1
|
Hunter-Barnett S, Viney M. Gut protozoa of wild rodents - a meta-analysis. Parasitology 2024; 151:594-605. [PMID: 38714350 PMCID: PMC11427965 DOI: 10.1017/s0031182024000556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Protozoa are well-known inhabitants of the mammalian gut and so of the gut microbiome. While there has been extensive study of a number of species of gut protozoa in laboratory animals, particularly rodents, the biology of the gut protozoa of wild rodents is much less well-known. Here we have systematically searched the published literature to describe the gut protozoa of wild rodents, in total finding records of 44 genera of protozoa infecting 228 rodent host species. We then undertook meta-analyses that estimated the overall prevalence of gut protozoa in wild rodents to be 24%, with significant variation in prevalence among some host species. We investigated how host traits may affect protozoa prevalence, finding that for some host lifestyles some protozoa differed in their prevalence. This synthesis of existing data on wild rodent gut protozoa provides a better understanding of the biology of these common gut inhabitants and suggests directions for their future study.
Collapse
Affiliation(s)
- Simon Hunter-Barnett
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mark Viney
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
2
|
Menegaldo LR, Arias-Pacheco CA, Perin PP, Tebaldi JH, Hoppe EGL. Gastrointestinal parasites of Peltocephalus dumerilianus (Testudines: Podocnemididae) from Jaú National Park, Brazilian Amazon. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e013823. [PMID: 38359299 PMCID: PMC10878694 DOI: 10.1590/s1984-29612024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
The big-headed Amazon River turtle, Peltocephalus dumerilianus, is endemic to the Orinoco and Amazon River basins. It is a food source for local communities, often unsustainably. Knowledge about P. dumerilianus' parasitological fauna and host-parasite relationships is limited. Thus, ecological aspects of gastrointestinal parasitism in this species were investigated. Helminths were found in the gastrointestinal tract of 21 turtles, morphologically identified, and infection descriptors calculated. All animals harbored helminths: nematodes Ancyracanthus pinnatifidus, Paratractis hystrix, Atractis trematophila, Klossinemella conciliatus indeterminate three Klossinemella species, and digeneans Nematophila grandis, Helicotrema spirale, and Telorchis hagmanni. The highest parasite load occurred in the large intestine, followed by the small intestine and stomach. Shell length directly correlated with parasite burden of heteroxenic helminths, with males having higher burden than females. This is the first record of A. trematophila, K. conciliatus, and T. hagmanni in P. dumerilianus, and new location record for A. trematophila, P. hystrix, N. grandis, H. spirale, and T. hagmanni. Three potentially new Klossinemella species are presented.
Collapse
Affiliation(s)
- Luciana Raffi Menegaldo
- Laboratório de Enfermidades Parasitárias - LabEPar, Departamento de Patologia, Reprodução e Saúde Única - DPRSU, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Carmen Andrea Arias-Pacheco
- Laboratório de Enfermidades Parasitárias - LabEPar, Departamento de Patologia, Reprodução e Saúde Única - DPRSU, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Patricia Parreira Perin
- Laboratório de Enfermidades Parasitárias - LabEPar, Departamento de Patologia, Reprodução e Saúde Única - DPRSU, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - José Hairton Tebaldi
- Laboratório de Enfermidades Parasitárias - LabEPar, Departamento de Patologia, Reprodução e Saúde Única - DPRSU, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Estevam Guilherme Lux Hoppe
- Laboratório de Enfermidades Parasitárias - LabEPar, Departamento de Patologia, Reprodução e Saúde Única - DPRSU, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| |
Collapse
|
3
|
Palacios-Marquez JJ, Guevara-Fiore P. Parasitism in viviparous vertebrates: an overview. Parasitol Res 2023; 123:53. [PMID: 38100003 DOI: 10.1007/s00436-023-08083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
The reproductive mode of viviparity has independently evolved in various animal taxa. It refers to the condition in which the embryos or young develop inside the female's body during gestation, providing advantages such as protection, nutrition, and improved survival chances. However, parasites and diseases can be an evolutionary force that limit the host's resources, leading to physiological, morphological, and behavioral changes that impose additional costs on both the pregnant female and her offspring. This review integrates the primary literature published between 1980 and 2021 on the parasitism of viviparous hosts. We describe aspects such as reproductive investment in females, offspring sex ratios, lactation investment in mammals, alterations in birth intervals, current reproductive investment, variations between environments, immune system activity in response to immunological challenges, and other factors that can influence the interaction between viviparous females and parasites. Maintaining pregnancy incurs costs in managing the mother's resources and regulating the immune system's responses to the offspring, while simultaneously maintaining an adequate defense against parasites and pathogens. Parasites can significantly influence this reproductive mode: parasitized females adjust their investment in survival and reproduction based on their life history, environmental factors, and the diversity of encountered parasites.
Collapse
Affiliation(s)
- Juan J Palacios-Marquez
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo y Av. San Claudio, Edificio Bio-1, Ciudad Universitaria, Col. Jardines de San Manuel, 72580, Puebla, CP, Mexico
| | - Palestina Guevara-Fiore
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Blvd. Valsequillo y Av. San Claudio, Edificio Bio-1, Ciudad Universitaria, Col. Jardines de San Manuel, 72580, Puebla, CP, Mexico.
| |
Collapse
|
4
|
Tuliozi B, Mantovani R, Schoepf I, Tsuruta S, Mancin E, Sartori C. Genetic correlations of direct and indirect genetic components of social dominance with fitness and morphology traits in cattle. Genet Sel Evol 2023; 55:84. [PMID: 38037008 PMCID: PMC10687847 DOI: 10.1186/s12711-023-00845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/02/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Within the same species, individuals show marked variation in their social dominance. Studies on a handful of populations have indicated heritable genetic variation for this trait, which is determined by both the genetic background of the individual (direct genetic effect) and of its opponent (indirect genetic effect). However, the evolutionary consequences of selection for this trait are largely speculative, as it is not a usual target of selection in livestock populations. Moreover, studying social dominance presents the challenge of working with a phenotype with a mean value that cannot change in the population, as for every winner of an agonistic interaction there will necessarily be a loser. Thus, to investigate what could be the evolutionary response to selection for social dominance, it is necessary to focus on traits that might be correlated with it. This study investigated the genetic correlations of social dominance, both direct and indirect, with several morphology and fitness traits. We used a dataset of agonistic contests involving cattle (Bos taurus): during these contests, pairs of cows compete in ritualized interactions to assess social dominance. The outcomes of 37,996 dominance interactions performed by 8789 cows over 20 years were combined with individual data for fertility, mammary health, milk yield and morphology and analysed using bivariate animal models including indirect genetic effects. RESULTS We found that winning agonistic interactions has a positive genetic correlation with more developed frontal muscle mass, lower fertility, and poorer udder health. We also discovered that the trends of changes in the estimated breeding values of social dominance, udder health and more developed muscle mass were consistent with selection for social dominance in the population. CONCLUSIONS We present evidence that social dominance is genetically correlated with fitness traits, as well as empirical evidence of the possible evolutionary trade-offs between these traits. We show that it is feasible to estimate genetic correlations involving dyadic social traits.
Collapse
Affiliation(s)
- Beniamino Tuliozi
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy.
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy
| | - Ivana Schoepf
- Department of Sciences, Augustana Campus, University of Alberta, 4901 46 Ave, Camrose, AB, T4V 2R3, Canada
| | - Shogo Tsuruta
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Enrico Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy
| | - Cristina Sartori
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
5
|
Philippon J, Serrano-Martínez E, Poirotte C. Fecal avoidance and gastrointestinal parasitism in semi-free ranging woolly monkeys (Lagothrix lagotricha poeppigii). Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Sex-biased, but not plumage color-based, prevalence of haemosporidian parasites in free-range chickens. Parasitol Int 2023; 93:102722. [PMID: 36529451 DOI: 10.1016/j.parint.2022.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Previous studies found a relationship between blood parasite infection and bird gender, with higher prevalence in males. Some studies also found a relationship between host plumage color and parasitic infection, while others did not. Here, we investigated the blood parasite prevalence in correlation with sex and plumage color in free-range chickens (Gallus gallus domesticus) in China. We analyzed a total of 297 blood samples, out of which 234 chickens tested positive for haemosporidian parasites, with 78.5% parasite prevalence. Out of 139 males, 118 tested positive with 84.8% parasite prevalence while 116 of 158 female samples tested positive (73.4%). Leucocytotozoon was the most frequent genus isolated (193 infected individuals /234 birds), followed by Plasmodium (41 infected individuals/234 birds), with no Haemoproteus parasites being detected. There were no significant differences in the body parameters and chicken color plumages with regards to the infection status. Our study indicated that blood parasite infection was significantly different between male and female chickens, with infection prevalent in males.
