1
|
Lin L, Li L, Yang X, Hou L, Wu D, Wang B, Ma B, Liao X, Yan X, Gad M, Su J, Liu Y, Liu K, Hu A. Unnoticed antimicrobial resistance risk in Tibetan cities unveiled by sewage metagenomic surveillance: Compared to the eastern Chinese cities. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135730. [PMID: 39243538 DOI: 10.1016/j.jhazmat.2024.135730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Sewage surveillance is a cost-effective tool for assessing antimicrobial resistance (AMR) in urban populations. However, research on sewage AMR in remote areas is still limited. Here, we used shotgun metagenomic sequencing to profile antibiotic resistance genes (ARGs) and ARG-carrying pathogens (APs) across 15 cities in Tibetan Plateau (TP) and the major cities in eastern China. Notable regional disparities in sewage ARG composition were found, with a significantly higher ARG abundance in TP (2.97 copies/cell). A total of 542 and 545 APs were identified in sewage from TP and the East, respectively, while more than 40 % carried mobile genetic elements (MGEs). Moreover, 65 MGEs-carrying APs were identified as World Health Organization (WHO) priority-like bacterial and fungal pathogens. Notably, a fungal zoonotic pathogen, Enterocytozoon bieneusi, was found for the first time to carry a nitroimidazole resistance gene (nimJ). Although distinct in AP compositions, the relative abundances of APs were comparable in these two regions. Furthermore, sewage in TP was found to be comparable to the cities in eastern China in terms of ARG mobility and AMR risks. These findings provide insights into ARGs and APs distribution in Chinese sewage and stress the importance of AMR surveillance and management strategies in remote regions.
Collapse
Affiliation(s)
- Laichang Lin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Laiyi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, United States; Utah Water Research Laboratory, 1600 Canyon Road, Logan, UT 84321, United States
| | - Dong Wu
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Binhao Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhang Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Mahmoud Gad
- Water Pollution Research Department, National Research Centre, Cairo 12622, Egypt
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yongqin Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zeng T, Cao Y, Yin J, Feng P, Tian Y, Sun H, Gu T, Zong Y, Ma X, Zhao Z, Chen L, Xu W, Han W, Lu L. Unraveling the gut microbiota of Tibetan chickens: insights into highland adaptation and ecological advantages. Microbiol Spectr 2024; 12:e0051924. [PMID: 39345125 PMCID: PMC11536995 DOI: 10.1128/spectrum.00519-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024] Open
Abstract
Tibetan animals have several unique advantages owing to the harsh ecological conditions under which they live. However, compared to Tibetan mammals, understanding of the advantages and underlying mechanisms of the representative high-latitude bird, the Tibetan chicken (Gallus gallus, TC), remains limited. The gut microbiota of animals has been conclusively shown to be closely related to both host health and host environmental adaptation. This study aimed to explore the relationships between the cecal microbiome and the advantages of TCs based on comparisons among three populations: native TCs residing on the plateau, domestic TCs living in the plain, and one native plain species. Metatranscriptomic sequencing revealed a significant enrichment of active Bacteroidetes but a loss of active Firmicutes in native TCs. Additionally, the upregulated expression of genes in the cecal microbiome of native TCs showed enriched pathways related to energy metabolism, glycan metabolism, and the immune response. Furthermore, the expression of genes involved in the biosynthesis of short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) was upregulated in the cecal microbiome of native TCs. Data from targeted metabolomics further confirmed elevated levels of certain SCFAs and SBAs in the cecum of native TCs. Based on the multi-omics association analysis, we proposed that the higher ratio of active Bacteroidetes/Firmicutes may be attributed to the efficient energy metabolism and stronger immunological activity of native TCs. Our findings provide a better understanding of the interactions between gut microbiota and highland adaptation, and novel insights into the mechanisms by which Tibetan chickens adapt to the plateau hypoxic environment. IMPORTANCE The composition and function of the active cecal microbiome were significantly different between the plateau Tibetan chicken population and the plain chicken population. Higher expression genes related to energy metabolism and immune response were found in the cecal microbiome of the plateau Tibetan chicken population. The cecal microbiome in the plateau Tibetan chicken population exhibited higher biosynthesis of short-chain fatty and secondary bile acids, resulting in higher cecal content of these metabolites. The active Bacteroidetes/Firmicutes ratio in the cecal microbiome may contribute to the high-altitude adaptive advantage of the plateau Tibetan chicken population.
Collapse
Affiliation(s)
- Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianmei Yin
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Peishi Feng
- Zhejiang University of Technology, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yibo Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueying Ma
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co. Ltd., Shanghai, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Han
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
3
|
Aboshady HM, Gavriilidou A, Ghanem N, Radwan MA, Elnahas A, Agamy R, Fahim NH, Elsawy MH, Shaarawy AMBM, Abdel-Hafeez AM, Kantanen J, Ginja C, Makgahlela ML, Kugonza DR, Gonzalez-Prendes R, Crooijmans RPMA. Gut Microbiota Diversity of Local Egyptian Cattle Managed in Different Ecosystems. Animals (Basel) 2024; 14:2752. [PMID: 39335341 PMCID: PMC11428623 DOI: 10.3390/ani14182752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The animal gastrointestinal tract contains a complex microbiome whose composition ultimately reflects the co-evolution of microorganisms with their animal host and their host's environment. This study aimed to gain insights into the adaptation of the microbiota of local Egyptian cattle to three different ecosystems (Upper Egypt, Middle Egypt, and Lower Egypt) distributed across 11 governorates (with an average of 12 animals per governorate) using amplicon sequencing. We analyzed the microbiota from 136 fecal samples of local Egyptian cattle through a 16S rRNA gene sequencing approach to better understand the fecal microbial diversity of this breed which developed under different ecosystems. An alpha diversity analysis showed that the fecal microbiota of the Egyptian cattle was not significantly diverse across areas, seasons, sexes, or farm types. Meanwhile, microbiota data revealed significant differences in richness among age groups (p = 0.0018). The microbial community differed significantly in the distribution of its relative abundance rather than in richness across different ecosystems. The taxonomic analysis of the reads identified Firmicutes and Actinobacteriota as the dominant phyla, accounting for over 93% of the total bacterial community in Egyptian cattle. Middle Egypt exhibited a different microbial community composition compared to Upper and Lower Egypt, with a significantly higher abundance of Firmicutes and Euryarchaeota and a lower abundance of Actinobacteriota in this region than the other two ecosystems. Additionally, Middle Egypt had a significantly higher relative abundance of the Methanobacteriaceae family and the Methanobrevibacter genera than Lower and Upper Egypt. These results suggest a difference in the adaptation of the fecal microbial communities of Egyptian cattle raised in Middle Egypt. At the genus level, eleven genera were significantly different among the three ecosystems including Bacillus, DNF00809, Kandleria, Lachnospiraceae_NK3A20_group, Methanobrevibacter, Mogibacterium, Olsenella, Paeniclostridium, Romboutsia, Turicibacter, and UCG-005. These significant differences in microbiota composition may impact the animal's adaptation to varied environments.
Collapse
Affiliation(s)
- Hadeer M. Aboshady
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Mohamed A. Radwan
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Ahmed Elnahas
- Animal Production Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt;
| | - Rania Agamy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Nadia H. Fahim
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Mohamed H. Elsawy
- Department of Cattle, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (M.H.E.); (A.-M.B.M.S.); (A.M.A.-H.)
| | - Al-Moataz Bellah M. Shaarawy
- Department of Cattle, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (M.H.E.); (A.-M.B.M.S.); (A.M.A.-H.)
| | - Ahmed M. Abdel-Hafeez
- Department of Cattle, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (M.H.E.); (A.-M.B.M.S.); (A.M.A.-H.)
| | - Juha Kantanen
- Natural Resources Institute Finland, 31600 Jokioinen, Finland;
| | - Catarina Ginja
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Associate Laboratory, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, University of Porto, 4485-661 Vairão, Portugal
| | - Mahlako L. Makgahlela
- Agricultural Research Council, Animal Production, Private Bag X2, Irene 0062, South Africa;
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9301, South Africa
| | - Donald R. Kugonza
- School of Agricultural Sciences, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Rayner Gonzalez-Prendes
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (R.G.-P.); (R.P.M.A.C.)
| | - Richard P. M. A. Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (R.G.-P.); (R.P.M.A.C.)
| |
Collapse
|
4
|
Su Q, Zhuang DH, Li YC, Chen Y, Wang XY, Ge MX, Xue TY, Zhang QY, Liu XY, Yin FQ, Han YM, Gao ZL, Zhao L, Li YX, Lv MJ, Yang LQ, Xia TR, Luo YJ, Zhang Z, Kong QP. Gut microbiota contributes to high-altitude hypoxia acclimatization of human populations. Genome Biol 2024; 25:232. [PMID: 39198826 PMCID: PMC11350960 DOI: 10.1186/s13059-024-03373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The relationship between human gut microbiota and high-altitude hypoxia acclimatization remains highly controversial. This stems primarily from uncertainties regarding both the potential temporal changes in the microbiota under such conditions and the existence of any dominant or core bacteria that may assist in host acclimatization. RESULTS To address these issues, and to control for variables commonly present in previous studies which significantly impact the results obtained, namely genetic background, ethnicity, lifestyle, and diet, we conducted a 108-day longitudinal study on the same cohort comprising 45 healthy Han adults who traveled from lowland Chongqing, 243 masl, to high-altitude plateau Lhasa, Xizang, 3658 masl, and back. Using shotgun metagenomic profiling, we study temporal changes in gut microbiota composition at different timepoints. The results show a significant reduction in the species and functional diversity of the gut microbiota, along with a marked increase in functional redundancy. These changes are primarily driven by the overgrowth of Blautia A, a genus that is also abundant in six independent Han cohorts with long-term duration in lower hypoxia environment in Shigatse, Xizang, at 4700 masl. Further animal experiments indicate that Blautia A-fed mice exhibit enhanced intestinal health and a better acclimatization phenotype to sustained hypoxic stress. CONCLUSIONS Our study underscores the importance of Blautia A species in the gut microbiota's rapid response to high-altitude hypoxia and its potential role in maintaining intestinal health and aiding host adaptation to extreme environments, likely via anti-inflammation and intestinal barrier protection.
Collapse
Affiliation(s)
- Qian Su
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dao-Hua Zhuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Yu-Chun Li
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yu Chen
- Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University, Chongqing, 400038, China
| | - Xia-Yan Wang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ming-Xia Ge
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ting-Yue Xue
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qi-Yuan Zhang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xin-Yuan Liu
- Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University, Chongqing, 400038, China
| | - Fan-Qian Yin
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yi-Ming Han
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Zong-Liang Gao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Long Zhao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yong-Xuan Li
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Meng-Jiao Lv
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li-Qin Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Tian-Rui Xia
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Yong-Jun Luo
- Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University, Chongqing, 400038, China.
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Qing-Peng Kong
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
5
|
Guo W, Liu T, Wang W, Yu Y, Neves ALA, Zhou M, Chen X. Survey of the fecal microbiota of indigenous small ruminants living in different areas of Guizhou. Front Microbiol 2024; 15:1415230. [PMID: 39176283 PMCID: PMC11340823 DOI: 10.3389/fmicb.2024.1415230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Gut microbiota are associated with the health and performance of ruminant species, and they are affected by altitude, host genetics, and sex. However, there has been little research on comparing the fecal microbiota of indigenous small ruminants such as sheep and goats in Guizhou province, China. In the present study, we revealed the effect of altitude, genetics, and sex on fecal microbiota profiles and enterotypes in indigenous small ruminants of Guizhou province, China. Methods Fecal samples were collected from Hei and Qianbei Ma goats and Weining sheep in the Chinese province of Guizhou. 16S rRNA gene sequencing targeting the V3-V4 region was performed using the Illumina MiSeq platform. Sequences were processed using QIIME2, and the qualified sequences were processed using the plugin DADA2 to generate amplicon sequence variants (ASVs). The statistical analysis was performed using R studio. Results The fecal microbial profile was found to vary by herd (influenced by genetics/altitude) and sex. All samples were categorized into two enterotypes. The first enterotype is dominated by UCG-005, and the second enterotype is dominated by the Christensenellaceae_R-7_group, which may be highly driven by the host's genetics (breed). The predicted functional profiles of the fecal microbiota were also assigned to two clusters that corresponded exactly to the enterotypes. Cluster 1 of the functional profiling was characterized by biosynthesis pathways, and cluster 2 was characterized by energy metabolism pathways. Discussion Our findings may provide new insights into the fecal microbial community and enterotypes in small ruminants by herds, offering clues for understanding the mechanisms by which the fecal microbiota contribute to divergent host phenotypes in indigenous small ruminants in Guizhou.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tingmei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Weiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Yinshu Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Xiao Z, Zhang Y, Zhang W, Zhang A, Wang G, Chen C, Ullah H, Ayaz T, Li S, Zhaxi D, Yan Q, Kang J, Xu X. Characterizations of gut bacteriome, mycobiome, and virome of healthy individuals living in sea-level and high-altitude areas. Int Microbiol 2024:10.1007/s10123-024-00531-9. [PMID: 38758414 DOI: 10.1007/s10123-024-00531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/05/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND The contribution of gut microbiota to human high-altitude adaptation remains inadequately understood. METHODS Here a comparative analysis of gut microbiota was conducted between healthy individuals living at sea level and high altitude using deep whole-metagenome shotgun sequencing, to investigate the adaptive mechanisms of gut microbiota in plateau inhabitants. RESULTS The results showed the gut bacteriomes in high-altitude individuals exhibited greater within-sample diversity and significant alterations in both bacterial compositional and functional profiles when compared to those of sea-level individuals, indicating the potential selection of unique bacteria associated with high-altitude environments. The strain-level investigation revealed enrichment of Collinsella aerofaciens and Akkermansia muciniphila in high-altitude populations. The characteristics of gut virome and gut mycobiome were also investigated. Compared to sea-level subjects, high-altitude subjects exhibited a greater diversity in their gut virome, with an increased number of viral operational taxonomic units (vOTUs) and unique annotated genes. Finally, correlation analyses revealed 819 significant correlations between 42 bacterial species and 375 vOTUs, while no significant correlations were observed between bacteria and fungi or between fungi and viruses. CONCLUSION The findings have significantly contributed to an enhanced comprehension of the mechanisms underlying the high-altitude geographic adaptation of the human gut microbiota.
