDS ≥ 80 points. AUROCs were 0.67 (95% confidence interval (CI) 0.55–0.79) for NAIDS, 0.58 (95% CI 0.44–0.71) for modified IDS, and 0.51 (95% CI 0.37–0.65) for IDS and did not differ significantly. However, based on logistic regression analyses, NAIDS was the only statistically significant predictor of successful isolation (p = 0.01). The main advantage of NAIDS is an enhanced ability to discriminate poor-quality donors than previously used scoring systems at University of Chicago, with 0% chance for success when NAIDS was <50 as compared with 40% success rate for IDS <50. NAIDS was found to be the most useful available tool for donor pancreas selection in clinical and research practice in our center, allowing for identification and rejection of poor-quality donors, saving time and resources.
Collapse
Affiliation(s)
- Justyna E Gołębiewska
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA.,2 Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr J Bachul
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA.,3 Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Ling-Jia Wang
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Sabrina Matosz
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Lindsay Basto
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Mark R Kijek
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Natalie Fillman
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Karolina Gołąb
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Martin Tibudan
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Alicja Dębska-Ślizień
- 2 Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - J Michael Millis
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - John Fung
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Piotr Witkowski
- 1 Department of Surgery, University of Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Fowler JL, Lee SSY, Wesner ZC, Olehnik SK, Kron SJ, Hara M. Three-Dimensional Analysis of the Human Pancreas. Endocrinology 2018; 159:1393-1400. [PMID: 29390052 PMCID: PMC5839749 DOI: 10.1210/en.2017-03076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/19/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic islets are endocrine micro-organs scattered throughout the exocrine pancreas. Islets are surrounded by a network of vasculature, ducts, neurons, and extracellular matrix. Three-dimensional imaging is critical for such structural analyses. We have adapted transparent tissue tomography to develop a method to image thick pancreatic tissue slices (1 mm) with multifluorescent channels. This method takes only 2 to 3 days from specimen preparation and immunohistochemical staining to clearing tissues and imaging. Reconstruction of the intact pancreas visualizes islets with β, α, and δ cells together with their surrounding networks. Capturing several hundred islets at once ensures sufficient power for statistical analyses. Further surface rendering provides clear views of the anatomical relationship between islets and their microenvironment as well as the basis for volumetric quantification. As a proof-of-principle demonstration, we show an islet size-dependent increase of intraislet capillary density and an inverse decrease in sphericity.
Collapse
Affiliation(s)
- Jonas L. Fowler
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Steve Seung-Young Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois 60637
| | - Zachary C. Wesner
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Scott K. Olehnik
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Stephen J. Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois 60637
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
- Correspondence: Manami Hara, DDS, PhD, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC1027, Chicago, Illinois 60637. E-mail:
| |
Collapse
|