Collapse
|
7
|
Parker W, Patel E, Jirků-Pomajbíková K, Laman JD. COVID-19 morbidity in lower versus higher income populations underscores the need to restore lost biodiversity of eukaryotic symbionts. iScience 2023; 26:106167. [PMID: 36785786 PMCID: PMC9908430 DOI: 10.1016/j.isci.2023.106167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The avoidance of infectious disease by widespread use of 'systems hygiene', defined by hygiene-enhancing technology such as sewage systems, water treatment facilities, and secure food storage containers, has led to a dramatic decrease in symbiotic helminths and protists in high-income human populations. Over a half-century of research has revealed that this 'biota alteration' leads to altered immune function and a propensity for chronic inflammatory diseases, including allergic, autoimmune and neuropsychiatric disorders. A recent Ethiopian study (EClinicalMedicine 39: 101054), validating predictions made by several laboratories, found that symbiotic helminths and protists were associated with a reduced risk of severe COVID-19 (adjusted odds ratio = 0.35; p<0.0001). Thus, it is now apparent that 'biome reconstitution', defined as the artificial re-introduction of benign, symbiotic helminths or protists into the ecosystem of the human body, is important not only for alleviation of chronic immune disease, but likely also for pandemic preparedness.
Collapse
Affiliation(s)
| | | | - Kateřina Jirků-Pomajbíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Jon D. Laman
- Department of Pathology and Medical Biology, University Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Wolf SE, Zhang S, Clotfelter ED. Experimental ectoparasite removal has a sex-specific effect on nestling telomere length. Ecol Evol 2023; 13:e9861. [PMID: 36911306 PMCID: PMC9992774 DOI: 10.1002/ece3.9861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Parasites are a strong selective force that can influence fitness-related traits. The length of chromosome-capping telomeres can be used to assess the long-term costs of parasitism, as telomere loss accelerates in response to environmental stressors and often precedes poorer survival prospects. Here, we explored the sex-specific effects of ectoparasite removal on morphology and telomere length in nestling tree swallows (Tachycineta bicolor). To do so, we experimentally removed blow fly (Protocalliphora spp.) larvae from nests using Permethrin, a broad-spectrum insecticide. Compared to water-treated controls, insecticide treatment of nests had a sex-biased effect on blood telomere length: ectoparasite removal resulted in significantly longer telomeres in males but not females. While this treatment did not influence nestling body mass, it was associated with reduced feather development regardless of sex. This may reflect a relaxed pressure to fledge quickly in the absence of parasites, or alternatively, could be a negative side effect of permethrin on morphology. Exploring robust sex-specific telomere dynamics in response to early-life environmental pressures such as parasitism will shed light on sexual dimorphism in adult life histories and aging.
Collapse
Affiliation(s)
- Sarah E. Wolf
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
- Department of Biobehavioral HealthPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Samuel Zhang
- Department of BiologyAmherst CollegeAmherstMassachusettsUSA
| | | |
Collapse
|
9
|
Epidemiology and Integrative Taxonomy of Helminths of Invasive Wild Boars, Brazil. Pathogens 2023; 12:pathogens12020175. [PMID: 36839447 PMCID: PMC9963619 DOI: 10.3390/pathogens12020175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Wild boars (Sus scrofa) are a significant invasive species in Brazil. We evaluated the helminth diversity of 96 wild boars in São Paulo state. Helminth infection descriptors were calculated, the species were identified and their 18S, 28S rDNA and internal transcribed spacer (ITS) regions were amplified for phylogenetic analyses. Ascarops strongylina, Strongyloides ransomi, Globocephalus urosubulatus, Oesophagostomum dentatum, Trichuris suis, Metastrongylus salmi, Metastrongylus pudendotecus, Ascaris suum and Stephanurus dentatus and Macracanthorhynchus hirudinaceus were identified. Globocephalus urosubulatus had the highest prevalence and mean abundance, and most animals had mixed infections with three parasite species. There was no association between parasite intensity and prevalence and host sex and body condition index (p > 0.05). Novel DNA sequences were obtained from G. urosubulatus, A. strongylina, and S. dentatus. This is the first study on the helmint diversity of non-captive wild boars in Brazil, and the first report of the occurrence of M. hirudinaceus, G. urosubulatus and S. dentatus in Brazilian wild boars. Non-captive wild boars of São Paulo State did not act as capture hosts for native helminth species but maintained their typical parasites, common to domestic pigs. They may act as parasite dispersers for low-tech subsistence pig farming and for native Tayassuidae.
Collapse
|
10
|
Krupińska M, Antolová D, Tołkacz K, Szczepaniak K, Strachecka A, Goll A, Nowicka J, Baranowicz K, Bajer A, Behnke JM, Grzybek M. Grassland versus forest dwelling rodents as indicators of environmental contamination with the zoonotic nematode Toxocara spp. Sci Rep 2023; 13:483. [PMID: 36627309 PMCID: PMC9832041 DOI: 10.1038/s41598-022-23891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/07/2022] [Indexed: 01/11/2023] Open
Abstract
Small mammals are suspected of contributing to the dissemination of Toxocara canis and helping with the parasite survival during periods when there is a temporary absence of suitable definitive hosts. While the primary aim of the current study was the assessment of seroprevalence of Toxocara spp. infections in wild rodents in Poland, we also explored the role of intrinsic (sex, age) and extrinsic factors (study site) influencing dynamics of this infection to ascertain whether grassland versus forest rodents play a greater role as indicators of environmental contamination with T. canis. We trapped 577 rodents belonging to four species (Myodes glareolus, Microtus arvalis, Microtus agrestis, Alexandromys oeconomus) in north-eastern Poland. Blood was collected during the parasitological examination, and serum was frozen at - 80 °C until further analyses. A bespoke enzyme-linked immunosorbent assay was used to detect antibodies against Toxocara spp. We found Toxocara spp. antibodies in the sera of all four rodent species with an overall seroprevalence of 2.8% [1.9-4.1%]. There was a significant difference in seroprevalence between vole species, with the grassland species (M. arvalis, M. agrestis and A. oeconomus) showing a 16-fold higher seroprevalence (15.7% [8.7-25.9%]) than the forest-dwelling M. glareolus (0.98% [0.5-1.8%]). We hypothesise that the seroprevalence of Toxocara spp. differs between forest and grassland rodents because of the higher contamination of grasslands by domestic dogs and wild canids. Our results underline the need for wide biomonitoring of both types of ecosystems to assess the role of rodents as indicators of environmental contamination with zoonotic pathogens.
Collapse
Affiliation(s)
- Martyna Krupińska
- Department of Tropical Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | | | - Katarzyna Tołkacz
- University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | | | | | - Aleksander Goll
- Department of Tropical Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | - Joanna Nowicka
- Department of Tropical Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | - Karolina Baranowicz
- Department of Tropical Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | | | | | - Maciej Grzybek
- Department of Tropical Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland.
| |
Collapse
|
11
|
Xu Z, MacIntosh AJ, Castellano-Navarro A, Macanás-Martínez E, Suzumura T, Duboscq J. Linking parasitism to network centrality and the impact of sampling bias in its interpretation. PeerJ 2022; 10:e14305. [PMID: 36420133 PMCID: PMC9677876 DOI: 10.7717/peerj.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
Abstract
Group living is beneficial for individuals, but also comes with costs. One such cost is the increased possibility of pathogen transmission because increased numbers or frequencies of social contacts are often associated with increased parasite abundance or diversity. The social structure of a group or population is paramount to patterns of infection and transmission. Yet, for various reasons, studies investigating the links between sociality and parasitism in animals, especially in primates, have only accounted for parts of the group (e.g., only adults), which is likely to impact the interpretation of results. Here, we investigated the relationship between social network centrality and an estimate of gastrointestinal helminth infection intensity in a whole group of Japanese macaques (Macaca fuscata). We then tested the impact of omitting parts of the group on this relationship. We aimed to test: (1) whether social network centrality -in terms of the number of partners (degree), frequency of interactions (strength), and level of social integration (eigenvector) -was linked to parasite infection intensity (estimated by eggs per gram of faeces, EPG); and, (2) to what extent excluding portions of individuals within the group might influence the observed relationship. We conducted social network analysis on data collected from one group of Japanese macaques over three months on Koshima Island, Japan. We then ran a series of knock-out simulations. General linear mixed models showed that, at the whole-group level, network centrality was positively associated with geohelminth infection intensity. However, in partial networks with only adult females, only juveniles, or random subsets of the group, the strength of this relationship - albeit still generally positive - lost statistical significance. Furthermore, knock-out simulations where individuals were removed but network metrics were retained from the original whole-group network showed that these changes are partly a power issue and partly an effect of sampling the incomplete network. Our study indicates that sampling bias can thus hamper our ability to detect real network effects involving social interaction and parasitism. In addition to supporting earlier results linking geohelminth infection to Japanese macaque social networks, this work introduces important methodological considerations for research into the dynamics of social transmission, with implications for infectious disease epidemiology, population management, and health interventions.