Collapse
Affiliation(s)
- Zhen Xiao
- Institute of High-Altitude Medicine, People's Hospital of Nagqu Affiliated to Dalian Medical University, Nagqu, 852099, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, 430010, China
| | - Wei Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Aiqin Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Changming Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Hayan Ullah
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Taj Ayaz
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430010, China
| | - Duoji Zhaxi
- Institute of High-Altitude Medicine, People's Hospital of Nagqu Affiliated to Dalian Medical University, Nagqu, 852099, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Jian Kang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Xiaoguang Xu
- Institute of High-Altitude Medicine, People's Hospital of Nagqu Affiliated to Dalian Medical University, Nagqu, 852099, China.
- Department of Neurosurgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
7
|
Song K, Ling H, Wang L, Tian P, Jin X, Zhao J, Chen W, Wang G, Bi Y. Lactobacillus delbrueckii subsp. bulgaricus Alleviates Acute Injury in Hypoxic Mice. Nutrients 2024; 16:1465. [PMID: 38794703 PMCID: PMC11124140 DOI: 10.3390/nu16101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Acute mountain sickness (AMS) is a common ailment in high-altitude areas caused by the body's inadequate adaptation to low-pressure, low-oxygen environments, leading to organ edema, oxidative stress, and impaired intestinal barrier function. The gastrointestinal tract, being the first to be affected by ischemia and hypoxia, is highly susceptible to injury. This study investigates the role of Lactobacillus delbrueckii subsp. bulgaricus in alleviating acute hypoxic-induced intestinal and tissue damage from the perspective of daily consumed lactic acid bacteria. An acute hypoxia mouse model was established to evaluate tissue injury, oxidative stress, inflammatory responses, and intestinal barrier function in various groups of mice. The results indicate that strain 4L3 significantly mitigated brain and lung edema caused by hypoxia, improved colonic tissue damage, and effectively increased the content of tight junction proteins in the ileum, reducing ileal permeability and alleviating mechanical barrier damage in the intestines due to acute hypoxia. Additionally, 4L3 helped to rebalance the intestinal microbiota. In summary, this study found that Lactobacillus delbrueckii subsp. bulgaricus strain 4L3 could alleviate acute intestinal damage caused by hypoxia, thereby reducing hypoxic stress. This suggests that probiotic lactic acid bacteria that exert beneficial effects in the intestines may alleviate acute injury under hypoxic conditions in mice, offering new insights for the prevention and treatment of AMS.
Collapse
Affiliation(s)
- Ke Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Ling
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (K.S.); (L.W.); (P.T.); (X.J.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| |
Collapse
|
8
|
Liu D, Chen D, Xiao J, Wang W, Zhang LJ, Peng H, Han C, Yao H. High-altitude-induced alterations in intestinal microbiota. Front Microbiol 2024; 15:1369627. [PMID: 38784803 PMCID: PMC11111974 DOI: 10.3389/fmicb.2024.1369627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In high-altitude environments characterized by low pressure and oxygen levels, the intestinal microbiota undergoes significant alterations. Whether individuals are subjected to prolonged exposure or acute altitude changes, these conditions lead to shifts in both the diversity and abundance of intestinal microbiota and changes in their composition. While these alterations represent adaptations to high-altitude conditions, they may also pose health risks through certain mechanisms. Changes in the intestinal microbiota induced by high altitudes can compromise the integrity of the intestinal mucosal barrier, resulting in gastrointestinal dysfunction and an increased susceptibility to acute mountain sickness (AMS). Moreover, alterations in the intestinal microbiota have been implicated in the induction or exacerbation of chronic heart failure. Targeted modulation of the intestinal microbiota holds promise in mitigating high-altitude-related cardiac damage. Dietary interventions, such as adopting a high-carbohydrate, high-fiber, low-protein, and low-fat diet, can help regulate the effects of intestinal microbiota and their metabolic byproducts on intestinal health. Additionally, supplementation with probiotics, either through dietary sources or medications, offers a means of modulating the composition of the intestinal microbiota. These interventions may offer beneficial effects in preventing and alleviating AMS following acute exposure to high altitudes.
Collapse
Affiliation(s)
- Dan Liu
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Dan Chen
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Jian Xiao
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Wei Wang
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Li-Juan Zhang
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Hui Peng
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Chuan Han
- Department of Endocrinology, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| | - Hao Yao
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People’s Liberation Army Western Theater, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Han Y, Liu X, Jia Q, Xu J, Shi J, Li X, Xie G, Zhao X, He K. Longitudinal multi-omics analysis uncovers the altered landscape of gut microbiota and plasma metabolome in response to high altitude. MICROBIOME 2024; 12:70. [PMID: 38581016 PMCID: PMC10996103 DOI: 10.1186/s40168-024-01781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/22/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Gut microbiota is significantly influenced by altitude. However, the dynamics of gut microbiota in relation to altitude remains undisclosed. METHODS In this study, we investigated the microbiome profile of 610 healthy young men from three different places in China, grouped by altitude, duration of residence, and ethnicity. We conducted widely targeted metabolomic profiling and clinical testing to explore metabolic characteristics. RESULTS Our findings revealed that as the Han individuals migrated from low altitude to high latitude, the gut microbiota gradually converged towards that of the Tibetan populations but reversed upon returning to lower altitude. Across different cohorts, we identified 51 species specifically enriched during acclimatization and 57 species enriched during deacclimatization to high altitude. Notably, Prevotella copri was found to be the most enriched taxon in both Tibetan and Han populations after ascending to high altitude. Furthermore, significant variations in host plasma metabolome and clinical indices at high altitude could be largely explained by changes in gut microbiota composition. Similar to Tibetans, 41 plasma metabolites, such as lactic acid, sphingosine-1-phosphate, taurine, and inositol, were significantly elevated in Han populations after ascending to high altitude. Germ-free animal experiments demonstrated that certain species, such as Escherichia coli and Klebsiella pneumoniae, which exhibited altitude-dependent variations in human populations, might play crucial roles in host purine metabolism. CONCLUSIONS This study provides insights into the dynamics of gut microbiota and host plasma metabolome with respect to altitude changes, indicating that their dynamics may have implications for host health at high altitude and contribute to host adaptation. Video Abstract.
Collapse
Affiliation(s)
- Yang Han
- Medical Big Data Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | | | - Qian Jia
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Jiayu Xu
- Medical Big Data Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Medical Big Data Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Xiang Li
- Ping An Healthcare Technology, Beijing, China
| | - Guotong Xie
- Ping An Healthcare Technology, Ping An Health Cloud Company Limited, Beijing, China
| | - Xiaojing Zhao
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China.
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China.
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China.
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China.
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Yao Z, Zhao W, Tang B, Li Q, Wang Z. Effects of host identity on the gut microbiota: A comparative study on three microtinae species. Animal Model Exp Med 2024; 7:98-105. [PMID: 38567747 PMCID: PMC11079152 DOI: 10.1002/ame2.12404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Gut microbiota exert an immense effect on host health and host environmental adaptation. Furthermore, the composition and structure of gut microbiota are determined by the environment and host genetic factors. However, the relative contribution of the environment and host genetic factors toward shaping the structure of gut microbiota has been poorly understood. METHODS In this study, we characterized the fecal microbial communities of the closely related voles Neodon fuscus, Lasiopodomys brandtii, and L. mandarinus after caged feeding in the laboratory for 6 months, through high-throughput sequencing and bioinformatics analysis. RESULTS The results of pairwise comparisons of N. fuscus vs. L. brandtii and L. mandarinus vs. L. brandtii revealed significant differences in bacterial diversity and composition after domestication. While 991 same operational taxonomic units (OTUs) were shared in three voles, there were 362, 291, and 303 species-specific OTUs in N. fuscus, L. brandtii, and L. mandarinus, respectively. The relative abundances of Proteobacteria and Prevotella, which are reported to be enriched in high-altitude populations, were significantly higher in high-altitude N. fuscus than in low-altitude L. brandtii after domestication. Firmicutes, which produce various digestive enzymes for energy metabolism, and Spirochaetes, which can degrade cellulose, were found in higher abundance in subterranean L. mandarinus than that in L. brandtii which dwells on the earth surface. CONCLUSION Our findings showed that some components of gut microbiota still maintained dominance even when different host species are reared under the same environmental conditions, suggesting that these bacteria are substantially influenced by host factors.
Collapse
Affiliation(s)
- Zhen Yao
- School of Life SciencesZhengzhou UniversityZhengzhouHenan ProvinceP.R. China
| | - Wenli Zhao
- School of Life SciencesZhengzhou UniversityZhengzhouHenan ProvinceP.R. China
| | - Baohong Tang
- School of Life SciencesZhengzhou UniversityZhengzhouHenan ProvinceP.R. China
| | - Qinghua Li
- School of Life SciencesZhengzhou UniversityZhengzhouHenan ProvinceP.R. China
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouHenan ProvinceP.R. China
| |
Collapse
|
11
|
Li C, Jin S, Lv O, Wang G, Zhang Y, Li S, Zhang W, Long F, Shen Z, Bai S, Zhaxi D, Kong F, Yan Q, Xiao Z. Comparative analysis of the vaginal bacteriome and virome in healthy women living in high-altitude and sea-level areas. Eur J Med Res 2024; 29:157. [PMID: 38454476 PMCID: PMC10918948 DOI: 10.1186/s40001-023-01391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 03/09/2024] Open
Abstract
The vaginal microbiota plays an important role in the health of the female reproductive tract and is closely associated with various pregnancy outcomes and sexually transmitted diseases. Plenty of internal and external factors have strong influence on the changes in a woman's vaginal microbiome. However, the effect of a high-altitude on female vaginal microbiota has not been described. In this study, we characterized the vaginal bacteriome and virome of 13 and 34 healthy women living in high-altitude and sea-level areas, using whole-metagenome shotgun sequencing of their vaginal mucus samples. The results revealed that the vaginal bacteriomes of high-altitude individuals are featured by a significant increase of species diversity, depletion of Lactobacillus crispatus, and more abundant of some anaerobic bacteria, such as Chlamydia trachomatis, Mageeibacillus indolicus, Dialister micraerophilus, and Sneathia amnii). In addition, the vagina samples of sea-level subjects harbor more Lactobacillus strains, whereas the anaerobic bacteroidetes strains mostly appeared in high-altitude subjects. Identified and assembled 191 virus operational taxonomic units (vOTUs), there were significant differences in the abundance of 107 vOTUs between the two groups. Together, the results of this study raised the understanding of bacteriome and virome in the vagina of women at different elevations, and demonstrated that the vaginal microbiome is related to the high-altitude geographic adaptation.
Collapse
Affiliation(s)
- Chaoran Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Song Jin
- Operating Room, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Oingbo Lv
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Wei Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Fang Long
- Department of Obstetrics and Gynecology, People's Hospital of Naqu, Naqu, Tibet, 852000, China
| | - Zhuowei Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Siqi Bai
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Duoii Zhaxi
- Institute of High Altitude Medicine, People's Hospital of Naqu, Naqu, Tibet, 852000, China
| | - Fandou Kong
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China.
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Zhen Xiao
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China.
