1
|
Dubey P, Roy A, Mishra S, Naseem M, Farooqui A, Patel A, Singh PC, Srivastava PK. "Efficient novel fungal-enriched biochar formulation for hexavalent chromium bioremediation". JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122806. [PMID: 39366233 DOI: 10.1016/j.jenvman.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Chromium (Cr), a key element in industrial processes such as leather tanning, poses severe environmental hazards, particularly its hexavalent form, Cr(VI), which is highly toxic and prevalent in tannery effluents/sludge. The persistence and toxicity of Cr(VI) necessitate the development of effective remediation strategies to mitigate its environmental impact. This study investigated the potential of Trichoderma yunnanense (NBRICRF_97) and its combination with 0.5% sugarcane bagasse biochar (SBC) for the reduction of Cr(VI). The results demonstrated that T. yunnanense alone achieved a 91.04% reduction of 50 mg L-1 Cr(VI) within 72 h. Combined with 0.5% SBC, the reduction efficiency increased to 99.65% within 48 h. However, the efficiency decreased at higher concentrations (200 mg L-1). The combination also improved fungal growth and increased extracellular ChrR enzyme activity (13.07 U mg-1 protein compared to the control). Total glutathione activity was boosted by 161.07% at 100 mg L-1 Cr(VI). Antioxidant enzymes (SOD, POD, CAT) and proline mitigated oxidative stress and FTIR analysis revealed changes in fungal cell wall functional groups (-OH and -NH) upon Cr(VI) exposure. SEM-EDX confirmed chromium deposition on fungal surfaces. These results underscore the Cr(VI) detoxification capabilities of T. yunnanense and the synergistic benefits of SBC, suggesting a promising bioremediation strategy for Cr(VI)-contaminated environments. The integration of T. yunnanense with SBC offers a sustainable and cost-effective approach for the bioremediation of Cr(VI)-contaminated sites, with potential for implementation in large-scale environmental cleanup efforts.
Collapse
Affiliation(s)
- Priya Dubey
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India; Department of Biosciences, Integral University, Lucknow, India
| | - Aditi Roy
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Sandhya Mishra
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Mariya Naseem
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Alvina Farooqui
- Department of Biosciences, Integral University, Lucknow, India.
| | - Anju Patel
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India.
| | - Poonam C Singh
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Pankaj Kumar Srivastava
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
2
|
Wang Y, Nie D, Shao K, Zhang S, Wang Q, Han Z, Chen L. Mechanistic insights into the parental co-exposure of T-2 toxin and epoxiconazole on the F1 generation of zebrafish (Danio rerio). CHEMOSPHERE 2024; 361:142388. [PMID: 38777202 DOI: 10.1016/j.chemosphere.2024.142388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Mycotoxins and pesticides frequently coexist in agricultural commodities on a global scale. The potential transgenerational consequences induced by these substances pose a significant threat to human health. However, there is a lack of data concerning the effects of co-contamination by these chemicals in the F1 generation following parental exposure. This investigation delved into the mixture effects of T-2 toxin (T-2) and epoxiconazole (EPO) on the offspring of zebrafish (Danio rerio). The findings revealed that exposure across generations to a combination of T-2 and EPO resulted in toxicity in the larvae of the F1 generation. This was demonstrated by a significant increase in the levels or activities of malondialdehyde (MDA), thyroxine (T4), Caspase3, and cas9, along with a decrease in the levels of cyp19a, ERα, and ERβ. These outcomes suggested that cross-generational exposure to T-2 and EPO in D. rerio disrupted oxidative balance, induced cell apoptosis, and affected the endocrine system. Moreover, these effects were magnified when the F1 generation was continuously exposed to these compounds. Notably, these adverse effects could persist in subsequent generations without additional exposure. This study underscored the potential dangers associated with the simultaneous presence of T-2 and EPO on the development of fish offspring and the resulting environmental hazards to aquatic ecosystems. These findings emphasized the significant health risks posed by cross-generational exposure and highlighted the need for additional legislative measures to address these concerns.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Shuai Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