Collapse
Affiliation(s)
- Zhihong Xu
- Wildlife Research Center, Kyoto University, Kyoto, Kyoto, Japan,Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Andrew J.J. MacIntosh
- Wildlife Research Center, Kyoto University, Kyoto, Kyoto, Japan,Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Alba Castellano-Navarro
- Ethology and Animal Welfare Section, Universidad CEU Cardenal Herrera, Valencia, Valencia, Spain,Institute of Biology, Universität Leipzig, Leipzig, Saxony, Germany
| | - Emilio Macanás-Martínez
- Ethology and Animal Welfare Section, Universidad CEU Cardenal Herrera, Valencia, Valencia, Spain,Institute of Biology, Universität Leipzig, Leipzig, Saxony, Germany
| | | | - Julie Duboscq
- UMR7206 Eco-Anthropologie, CNRS-MNHN-Université de Paris, Paris, Île-de-France, France,Department of Behavioural Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Lower Saxony, Germany
| |
Collapse
|
12
|
Wesołowska A. Sex—the most underappreciated variable in research: insights from helminth-infected hosts. Vet Res 2022; 53:94. [PMID: 36397174 PMCID: PMC9672581 DOI: 10.1186/s13567-022-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The sex of a host affects the intensity, prevalence, and severity of helminth infection. In many cases, one sex has been found to be more susceptible than the other, with the prevalence and intensity of helminth infections being generally higher among male than female hosts; however, many exceptions exist. This observed sex bias in parasitism results primarily from ecological, behavioural, and physiological differences between males and females. Complex interactions between these influences modulate the risk of infection. Indeed, an interplay among sex hormones, sex chromosomes, the microbiome and the immune system significantly contributes to the generation of sex bias among helminth-infected hosts. However, sex hormones not only can modulate the course of infection but also can be exploited by the parasites, and helminths appear to have developed molecules and pathways for this purpose. Furthermore, host sex may influence the efficacy of anti-helminth vaccines; however, although little data exist regarding this sex-dependent efficacy, host sex is known to influence the response to vaccines. Despite its importance, host sex is frequently overlooked in parasitological studies. This review focuses on the key contributors to sex bias in the case of helminth infection. The precise nature of the mechanisms/factors determining these sex-specific differences generally remains largely unknown, and this represents an obstacle in the development of control methods. There is an urgent need to identify any protective elements that could be targeted in future therapies to provide optimal disease management with regard to host sex. Hence, more research is needed into the impact of host sex on immunity and protection.
Collapse
|
13
|
Lemonnier C, Bize P, Boonstra R, Dobson FS, Criscuolo F, Viblanc VA. Effects of the social environment on vertebrate fitness and health in nature: Moving beyond the stress axis. Horm Behav 2022; 145:105232. [PMID: 35853411 DOI: 10.1016/j.yhbeh.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Social interactions are a ubiquitous feature of the lives of vertebrate species. These may be cooperative or competitive, and shape the dynamics of social systems, with profound effects on individual behavior, physiology, fitness, and health. On one hand, a wealth of studies on humans, laboratory animal models, and captive species have focused on understanding the relationships between social interactions and individual health within the context of disease and pathology. On the other, ecological studies are attempting an understanding of how social interactions shape individual phenotypes in the wild, and the consequences this entails in terms of adaptation. Whereas numerous studies in wild vertebrates have focused on the relationships between social environments and the stress axis, much remains to be done in understanding how socially-related activation of the stress axis coordinates other key physiological functions related to health. Here, we review the state of our current knowledge on the effects that social interactions may have on other markers of vertebrate fitness and health. Building upon complementary findings from the biomedical and ecological fields, we identify 6 key physiological functions (cellular metabolism, oxidative stress, cellular senescence, immunity, brain function, and the regulation of biological rhythms) which are intimately related to the stress axis, and likely directly affected by social interactions. Our goal is a holistic understanding of how social environments affect vertebrate fitness and health in the wild. Whereas both social interactions and social environments are recognized as important sources of phenotypic variation, their consequences on vertebrate fitness, and the adaptive nature of social-stress-induced phenotypes, remain unclear. Social flexibility, or the ability of an animal to change its social behavior with resulting changes in social systems in response to fluctuating environments, has emerged as a critical underlying factor that may buffer the beneficial and detrimental effects of social environments on vertebrate fitness and health.
Collapse
Affiliation(s)
- Camille Lemonnier
- Ecole Normale Supérieur de Lyon, 69342 Lyon, France; Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France.
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; Swiss Institute of Ornithology, Sempach, Switzerland
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - F Stephen Dobson
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
14
|
Seeley KE, Proudfoot KL, Edes AN. The application of allostasis and allostatic load in animal species: A scoping review. PLoS One 2022; 17:e0273838. [PMID: 36040981 PMCID: PMC9426905 DOI: 10.1371/journal.pone.0273838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Principles of allostasis and allostatic load have been widely applied in human research to assess the impacts of chronic stress on physiological dysregulation. Over the last few decades, researchers have also applied these concepts to non-human animals. However, there is a lack of uniformity in how the concept of allostasis is described and assessed in animals. The objectives of this review were to: 1) describe the extent to which the concepts of allostasis and allostatic load are applied theoretically to animals, with a focus on which taxa and species are represented; 2) identify when direct assessments of allostasis or allostatic load are made, which species and contexts are represented, what biomarkers are used, and if an allostatic load index was constructed; and 3) detect gaps in the literature and identify areas for future research. A search was conducted using CABI, PubMed, Agricola, and BIOSIS databases, in addition to a complementary hand-search of 14 peer-reviewed journals. Search results were screened, and articles that included non-human animals, as well as the terms “allostasis” or “allostatic” in the full text, were included. A total of 572 articles met the inclusion criteria (108 reviews and 464 peer-reviewed original research). Species were represented across all taxa. A subset of 63 publications made direct assessments of allostatic load. Glucocorticoids were the most commonly used biomarker, and were the only biomarker measured in 25 publications. Only six of 63 publications (9.5%) constructed an allostatic load index, which is the preferred methodology in human research. Although concepts of allostasis and allostatic load are being applied broadly across animal species, most publications use single biomarkers that are more likely indicative of short-term rather than chronic stress. Researchers are encouraged to adopt methodologies used in human research, including the construction of species-specific allostatic load indexes.