- Department of Obstetrics and Gynecology, People's Hospital of Naqu, Naqu, Tibet, 852000, China.
- Institute of High Altitude Medicine, People's Hospital of Naqu, Naqu, Tibet, 852000, China.
| |
Collapse
|
12
|
Yin Y, Tam HL, Quint J, Chen M, Ding R, Zhang X. Epidemiology of Dementia in China in 2010-2020: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2024; 12:334. [PMID: 38338219 PMCID: PMC10855047 DOI: 10.3390/healthcare12030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Dementia has become one of the leading causes of death across the world. AIMS The aim of this study was to investigate the incidence, prevalence, and mortality of dementia in China between 2010 and 2020, and to investigate any geographical, age, and sex differences in the prevalence and incidence of dementia. METHODS Five databases were searched. The Joanna Briggs Institute (JBI) critical appraisal tool was used to assess the quality of the included studies. A random-effects meta-analysis was performed to estimate the pooled prevalence of dementia. Subgroup analysis was based on the type of dementia. The incidence and mortality of dementia were synthesized qualitatively. RESULTS A total of 19 studies were included. The meta-analysis showed that the prevalence of dementia was 6% (95%CI 5%, 8%), the prevalence of Alzheimer's disease (AD) was 5% (95%CI 4%, 6%), and the prevalence of vascular dementia (VaD) was 1% (95%CI 0%, 2%). The subgroup analysis showed that the prevalence rates of dementia in rural (6%, 95%CI 4%, 8%) and urban areas were similar (6%, 95%CI 4%, 8%). Deaths due to dementia increased over time. CONCLUSION The prevalence, incidence, and mortality of dementia increased with age and over time. Applying consistent criteria to the diagnosis of cognitive impairment and dementia is necessary to help with disease monitoring. Promoting dementia knowledge and awareness at the community level is necessary.
Collapse
Affiliation(s)
- Yueheng Yin
- School of Nursing, Nanjing Medical University, Nanjing 210029, China;
| | - Hon Lon Tam
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Jennifer Quint
- School of Public Health, National Heart and Lung Institute, Imperial College London, London W12 7RQ, UK; (J.Q.); (R.D.)
| | - Mengyun Chen
- School of Nursing, Lanzhou University, Lanzhou 730000, China;
| | - Rong Ding
- School of Public Health, National Heart and Lung Institute, Imperial College London, London W12 7RQ, UK; (J.Q.); (R.D.)
| | - Xiubin Zhang
- School of Public Health, National Heart and Lung Institute, Imperial College London, London W12 7RQ, UK; (J.Q.); (R.D.)
| |
Collapse
|
13
|
Panigrahi P. The neonatal gut microbiome and global health. Gut Microbes 2024; 16:2352175. [PMID: 38743045 PMCID: PMC11095572 DOI: 10.1080/19490976.2024.2352175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The role of gut microbiome in health, a century-old concept, has been on the center stage of medical research recently. While different body sites, disease conditions, and populations have been targeted, neonatal and early infancy appear to be the most suitable period for such interventions. It is intriguing to note that, unlike traditional use in diarrhea and maintenance of gastrointestinal health, microbiome-mediating therapies have now addressed the most serious medical conditions in young infants such as necrotizing enterocolitis and neonatal sepsis. Unfortunately, almost all new endeavors in this space have been carried out in the Western world leaving behind millions of neonates that can benefit from such manipulations while serving as a large resource for further learning. In this review, an attempt has been made to quantify the global burden of neonatal morbidity and mortality, examples presented on interventions that have failed as a result of drawing from studies conducted in the West, and a case made for manipulating the neonatal gut microbiome to address the biggest killers in early life. A brief comparative analysis has been made to demonstrate the differences in the gut microbiota of North and South and a large clinical trial of synbiotics conducted by our group in a South Asian setting has been presented. Although challenging, the value of conducting such global health research is introduced with an intent to invite medical scientists to engage in well-planned, scientifically robust research endeavors. This can bring about innovation while saving and serving the most vulnerable citizens now and protecting them from the negative health consequences in the later part of their lives, ultimately shaping a resilient and equitable world as pledged by 193 United Nations member countries in 2015.
Collapse
Affiliation(s)
- Pinaki Panigrahi
- Department of Pediatrics, Division of Neonatal Perinatal Medicine, International Microbiome Research, Georgetown University Medical Center, Georgetown, WA, USA
| |
Collapse
|
14
|
Zhao H, Sun L, Liu J, Shi B, Zhang Y, Qu-Zong CR, Dorji T, Wang T, Yuan H, Yang J. Meta-analysis identifying gut microbial biomarkers of Qinghai-Tibet Plateau populations and the functionality of microbiota-derived butyrate in high-altitude adaptation. Gut Microbes 2024; 16:2350151. [PMID: 38715346 PMCID: PMC11086029 DOI: 10.1080/19490976.2024.2350151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
The extreme environmental conditions of a plateau seriously threaten human health. The relationship between gut microbiota and human health at high altitudes has been extensively investigated. However, no universal gut microbiota biomarkers have been identified in the plateau population, limiting research into gut microbiota and high-altitude adaptation. 668 16s rRNA samples were analyzed using meta-analysis to reduce batch effects and uncover microbiota biomarkers in the plateau population. Furthermore, the robustness of these biomarkers was validated. Mendelian randomization (MR) results indicated that Tibetan gut microbiota may mediate a reduced erythropoietic response. Functional analysis and qPCR revealed that butyrate may be a functional metabolite in high-altitude adaptation. A high-altitude rat model showed that butyrate reduced intestinal damage caused by high altitudes. According to cell experiments, butyrate may downregulate hypoxia-inducible factor-1α (HIF-1α) expression and blunt cellular responses to hypoxic stress. Our research found universally applicable biomarkers and investigated their potential roles in promoting human health at high altitudes.
Collapse
Affiliation(s)
- Hongwen Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yaopeng Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ci-Ren Qu-Zong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- College of Ecology and Environment, Tibet University, Tibet, China
| | - Tsechoe Dorji
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Liu D, Gao X, Huang X, Fan Y, Wang YE, Zhang Y, Chen X, Wen J, He H, Hong Y, Liang Y, Zhang Y, Liu Z, Chen S, Li X. Moderate altitude exposure impacts host fasting blood glucose and serum metabolome by regulation of the intestinal flora. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167016. [PMID: 37714338 DOI: 10.1016/j.scitotenv.2023.167016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Moderate altitude exposure has shown beneficial effects on diabetes incidence but the underlying mechanisms are not understood. Our study aimed to investigate how the human gut microbiome impacted the serum metabolome and associated with glucose homeostasis in healthy Chinese individuals upon moderate-altitude exposure. Faecal microbiome composition was assessed using shotgun metagenomic sequencing. Serum metabolome was acquired by untargeted metabolomics technology, and amino acids (AAs) and propionic acid in serum were quantified by targeted metabolomics technology. The results indicated that the moderate-altitude exposed individuals presented lowered fasting blood glucose (FBG) and propionic acid, increased circulating L-Glutamine but decreased L-Glutamate and L-Valine, which correlated with enriched Bacteroidetes and decreased Proteobacteria. Additionally, the silico causality associations among gut microbiota, serum metabolome and host FBG were analyzed by mediation analysis. It showed that increased Bacteroides ovatus (B. ovatus) and decreased Escherichia coli (E. coli) were identified as the main antagonistic species driving the association between L-Glutamate and FBG in silico causality. Furthermore, the high-fat diet (HFD) fed mice subjected to faecal microbiota transplantation (FMT) were applied to validate the cause-in-fact effects of gut microbiota on the beneficial glucose response. We found that microbiome in the moderate-altitude exposed donor could predict the extent of the FBG response in recipient mice, which showed lowered FBG, L-Glutamate and Firmicutes/Bacteroidetes ratio. Our findings suggest that moderate-altitude exposure targeting gut microbiota and circulating metabolome, may pave novel avenues to counter dysglycemia.
Collapse
Affiliation(s)
- Dan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Nyingchi People's Hospital, Tibet, China
| | - Xiaoyan Gao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yanqun Fan
- Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Yu-E Wang
- Nyingchi People's Hospital, Tibet, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xuanfu Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Emergency Medicine Department of Guangdong Cardiovascular Institute, Guangzhou, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Haiwei He
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ying Liang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Nyingchi People's Hospital, Tibet, China
| | - Yuxiao Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhipeng Liu
- Biotree Metabolomics Technology Research Center, Shanghai, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China.
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Nyingchi People's Hospital, Tibet, China.
| |
Collapse
|
16
|
Yersin S, Garneau JR, Schneeberger PHH, Osman KA, Cercamondi CI, Muhummed AM, Tschopp R, Zinsstag J, Vonaesch P. Gut microbiomes of agropastoral children from the Adadle region of Ethiopia reflect their unique dietary habits. Sci Rep 2023; 13:21342. [PMID: 38049420 PMCID: PMC10696028 DOI: 10.1038/s41598-023-47748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
The composition and function of the intestinal microbiota are major determinants of human health and are strongly influenced by diet, antibiotic treatment, lifestyle and geography. Nevertheless, we currently have only little data on microbiomes of non-westernized communities. We assess the stool microbiota composition in 59 children aged 2-5 years from the Adadle district of Ethiopia, Somali Regional State. Here, milk and starch-rich food are predominant components of the local diet, where the inhabitants live a remote, traditional agropastoral lifestyle. Microbiota composition, function and the resistome were characterized by both 16S rRNA gene amplicon and shotgun metagenomic sequencing and compared to 1471 publicly available datasets from children living in traditional, transitional, and industrial communities with different subsistence strategies. Samples from the Adadle district are low in Bacteroidaceae, and Prevotellaceae, the main bacterial representatives in the feces of children living in industrialized and non-industrialized communities, respectively. In contrast, they had a higher relative abundance in Streptococcaceae, Bifidobacteriaceae and Erysipelatoclostridiaceae. Further, genes involved in degradation pathways of lactose, D-galactose and simple carbohydrates were enriched. Overall, our study revealed a unique composition of the fecal microbiota of these agropastoral children, highlighting the need to further characterize the fecal bacterial composition of human populations living different lifestyles.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pierre H H Schneeberger
- Helminth Drug Development Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | | | - Colin Ivano Cercamondi
- Department of Health Sciences and Technology, ETHZ, Rämistrasse 101, 8092, Zurich, Switzerland
| | - Abdifatah Muktar Muhummed
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Jigjiga University, Jigjiga, Ethiopia
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Rea Tschopp
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- Armauer Hansen Research Institute, Jimma Road, 1005, Addis Ababa, Ethiopia
| | - Jakob Zinsstag
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Chen X, Wang Z, Su J, Li H, Xiong J, Fu K, Wang Z, Yuan X, Shi Z, Miao X, Yang M, Yang Y, Shi Z. Altitude-dependent metabolite biomarkers reveal the mechanism of plateau pika adaptation to high altitudes. Integr Zool 2023; 18:1041-1055. [PMID: 36880690 DOI: 10.1111/1749-4877.12710] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The harsh environment in the Tibetan plateau, the highest place in the world, poses thermoregulatory challenges and hypoxic stress to animals. The impacts of plateau environment on animal physiology and reproduction include external factors such as strong ultraviolet radiation and low temperature, and internal factors such as animal metabolites and gut microbiota. However, it remains unclear how plateau pika adapt to high altitudes through the combination of serum metabolites and gut microbiota. To this end, we captured 24 wild plateau pikas at the altitudes of 3400, 3600, or 3800 m a.s.l. in a Tibetan alpine grassland. Using the machine learning algorithms (random forest), we identified five biomarkers of serum metabolites indicative of the altitudes, that is, dihydrotestosterone, homo-l-arginine, alpha-ketoglutaric-acid, serotonin, and threonine, which were related to body weight, reproduction, and energy metabolism of pika. Those metabolic biomarkers were positively correlated with Lachnospiraceae_ Agathobacter, Ruminococcaceae, or Prevotellaceae_Prevotella, suggesting the close relationship between metabolites and gut microbiota. By identifying the metabolic biomarkers and gut microbiota analysis, we reveal the mechanisms of adaptation to high altitudes in plateau pika.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zaiwei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
| | - Huan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zilong Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ziyue Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiumei Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mei Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yunfeng Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Hu S, Gao K, Jiao Y, Yuan Z. Glycolysis characteristics of intracellular polysaccharides from Agaricus bitorquis (Quél.) sacc. Chaidam and its effects on intestinal flora from different altitudes of mice in vitro fermentation. Food Res Int 2023; 173:113382. [PMID: 37803720 DOI: 10.1016/j.foodres.2023.113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The glycolysis characteristics and effects on intestinal flora of polysaccharides from Agaricus bitorquis (Quél.) Sacc. Chaidam (ABIPs) in vitro fermentation by different altitudes of mice feces was examined, including low, medium, and high altitudes groups (LG, MG, and HG). In vitro, fermentation of ABIPs forty-eight hours resulted in a remarkable decrease in total sugar content and improvement of short-chain fatty acids (SCFAs) (mainly acetate, propionate, and butyrate), which simultaneously induced the composition of monose and uronic acids and SCFAs continuously change. Besides, ABIPs influenced the abundance and composition of the intestinal flora, generally increasing the abundance of probiotic bacteria (such as Bifidobacterium and Faecalibacterium) and decreasing the abundance of harmful bacteria (such as Phenylobacterium and Streptococcus) in all groups, with the highland biology core genus Blautia significantly enriched in LG and MG groups. It was also found that ABIPs enhanced pathways associated with biosynthesis and metabolism. In addition, correlation analysis speculated that the metabolism of SCFAs by ABIPs may be associated with genera such as Anaerostipes, Roseburia, and Weissella. ABIPs may protect organismal health by regulating hypoxic intestinal flora composition and metabolic function, and more superior fermentation performance was observed in MG compared to other groups.