3
|
Jing M, Han G, Wan J, Zong W, Liu R. Differential eco-toxicological responses toward Eisenia fetida exposed to soil contaminated with naphthalene and typical metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44800-44814. [PMID: 38954347 DOI: 10.1007/s11356-024-34149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Naphthalene (NAP) was frequently detected in polycyclic aromatic hydrocarbons (PAHs)-contaminated soil, and its residues may pose an eco-toxicological threat to soil organisms. The toxic effects of NAP were closely tied to phenolic and quinone metabolites in biological metabolism. However, the present knowledge concerning the eco-toxicological impacts of NAP metabolites at the animal level is scanty. Here, we assessed the differences in the eco-toxicological responses of Eisenia fetida (E. fetida) in NAP, 1-naphthol (1-NAO) or 1,4-naphthoquinone (1,4-NQ) contaminated soils. NAP, 1-NAO, and 1,4-NQ exposure triggered the onset of oxidative stress as evidenced by the destruction of the antioxidant enzyme system. The lipid peroxidation and DNA oxidative damage levels induced by 1-NAO and 1,4-NQ were higher than those of NAP. The elevation of DNA damage varied considerably depending on differences in oxidative stress and the direct mode of action of NAP or its metabolites with DNA. All three toxicants induced different degrees of physiological damage to the body wall, but only 1, 4-NQ caused the shedding of intestinal epithelial cells. The integrated biomarker response for different exposure times illustrated that the comprehensive toxicity at the animal level was 1,4-NQ > 1-NAO > NAP, and the time-dependent trends of oxidative stress responses induced by the three toxicants were similar. At the initial stage, the antioxidant system of E. fetida responded positively to the provocation, but the ability of E. fetida to resist stimulation decreased with the prolongation of time resulting in provocation oxidative damage. This study would provide new insights into the toxicological effects and biohazard of PAHs on soil animals.
Collapse
Affiliation(s)
- Mingyang Jing
- Shandong Urban Construction Vocational College, 4657# Tourism Road, Jinan, Shandong, 250100, P.R. China
| | - Guangye Han
- Shandong Academy of Environmental Sciences Co., Ltd, Licheng, 12777# Zhenyuan Road, Jinan, Shandong, 250100, P.R. China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, P.R. China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, Shandong, China
| | - Rutao Liu
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, P.R. China.
| |
Collapse
|
4
|
Zhang H, Wang H, Tan A, Zhang L, Yao H, You X, Chen Z. Inoculation of chromium-tolerant bacterium LBA108 to enhance resistance in radish ( Raphanus sativus L.) and combined remediation of chromium-contaminated soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1064-1076. [PMID: 38721825 DOI: 10.1039/d3em00556a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cr(VI) has been a carcinogen for organisms and a hazard to human health throughout the food chain. To explore a cost-effective and efficient method for removing Cr(VI), a Cr-resistant strain named LBA108 was isolated from the soil of a molybdenum-lead mining area. It was identified as Microbacterium through biochemical tests and 16S rDNA sequence analysis. Following 48 hours of incubation in LB culture medium containing 60 mg L-1 Cr(VI), the LBA108 strain exhibited reduction and adsorption rates for Cr(VI) at 96.64% and 15.86%, respectively. The removal mechanism was subsequently confirmed through Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis. In an experimental setup, radish seedlings were cultivated as test crops under varying levels of Cr stress (ranging from 0 to 7 mg L-1) in a hydroponic experiment. With the inoculation of the LBA108 strain, the fresh weight of radish seedlings increased by 2.05 times and plant length increased by 34.5% under 7 mg L-1 Cr stress. In addition, the plant produced more antioxidant enzymes/enhanced antioxidant enzyme activities such as superoxide dismutase and catalase to prevent oxidative stress. Under Cr stress (6 mg L-1), the accumulation of Cr in rhizomes of radish seedlings increased compared to the control group by 91.44%, while the absorption of Cr by leaves decreased by 52.10%. These findings suggest that the LBA108 strain possesses bioremediation capabilities as a microbial-phytoremediation option for Cr-contaminated soil.