Collapse
Affiliation(s)
- Kathryn E. Seeley
- Department of Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, United States of America
- * E-mail:
| | - Kathryn L. Proudfoot
- Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ashley N. Edes
- Department of Reproductive and Behavioral Sciences, Saint Louis Zoo, St. Louis, Missouri, United States of America
| |
Collapse
|
15
|
Lee W, Milewski TM, Dwortz MF, Young RL, Gaudet AD, Fonken LK, Champagne FA, Curley JP. Distinct immune and transcriptomic profiles in dominant versus subordinate males in mouse social hierarchies. Brain Behav Immun 2022; 103:130-144. [PMID: 35447300 DOI: 10.1016/j.bbi.2022.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Social status is a critical factor determining health outcomes in human and nonhuman social species. In social hierarchies with reproductive skew, individuals compete to monopolize resources and increase mating opportunities. This can come at a significant energetic cost leading to trade-offs between different physiological systems. In particular, changes in energetic investment in the immune system can have significant short and long-term effects on fitness and health. We have previously found that dominant alpha male mice living in social hierarchies have increased metabolic demands related to territorial defense. In this study, we tested the hypothesis that high-ranking male mice favor adaptive immunity, while subordinate mice show higher investment in innate immunity. We housed 12 groups of 10 outbred CD-1 male mice in a social housing system. All formed linear social hierarchies and subordinate mice had higher concentrations of plasma corticosterone (CORT) than alpha males. This difference was heightened in highly despotic hierarchies. Using flow cytometry, we found that dominant status was associated with a significant shift in immunophenotypes towards favoring adaptive versus innate immunity. Using Tag-Seq to profile hepatic and splenic transcriptomes of alpha and subordinate males, we identified genes that regulate metabolic and immune defense pathways that are associated with status and/or CORT concentration. In the liver, dominant animals showed a relatively higher expression of specific genes involved in major urinary production and catabolic processes, whereas subordinate animals showed relatively higher expression of genes promoting biosynthetic processes, wound healing, and proinflammatory responses. In spleen, subordinate mice showed relatively higher expression of genes facilitating oxidative phosphorylation and DNA repair and CORT was negatively associated with genes involved in lymphocyte proliferation and activation. Together, our findings suggest that dominant and subordinate animals adaptively shift immune profiles and peripheral gene expression to match their contextual needs.
Collapse
Affiliation(s)
- Won Lee
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, CA, USA
| | - Tyler M Milewski
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Madeleine F Dwortz
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Rebecca L Young
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Gaudet
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Department of Neurology, University of Texas at Austin, Austin, TX, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | | | - James P Curley
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
16
|
Lutermann H. Socializing in an Infectious World: The Role of Parasites in Social Evolution of a Unique Rodent Family. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmission of parasites between hosts is facilitated by close contact of hosts. Consequently, parasites have been proposed as an important constraint to the evolution of sociality accounting for its rarity. Despite the presumed costs associated with parasitism, the majority of species of African mole-rats (Family: Bathyergidae) are social. In fact, only the extremes of sociality (i.e., solitary and singular breeding) are represented in this subterranean rodent family. But how did bathyergids overcome the costs of parasitism? Parasite burden is a function of the exposure and susceptibility of a host to parasites. In this review I explore how living in sealed burrow systems and the group defenses that can be employed by closely related group members can effectively reduce the exposure and susceptibility of social bathyergids to parasites. Evidence suggests that this can be achieved largely by investment in relatively cheap and flexible behavioral rather than physiological defense mechanisms. This also shifts the selection pressure for parasites on successful transmission between group members rather than transmission between groups. In turn, this constrains the evolution of virulence and favors socially transmitted parasites (e.g., mites and lice) further reducing the costs of parasitism for social Bathyergidae. I conclude by highlighting directions for future research to evaluate the mechanisms proposed and to consider parasites as facilitators of social evolution not only in this rodent family but also other singular breeders.
Collapse
|
17
|
Milewski TM, Lee W, Champagne FA, Curley JP. Behavioural and physiological plasticity in social hierarchies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200443. [PMID: 35000436 PMCID: PMC8743892 DOI: 10.1098/rstb.2020.0443] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Individuals occupying dominant and subordinate positions in social hierarchies exhibit divergent behaviours, physiology and neural functioning. Dominant animals express higher levels of dominance behaviours such as aggression, territorial defence and mate-guarding. Dominants also signal their status via auditory, visual or chemical cues. Moreover, dominant animals typically increase reproductive behaviours and show enhanced spatial and social cognition as well as elevated arousal. These biobehavioural changes increase energetic demands that are met via shifting both energy intake and metabolism and are supported by coordinated changes in physiological systems including the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes as well as altered gene expression and sensitivity of neural circuits that regulate these behaviours. Conversely, subordinate animals inhibit dominance and often reproductive behaviours and exhibit physiological changes adapted to socially stressful contexts. Phenotypic changes in both dominant and subordinate individuals may be beneficial in the short-term but lead to long-term challenges to health. Further, rapid changes in social ranks occur as dominant animals socially ascend or descend and are associated with dynamic modulations in the brain and periphery. In this paper, we provide a broad overview of how behavioural and phenotypic changes associated with social dominance and subordination are expressed in neural and physiological plasticity. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- T. M. Milewski
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - W. Lee
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - F. A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - J. P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
18
|
Strauss ED, Shizuka D. The dynamics of dominance: open questions, challenges and solutions. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200445. [PMID: 35000440 PMCID: PMC8743878 DOI: 10.1098/rstb.2020.0445] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022] Open
Abstract
Although social hierarchies are recognized as dynamic systems, they are typically treated as static entities for practical reasons. Here, we ask what we can learn from a dynamical view of dominance, and provide a research agenda for the next decades. We identify five broad questions at the individual, dyadic and group levels, exploring the causes and consequences of individual changes in rank, the dynamics underlying dyadic dominance relationships, and the origins and impacts of social instability. Although challenges remain, we propose avenues for overcoming them. We suggest distinguishing between different types of social mobility to provide conceptual clarity about hierarchy dynamics at the individual level, and emphasize the need to explore how these dynamic processes produce dominance trajectories over individual lifespans and impact selection on status-seeking behaviour. At the dyadic level, there is scope for deeper exploration of decision-making processes leading to observed interactions, and how stable but malleable relationships emerge from these interactions. Across scales, model systems where rank is manipulable will be extremely useful for testing hypotheses about dominance dynamics. Long-term individual-based studies will also be critical for understanding the impact of rare events, and for interrogating dynamics that unfold over lifetimes and generations. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Eli D. Strauss
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, Lansing, MI, USA
| | - Daizaburo Shizuka
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, USA
| |
Collapse
|
19
|
Beaumelle C, Redman EM, de Rijke J, Wit J, Benabed S, Debias F, Duhayer J, Pardonnet S, Poirel MT, Capron G, Chabot S, Rey B, Yannic G, Gilleard JS, Bourgoin G. Metabarcoding in two isolated populations of wild roe deer (Capreolus capreolus) reveals variation in gastrointestinal nematode community composition between regions and among age classes. Parasit Vectors 2021; 14:594. [PMID: 34863264 PMCID: PMC8642965 DOI: 10.1186/s13071-021-05087-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Background Gastrointestinal nematodes are ubiquitous for both domestic and wild ungulates and have varying consequences for health and fitness. They exist as complex communities of multiple co-infecting species, and we have a limited understanding of how these communities vary in different hosts, regions and circumstances or of how this affects their impacts. Methods We have undertaken ITS2 rDNA nemabiome metabarcoding with next-generation sequencing on populations of nematode larvae isolated from 149 fecal samples of roe deer of different sex and age classes in the two isolated populations of Chizé and Trois Fontaines in France not co-grazing with any domestic ungulate species. Results We identified 100 amplified sequence variants (ASVs) that were assigned to 14 gastrointestinal nematode taxa overall at either genus (29%) or species (71%) level. These taxa were dominated by parasites classically found in cervids—e.g. Ostertagia leptospicularis, Spiculopteragia spp. Higher parasite species diversity was present in the Trois Fontaines population than in the Chizé population including the presence of species more typically seen in domestic livestock (Haemonchus contortus, Bunostomum sp., Cooperia punctata, Teladorsagia circumcincta). No differences in parasite species diversity or community composition were seen in the samples collected from three zones of differing habitat quality within the Chizé study area. Young roe deer hosted the highest diversity of gastrointestinal nematodes, with more pronounced effects of age apparent in Trois Fontaines. The effect of host age differed between gastrointestinal nematode species, e.g. there was little effect on O. leptospicularis but a large effect on Trichostrongylus spp. No effect of host sex was detected in either site. Conclusions The presence of some livestock parasite species in the Trois Fontaines roe deer population was unexpected given the isolation of this population away from grazing domestic livestock since decades. Overall, our results illustrate the influence of host traits and the local environment on roe deer nemabiome and demonstrate the power of the nemabiome metabarcoding approach to elucidate the composition of gastrointestinal nematode communities in wildlife. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05087-5.