Collapse
Affiliation(s)
- Shicheng Hu
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Ke Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Yingchun Jiao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China.
| |
Collapse
|
19
|
Al-khlifeh E, Khadem S, Hausmann B, Berry D. Microclimate shapes the phylosymbiosis of rodent gut microbiota in Jordan's Great Rift Valley. Front Microbiol 2023; 14:1258775. [PMID: 37954239 PMCID: PMC10637782 DOI: 10.3389/fmicb.2023.1258775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Host phylogeny and the environment play vital roles in shaping animal microbiomes. However, the effects of these variables on the diversity and richness of the gut microbiome in different bioclimatic zones remain underexplored. In this study, we investigated the effects of host phylogeny and bioclimatic zone on the diversity and composition of the gut microbiota of two heterospecific rodent species, the spiny mouse Acomys cahirinus and the house mouse Mus musculus, in three bioclimatic zones of the African Great Rift Valley (GRV). We confirmed host phylogeny using the D-loop sequencing method and analyzed the influence of host phylogeny and bioclimatic zone parameters on the rodent gut microbiome using high-throughput amplicon sequencing of 16S rRNA gene fragments. Phylogenetic analysis supported the morphological identification of the rodents and revealed a marked genetic difference between the two heterospecific species. We found that bioclimatic zone had a significant effect on the gut microbiota composition while host phylogeny did not. Microbial alpha diversity of heterospecific hosts was highest in the Mediterranean forest bioclimatic zone, followed by the Irano-Turanian shrubland, and was lowest in the Sudanian savanna tropical zone. The beta diversity of the two rodent species showed significant differences across the Mediterranean, Irano-Turanian, and Sudanian regions. The phyla Firmicutes and Bacteroidetes were highly abundant, and Deferribacterota, Cyanobacteria and Proteobacteria were also prominent. Amplicon sequence variants (ASVs) were identified that were unique to the Sudanian bioclimatic zone. The core microbiota families recovered in this study were consistent among heterospecific hosts. However, diversity decreased in conspecific host populations found at lower altitudes in Sudanian bioclimatic zone. The composition of the gut microbiota is linked to the adaptation of the host to its environment, and this study underscores the importance of incorporating climatic factors such as elevation and ambient temperature, in empirical microbiome research and is the first to describe the rodent gut microbiome from the GRV.
Collapse
Affiliation(s)
- Enas Al-khlifeh
- Laboratory of Immunology, Department of Medical Laboratory Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Sanaz Khadem
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Ma Q, Ma J, Cui J, Zhang C, Li Y, Liu J, Xie K, Luo E, Tang C, Zhai M. Oxygen enrichment protects against intestinal damage and gut microbiota disturbance in rats exposed to acute high-altitude hypoxia. Front Microbiol 2023; 14:1268701. [PMID: 37901817 PMCID: PMC10600524 DOI: 10.3389/fmicb.2023.1268701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Acute high-altitude hypoxia can lead to intestinal damage and changes in gut microbiota. Sustained and reliable oxygen enrichment can resist hypoxic damage at high altitude to a certain extent. However, it remains unclear whether oxygen enrichment can protect against gut damage and changes in intestinal flora caused by acute altitude hypoxia. For this study, eighteen male Sprague-Dawley rats were divided into three groups, control (NN), hypobaric hypoxic (HH), and oxygen-enriched (HO). The NN group was raised under normobaric normoxia, whereas the HH group was placed in a hypobaric hypoxic chamber simulating 7,000 m for 3 days. The HO group was exposed to oxygen-enriched air in the same hypobaric hypoxic chamber as the HH group for 12 h daily. Our findings indicate that an acute HH environment caused a fracture of the crypt structure, loss of epithelial cells, and reduction in goblet cells. Additionally, the structure and diversity of bacteria decreased in richness and evenness. The species composition at Phylum and Genus level was characterized by a higher ratio of Firmicutes and Bacteroides and an increased abundance of Lactobacillus with the abundance of Prevotellaceae_NK3B31_group decreased in the HH group. Interestingly, after oxygen enrichment intervention, the intestinal injury was significantly restrained. This was confirmed by an increase in the crypt depth, intact epithelial cell morphology, increased relative density of goblet cells, and higher evenness and richness of the gut microbiota, Bacteroidetes and Prevotellaceae as the main microbiota in the HO group. Finally, functional analysis showed significant differences between the different groups with respect to different metabolic pathways, including Amino acid metabolism, energy metabolism, and metabolism. In conclusion, this study verifies, for the first time, the positive effects of oxygen enrichment on gut structure and microbiota in animals experiencing acute hypobaric hypoxia.
Collapse
Affiliation(s)
- Qianqian Ma
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiaojiao Ma
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jinxiu Cui
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chenxu Zhang
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuanzhe Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Juan Liu
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kangning Xie
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Erping Luo
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chi Tang
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi’an, Shaanxi, China
| | - Mingming Zhai
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi’an, Shaanxi, China
| |
Collapse
|
21
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
22
|
Muhammad R, Klomkliew P, Chanchaem P, Sawaswong V, Kaikaew T, Payungporn S, Malaivijitnond S. Comparative analysis of gut microbiota between common (Macaca fascicularis fascicularis) and Burmese (M. f. aurea) long-tailed macaques in different habitats. Sci Rep 2023; 13:14950. [PMID: 37696929 PMCID: PMC10495367 DOI: 10.1038/s41598-023-42220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The environment has an important effect on the gut microbiota-an essential part of the host's health-and is strongly influenced by the dietary pattern of the host as these together shape the composition and functionality of the gut microbiota in humans and other animals. This study compared the gut microbiota of Macaca fascicularis fascicularis and M. f. aurea in mangrove and island populations using 16S rRNA gene sequencing on a nanopore platform to investigate the effect of the environment and/or diet. The results revealed that the M. f. fascicularis populations that received anthropogenic food exhibited a higher richness and evenness of gut microbiota than the M. f. aurea populations in different habitats. Firmicutes and Bacteroidetes were the two most abundant bacterial phyla in the gut microbiota of both these subspecies; however, the relative abundance of these phyla was significantly higher in M. f. aurea than in M. f. fascicularis. This variation in the gut microbiota between the two subspecies in different habitats mostly resulted from the differences in their diets. Moreover, the specific adaptation of M. f. aurea to different environments with a different food availability had a significant effect on their microbial composition.
Collapse
Affiliation(s)
- Raza Muhammad
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Titiporn Kaikaew
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand.
| |
Collapse
|
23
|
Li J, Wei C, Zhou T, Mo C, Wang G, He F, Wang P, Qin L, Peng F. A display and analysis platform for gut microbiomes of minority people and phenotypic data in China. Sci Rep 2023; 13:14247. [PMID: 37648696 PMCID: PMC10469205 DOI: 10.1038/s41598-023-36754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2023] [Indexed: 09/01/2023] Open
Abstract
The minority people panmicrobial community database (MPPCD website: http://mppmcdb.cloudna.cn/ ) is the first microbe-disease association database of Chinese ethnic minorities. To research the relationships between intestinal microbes and diseases/health in the ethnic minorities, we collected the microbes of the Han people for comparison. Based on the data, such as age, among the different ethnic groups of the different regions of Sichuan Province, MPPCD not only provided the gut microbial composition but also presented the relative abundance value at the phylum, class, order, family and genus levels in different groups. In addition, differential analysis was performed in different microbes in the two different groups, which contributed to exploring the difference in intestinal microbe structures between the two groups. Meanwhile, a series of related factors, including age, sex, body mass index, ethnicity, physical condition, and living altitude, were included in the MPPCD, with special focus on living altitude. To date, this is the first intestinal microbe database to introduce altitude features. In conclusion, we hope that MPPCD will serve as a fundamental research support for the relationship between human gut microbes and host health and disease, especially in ethnic minorities.
Collapse
Affiliation(s)
- Jun Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, 278# Bao Guang Road, Xindu District, Chengdu, 610000, Sichuan, People's Republic of China.
| | - Chunxue Wei
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, 278# Bao Guang Road, Xindu District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Ting Zhou
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guanjun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, 278# Bao Guang Road, Xindu District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Feng He
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, 278# Bao Guang Road, Xindu District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Pengyu Wang
- College of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ling Qin
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, 278# Bao Guang Road, Xindu District, Chengdu, 610000, Sichuan, People's Republic of China
| | - Fujun Peng
- Institute of Basic Medicine, Weifang Medical University, 7166# Baotong West Road, Weifang, 261053, Shandong, People's Republic of China.
| |
Collapse
|
24
|
Yang S, Zheng J, He S, Yuan Z, Wang R, Wu D. Exploring the elevation dynamics of rumen bacterial communities in Barn feeding cattle from 900 to 3,600 meters by full-length 16S sequencing. Front Vet Sci 2023; 10:1169573. [PMID: 37533459 PMCID: PMC10390322 DOI: 10.3389/fvets.2023.1169573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
The diversity and abundance of rumen microorganisms serve as indicators not only of the host's digestive and metabolic capacity but also of its health status. The complex microbial communities in the rumen are influenced to varying degrees by environmental adaptability. In this study, we collected 24 rumen fluid samples from 24 healthy male cattle in three regions of Yunnan, China. Using 16S rRNA amplicon sequencing data analysis, we examined the variations in rumen microorganisms among cattle fed at altitudes of 900 m, 1800 m, and 3,600 m. Altitude-related environmental factors did not surpass phylogeny as the main driving force behind the convergent evolution of yellow cattle rumen microbiome composition. However, they did have an impact on the alpha diversity of the rumen microbiome and the coevolution of the core microbiome. The change in altitude noticeably influenced the diversity and richness of the rumen microbiota, highlighting the environmental effect of altitude. As altitude increased, there was an observed increase in the abundance of Firmicutes and Bacteroidetes, while the abundance of ruminal Proteobacteria and Kiritimatiellaeota decreased. Importantly, at the genus level, the core genus exhibited distinct dynamic changes as altitude increased. Ruminants exhibit the ability to adapt their gut type in accordance with altitude, thereby optimizing energy utilization, especially in high-altitude settings. These discoveries offer valuable insights into the coevolution of host-microbe interactions during ruminant adaptation to various altitudinal environments.
Collapse
Affiliation(s)
- Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jieyi Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Shichun He
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zaimei Yuan
- Kunming Animal Disease Prevention and Control Center, Kunming, China
| | - Rongjiao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Dongwang Wu
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
25
|
Zhang X, Xu W, Zhong W, Zhang W, Yang C, Duan L, Niu H, Dong Y, Liu T, Xia S, Wang B. Exploring the links between gut microbiome changes and irritable bowel syndrome in Han populations in the Tibetan Plateau. J Zhejiang Univ Sci B 2023; 24:823-838. [PMID: 37701958 PMCID: PMC10202748 DOI: 10.1631/jzus.b2200509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 05/23/2023]
Abstract
The gut microbiome shows changes under a plateau environment, while the disbalance of intestinal microbiota plays an important role in the pathogenesis of irritable bowel syndrome (IBS); however, the relationship between the two remains unexplored. In this work, we followed up a healthy cohort for up to a year before and after living in a plateau environment and performed 16S ribosomal RNA (rRNA) sequencing analysis of their fecal samples. Through evaluating the participants' clinical symptoms, combined with an IBS questionnaire, we screened the IBS sub-population in our cohort. The sequencing results showed that a high-altitude environment could lead to changes in the diversity and composition of gut flora. In addition, we found that the longer the time volunteers spent in the plateau environment, the more similar their gut microbiota composition and abundance became compared to those before entering the plateau, and IBS symptoms were significantly alleviated. Therefore, we speculated that the plateau may be a special environment that induces IBS. The taxonomic units g_Alistipes, g_Oscillospira, and s_Ruminococcus_torques, which had been proved to play important roles in IBS pathogenesis, were also abundant in the IBS cohort at high altitudes. Overall, the disbalance of gut microbiota induced by the plateau environment contributed to the high frequency of IBS and the psychosocial abnormalities associated with IBS. Our results prompt further research to elucidate the relevant mechanism.