Collapse
Affiliation(s)
- Hehe Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Aobo Tan
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Longfei Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Hanyue Yao
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Xiaoyan You
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
5
|
Qin H, Wang Z, Sha W, Song S, Qin F, Zhang W. Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification. Microorganisms 2024; 12:700. [PMID: 38674644 PMCID: PMC11052264 DOI: 10.3390/microorganisms12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Heavy metals migrate easily and are difficult to degrade in the soil environment, which causes serious harm to the ecological environment and human health. Thus, soil heavy metal pollution has become one of the main environmental issues of global concern. Plant-growth-promoting rhizobacteria (PGPR) is a kind of microorganism that grows around the rhizosphere and can promote plant growth and increase crop yield. PGPR can change the bioavailability of heavy metals in the rhizosphere microenvironment, increase heavy metal uptake by phytoremediation plants, and enhance the phytoremediation efficiency of heavy-metal-contaminated soils. In recent years, the number of studies on the phytoremediation efficiency of heavy-metal-contaminated soil enhanced by PGPR has increased rapidly. This paper systematically reviews the mechanisms of PGPR that promote plant growth (including nitrogen fixation, phosphorus solubilization, potassium solubilization, iron solubilization, and plant hormone secretion) and the mechanisms of PGPR that enhance plant-heavy metal interactions (including chelation, the induction of systemic resistance, and the improvement of bioavailability). Future research on PGPR should address the challenges in heavy metal removal by PGPR-assisted phytoremediation.
Collapse
Affiliation(s)
| | | | | | | | - Fenju Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
6
|
Adhikari A, Aneefi AG, Sisuvanh H, Singkham S, Pius MV, Akter F, Kwon EH, Kang SM, Woo YJ, Yun BW, Lee IJ. Dynamics of Humic Acid, Silicon, and Biochar under Heavy Metal, Drought, and Salinity with Special Reference to Phytohormones, Antioxidants, and Melatonin Synthesis in Rice. Int J Mol Sci 2023; 24:17369. [PMID: 38139197 PMCID: PMC10743973 DOI: 10.3390/ijms242417369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to develop a biostimulant formulation using humic acid (HA), silicon, and biochar alone or in combination to alleviate the lethality induced by combined heavy metals (HM-C; As, Cd, and Pb), drought stress (DS; 30-40% soil moisture), and salt stress (SS; 150 mM NaCl) in rice. The results showed that HA, Si, and biochar application alone or in combination improved plant growth under normal, DS, and SS conditions significantly. However, HA increased the lethality of rice by increasing the As, Cd, and Pb uptake significantly, thereby elevating lipid peroxidation. Co-application reduced abscisic acid, elevated salicylic acid, and optimized the Ca2+ and Si uptake. This subsequently elevated the K+/Na+ influx and efflux by regulating the metal ion regulators (Si: Lsi1 and Lsi2; K+/Na+: OsNHX1) and increased the expressions of the stress-response genes OsMTP1 and OsNramp in the rice shoots. Melatonin synthesis was significantly elevated by HM-C (130%), which was reduced by 50% with the HA + Si + biochar treatment. However, in the SS- and DS-induced crops, the melatonin content showed only minor differences. These findings suggest that the biostimulant formulation could be used to mitigate SS and DS, and precautions should be taken when using HA for heavy metal detoxification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (A.A.); (A.G.A.); (H.S.); (S.S.); (M.V.P.); (F.A.); (E.-H.K.); (S.-M.K.); (Y.-J.W.); (B.-W.Y.)
| |
Collapse
|
7
|
Martínez-Martínez JG, Rosales-Loredo S, Hernández-Morales A, Arvizu-Gómez JL, Carranza-Álvarez C, Macías-Pérez JR, Rolón-Cárdenas GA, Pacheco-Aguilar JR. Bacterial Communities Associated with the Roots of Typha spp. and Its Relationship in Phytoremediation Processes. Microorganisms 2023; 11:1587. [PMID: 37375088 DOI: 10.3390/microorganisms11061587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation.