Collapse
Affiliation(s)
- Camille Beaumelle
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France. .,Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Elizabeth M Redman
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jill de Rijke
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Janneke Wit
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Slimania Benabed
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France.,VetAgro Sup, Campus Vétérinaire de Lyon, Université de Lyon, 69280, Marcy l'Etoile, France
| | - François Debias
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Jeanne Duhayer
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Sylvia Pardonnet
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Marie-Thérèse Poirel
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France.,VetAgro Sup, Campus Vétérinaire de Lyon, Université de Lyon, 69280, Marcy l'Etoile, France
| | - Gilles Capron
- Office Français de la Biodiversité, 75008, Paris, France
| | | | - Benjamin Rey
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France
| | - Glenn Yannic
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - John S Gilleard
- Comparative Biology and Experimental Medicine, Host-Parasites Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gilles Bourgoin
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69100, Villeurbanne, France.,VetAgro Sup, Campus Vétérinaire de Lyon, Université de Lyon, 69280, Marcy l'Etoile, France
| |
Collapse
|
20
|
Pavez-Fox MA, Negron-Del Valle JE, Thompson IJ, Walker CS, Bauman SE, Gonzalez O, Compo N, Ruiz-Lambides A, Martinez MI, Platt ML, Montague MJ, Higham JP, Snyder-Mackler N, Brent LJN. Sociality predicts individual variation in the immunity of free-ranging rhesus macaques. Physiol Behav 2021; 241:113560. [PMID: 34454245 PMCID: PMC8605072 DOI: 10.1016/j.physbeh.2021.113560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
Social integration and social status can substantially affect an individual’s health and survival. One route through which this occurs is by altering immune function, which can be highly sensitive to changes in the social environment. However, we currently have limited understanding of how sociality influences markers of immunity in naturalistic populations where social dynamics can be fully realized. To address this gap, we asked if social integration and social status in free-ranging rhesus macaques (Macaca mulatta) predict anatomical and physiological markers of immunity. We used data on agonistic interactions to determine social status, and social network analysis of grooming interactions to generate measures of individual variation in social integration. As measures of immunity, we included the size of two of the major organs involved in the immune response, the spleen and liver, and counts of three types of blood cells (red blood cells, platelets, and white blood cells). Controlling for body mass and age, we found that neither social status nor social integration predicted the size of anatomical markers of immunity. However, individuals that were more socially connected, i.e., with more grooming partners, had lower numbers of white blood cells than their socially isolated counterparts, indicating lower levels of inflammation with increasing levels of integration. These results build upon and extend our knowledge of the relationship between sociality and the immune system in humans and captive animals to free-ranging primates, demonstrating generalizability of the beneficial role of social integration on health.
Collapse
Affiliation(s)
- Melissa A Pavez-Fox
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom.
| | | | - Indya J Thompson
- Department of Molecular Biomedical Sciences College of Veterinary Medicine, North Carolina State University, NC, United States
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences College of Veterinary Medicine, North Carolina State University, NC, United States
| | - Samuel E Bauman
- Caribbean Primate Research Center, University of Puerto Rico, Puerto Rico
| | - Olga Gonzalez
- Texas Biomedical Research Institute, TX, United States
| | | | | | - Melween I Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Puerto Rico
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, PA, United States; Department of Anthropology, University of Pennsylvania, PA, United States; Department of Psychology, University of Pennsylvania, PA, United States; Department of Marketing, University of Pennsylvania , PA, United States
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, PA, United States
| | - James P Higham
- Department of Anthropology, New York University, NY, United States
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, AZ, United States; School of Life Sciences, Arizona State University, AZ, United States
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, United Kingdom
| |
Collapse
|
21
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
22
|
Muller MN, Enigk DK, Fox SA, Lucore J, Machanda ZP, Wrangham RW, Emery Thompson M. Aggression, glucocorticoids, and the chronic costs of status competition for wild male chimpanzees. Horm Behav 2021; 130:104965. [PMID: 33676127 PMCID: PMC8043126 DOI: 10.1016/j.yhbeh.2021.104965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Across vertebrates, high social status affords preferential access to resources, and is expected to correlate positively with health and longevity. Increasing evidence, however, suggests that although dominant females generally enjoy reduced exposure to physiological and psychosocial stressors, dominant males do not. Here we test the hypothesis that costly mating competition by high-ranking males results in chronic, potentially harmful elevations in glucocorticoid production. We examined urinary glucocorticoids (n = 8029 samples) in a 20-year longitudinal study of wild male chimpanzees (n = 20 adults) in the Kanyawara community of Kibale National Park, Uganda. We tested whether glucocorticoid production was associated with dominance rank in the long term, and with mating competition and dominance instability in the short term. Using mixed models, we found that both male aggression and glucocorticoid excretion increased when the dominance hierarchy was unstable, and when parous females were sexually available. Glucocorticoid excretion was positively associated with male rank in stable and unstable hierarchies, and in mating and non-mating contexts. Glucorticoids increased with both giving and receiving aggression, but giving aggression was the primary mechanism linking elevated glucocorticoids with high rank. Glucocorticoids also increased with age. Together these results show that investment in male-male competition increases cumulative exposure to glucocorticoids, suggesting a long-term tradeoff with health that may constrain the ability to maintain high status across the life course. Our data suggest that the relationship between social rank and glucocorticoid production often differs in males and females owing to sex differences in the operation of sexual selection.
Collapse
Affiliation(s)
- Martin N Muller
- Department of Anthropology, University of New Mexico, United States of America.
| | - Drew K Enigk
- Department of Anthropology, University of New Mexico, United States of America
| | - Stephanie A Fox
- Department of Anthropology, University of New Mexico, United States of America
| | - Jordan Lucore
- Department of Anthropology, University of Michigan, United States of America
| | - Zarin P Machanda
- Department of Anthropology, Tufts University, United States of America
| | - Richard W Wrangham
- Department of Human Evolutionary Biology, Harvard University, United States of America
| | | |
Collapse
|
23
|
Habig B, Chowdhury S, Monfort SL, Brown JL, Swedell L, Foerster S. Predictors of helminth parasite infection in female chacma baboons ( Papio ursinus). Int J Parasitol Parasites Wildl 2021; 14:308-320. [PMID: 33898232 PMCID: PMC8056146 DOI: 10.1016/j.ijppaw.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022]
Abstract
Helminth parasite infection can impose major consequences on host fitness. Several factors, including individual characteristics of hosts, environmental conditions, and patterns of coinfection, are thought to drive variation in parasite risk. Here, we report on four key drivers of parasite infection-phase of reproduction, steroid hormone profiles, rainfall, and patterns of coinfection-in a population of wild female chacma baboons (Papio ursinus) in South Africa. We collected data on reproductive state and hormone profiles over a 3-year span, and quantified helminth parasite burdens in 2955 fecal samples from 24 female baboons. On a host level, we found that baboons are sensitive to parasite infection during the costliest phases of the reproductive cycle: pregnant females harbored higher intensities of Protospirura eggs than cycling and lactating females; lactating and cycling females had a higher probability of Oesophagostomum infection than pregnant females; and cycling females exhibited lower Trichuris egg counts than pregnant and lactating females. Steroid hormones were associated with both immunoenhancing and immunosuppressive properties: females with high glucocorticoid concentrations exhibited high intensities of Trichuris eggs but were at low risk of Oesophagostomum infection; females with high estrogen and progestagen concentrations exhibited high helminth parasite richness; and females with high progestagen concentrations were at high risk of Oesophagostomum infection but exhibited low Protospirura egg counts. We observed an interaction between host reproductive state and progestagen concentrations in infection intensity of Protospirura: pregnant females exhibited higher intensities and non-pregnant females exhibited lower intensities of Protospirura eggs with increasing progestagen concentrations. At a population level, rainfall patterns were dominant drivers of parasite risk. Lastly, helminth parasites exhibited positive covariance, suggesting that infection probability increases if a host already harbors one or more parasite taxa. Together, our results provide a holistic perspective of factors that shape variation in parasite risk in a wild population of animals.