Collapse
Affiliation(s)
- Xingguang Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Wei Xu
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Wencheng Zhang
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Cheng Yang
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Lisa Duan
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Haiyan Niu
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Yanmei Dong
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Taotao Liu
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Shihai Xia
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China. ,
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
26
|
Lv J, Qi P, Bai LH, Yan XD, Zhang L. Review of the relationship and underlying mechanisms between the Qinghai-Tibet plateau and host intestinal flora. Front Microbiol 2022; 13:1055632. [PMID: 36523840 PMCID: PMC9745141 DOI: 10.3389/fmicb.2022.1055632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 12/01/2023] Open
Abstract
The intestinal microbial community is the largest ecosystem in the human body, in which the intestinal flora plays a dominant role and has a wide range of biological functions. However, it is vulnerable to a variety of factors, and exposure to extreme environments at high altitudes, as seen on the Qinghai-Tibet plateau, may cause changes in the structure and function of the host intestinal flora. Conversely, the intestinal flora can help the host adapt to the plateau environment through a variety of ways. Herein, we review the relationship and underlying mechanism between the host intestinal flora and the plateau environment by discussing the characteristics of the plateau environment, its influence on the intestinal flora, and the important role of the intestinal flora in host adaptation to the plateau environment. This review aimed to provide a reference for maintaining the health of the plateau population.
Collapse
Affiliation(s)
- Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liu-Hui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiang-Dong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
Du W, Liu L, Ma Y, Zhu Q, Jia R, Han Y, Wu Z, Yan X, Ailizire A, Zhang W. Analysis of the gut microbiome in obese native Tibetan children living at different altitudes: A case-control study. Front Public Health 2022; 10:963202. [PMID: 36504960 PMCID: PMC9731119 DOI: 10.3389/fpubh.2022.963202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Objective To explore the relationship between intestinal flora and obesity in Tibetan children at different altitudes. Methods Using16S rRNA gene sequencing results and blood lipid metabolism indexes to study the characteristics of the intestinal flora present in faeces and changes in blood lipid metabolism in obese children in Tibet who reside at different altitudes and to study correlations between blood lipid metabolism indicators and the intestinal flora composition. Results The results showed the following. (a) The triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels in the obesity groups were higher than those in the normal-weight groups, and those in the high-altitude obesity groups were lower than those in the low-altitude obesity groups. (b) The 16S rRNA gene sequencing results showed that altitude affected the composition and relative abundance of the gut microbiota. These parameters were basically the same among the low-altitude groups, while they were significantly lower in the high-altitude groups than in the low-altitude groups. (c) Groups that lived at different altitudes and had different body weights had different dominant bacterial genera. Megamonas was closely related to obesity, and its relative abundance in the low-altitude groups was higher than that in the high-altitude groups. Prevotella was associated with altitude, and its relative abundance in the high-altitude groups was higher than that in the low-altitude groups. In addition, Prevotella elicited changes in the abundance of Escherichia-Shigella. The lower prevalence of obesity and incidence of intestinal inflammation in those living at high altitudes were related to the abundance of Prevotella. (d) There were correlations between the gut microbiota composition and lipid metabolism indicators. The abundance of Romboutsia was positively correlated with TG and LDL-C levels but negatively correlated with high-density lipoprotein cholesterol (HDL-C) levels. The abundance of Akkermansia was negatively correlated with LDL-C levels, and the abundance of Blautia was negatively correlated with body mass index (BMI) and LDL-C levels. Conclusions The intestinal flora diversity varied by body weight and altitude, with lower diversity in those at higher altitudes and with lower body weights. Prevotella likely plays a role in suppressing obesity at high altitudes.
Collapse
Affiliation(s)
- Wenqi Du
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Department of Public Health, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China
| | - Linxun Liu
- General Surgery Department, Qinghai Provincial People's Hospital, Xining, China
| | - Yan Ma
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China,Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University School of Medicine, Xining, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China
| | - Ruhan Jia
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China
| | - Ying Han
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China
| | - Ziyi Wu
- Department of Public Health, Qinghai University School of Medicine, Xining, China
| | - Xin Yan
- Department of Public Health, Qinghai University School of Medicine, Xining, China
| | - Ainiwaer Ailizire
- Department of Public Health, Qinghai University School of Medicine, Xining, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Department of Public Health, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China,Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,*Correspondence: Wei Zhang
| |
Collapse
|
28
|
Zhi W, Tang K, Yang J, Yang T, Chen R, Huang J, Tan H, Zhao J, Sheng Z. Research on the Gut Microbiota of Hainan Black Goat. Animals (Basel) 2022; 12:ani12223129. [PMID: 36428357 PMCID: PMC9686789 DOI: 10.3390/ani12223129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The intestine of animals is a complex micro-ecosystem containing a large number of microbiomes, which is essential for the host's health development. The Hainan black goat with good resistance and adaptability is a unique species in Hainan, China. These unique physiological characteristics are inseparable from their intestinal microbiota. In this study, high-throughput sequencing was used to investigate bacterial communities in different segments of the intestinal tract of Hainan black goat. The results showed that the indices of Chao1 and ACE in the cecum and colon were significantly greater than those in the ileum (p = 0.007, 0.018). According to PCoA, the intestinal flora composition of the cecum and colon is almost equivalent. In contexts of the phylum, Firmicutes, Bacteroidota, and Pseudomonadota were the dominant phyla in the gut of the Hainan black goat. While in context of the genus, the dominant groups in the gut of black goats mainly include Ruminococcaceae_UCG-005, Bacteroides, Paeniclostridium, Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, and Eubacterium coprostanoligenes _group, Prevotella_1, they have different proportions in different intestinal segments. The gut microbiota of Hainan black goat is mainly Firmicutes, Bacteroidota, and Pseudomonadota. Influenced by the intestinal location where they colonize, the large intestine has a more complex intestinal flora than the small intestine. In contrast, there are only minor differences between the caecum and the colon in the large intestine.
Collapse
Affiliation(s)
- Wenbo Zhi
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Kai Tang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jinsong Yang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
- Correspondence: (J.Y.); (Z.S.)
| | - Tianshu Yang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Rong Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiaming Huang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Haisheng Tan
- College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (J.Y.); (Z.S.)
| |
Collapse
|
29
|
Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes. Sci Rep 2022; 12:18547. [PMID: 36329122 PMCID: PMC9633824 DOI: 10.1038/s41598-022-21779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Studies of human microbiomes using new sequencing techniques have increasingly demonstrated that their ecologies are partly determined by the lifestyle and habits of individuals. As such, significant forensic information could be obtained from high throughput sequencing of the human microbiome. This approach, combined with multiple analytical techniques demonstrates that bacterial DNA can be used to uniquely identify an individual and to provide information about their life and behavioral patterns. However, the transformation of these findings into actionable forensic information, including the geolocation of the samples, remains limited by incomplete understanding of the effects of confounding factors and the paucity of diverse sequences. We obtained 16S rRNA sequences of stool and oral microbiomes collected from 206 young and healthy females from four globally diverse populations, in addition to supporting metadata, including dietary and medical information. Analysis of these microbiomes revealed detectable geolocation signals between the populations, even for populations living within the same city. Accounting for other lifestyle variables, such as diet and smoking, lessened but does not remove the geolocation signal.
Collapse
|
30
|
Yan B, Jia T, Wang Z, Zhu W. Comparative research of intestinal microbiota diversity and body mass regulation in Eothenomys miletus from different areas of Hengduan mountain regions. Front Microbiol 2022; 13:1026841. [PMID: 36325022 PMCID: PMC9619095 DOI: 10.3389/fmicb.2022.1026841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
In order to investigate the effects of different areas on intestinal bacterial diversity and body mass regulation in Eothenomys miletus from Hengduan mountain regions, and to explore the community structure and diversity of intestinal microflora and their role in body mass regulation. E. miletus was collected from five areas including Deqin (DQ), Xianggelila (XGLL), Lijiang (LJ), Jianchuan (JC), and Dali (DL), we used 16S rRNA sequencing technology combined with physiological and morphological methods to study the intestinal microbiota diversity, abundance and community structure of the intestinal bacteria in winter, and to explore the influence of geographical factors, physiological indicators including food intake, resting metabolic rate (RMR), non-shivering thermogenesis (NST), neuropeptide Y (NPY), Agouti-Related Protein (AgRP), proopiomelanocortin (POMC), cocaine and amphetamine regulated transcription peptide (CART), and morphological indicators including body mass, body length and other nine indicators on the intestinal microflora diversity in E. miletus. The results showed that there were significant differences in metabolic indexes such as RMR, NST, NPY, AgRP, and morphological indexes such as body length, tail length and ear length among the five regions. Bacterial community in intestinal tract of E. miletus mainly includes three phyla, of which Firmicutes is the dominant phyla, followed by Bacteroidetes and Tenericutes. At the genus level, the dominant bacterial genera were S24-7(UG), Clostridiales (UG), and Lachnospiraceae (UG), etc. α diversity of intestinal microorganisms in DL and JC were significantly different from that in the other three regions. Genera of intestinal microorganisms in DL and JC were also the most. Moreover, Bacteroides, Ruminococcus, and Treponema could affect energy metabolism in E. miletus, which were closely related to the environment in which they lived. All of these results indicated that different areas in Hengduan Mountain had certain effects on the structure of intestinal microbial community in E. miletus, which were responded positively to changes in food abundance and other environmental factors. Furthermore, Firmicutes and Bacteroidetes play an important role in the body mass regulation in E. miletus.
Collapse
Affiliation(s)
- Bowen Yan
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, China
| | - Zhengkun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
- *Correspondence: Wanlong Zhu,
| |
Collapse
|
31
|
Pan Z, Hu Y, Huang Z, Han N, Li Y, Zhuang X, Yin J, Peng H, Gao Q, Zhang W, Huang Y, Cui Y, Bi Y, Xu ZZ, Yang R. Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2093-2113. [PMID: 35301705 DOI: 10.1007/s11427-021-2056-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota is involved in host responses to high altitude. However, the dynamics of intestinal microecology and their association with altitude-related illness are poorly understood. Here, we used a rat model of hypobaric hypoxia challenge to mimic plateau exposure and monitored the gut microbiome, short-chain fatty acids (SCFAs), and bile acids (BAs) over 28 d. We identified weight loss, polycythemia, and pathological cardiac hypertrophy in hypoxic rats, accompanied by a large compositional shift in the gut microbiota, which is mainly driven by the bacterial families of Prevotellaceae, Porphyromonadaceae, and Streptococcaceae. The aberrant gut microbiota was characterized by increased abundance of the Parabacteroides, Alistipes, and Lactococcus genera and a larger Bacteroides to Prevotella ratio. Trans-omics analyses showed that the gut microbiome was significantly correlated with the metabolic abnormalities of SCFAs and BAs in feces, suggesting an interaction network remodeling of the microbiome-metabolome after the hypobaric hypoxia challenge. Interestingly, the transplantation of fecal microbiota significantly increased the diversity of the gut microbiota, partially inhibited the increased abundance of the Bacteroides and Alistipes genera, restored the decrease of plasma propionate, and moderately ameliorated cardiac hypertrophy in hypoxic rats. Our results provide an insight into the longitudinal changes in intestinal microecology during the hypobaric hypoxia challenge. Abnormalities in the gut microbiota and microbial metabolites contribute to the development of high-altitude heart disease in rats.