Collapse
Affiliation(s)
| | - Stephanie Rosales-Loredo
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63173, Mexico
| | - Candy Carranza-Álvarez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - José Roberto Macías-Pérez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Gisela Adelina Rolón-Cárdenas
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | | |
Collapse
|
8
|
Pan J, Zheng N, An Q, Li Y, Sun S, Zhang W, Song X. Effects of cadmium and copper mixtures on antibiotic resistance genes in rhizosphere soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115008. [PMID: 37196522 DOI: 10.1016/j.ecoenv.2023.115008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
The evolvement and development of antibiotic resistance in microorganisms may be influenced by metals; however, it is still unclear how cadmium (Cd) and copper (Cu) combined affect the distribution and presence of antibiotic-resistance genes (ARGs) in rhizosphere soil. The aims of this research were to (1) compare the distribution patterns of bacterial communities and ARGs in response to the effects of Cd and Cu both separately and combined; (2) explore the possible mechanisms underlying the variation in soil bacterial communities and ARGs in addition to the combined effects of Cd, Cu, and various environmental variables (nutrients, pH, etc.); and (3) provide a reference for assessing the risks of metals (Cd and Cu) and ARGs. The findings showed that the multidrug resistance genes acrA and acrB and the transposon gene intI-1 were present in high relative abundance in bacterial communities. Cadmium and Cu had a substantial interaction effect on the abundance of acrA, whereas Cu had a notable main effect on the abundance of intI-1. According to the network analysis, the strong links between bacterial taxa and specific ARGs revealed that most ARGs were hosted by Proteobacteria, Actinobacteria, and Bacteroidetes. According to structural equation modeling, Cd had a larger effect on ARGs than Cu. Compared to previous analyses of ARGs, bacterial community diversity had little effect on ARGs in this study. Overall, the results may have important consequences for determining the possible hazard of soil metals and extend the understanding of how Cd and Cu co-select ARGs in rhizosphere soils.
Collapse
Affiliation(s)
- Jiamin Pan
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zheng
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University 130021, China.
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University 130021, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University 130021, China
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University 130021, China
| | - Xue Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
9
|
Zhan Y, Chen N, Feng C, Wang H, Wang Y. Does inorganic carbon species alter chromium reduction mechanism in sulfur-based autotrophic biosystem? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160858. [PMID: 36526198 DOI: 10.1016/j.scitotenv.2022.160858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Sulfur-based autotrophic bioremediation is recognized as an environmentally-friendly and effective method for the treatment of Cr(VI) in groundwater. However, inorganic carbon (IC), especially IC-rich solid kitchen waste, has rarely been reported as an important factor in the autotrophic process. In China, kitchen waste containing IC is generated in large quantities, and in combination with Cr(VI) autotrophic treatment technology in groundwater can achieve a win-win situation. Herein, the efficiency of Cr(VI)-bioreduction coupling solid inorganic carbon (SIC) (e.g. marble, egg shell, oyster shell, and NSAD synthetic material) and liquid inorganic carbon (LIC) was compared for the first time. After 18 d incubation, there were significant differences in Cr(VI) reduction efficiency and microbial community between SIC-bioreactors and LIC-bioreactors. Higher electron transfer activity, greater bioavailability of organics, and multiple Cr(VI) reductases were detected in SIC-biosystems, which effectively promoted Cr(VI) energy metabolism and enzyme-mediated biological reduction. High-throughput 16S rRNA gene sequencing reveled multiple cooperative mechanism in different substrate biosystems. This study not only advances the understanding of SIC coupled with Cr(VI) autotrophic bioreduction, but also provides new insights for the treatment of solid kitchen waste and groundwater bioremediation.