Collapse
Affiliation(s)
- Bobby Habig
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd. Flushing, NY, 11367, USA
| | - Shahrina Chowdhury
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Ave, Brooklyn, NY, 11210, USA
- Anthropology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York NY, 10016, USA
- New York Consortium in Evolutionary Primatology, Anthropology Program, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Steven L. Monfort
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Janine L. Brown
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Larissa Swedell
- Anthropology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York NY, 10016, USA
- New York Consortium in Evolutionary Primatology, Anthropology Program, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Anthropology, Queens College, City University of New York, 65-30 Kissena Blvd. Flushing, NY, 11367, USA
- Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
| | - Steffen Foerster
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
24
|
Association between social factors and gastrointestinal parasite product excretion in a group of non-cooperatively breeding carrion crows. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Smith JE, Smith IB, Working CL, Russell ID, Krout SA, Singh KS, Sih A. Host traits, identity, and ecological conditions predict consistent flea abundance and prevalence on free-living California ground squirrels. Int J Parasitol 2021; 51:587-598. [PMID: 33508332 DOI: 10.1016/j.ijpara.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/14/2023]
Abstract
Understanding why some individuals are more prone to carry parasites and spread diseases than others is a key question in biology. Although epidemiologists and disease ecologists increasingly recognize that individuals of the same species can vary tremendously in their relative contributions to the emergence of diseases, very few empirical studies systematically assess consistent individual differences in parasite loads within populations over time. Two species of fleas (Oropsylla montana and Hoplopsyllus anomalous) and their hosts, California ground squirrels (Otospermophilus beecheyi), form a major complex for amplifying epizootic plague in the western United States. Understanding its biology is primarily of major ecological importance and is also relevant to public health. Here, we capitalize on a long-term data set to explain flea incidence on California ground squirrels at Briones Regional Park in Contra Costa County, USA. In a 7 year study, we detected 42,358 fleas from 2,759 live trapping events involving 803 unique squirrels from two free-living populations that differed in the amount of human disturbance in those areas. In general, fleas were most abundant and prevalent on adult males, on heavy squirrels, and at the pristine site, but flea distributions varied among years, with seasonal conditions (e.g., temperature, rainfall, humidity), temporally within summers, and between flea species. Although on-host abundances of the two flea species were positively correlated, each flea species occupied a distinctive ecological niche. The common flea (O. montana) occurred primarily on adults in cool, moist conditions in early summer whereas the rare flea (H. anomalous) was mainly on juveniles in hot, dry conditions in late summer. Beyond this, we uncovered significantly repeatable and persistent effects of host individual identity on flea loads, finding consistent individual differences among hosts in all parasite measures. Taken together, we reveal multiple determinants of parasites on free-living mammals, including the underappreciated potential for host heterogeneity - within populations - to structure the emergence of zoonotic diseases such as bubonic plague.
Collapse
Affiliation(s)
- Jennifer E Smith
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA.
| | - Imani B Smith
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA
| | - Cecelia L Working
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA; Odum School of Ecology, University of Georgia, 140 E Green St, Athens, GA 30602, USA
| | - Imani D Russell
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA
| | - Shelby A Krout
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA
| | - Kajol S Singh
- Biology Department, Mills College, 5000 MacArthur Blvd., Oakland, CA 94631, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
26
|
Świsłocka M, Borkowska A, Matosiuk M, Czajkowska M, Duda N, Kowalczyk R, Ratkiewicz M. Sex-biased polyparasitism in moose ( Alces alces) based on molecular analysis of faecal samples. Int J Parasitol Parasites Wildl 2020; 13:171-177. [PMID: 33134076 PMCID: PMC7591323 DOI: 10.1016/j.ijppaw.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
Abstract
Simultaneous infection with multiple parasite species in an individual host is often observed in wild populations. The understanding of parasite species distribution across populations of wild animals is of basic and applied importance, because parasites can have pronounced effects on the dynamics of host population. Here, we quantified prevalence and endoparasite species richness in moose and explored sex-biased polyparasitism using diagnostic PCR method coupled with DNA sequencing of moose faecal samples from the Biebrza River valley, North-Eastern Poland. This is the largest moose population in Central Europe that has not been harvested for almost 20 years. We also evaluated the appropriate quantity of faeces for detecting DNA of parasite species. Faecal samples were screened for molecular markers of 10 different species of endoparasites. Endoparasite prevalence was high in the studied population. Almost all of the samples (98%) tested positive for at least one parasite species, and we found polyparasitism in the majority of the tested individuals. The number of different parasite species found in a single individual ranged from 0 to 9. The parasite species richness was significantly higher in male than in female individuals. The most prevalent were liver fluke Parafasciolopsis fasciolaemorpha and gastrointestinal nematodes Ostertargia sp. Of the ten endoparasite species detected, only the prevalence of the tapeworm Moniezia benedeni was significantly higher in males than in females. Additionally, we identified co-occurrence associations of parasite species, which tended to be random, but we noted some evidence of both positive and negative associations. Our findings promote applications of molecular methods for parasite species identification from non-invasively collected faecal samples in management and scientific study of moose population, which should include investigation of parasite status, and in health monitoring programs for other wild cervids.
Collapse
Affiliation(s)
- Magdalena Świsłocka
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J st, 15-245, Białystok, Poland
| | - Anetta Borkowska
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J st, 15-245, Białystok, Poland
| | - Maciej Matosiuk
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J st, 15-245, Białystok, Poland
| | - Magdalena Czajkowska
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J st, 15-245, Białystok, Poland
| | - Norbert Duda
- Zespół Szkół Ogólnokształcących No 2 W Białymstoku, Narewska 11, 15-840, Białystok, Poland
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Mirosław Ratkiewicz
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J st, 15-245, Białystok, Poland
| |
Collapse
|
27
|
Negrey JD, Thompson ME, Langergraber KE, Machanda ZP, Mitani JC, Muller MN, Otali E, Owens LA, Wrangham RW, Goldberg TL. Demography, life-history trade-offs, and the gastrointestinal virome of wild chimpanzees. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190613. [PMID: 32951554 PMCID: PMC7540950 DOI: 10.1098/rstb.2019.0613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
In humans, senescence increases susceptibility to viral infection. However, comparative data on viral infection in free-living non-human primates-even in our closest living relatives, chimpanzees and bonobos (Pan troglodytes and P. paniscus)-are relatively scarce, thereby constraining an evolutionary understanding of age-related patterns of viral infection. We investigated a population of wild eastern chimpanzees (P. t. schweinfurthii), using metagenomics to characterize viromes (full viral communities) in the faeces of 42 sexually mature chimpanzees (22 males, 20 females) from the Kanyawara and Ngogo communities of Kibale National Park, Uganda. We identified 12 viruses from at least four viral families possessing genomes of both single-stranded RNA and single-stranded DNA. Faecal viromes of both sexes varied with chimpanzee age, but viral richness increased with age only in males. This effect was largely due to three viruses, salivirus, porprismacovirus and chimpanzee stool-associated RNA virus (chisavirus), which occurred most frequently in samples from older males. This finding is consistent with the hypothesis that selection on males for early-life reproduction compromises investment in somatic maintenance, which has delayed consequences for health later in life, in this case reflected in viral infection and/or shedding. Faecal viromes are therefore useful for studying processes related to the divergent reproductive strategies of males and females, ageing, and sex differences in longevity. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Leah A. Owens
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
28
|
Levy EJ, Zipple MN, McLean E, Campos FA, Dasari M, Fogel AS, Franz M, Gesquiere LR, Gordon JB, Grieneisen L, Habig B, Jansen DJ, Learn NH, Weibel CJ, Altmann J, Alberts SC, Archie EA. A comparison of dominance rank metrics reveals multiple competitive landscapes in an animal society. Proc Biol Sci 2020; 287:20201013. [PMID: 32900310 PMCID: PMC7542799 DOI: 10.1098/rspb.2020.1013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Across group-living animals, linear dominance hierarchies lead to disparities in access to resources, health outcomes and reproductive performance. Studies of how dominance rank predicts these traits typically employ one of several dominance rank metrics without examining the assumptions each metric makes about its underlying competitive processes. Here, we compare the ability of two dominance rank metrics—simple ordinal rank and proportional or ‘standardized’ rank—to predict 20 traits in a wild baboon population in Amboseli, Kenya. We propose that simple ordinal rank best predicts traits when competition is density-dependent, whereas proportional rank best predicts traits when competition is density-independent. We found that for 75% of traits (15/20), one rank metric performed better than the other. Strikingly, all male traits were best predicted by simple ordinal rank, whereas female traits were evenly split between proportional and simple ordinal rank. Hence, male and female traits are shaped by different competitive processes: males are largely driven by density-dependent resource access (e.g. access to oestrous females), whereas females are shaped by both density-independent (e.g. distributed food resources) and density-dependent resource access. This method of comparing how different rank metrics predict traits can be used to distinguish between different competitive processes operating in animal societies.