Collapse
Affiliation(s)
- Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yichen Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zongyu Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ni Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiye Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Hui Peng
- Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050, China
| | - Quansheng Gao
- Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China. .,Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
32
|
Luo C, Sun G, Duan J, Han H, Zhong R, Chen L, Wangdui B, Zhu Y, Wang Z, Zhang H. Effects of high-altitude hypoxic environment on colonic inflammation, intestinal barrier and gut microbiota in three-way crossbred commercial pigs. Front Microbiol 2022; 13:968521. [PMID: 36160198 PMCID: PMC9493363 DOI: 10.3389/fmicb.2022.968521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, the three-way crossbred commercial pigs are extensively cultured in Tibet. However, there have been few studies about the effect of high-altitude hypoxic environment on intestinal health of them. Therefore, we selected Tibetan pigs (TP) and the three-way crossbred commercial pigs (CP-H) living in the Tibet (3,500–3,700 m in altitude) as a positive control group and treatment group, respectively. The three-way crossbred commercial pigs (CP-L) living at altitudes 800–1,000 m sea level were selected as a negative control group. The colonic chyme, colonic mucosa, colonic tissue and serum samples were collected for the detection of gut microbiota and intestinal inflammation. The results showed that high-altitude hypoxic environment promoted the occurrence of colonic inflammation, disrupted the colonic barrier to some extent. And Hematoxylin–Eosin (HE) staining revealed that mild inflammatory cell infiltration was observed in colon of CP-H. 16S rRNA gene sequencing revealed that the microbial community composition of CP-H was changed compared with CP-L. Gut bacterial communities formed distinctly different clusters in principal coordinates analysis (PCoA) space, and Chao 1 index of CP-H was also decreased. At the genus level, Terrisporobacter showed greater enrichment in the CP-H than lower-altitude pigs. Colstridium-sensu-stricto-1 showed lower enrichment in the CP-H than lower-altitude pigs. However, the concentration of valeric acid in colonic chyme of CP-H was higher than CP-L and TP. Correlation analysis indicated that Terrisporobacter was positively associated with the relative mRNA expression level of IL-1β and the content of lipopolysaccharide (LPS), and was negatively correlated with the relative mRNA expression level of IL-10. The Streptococcus was positively associated with the concentrations of valerate. In summary, high-altitude hypoxic environment changed compositions of gut microbiota, promoted the occurrence of colonic inflammation, and disrupted intestinal barrier of the three-way crossbred commercial pigs.
Collapse
Affiliation(s)
- Chengzeng Luo
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangming Sun
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Jiujun Duan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyu Han
- Tibet Changdu Animal Husbandry General Station, Changdu, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Basang Wangdui
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
- *Correspondence: Yanbin Zhu,
| | - Zirong Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Zirong Wang,
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Zhu Y, Li X, zhaxi L, zhaxi S, Suolang, Ciyang, Sun G, yangji C, wangdui B. House feeding system improves the estrus rate in yaks (Bos grunniens) by increasing specific fecal microbiota and myo-inositol content in serum. Front Microbiol 2022; 13:974765. [PMID: 36160251 PMCID: PMC9491274 DOI: 10.3389/fmicb.2022.974765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Grazing (G) yaks (Bos grunniens) are generally of low fertility, which severely limits the income of local pastoralists. However, we recently found that yaks had a 52% higher estrus rate in house feeding (HF) than in G. Gas chromatography-mass spectrometry (GC-MS) and 16S rRNA gene sequencing were used to analyze serum metabolites and fecal microbiota of 20 rutting yaks in the G and HF systems, respectively, to explain this phenomenon. The results showed that 73 total metabolites differed significantly (p < 0.05 and VIP > 1) between the G and HF systems. In the HF system, 53 were upregulated and 20 were downregulated compared with the G system. Organic oxygen compounds, organic acids and their derivatives, and lipids and lipid-like molecules were the most common differential metabolites. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapper revealed that 25 metabolic signaling pathways differed significantly between the two systems. The top three enriched pathways included central carbon metabolism in cancer, aminoacyl–tRNA biosynthesis, and ABC transporters. The 16S rRNA gene sequencing data showed no significant differences in Chao 1 index between the two systems. According to principal component analysis (PCA), the HF and G systems were distinctly and separately clustered in terms of fecal microbiota distribution. The G system showed significantly higher abundances of Firmicutes. The HF system showed significantly higher abundances of Alistipes, Treponema, and Rikenellaceae_ RC9_ gut_ group. Pearson's correlation analysis and core network analysis revealed that Rikenellaceae_RC9_ gut_ group, Alistipes, and Treponema were positively correlated with myo-inositol and formed the core bacteria. In summary, the HF system promoted the estrus rate and changed the composition of yak fecal microbiota and serum metabolites. Increased estrus rate might be obtained due to enhanced myo-inositol content in yak serum via the HF system. Correlation analysis suggested that myo-inositol content might also be partly increased via yak-specific fecal microbiota, contributing to the estrus rate. These findings could lead to a novel therapeutic strategy for G yaks due to their low estrus rate.
Collapse
|
34
|
The Association between Gut Microbiome Diversity and Composition and Heat Tolerance in Cattle. Microorganisms 2022; 10:microorganisms10081672. [PMID: 36014088 PMCID: PMC9414853 DOI: 10.3390/microorganisms10081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cattle are raised around the world and are frequently exposed to heat stress, whether in tropical countries or in regions with temperate climates. It is universally acknowledged that compared to those in temperate areas, the cattle breeds developed in tropical and subtropical areas have better heat tolerance. However, the underlying mechanism of heat tolerance has not been fully studied, especially from the perspective of intestinal microbiomics. The present study collected fecal samples of cattle from four representative climatic regions of China, namely, the mesotemperate (HLJ), warm temperate (SD), subtropical (HK), and tropical (SS) regions. Then, the feces were analyzed using high-throughput 16S rRNA sequencing. The results showed that with increasing climatic temperature from HLJ to SS, the abundance of Firmicutes increased, accompanied by an increasing Firmicutes to Bacteroidota ratio. Proteobacteria showed a trend of reduction from HLJ to SS. Patescibacteria, Chloroflexi, and Actinobacteriota were particularly highest in SS for adapting to the tropical environment. The microbial phenotype in the tropics was characterized by an increase in Gram-positive bacteria and a decrease in Gram-negative bacteria, aerobic bacteria, and the forming of_biofilms. Consistently, the functional abundances of organismal systems and metabolism were decreased to reduce the material and energy demands in a hot environment. Genetic information processing and information storage and processing may be how gut flora deals with hot conditions. The present study revealed the differences in the structure and function of gut microbes of cattle from mesotemperate to tropical climates and provided an important reference for future research on the mechanism of heat tolerance regulated by the gut microbiota and a potential microbiota-based target to alleviate heat stress.
Collapse
|
35
|
Wang X, Wu X, Shang Y, Gao Y, Li Y, Wei Q, Dong Y, Mei X, Zhou S, Sun G, Liu L, Lige B, Zhang Z, Zhang H. High-Altitude Drives the Convergent Evolution of Alpha Diversity and Indicator Microbiota in the Gut Microbiomes of Ungulates. Front Microbiol 2022; 13:953234. [PMID: 35875556 PMCID: PMC9301279 DOI: 10.3389/fmicb.2022.953234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Convergent evolution is an important sector of evolutionary biology. High-altitude environments are one of the extreme environments for animals, especially in the Qinghai Tibet Plateau, driving the inquiry of whether, under broader phylogeny, high-altitude factors drive the convergent evolution of Artiodactyla and Perissodactyla gut microbiomes. Therefore, we profiled the gut microbiome of Artiodactyla and Perissodactyla at high and low altitudes using 16S rRNA gene sequencing. According to cluster analyses, the gut microbiome compositions of high-altitude Artiodactyla and Perissodactyla were not grouped together and were far from those of low-altitude Artiodactyla and Perissodactyla. The Wilcoxon’s test in high-altitude ungulates showed significantly higher Sobs and Shannon indices than in low-altitude ungulates. At the phylum level, Firmicutes and Patescibacteria were significantly enriched in the gut microbiomes of high-altitude ungulates, which also displayed a higher Firmicutes/Bacteroidetes value than low-altitude ungulates. At the family level, Ruminococcaceae, Christensenellaceae, and Saccharimonadaceae were significantly enriched in the gut microbiomes of high-altitude ungulates. Our results also indicated that the OH and FH groups shared two significantly enriched genera, Christensenellaceae_R_7_group and Candidatus_Saccharimonas. These findings indicated that a high altitude cannot surpass the order level to drive the convergent evolution of ungulate gut microbiome composition but can drive the convergent evolution of alpha diversity and indicator microbiota in the gut microbiome of ungulates. Overall, this study provides a novel perspective for understanding the adaptation of ungulates to high-altitude environments.
Collapse
Affiliation(s)
- Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | | | - Ying Li
- Wild World Jinan, Jinan, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Yuehuan Dong
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xuesong Mei
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Shengyang Zhou
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Guolei Sun
- College of Life Sciences, Qufu Normal University, Qufu, China
| | | | - Bi Lige
- Forestry and Grassland Station, Golmud, China
| | - Zhihao Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
- *Correspondence: Honghai Zhang,
| |
Collapse
|
36
|
Acute exposure to simulated high-altitude hypoxia alters gut microbiota in mice. Arch Microbiol 2022; 204:412. [PMID: 35731330 DOI: 10.1007/s00203-022-03031-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/04/2023]
Abstract
Gut microbiota bears adaptive potential to different environments, but little is known regarding its responses to acute high-altitude exposure. This study aimed to evaluate the microbial changes after acute exposure to simulated high-altitude hypoxia. C57BL/6 J mice were divided into hypoxia and normoxia groups. The hypoxia group was exposed to a simulated altitude of 5500 m for 24 h above sea level. The normoxia group was maintained in low altitude of 10 m above sea level. Colonic microbiota was analyzed using 16S rRNA V4 gene sequencing. Compared with the normoxia group, Shannon, Simpson and Akkermansia were significantly increased, while Firmicutes-to-Bacteroidetes ratio and Bifidobacterium were significantly decreased in the hypoxia group. The hypoxia group exhibited lower mobile element containing and higher potentially pathogenic and stress-tolerant phenotypes than those in the normoxia group. Functional analysis indicated that environmental information processing was significantly lower, metabolism, cellular processes and organismal systems were significantly higher in the hypoxia group than those in the normoxia group. In conclusion, acute exposure to simulated high-altitude hypoxia alters gut microbiota diversity and composition, which may provide a potential target to alleviate acute high-altitude diseases.
Collapse
|
37
|
Li Y, Yang Y, Ma L, Liu J, An Q, Zhang C, Yin G, Cao Z, Pan H. Comparative Analyses of Antibiotic Resistance Genes in Jejunum Microbiota of Pigs in Different Areas. Front Cell Infect Microbiol 2022; 12:887428. [PMID: 35719330 PMCID: PMC9204423 DOI: 10.3389/fcimb.2022.887428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance genes (ARGs) are emerging environmental contaminants that threaten human and animal health. Intestinal microbiota may be an important ARGs repository, and intensive animal farming is a likely contributor to the environmental burden of ARGs. Using metagenomic sequencing, we investigated the structure, function, and drug resistance of the jejunal microbial community in Landrace (LA, Kunming), Saba (SB, Kunming), Dahe (DH, Qujing), and Diannan small-ear piglets (DS, Xishuangbanna) from different areas in Yunnan Province, China. Remarkable differences in jejunal microbial diversity among the different pig breeds, while the microbial composition of pig breeds in close areas tends to be similar. Functional analysis showed that there were abundant metabolic pathways and carbohydrate enzymes in all samples. In total, 32,487 ARGs were detected in all samples, which showed resistance to 38 categories of drugs. The abundance of ARGs in jejunum was not significantly different between LA and SB from the same area, but significantly different between DS, DH and LA or SB from different areas. Therefore, the abundance of ARGs was little affected by pig breeds and microorganism community structure, but it was closely related to geographical location. In addition, as a probiotic, Lactobacillus amylovorus is also an important ARGs producing bacterium. Our results revealed the antibiotic exposure and intestinal microbial resistance of farms in the study areas, which could provide basic knowledge and potential strategies for rational use of antibiotics and reducing the risk of ARGs transmission in animal husbandry.
Collapse
Affiliation(s)
- Yongxiang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuting Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li Ma
- Institiute of Animal husbandry, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Jianping Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingcong An
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunyong Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Gefen Yin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhenhui Cao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
38
|
Gao S, Khan MI, Kalsoom F, Liu Z, Chen Y, Chen Z. Role of gene regulation and inter species interaction as a key factor in gut microbiota adaptation. Arch Microbiol 2022; 204:342. [PMID: 35595857 DOI: 10.1007/s00203-022-02935-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Gut microbiota is a class of microbial flora present in various eukaryotic multicellular complex animals such as human beings. Their community's growth and survival are greatly influenced by various factors such as host-pathogen, pathogen-environment and genetic regulation. Modern technologies like metagenomics have particularly extended our capacity to uncover the microbial treasures in challenging conditions like communities surviving at high altitude. Molecular characterizations by newly developed sequencing tools have shown that this complex interaction greatly influences microbial adaptation to the environment. Literature shows that gut microbiota alters the genetic expression and switches to an alternative pathway under the influence of unfavorable conditions. The remarkable adaptability of microbial genetic regulatory networks enables them to survive and expand in tough and energy-limited conditions. Variable prevalence of species in various regions has strengthened this initial evidence. In view of the interconnection of the world in the form of a global village, this phenomenon must be explored more clearly. In this regard, recently there has been significant addition of knowledge to the field of microbial adaptation. This review summarizes and shed some light on mechanisms of microbial adaptation via gene regulation and species interaction in gut microbiota.