Collapse
Affiliation(s)
- Yongheng Zhan
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yiheng Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
10
|
Khan WU, Yasin NA, Ahmad SR, Nazir A, Naeem K, Nadeem QUA, Nawaz S, Ijaz M, Tahir A. Burkholderia cepacia CS8 improves phytoremediation potential of Calendula officinalis for tannery solid waste polluted soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1656-1668. [PMID: 36855239 DOI: 10.1080/15226514.2023.2183717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbes have shown potential for the bioremediation of tannery waste polluted soil. During our previous study, it was observed that heavy metal resistant Burkholderia cepacia CS8 augmented growth and phytoremediation capability of an ornamental plant. Objective of the present research work was to evaluate the capability of B. cepacia CS8 assisted Calendula officinalis plants for the phytoremediation of tannery solid waste (TSW) polluted soil. The TSW treatment significantly reduced growth attributes and photosynthetic pigments in C. officinalis. However, supplementation of B. cepacia CS8 which exhibited substantial tolerance to the TSW amended soil, augmented growth traits, carotenoid, proline, and antioxidant enzymes level in C. officinalis under toxic and nontoxic regimes. Inoculation of B. cepacia CS8 augmented plant growth (shoot length 13%, root length 11%), physiological attributes (chlorophyll a 14%, chlorophyll b 17%), antioxidant enzyme activities (peroxidase 24%, superoxide dismutase 31% and catalase 19%), improved proline 36%, phenol 32%, flavonoids 14% and declined malondialdehyde (MDA) content 15% and hydrogen peroxide (H2O2) level 12% in C. officinalis at TSW10 stress compared with relevant un-inoculated plants of TSW10 treatment. Moreover, B. cepacia CS8 application enhanced labile metals in soil and subsequent metal uptake, such as Cr 19%, Cd 22%, Ni 35%, Fe 18%, Cu 21%, Pb 34%, and Zn 30%, respectively in C. officinalis plants subjected to TSW10 stress than that of analogous un-inoculated treatment. Higher plant stress tolerance and improved phytoremediation potential through microbial inoculation will assist in the retrieval of agricultural land in addition to the renewal of native vegetation.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Aisha Nazir
- Environmental Biotechnology Laboratory (F4), Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Khadija Naeem
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurat Ul Ain Nadeem
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Shahrukh Nawaz
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Madiha Ijaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Arifa Tahir
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
11
|
Metabolites produced by inoculated Vigna radiata during bacterial assisted phytoremediation of Pb, Ni and Cr polluted soil. PLoS One 2022; 17:e0277101. [DOI: 10.1371/journal.pone.0277101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Phytoremediation assisted with plant growth promoting bacteria (PGPB) is a green technology to remediate metal contaminated soils. Plants usually produce secondary metabolites to tolerate metal toxicity. Present study was designed to explore the phytoremediation potential of Vigna radiata var. NM-II in the presence of metal resistant PGPB and comparison of metabolites produced under heavy metal stresses (Pb, Ni, Cr). Three PGPB selected for present study include Bacillus pumilus MB246, Serratia nematodiphila MB307 and Delftia Lacustris MB322. Pot experiments were conducted with inoculated V. radiata NM-II seeds grown in soil artificially contaminated with lead (Pb), Nickle (Ni) and chromium (Cr) at a concentration of 300, 200 and 100 mg/kg respectively. After harvesting various growth parameters were studied (root length, shoot length, fresh weight and dry weight). Bacterial colonization on root surfaces of harvested plants was observed through Scanning electron microscopy (SEM) and Elemental composition was recorded through Energy dispersive X-ray spectroscopy (EDX) attached with SEM. Metabolic response of harvested plants was studied through Gas chromatography Mass spectrophotometry (GC-MS) analysis. Metal accumulation in roots, shoots and soil was analysed by acid digestion method from which Bioaccumulation factor (BF) and Translocation factor (TF) of metal from soil to plant was calculated. Results revealed stimulatory effect of PGPB on growth and phytoextraction ability of V. radiata. Soil metal removal efficiency was in the order Pb>Ni>Cr, whereas metal distribution in each part of plant was root>stem>leaf. The BF and TF values suggested V. radiata as Pb and Ni excluder while moderate accumulator for Cr. Elemental analysis through Energy Dispersive X- ray spectroscopy (EDX) found potassium (K+)and calcium (Ca+)as highly abundant nutrients with least accumulation of sulphur (S). Metabolites study through GC-MS revealed variety of compounds (carbohydrates, amino acids, fatty acids, steroids etc) detected differentially under each metal treatment and their concentration was influenced by different bacterial inoculations. Overall 9-Octadecenamide was found as commonly present lipid compound in most of the treatments which is required for detoxification in plants. The study concluded beneficial role of PGPB for successful phytoremediation of heavy metals and differential response of metabolites towards each metal stress that is related to metal tolerance ability of V. radiata.