Collapse
Affiliation(s)
- Emily J Levy
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Matthew N Zipple
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Emily McLean
- Division of Natural Sciences and Mathematics, Oxford College of Emory University, 801 Emory Street, Oxford, GA 30054, USA
| | - Fernando A Campos
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.,Department of Anthropology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Mauna Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Arielle S Fogel
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, 3 Genome Court, Durham, NC 27710, USA
| | - Mathias Franz
- Institute for Biology, Freie Universitaet Berlin, Königin-Luise-Strasse 1-3, D-14195 Berlin, Germany
| | - Laurence R Gesquiere
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Jacob B Gordon
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Laura Grieneisen
- College of Biological Sciences, University of Minnesota, 420 Washington Ave. SE, Minneapolis, MN 55455, USA
| | - Bobby Habig
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, New York, NY 11367, USA
| | - David J Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Niki H Learn
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Chelsea J Weibel
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeanne Altmann
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA.,Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Susan C Alberts
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, NC 27708, USA.,Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| |
Collapse
|
29
|
Helland-Riise SH, Vindas MA, Johansen IB, Nadler LE, Weinersmith KL, Hechinger RF, Øverli Ø. Brain-encysting trematodes ( Euhaplorchis californiensis) decrease raphe serotonergic activity in California killifish ( Fundulus parvipinnis). Biol Open 2020; 9:bio049551. [PMID: 32439741 PMCID: PMC7358127 DOI: 10.1242/bio.049551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
Modulation of brain serotonin (5-HT) signalling is associated with parasite-induced changes in host behaviour, potentially increasing parasite transmission to predatory final hosts. Such alterations could have substantial impact on host physiology and behaviour, as 5-HT serves multiple roles in neuroendocrine regulation. These effects, however, remain insufficiently understood, as parasites have been associated with both increased and decreased serotonergic activity. Here, we investigated effects of trematode Euhaplorchis californiensis metacercariae on post-stress serotonergic activity in the intermediate host California killifish (Fundulus parvipinnis). This parasite is associated with conspicuous behaviour and increased predation of killifish by avian end-hosts, as well as inhibition of post-stress raphe 5-HT activity. Until now, laboratory studies have only been able to achieve parasite densities (parasites/unit host body mass) well below those occurring in nature. Using laboratory infections yielding ecologically relevant parasite loads, we show that serotonergic activity indeed decreased with increasing parasite density, an association likely indicating changes in 5-HT neurotransmission while available transmitter stores remain constant. Contrary to most observations in the literature, 5-HT activity increased with body mass in infected fish, indicating that relationships between parasite load and body mass may in many cases be a real underlying factor for physiological correlates of body size. Our results suggest that parasites are capable of influencing brain serotonergic activity, which could have far-reaching effects beyond the neurophysiological parameters investigated here.
Collapse
Affiliation(s)
- Siri H Helland-Riise
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway 1407
| | - Marco A Vindas
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway 1407
| | - Ida B Johansen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway 1407
| | - Lauren E Nadler
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway 1407
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA 92037, USA
| | | | - Ryan F Hechinger
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA 92037, USA
| | - Øyvind Øverli
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway 1407
| |
Collapse
|
30
|
Fayard M, Dechaume-Moncharmont FX, Wattier R, Perrot-Minnot MJ. Magnitude and direction of parasite-induced phenotypic alterations: a meta-analysis in acanthocephalans. Biol Rev Camb Philos Soc 2020; 95:1233-1251. [PMID: 32342653 DOI: 10.1111/brv.12606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Several parasite species have the ability to modify their host's phenotype to their own advantage thereby increasing the probability of transmission from one host to another. This phenomenon of host manipulation is interpreted as the expression of a parasite extended phenotype. Manipulative parasites generally affect multiple phenotypic traits in their hosts, although both the extent and adaptive significance of such multidimensionality in host manipulation is still poorly documented. To review the multidimensionality and magnitude of host manipulation, and to understand the causes of variation in trait value alteration, we performed a phylogenetically corrected meta-analysis, focusing on a model taxon: acanthocephalan parasites. Acanthocephala is a phylum of helminth parasites that use vertebrates as final hosts and invertebrates as intermediate hosts, and is one of the few parasite groups for which manipulation is predicted to be ancestral. We compiled 279 estimates of parasite-induced alterations in phenotypic trait value, from 81 studies and 13 acanthocephalan species, allocating a sign to effect size estimates according to the direction of alteration favouring parasite transmission, and grouped traits by category. Phylogenetic inertia accounted for a low proportion of variation in effect sizes. The overall average alteration of trait value was moderate and positive when considering the expected effect of alterations on trophic transmission success (signed effect sizes, after the onset of parasite infectivity to the final host). Variation in the alteration of trait value was affected by the category of phenotypic trait, with the largest alterations being reversed taxis/phobia and responses to stimuli, and increased vulnerability to predation, changes to reproductive traits (behavioural or physiological castration) and immunosuppression. Parasite transmission would thereby be facilitated mainly by changing mainly the choice of micro-habitat and the anti-predation behaviour of infected hosts, and by promoting energy-saving strategies in the host. In addition, infection with larval stages not yet infective to definitive hosts (acanthella) tends to induce opposite effects of comparable magnitude to infection with the infective stage (cystacanth), although this result should be considered with caution due to the low number of estimates with acanthella. This analysis raises important issues that should be considered in future studies investigating the adaptive significance of host manipulation, not only in acanthocephalans but also in other taxa. Specifically, the contribution of phenotypic traits to parasite transmission and the range of taxonomic diversity covered deserve thorough attention. In addition, the relationship between behaviour and immunity across parasite developmental stages and host-parasite systems (the neuropsychoimmune hypothesis of host manipulation), still awaits experimental evidence. Most of these issues apply more broadly to reported cases of host manipulation by other groups of parasites.
Collapse
Affiliation(s)
- Marion Fayard
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | - François-Xavier Dechaume-Moncharmont
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Rémi Wattier
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | | |
Collapse
|
31
|
O’Brien SL, Tammone MN, Cuello PA, Lacey EA. Facultative sociality in a subterranean rodent, the highland tuco-tuco (Ctenomys opimus). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Understanding why social relationships vary among conspecifics is central to studies of animal behaviour. For many species, patterns of space use provide important insights into social behaviour. To characterize the social organization of the highland tuco-tuco (Ctenomys opimus), we used visual observations and radiotelemetry to quantify spatial relationships among adults in a population at Laguna de los Pozuelos, Jujuy Province, Argentina. Specifically, we sought to confirm anecdotal reports that these subterranean rodents are social, meaning that adults share burrow systems and nest sites. Our data indicate that the animals live in spatially distinct groups, although the number of individuals per group varies markedly. Although these relationships were robust with regard to location (above vs. below ground) and type of data (visual vs. telemetry), some groups identified during the daytime fissioned during the night. We suggest that the population of C. opimus at Pozuelos is facultatively social, meaning that individuals display predictable, adaptive differences in social relationships with conspecifics. More generally, our findings add to the growing number of subterranean species of rodents recognized as social, thereby generating new opportunities for comparative studies of these animals aimed at assessing the causes and consequences of variation in social organization.