Collapse
Affiliation(s)
- Shuang Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China
| | - Muhammad Imran Khan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China. .,Department of Pathology, District Headquarters Hospital, Jhang, 35200, Punjab, Islamic Republic of Pakistan.
| | - Fadia Kalsoom
- Department of Microbiology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yanxin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
39
|
Liu D, Zhao R, Wu Y, Wang Y, Yang R, Ke X. Variation in the Efficacy of Anti-Ulcerative Colitis Treatments Reveals the Conflict Between Precipitating Compatibility of Traditional Chinese Medicine and Modern Technology: A Case of Scutellaria-Coptis. Front Pharmacol 2022; 13:819851. [PMID: 35517805 PMCID: PMC9065555 DOI: 10.3389/fphar.2022.819851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Scutellariae and Coptidis compose a classical drug pair applied in clinical practice to dispel heat, dryness, and dampness, and they are also precipitation compatible drug pairs. With modern technology, Scutellaria-Coptis is mostly prepared by decocting its components separately, while in the traditional method, it is predominantly prepared as a combined decoction. The present study investigated the effects and mechanisms of separate and combined application of Scutellaria-Coptis decoction on ulcerative colitis (UC) in mice induced by the administration of dextran sulfate sodium (DSS). Changes in body weight, colon length, and Disease Activity Index scores were also evaluated. Hematoxylin and eosin staining and other methods were used to evaluate the overall condition of animals in each group. Intestinal microflora was analyzed using 16S rRNA sequencing, while colon inflammation and antioxidant capacity were evaluated based on the levels of interleukin-6 (IL-6), IL-10, IL-1β, tumor necrosis factor-α, superoxide dismutase, malondialdehyde, and reduced glutathione. The results revealed that Scutellaria-Coptis significantly relieved colon inflammation in mice, and the combined decoction of Scutellaria-Coptis exerted a significant effect on UC. Notably, the protective effect of Scutellaria-Coptis against colon inflammation was weakened when the antibiotic mixture was partially consumed by the gut microbiota. The results of 16S rRNA sequencing showed that the group treated with combined decoction of Scutellaria-Coptis exhibited a higher intestinal microbial diversity and intestinal flora composition than the separated decoction group. Treatment of mice with UC by administering Scutellaria-Coptis decoction through intestinal flora removal (ABX) and fecal microbial transplantation (FMT) was closely associated with intestinal flora composition. In conclusion, Scutellaria-Coptis can relieve UC with an excellent effect especially when taken as a combined decoction, alleviating colon inflammation incurred by intestinal microbes to a certain extent.
Collapse
Affiliation(s)
- Dan Liu
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Ran Zhao
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Yajing Wu
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rongping Yang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.,School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| |
Collapse
|
40
|
Li J, Sun L, He X, Liu J, Wang D, Han Y, Chen B, Li X, Song L, Yang W, Zuo L, Sun J, Qin L, He F, Tang Y, Yang L, Kang L, He Y, Qin X, Li X. Succession of the Gut Microbiome in the Tibetan Population of Minjiang River Basin. Front Microbiol 2022; 13:834335. [PMID: 35479628 PMCID: PMC9035803 DOI: 10.3389/fmicb.2022.834335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tibetans are one of the oldest ethnic groups in China and South Asia. Based on the analysis of 1,059 Tibetans in the Minjiang River basin at an altitude of 500–4,001 m, we found that the dominant phyla of the Tibetan population were Bacteroidota and Firmicutes, and the main genera were Prevotella and Bacteroides, which were mostly in consistent with other nationalities. We further evaluated in total 115 parameters of seven categories, and results showed that altitude was the most important factor affecting the variation in the microbial community. In the process of emigration from high altitudes to the plain, the gut microbial composition of late emigrants was similar to that of plateau aborigines. In addition, regarding immigration from low altitude to high altitude, the microbial community became more similar to that of high altitude population with the increase of immigration time. Changes in these microbes are related to the metabolism, disease incidence and cell functions of the Tibetan population. The results of other two cohorts (AGP and Z208) also showed the impact of altitude on the microbial community. Our study demonstrated that altitude of habitation is an important factor affecting the enterotype of the microflora in the Tibetan population and the study also provided a basis to explore the interaction of impact parameters with gut microbiome for host health and diseases.
Collapse
Affiliation(s)
- Jun Li
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Jun Li,
| | - Lin Sun
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xianlu He
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jing Liu
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dan Wang
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuanping Han
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Baijun Chen
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xuemei Li
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lingmeng Song
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wen Yang
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Luo Zuo
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jingping Sun
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ling Qin
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng He
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | | | - Lin Yang
- Ngawa Tibetan and Qiang Autonomous Prefecture People’s Hospital, Ngawa, China
| | - Lesiji Kang
- Ngawa Tibetan and Qiang Autonomous Prefecture People’s Hospital, Ngawa, China
| | - Yonghua He
- Hongyuan County People’s Hospital, Hongyuan, China
| | - Xiaofeng Qin
- Center of Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- Xiaofeng Qin,
| | - Xiaoan Li
- Department of Gastroenterology, Mianyang Central Hospital, Mianyang, China
- Xiaoan Li,
| |
Collapse
|
41
|
Bai X, Liu G, Yang J, Zhu J, Li X. Gut Microbiota as the Potential Mechanism to Mediate Drug Metabolism Under High-Altitude Hypoxia. Curr Drug Metab 2022; 23:8-20. [PMID: 35088664 DOI: 10.2174/1389200223666220128141038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The characteristics of pharmacokinetics and the activity and expression of drug-metabolizing enzymes and transporters significantly change under a high-altitude hypoxic environment. Gut microbiota is an important factor affecting the metabolism of drugs through direct or indirect effects, changing the bioavailability, biological activity, or toxicity of drugs and further affecting the efficacy and safety of drugs in vivo. A high-altitude hypoxic environment significantly changes the structure and diversity of gut microbiota, which may play a key role in drug metabolism under a high-altitude hypoxic environment. METHODS An investigation was carried out by reviewing published studies to determine the role of gut microbiota in the regulation of drug-metabolizing enzymes and transporters. Data and information on expression change in gut microbiota, drug-metabolizing enzymes and transporters under a high-altitude hypoxic environment were explored and proposed. RESULTS High-altitude hypoxia is an important environmental factor that can adjust the structure of the gut microbiota and change the diversity of intestinal microbes. It was speculated that the gut microbiota could regulate drug-metabolizing enzymes through two potential mechanisms, the first being through direct regulation of the metabolism of drugs in vivo and the second being indirect, i.e., through the regulation of drug-metabolizing enzymes and transporters, thereby affecting the activity of drugs. CONCLUSION This article reviews the effects of high-altitude hypoxia on the gut microbiota and the effects of these changes on drug metabolism.
Collapse
Affiliation(s)
- Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Junbo Zhu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
42
|
Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes 2022; 13:1-21. [PMID: 33525961 PMCID: PMC7872077 DOI: 10.1080/19490976.2021.1875796] [Citation(s) in RCA: 626] [Impact Index Per Article: 313.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Blautia is a genus of anaerobic bacteria with probiotic characteristics that occur widely in the feces and intestines of mammals. Based on phenotypic and phylogenetic analyses, some species in the genera Clostridium and Ruminococcus have been reclassified as Blautia, so to date, there are 20 new species with valid published names in this genus. An extensive body of research has recently focused on the probiotic effects of this genus, such as biological transformation and its ability to regulate host health and alleviate metabolic syndrome. This article reviews the origin and biological characteristics of Blautia and the factors that affect its abundance and discusses its role in host health, thus laying a theoretical foundation for the development of new functional microorganisms with probiotic properties.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,CONTACT Bingyong Mao
| | - Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,Shumao Cui School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
43
|
Shealy NG, Yoo W, Byndloss MX. Colonization resistance: metabolic warfare as a strategy against pathogenic Enterobacteriaceae. Curr Opin Microbiol 2021; 64:82-90. [PMID: 34688039 DOI: 10.1016/j.mib.2021.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
The intestine is home to a large and complex bacterial ecosystem (microbiota), which performs multiple beneficial functions for the host, including immune education, nutrition, and protection against invasion by enteric pathogens (colonization resistance). The host and microbiome symbiotic interactions occur in part through metabolic crosstalk. Thus, microbiota members have evolved highly diverse metabolic pathways to inhibit pathogen colonization via activation of protective immune responses and nutrient acquisition and utilization. Conversely, pathogenic Enterobacteriaceae actively induce an inflammation-dependent disruption of the gut microbial ecosystem (dysbiosis) to gain a competitive metabolic advantage against the resident microbiota. This review discusses the recent findings on the crucial role of microbiota metabolites in colonization resistance regulation. Additionally, we summarize metabolic mechanisms used by pathogenic Enterobacteriaceae to outcompete commensal microbes and cause disease.
Collapse
Affiliation(s)
- Nicolas G Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Woongjae Yoo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
44
|
Liang T, Liu F, Ma L, Zhang Z, Liu L, Huang T, Li J, Dong W, Zhang H, Li Y, Jiang Y, Ye W, Bai S, Kang L. Migration effects on the intestinal microbiota of Tibetans. PeerJ 2021; 9:e12036. [PMID: 34721954 PMCID: PMC8530097 DOI: 10.7717/peerj.12036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/02/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Diet, environment, and genomic context have a significant impact on humans' intestinal microbiota. Moreover, migration may be accompanied by changes in human eating habits and living environment, which could, in turn, affect the intestinal microbiota. Located in southwestern China, Tibet has an average altitude of 4,000 meters and is known as the world's roof. Xianyang is situated in the plains of central China, with an average altitude of about 400 meters. METHODS To understand the association between intestinal microbiota and population migration, we collected the fecal samples from 30 Tibetan women on the first day (as TI1st), six months (as TI2nd), and ten months (as TI3rd) following migration from Tibet to Xianyang. Fecal samples were collected from 29 individuals (belonging to the Han women) as a control. The dietary information of the Tibetan women and the Han women was gathered. We performed a 16S rRNA gene survey of the collected fecal samples using Illumina MiSeq sequencing. RESULTS Following the migration, the alpha and beta diversity of Tibetan women's intestinal microbiota appeared unaffected. Linear discriminant analysis effect size (LEfSe) analysis showed that Klebsiella, Blautia, and Veillonella are potential biomarkers at TI1st, while Proteobacteria and Enterobacteriaceae were common in TI3rd. Finally, functional prediction by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) found no significant up-regulation or down-regulation gene pathway in the intestinal microbiota of Tibetan women after migration. The present study reveals that the higher stability in Tibetan women's intestinal microbiota was less affected by the environment and diet, indicating that Tibetan women's intestinal microbiota is relatively stable. The main limitations of the study were the small sample size and all volunteers were women.
Collapse
Affiliation(s)
- Tian Liang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| | - Fang Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| | - Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| | - Zhiying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| | - Lijun Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| | - Tingting Huang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jing Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| | - Wenxue Dong
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| | - Han Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| | - Yansong Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| | - Yaqiong Jiang
- Zashe Community Health Service Center, Lhasa, Tibet Autonomous Region, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Su Bai
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shannxi Province, China
| |
Collapse
|
45
|
Sturgess C, Montgomery H. Selection pressure at altitude for genes related to alcohol metabolism: A role for endogenous enteric ethanol synthesis? Exp Physiol 2021; 106:2155-2167. [PMID: 34487385 DOI: 10.1113/ep089628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Highland natives have undergone natural selection for genetic variants advantageous in adaptation to the hypobaric hypoxia experienced at high altitude. Why genes related to alcohol metabolism appear consistently selected for has not been greatly considered. We hypothesize that altitude-related changes in the gut microbiome offer one possible explanation. What advances does it highlight? Low intestinal oxygen tension might favour the production of ethanol through anaerobic fermentation by the gut microbiome. Subsequent increases in endogenous ethanol absorption could therefore provide a selection pressure for gene variants favouring its increased degradation, or perhaps reduced degradation if endogenously synthesized ethanol acts as a metabolic signalling molecule. ABSTRACT Reduced tissue availability of oxygen results from ascent to high altitude, where atmospheric pressure, and thus the partial pressure of inspired oxygen, fall (hypobaric hypoxia). In humans, adaptation to such hypoxia is necessary for survival. These functional changes remain incompletely characterized, although metabolic adaptation (rather than simple increases in convective oxygen delivery) appears to play a fundamental role. Those populations that have remained native to high altitude have undergone natural selection for genetic variants associated with advantageous phenotypic traits. Interestingly, a consistent genetic signal has implicated alcohol metabolism in the human adaptive response to hypobaric hypoxia. The reasons for this remain unclear. One possibility is that increased alcohol synthesis occurs through fermentation by gut bacteria in response to enteric hypoxia. There is growing evidence that anaerobes capable of producing ethanol become increasingly prevalent with high-altitude exposure. We hypothesize that: (1) ascent to high altitude renders the gut luminal environment increasingly hypoxic, favouring (2) an increase in the population of enteric fermenting anaerobes, hence (3) the synthesis of alcohol which, through systemic absorption, leads to (4) selection pressure on genes relating to alcohol metabolism. In theory, alcohol could be viewed as a toxic product, leading to selection of gene variants favouring its metabolism. On the contrary, alcohol is a metabolic substrate that might be beneficial. This mechanism could also account for some of the interindividual differences of lowlanders in acclimatization to altitude. Future research should be aimed at determining any shifts to favour ethanol-producing anaerobes after ascent to altitude.