Collapse
|
12
|
Pang B, Yu H, Zhang J, Ye F, Wu H, Shang C. Identification of differentially expressed genes for Pseudomonas sp. Cr13 stimulated by hexavalent chromium. PLoS One 2022; 17:e0272528. [PMID: 35930609 PMCID: PMC9355187 DOI: 10.1371/journal.pone.0272528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Over exploitation of mineral resources has increasingly caused serious heavy metal contamination such as chromium (Cr). Cr(VI), the pathogenicity factor, is one of common environmental contaminants and widely known health hazards to living organisms. Therefore, it is urgent to control the polluted soil. Up to now, little is known about the regulatory mechanisms of Cr response in Pseudomonas sp. Cr13. In this study, transcriptome and differentially expressed genes in Pseudomonas sp. Cr13 strain was characterized by a comparison between Cr(VI)-treated sample and control sample using transcriptome sequencing approach. In total, 2974 genes were annotated, including 1245 (1154 down-regulated genes and 91 up-regulated genes) differentially expressed genes (DEGs). All DEGs could be assigned to 29 pathways, of which pathways related to amino acid metabolism, carbohydrate metabolism, energy metabolism and signal transduction mechanism were significantly enriched in Pseudomonas sp. Cr13. A possible mechanism for Cr toxicity response might be an active efflux which utilized a heavy metal translocating P-type ATPase to lower the intracellular Cr concentration. The down-regulated genes related to the antioxidant defense system had a key role in Cr reduction, such as SodA, Gst, osmC, BtuE, KatE, csdA and AhpC. The proteins that were visibly up-regulated, were likely to involve in alleviating Cr(VI) stress, and the significantly down-regulated genes such as MarR, Lrp, FhlA, GntR, HrcA, LysR family genes, were likely to reduce Cr(VI) induced oxidative stress. In addition, real-time quantitative PCR was used to analyze the expression patterns of some Cr responsive genes. This study reported the first identification of Cr responsive genes, and inferred the underlying regulatory mechanisms of response to Cr(VI) stress in Pseudomonas sp. Cr13.
Collapse
Affiliation(s)
- Bingbing Pang
- College of Life Science, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Hongling Yu
- College of Life Science, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Jin Zhang
- College of Life Science, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Fengcai Ye
- College of Life Science, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Haifeng Wu
- College of Life Science, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Changhua Shang
- College of Life Science, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
- * E-mail:
| |
Collapse
|
13
|
Singh S, Kumar V, Gupta P, Singh A. Conjoint application of novel bacterial isolates on dynamic changes in oxidative stress responses of axenic Brassica juncea L. in Hg-stress soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128854. [PMID: 35429756 DOI: 10.1016/j.jhazmat.2022.128854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
This experimental study explores the possible role of three Hg-resistant bacterial strains in the enhanced growth of the mustard plant (Brassica juncea) under Hg-stress conditions. Under different concentrations of Hg, a pot scale experiment with Brassica juncea L. was performed to investigate the potential of bacterial strains for phytoremediation under Hg stress conditions. The results showed that all three strains, as well as their consortium, were capable of stimulating plant growth, biomass, and anti-oxidative enzyme activities. In comparison to the individual strains, the consortiums of all three strains were more prominent in the intensification of Brassica juncea L. physiological activity. Under Hg-stress conditions, all three strains increased the level of antioxidative content in Brassica juncea, indicating an increase in enzyme activity to cope with oxidative stress. Among all the three strains, Citrobacter Freundii (IITISM25) showed the highest accumulation potential in B. juncea followed by Morganella morganii (IITISM23) and Brevundimonas Dimunta (IITISM22). Hence, the results suggest that the IITISM22, IITISM23, IITISM25 strains and their consortium are very effective in phytoremediation and promote Brassica juncea growth under Hg-stress conditions.