Collapse
Affiliation(s)
- Shannon L O’Brien
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Mauro N Tammone
- INIBIOMA-CONICET and Programa de Estudios Aplicados a la Conservación del Parque Nacional Nanhuel Huapi (CENAC-PHHN, CONICET), Rio Negro, Argentina
| | - Pablo A Cuello
- Instituto Argentino de Investigaciones de Zonas Aridas (IADIZA-CCT CONICET), Mendoza, Argentina
| | - Eileen A Lacey
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
32
|
O’Dwyer K, Dargent F, Forbes MR, Koprivnikar J. Parasite infection leads to widespread glucocorticoid hormone increases in vertebrate hosts: A meta‐analysis. J Anim Ecol 2019; 89:519-529. [DOI: 10.1111/1365-2656.13123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Katie O’Dwyer
- Department of Chemistry and Biology Ryerson University Toronto ON Canada
| | - Felipe Dargent
- Department of Biology Carleton University Ottawa ON Canada
| | - Mark R. Forbes
- Department of Biology Carleton University Ottawa ON Canada
| | - Janet Koprivnikar
- Department of Chemistry and Biology Ryerson University Toronto ON Canada
| |
Collapse
|
33
|
Carleial R, McDonald GC, Pizzari T. Dynamic phenotypic correlates of social status and mating effort in male and female red junglefowl, Gallus gallus. J Evol Biol 2019; 33:22-40. [PMID: 31529557 PMCID: PMC6972591 DOI: 10.1111/jeb.13541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/30/2022]
Abstract
Despite widespread evidence that mating and intrasexual competition are costly, relatively little is known about how these costs dynamically change male and female phenotypes. Here, we test multiple hypotheses addressing this question in replicate flocks of red junglefowl (Gallus gallus). First, we test the interrelationships between social status, comb size (a fleshy ornament) and body mass at the onset of a mating trial. While comb size covaried positively with body mass across individuals of both sexes, comb size was positively related to social status in females but not in males. Second, we test for changes within individuals in body mass and comb size throughout the mating trial. Both body mass and comb size declined at the end of a trial in both sexes, suggesting that mating effort and exposure to the opposite sex are generally costly. Males lost more body mass if they (a) were socially subordinate, (b) were chased by other males or (c) mated frequently, indicating that subordinate status and mating are independently costly. Conversely, females lost more body mass if they were exposed to a higher frequency of coerced matings, suggesting costs associated with male sexual harassment and female resistance, although costs of mating per se could not be completely ruled out. Neither competitive nor mating interactions predicted comb size change in either sex. Collectively, these results support the notion that sex‐specific costs associated with social status and mating effort result in differential, sex‐specific dynamics of phenotypic change.
Collapse
Affiliation(s)
- Rômulo Carleial
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Grant C McDonald
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Habig B, Jansen DAWAM, Akinyi MY, Gesquiere LR, Alberts SC, Archie EA. Multi-scale predictors of parasite risk in wild male savanna baboons (Papio cynocephalus). Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2748-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Corlatti L, Lorenzetti C, Bassano B. Parasitism and alternative reproductive tactics in Northern chamois. Ecol Evol 2019; 9:8749-8758. [PMID: 31410277 PMCID: PMC6686307 DOI: 10.1002/ece3.5427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022] Open
Abstract
Alternative reproductive tactics (ARTs), discrete phenotypic variations evolved to maximize fitness, may entail different cost-benefit trade-offs. In large mammals, differences in costs associated with ARTs-including energy expenditure and parasite infection-are typically greatest during the breeding season. Nonetheless, physiological and behavioral differences between ARTs can manifest throughout the year, possibly involving costs that may contribute to maintain ARTs within populations. Using the number of nematode larvae per gram of feces (LPG) as a proxy, we explored the temporal changes in lung parasite infection in territorial and nonterritorial male chamois Rupicapra in the Gran Paradiso National Park (Italy), between 2011 and 2012. We aimed to identify which tactic-specific physiological and behavioral features (including age, hormonal levels, inter- and intrasexual interactions, and space use) or climatic factors (temperature and precipitation) best explained yearly variation in parasite infection within and between ARTs. Generalized additive mixed models showed that the fecal larval counts of lung nematodes underwent strong temporal changes in both male types. Differences between ARTs (with higher LPG values in territorial than nonterritorial males) were greatest during the rut and-to a lesser extent-in spring, respectively, at the peak and at the onset of territoriality. The difference in LPG between tactics was largely explained by the greater levels of hormone metabolites in territorial males during the rut. The other variables did not contribute significantly to explain the different shedding of larvae within and between ARTs. Our analysis suggests that different values of LPG between territorial and nonterritorial males are largely a result of tactic-specific differences in the secretion of hormone metabolites, but only during the rut. To clarify whether rut-related parasitism contributes to the maintenance of ARTs, tactic-specific life history trade-offs, for example, between reproduction and parasite-related mortality, must be investigated.
Collapse
Affiliation(s)
- Luca Corlatti
- Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany
| | | | - Bruno Bassano
- Alpine Wildlife Research CentreGran Paradiso National ParkValsavarencheItaly
| |
Collapse
|
36
|
Cozzarolo CS, Sironi N, Glaizot O, Pigeault R, Christe P. Sex-biased parasitism in vector-borne disease: Vector preference? PLoS One 2019; 14:e0216360. [PMID: 31048933 PMCID: PMC6497283 DOI: 10.1371/journal.pone.0216360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Sex-biased infections are a recurrent observation in vertebrates. In many species, males are more parasitized than females. Two potentially complementary mechanisms are often suggested to explain this pattern: sexual differences in susceptibility mainly caused by the effect of sex hormones on immunity and differential exposure to parasites. Exposure is mostly a consequence of host behavioural traits, but vector-borne parasitic infections involve another degree of complexity due to the active role of vectors in transmission. Blood-sucking insects may make choices based on cues produced by hosts. Regarding malaria, several studies highlighted a male-biased infection by Plasmodium sp in great tits (Parus major). We hypothesize that the mosquito vector, Culex pipiens, might at least partially cause this bias by being more attracted to male birds. Intrinsic variation associated to bird sex would explain a preference of mosquitoes for males. To test this hypothesis, we provide uninfected mosquitoes with a choice between uninfected male and female nestlings. Mosquito choice is assessed by sex typing of the ingested blood. We did not observe any preference for a given sex. This result does not support our prediction of a preference of mosquitoes for male great tits during the nestling period. In conclusion, mosquitoes do not seem to have an intrinsic preference for male nestlings. However, sexually divergent traits (e.g. behaviour, odour, metabolic rate) present in adults may play a role in the attraction of mosquitoes and should be investigated.
Collapse
Affiliation(s)
| | - Nicolas Sironi
- Département d’Ecologie & Evolution, Université de Lausanne, Lausanne, Suisse
| | - Olivier Glaizot
- Département d’Ecologie & Evolution, Université de Lausanne, Lausanne, Suisse
- Musée cantonal de zoologie, Lausanne, Suisse
| | - Romain Pigeault
- Département d’Ecologie & Evolution, Université de Lausanne, Lausanne, Suisse
| | - Philippe Christe
- Département d’Ecologie & Evolution, Université de Lausanne, Lausanne, Suisse
| |
Collapse
|
37
|
Lea AJ, Akinyi MY, Nyakundi R, Mareri P, Nyundo F, Kariuki T, Alberts SC, Archie EA, Tung J. Dominance rank-associated gene expression is widespread, sex-specific, and a precursor to high social status in wild male baboons. Proc Natl Acad Sci U S A 2018; 115:E12163-E12171. [PMID: 30538194 PMCID: PMC6310778 DOI: 10.1073/pnas.1811967115] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In humans and other hierarchical species, social status is tightly linked to variation in health and fitness-related traits. Experimental manipulations of social status in female rhesus macaques suggest that this relationship is partially explained by status effects on immune gene regulation. However, social hierarchies are established and maintained in different ways across species: While some are based on kin-directed nepotism, others emerge from direct physical competition. We investigated how this variation influences the relationship between social status and immune gene regulation in wild baboons, where hierarchies in males are based on fighting ability but female hierarchies are nepotistic. We measured rank-related variation in gene expression levels in adult baboons of both sexes at baseline and in response to ex vivo stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We identified >2,000 rank-associated genes in males, an order of magnitude more than in females. In males, high status predicted increased expression of genes involved in innate immunity and preferential activation of the NF-κB-mediated proinflammatory pathway, a pattern previously associated with low status in female rhesus macaques. Using Mendelian randomization, we reconcile these observations by demonstrating that high status-associated gene expression patterns are precursors, not consequences, of high social status in males, in support of the idea that physiological condition determines who attains high rank. Together, our work provides a test of the relationship between social status and immune gene regulation in wild primates. It also emphasizes the importance of social context in shaping the relationship between social status and immune function.
Collapse
Affiliation(s)
- Amanda J Lea
- Department of Biology, Duke University, Durham, NC 27708;
| | - Mercy Y Akinyi
- Department of Biology, Duke University, Durham, NC 27708
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Ruth Nyakundi
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Peter Mareri
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Fred Nyundo
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Thomas Kariuki
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC 27708
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
| | - Elizabeth A Archie
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC 27708;
- Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
- Duke University Population Research Institute, Duke University, Durham, NC 27708
| |
Collapse
|