Collapse
Affiliation(s)
- Connie Sturgess
- Institute for Human Health and Performance, Department of Medicine, University College London, London, UK
| | - Hugh Montgomery
- Institute for Human Health and Performance, Department of Medicine, University College London, London, UK
| |
Collapse
|
46
|
Liu K, Yang J, Yuan H. Recent progress in research on the gut microbiota and highland adaptation on the Qinghai-Tibet Plateau. J Evol Biol 2021; 34:1514-1530. [PMID: 34473899 DOI: 10.1111/jeb.13924] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Microbial communities that inhabit the host's intestine influence many aspects of the host's health and bear the adaptive potential to alterations in harsh environments and diets. The Qinghai-Tibet Plateau represents one of the harshest environments in the world. Preliminary progress has been made in identifying the communities of gut microbes in Indigenous Tibetans and non-human animals. However, due to the complexity of microbial communities, the effects of gut microbes on the host's health and high-plateau adaptation remain unexplained. Herein, we review the latest progress in identifying factors affecting the gut microbiota of native Tibetans and non-human animals and highlight the complex interactions between the gut microbiota, health and highland adaptation, which provides a basis for exploring the correlations between the gut microbiota and clinical indexes in native highland residents and travellers, as well as developing microbiota-based strategies to mitigate health risks for tourists and treatments for mountain sickness during high-altitude travel in the future.
Collapse
Affiliation(s)
- Kui Liu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Alsharif KF, Almalki AA, Alsanie WF, Alzahrani KJ, Kabrah SM, Elshopakey GE, Alghamdi AAA, Lokman MS, Sberi HA, Bauomy AA, Albrakati A, Ramadan SS, Kassab RB, Abdel Moneim AE, Salem FEH. Protocatechuic acid attenuates lipopolysaccharide-induced septic lung injury in mice: The possible role through suppressing oxidative stress, inflammation and apoptosis. J Food Biochem 2021; 45:e13915. [PMID: 34472624 DOI: 10.1111/jfbc.13915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Here, we investigated the protective efficacy of protocatechuic acid (PCA) against lipopolysaccharide (LPS)-induced septic lung injury. Eighty-two male Balb/c mice were divided into six groups: control, PCA30 (30 mg/kg), LPS (10 mg/kg), PCA10-LPS, PCA20-LPS, and PCA30-LPS treated with 10, 20 and 30 mg/kg PCA, respectively, for seven days before intraperitoneal LPS injection. PCA pre-treatment, especially at higher dose, significantly reduced LPS-induced lung tissue injury as indicated by increased heat shock protein 70 and antioxidant molecules (reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) accompanied by lower oxidative stress indices (malondialdehyde and nitric oxide). PCA administration decreased inflammatory mediators including myeloperoxidase, nuclear factor kappa B (NF-κB p65), and pro-inflammatory cytokines, and prevented the development of apoptotic events in the lung tissue. At the molecular level, PCA downregulated mRNA expression of nitric oxide synthase 2, C/EBP homologous protein, and high mobility group box1 in the lungs of all PCA-LPS treated mice. Thus, PCA-pre-treatment effectively counteracted sepsis-induced acute lung injury in vivo by promoting and antioxidant status, while inhibiting inflammation and apoptosis. PRACTICAL IMPLICATIONS: Sepsis-mediated organ dysfunction and high mortality is aggravated by acute lung injury (ALI). Therefore, new therapeutic approaches are needed to encounter sepsis-mediated ALI. Protocatechuic acid (PCA) is a naturally occurring phenolic acid with various biological and pharmacological activities. PCA is abundant in edible plants including Allium cepa L., Oryza sativa L., Hibiscus sabdariffa, Prunus domestica L., and Eucommia ulmoides. In this investigation we studied the potential protective role of pure PCA (10, 20 and 30 mg/kg) on LPS-mediated septic lung injury in mice through examining oxidative challenge, inflammatory response, apoptotic events and histopathological changes in addition to evaluating the levels and mRNA expression of heat shock protein 70, C/EBP homologous protein and high mobility group box1 in the lung tissue. The recorded results showed that PCA pre-administration was able to significantly abrogate the damages in the lung tissue associated septic response. This protective effect comes from its strong antioxidant, anti-inflammatory, and anti-apoptotic activities, suggesting that PCA may be applied to alleviate ALI associated with the development of sepsis.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Saeed M Kabrah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm AlQura University, Mecca, Saudi Arabia
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt.,Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Amira A Bauomy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Science Laboratories, College of Science and Arts, Qassim University, ArRass, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Shimaa S Ramadan
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Fatma Elzahraa H Salem
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
48
|
Sun G, Xia T, Wei Q, Dong Y, Zhao C, Yang X, Zhang L, Wang X, Sha W, Zhang H. Analysis of gut microbiota in three species belonging to different genera ( Hemitragus, Pseudois, and Ovis) from the subfamily Caprinae in the absence of environmental variance. Ecol Evol 2021; 11:12129-12140. [PMID: 34522365 PMCID: PMC8427585 DOI: 10.1002/ece3.7976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to identify the effects of host species on the gut microbial flora in three species (Hemitragus jemlahicus, Pseudois nayaur, and Ovis orientalis) from the subfamily Caprinae, by excluding the impact of environment factors. We investigated the differences in intestinal flora of three species belonging to Caprinae, which were raised in identical conditions. Fecal samples were collected from tahr, mouflon, and bharal, and the V3-V4 region of the 16S ribosomal RNA gene was analyzed by high-throughput sequencing. The analysis of 16S rRNA gene sequences reveals that fecal samples were mainly composed of four phyla: Firmicutes, Bacteroidetes, Spirochaetes, and Proteobacteria. The most abundant phyla included Firmicutes and Bacteroidetes accounting for >90% of the bacteria, and a higher Firmicutes/Bacteroidetes ratio was observed in tahrs. Moreover, significant differences existed at multiple levels of classifications in the relative abundance of intestinal flora, differing greatly between species. Phylogenetic analyses based on 16S rRNA gene indicated that mouflon is closely related to bharal, and it is inconsistent with previous reports in the species evolutionary relationships. In this study, we demonstrated that the gut microbiota in tahr had a stronger ability to absorb and store energy from the diet compared with mouflon and bharal, and the characteristics of host-microbiome interactions were not significant.
Collapse
Affiliation(s)
- Guolei Sun
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Tian Xia
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Qinguo Wei
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Yuehuan Dong
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Chao Zhao
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Xiufeng Yang
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Lei Zhang
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Xibao Wang
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Weilai Sha
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Honghai Zhang
- College of Life ScienceQufu Normal UniversityQufuChina
| |
Collapse
|
49
|
Han N, Pan Z, Liu G, Yang R, Yujing B. Hypoxia: The "Invisible Pusher" of Gut Microbiota. Front Microbiol 2021; 12:690600. [PMID: 34367091 PMCID: PMC8339470 DOI: 10.3389/fmicb.2021.690600] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Oxygen is important to the human body. Cell survival and operations depend on oxygen. When the body becomes hypoxic, it affects the organs, tissues and cells and can cause irreversible damage. Hypoxia can occur under various conditions, including external environmental hypoxia and internal hypoxia. The gut microbiota plays different roles under hypoxic conditions, and its products and metabolites interact with susceptible tissues. This review was conducted to elucidate the complex relationship between hypoxia and the gut microbiota under different conditions. We describe the changes of intestinal microbiota under different hypoxic conditions: external environment and internal environment. For external environment, altitude was the mayor cause induced hypoxia. With the increase of altitude, hypoxia will become more serious, and meanwhile gut microbiota also changed obviously. Body internal environment also became hypoxia because of some diseases (such as cancer, neonatal necrotizing enterocolitis, even COVID-19). In addition to the disease itself, this hypoxia can also lead to changes of gut microbiota. The relationship between hypoxia and the gut microbiota are discussed under these conditions.
Collapse
Affiliation(s)
- Ni Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bi Yujing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
50
|
Aricha H, Simujide H, Wang C, Zhang J, Lv W, Jimisi X, Liu B, Chen H, Zhang C, He L, Cui Y, Gao R, Aorigele C. Comparative Analysis of Fecal Microbiota of Grazing Mongolian Cattle from Different Regions in Inner Mongolia, China. Animals (Basel) 2021; 11:ani11071938. [PMID: 34209653 PMCID: PMC8300212 DOI: 10.3390/ani11071938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recently, there has been increasing attention focused on the intestinal microflorae of animals due to their critical role in maintaining health and preventing disease. With the improvement of the Chinese national economy and the people’s material standard of living, the beef cattle industry is growing rapidly to meet the growing market demand for beef. Mongolian cattle is a precious genetic resource in China and an excellent cattle breed in Inner Mongolia. However, updated research on topics concerning the gut microbiota of Mongolian cattle are absent. Therefore, this study focused on the differences in the gut microbiota composition of Mongolian cattle in different geographical environments. The gut microbiota composition of the Mongolian cattle from the grasslands was relatively similar, while that from the desert areas was different. The results of this study contribute to our understanding of the influence of geographical factors on the composition of gut microbiota in Mongolian cattle. Abstract Mongolian cattle from China have strong adaptability and disease resistance. We aimed to compare the gut microbiota community structure and diversity in grazing Mongolian cattle from different regions in Inner Mongolia and to elucidate the influence of geographical factors on the intestinal microbial community structure. We used high throughput 16S rRNA sequencing to analyze the fecal microbial community and diversity in samples from 60 grazing Mongolian cattle from Hulunbuir Grassland, Xilingol Grassland, and Alxa Desert. A total of 2,720,545 high-quality reads and sequences that were 1,117,505,301 bp long were obtained. Alpha diversity among the three groups showed that the gut microbial diversity in Mongolian cattle in the grasslands was significantly higher than that in the desert. The dominant phyla were Firmicutes and Bacteroidetes, whereas Verrucomicrobia presented the highest abundance in the gut of cattle in the Alxa Desert. The gut bacterial communities in cattle from the grasslands versus the Alxa Desert were distinctive, and those from the grasslands were closely clustered. Community composition analysis revealed significant differences in species diversity and richness. Overall, the composition of the gut microbiota in Mongolian cattle is affected by geographical factors. Gut microbiota may play important roles in the geographical adaptations of Mongolian cattle.
Collapse
Affiliation(s)
- Han Aricha
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.A.); (H.S.); (J.Z.); (X.J.); (B.L.); (H.C.); (C.Z.); (L.H.); (Y.C.)
| | - Huasai Simujide
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.A.); (H.S.); (J.Z.); (X.J.); (B.L.); (H.C.); (C.Z.); (L.H.); (Y.C.)
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.W.); (W.L.); (R.G.)
| | - Jian Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.A.); (H.S.); (J.Z.); (X.J.); (B.L.); (H.C.); (C.Z.); (L.H.); (Y.C.)
| | - Wenting Lv
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.W.); (W.L.); (R.G.)
| | - Xirnud Jimisi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.A.); (H.S.); (J.Z.); (X.J.); (B.L.); (H.C.); (C.Z.); (L.H.); (Y.C.)
| | - Bo Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.A.); (H.S.); (J.Z.); (X.J.); (B.L.); (H.C.); (C.Z.); (L.H.); (Y.C.)
| | - Hao Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.A.); (H.S.); (J.Z.); (X.J.); (B.L.); (H.C.); (C.Z.); (L.H.); (Y.C.)
| | - Chen Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.A.); (H.S.); (J.Z.); (X.J.); (B.L.); (H.C.); (C.Z.); (L.H.); (Y.C.)
| | - Lina He
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.A.); (H.S.); (J.Z.); (X.J.); (B.L.); (H.C.); (C.Z.); (L.H.); (Y.C.)
| | - Yinxue Cui
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.A.); (H.S.); (J.Z.); (X.J.); (B.L.); (H.C.); (C.Z.); (L.H.); (Y.C.)
| | - Ruijuan Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.W.); (W.L.); (R.G.)
| | - Chen Aorigele
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.A.); (H.S.); (J.Z.); (X.J.); (B.L.); (H.C.); (C.Z.); (L.H.); (Y.C.)
- Correspondence:
| |
Collapse
|