Collapse
Affiliation(s)
- Shalini Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology, Indian School of Mines, Dhanbad 826 004, Jharkhand, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology, Indian School of Mines, Dhanbad 826 004, Jharkhand, India.
| | - Pratishtha Gupta
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology, Indian School of Mines, Dhanbad 826 004, Jharkhand, India
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology, Indian School of Mines, Dhanbad 826 004, Jharkhand, India
| |
Collapse
|
14
|
Zhou X, Shi A, Rensing C, Yang J, Ni W, Xing S, Yang W. Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119266. [PMID: 35413404 DOI: 10.1016/j.envpol.2022.119266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%-148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1-21.4%, 29.1-42.7%,12.2-38.3% and 26.8-85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
Collapse
Affiliation(s)
- Xueqi Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Singh S, Kumar V, Gupta P, Ray M. The trafficking of Hg II by alleviating its toxicity via Citrobacter sp. IITISM25 in batch and pilot-scale investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128711. [PMID: 35395524 DOI: 10.1016/j.jhazmat.2022.128711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The study aims to see how effective the Citrobacter species strain is in removing HgII under stressful conditions. For this, a response surface methodology was chosen to optimized pH, temperature, and biomass for effective biotransformation of HgII. The optimized value for pH, temperature, and biomass were 6.5, 30 °C, and 2 mg/l with 89% HgII removal potential. TEM-EDX showed accumulated mercury onto the bacterial surface. Pot study was conducted to check the potentiality of this strain in alleviating the toxicity in Solanum lycopersicum L. under different concentrations of mercury. The enhancement in antioxidative enzymes, as well as mercury accumulation, was observed in test plants inoculated with IITISM25. Obtained result showed a greater accumulation of mercury in the root system than that of the shoot system due to poor translocation. Moreover, mercury reductase enzyme synthesis was also boosted by the addition of β-mercaptoethanol and L-cysteine. The optimized condition for maximum enzyme synthesis was at pH 7.5 and temperature 30 °C with Km = 48.07 μmol and Vmax = 9.75 μmol/min. Thus, we can say that Citrobacter species strain IITISM25 can be effectively applied in remediation of HgII stress condition as well as promotion of Solanum lycopersicum L growth under stress conditions as a promising host.
Collapse
Affiliation(s)
- Shalini Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India.
| | - Pratishtha Gupta
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India
| | - Madhurya Ray
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, Jharkhand, India
| |
Collapse
|
16
|
Minhas PS, Saha JK, Dotaniya ML, Sarkar A, Saha M. Wastewater irrigation in India: Current status, impacts and response options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152001. [PMID: 34856275 DOI: 10.1016/j.scitotenv.2021.152001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Wastewater generated from urban agglomerations in India is estimated to be 26.4 km3 annually and 28% of it is treated. This has a potential to irrigate about 2.1 million-ha agricultural land, contribute 4 million Mg of plant nutrients, generate 2.8 million person-days of employment and reduce green house gas (GHG) emission by 73.7 million Mg CO2-e. Farmers in peri-urban areas depend largely on raw and partially treated wastewater for livelihood via raising high value crops such as vegetable, fodders and fruits. Both controlled and uncontrolled disposal of waste waters leads to progressive and irreversible contamination of soils, surface and ground waters with pathogens, heavy metals and organic micro-contaminants and consequently their bio-transfer through the chain: sewage-soil-vegetation-animal-humans. This has led to the development of a considerable assortment of regulatory measures and guidelines aimed at reducing or eliminating wastewater related health risks. Because conventional treatment technologies are cost prohibitive, alternate methods based on biological and land treatment systems are being advocated. Since soils are the most logical sinks for wastewater, efforts are to optimise rates and methods of water application, quantify the sink capacity of soils to immobilise contaminants and protect the quality of produce. Reuse of diluted or undiluted wastewaters improves crop productivity by 10-36% though production sustainability depends on soil type, climatic conditions, crop grown, irrigation techniques and socio-political factors. Disposal of wastewater in tree plantations and constructed wetlands with consequent removal of toxic metals/compounds using hyper-accumulators/accumulators plants provide for a possible alternative. Ignoring the associated risks, using pisciculture for sewage disposal is quite popular in high rainfall areas. With growing water scarcities, it is utmost important to recognise wastewaters as a valuable resource and formulate appropriate policy initiatives considering the health and livelihood issues of the per-urban farmers and consumers of food as well as risks to environment.
Collapse
Affiliation(s)
- Paramjit S Minhas
- ICAR-Central Soil Salinity Research Institute, Karnal 132001, India.
| | | | - M L Dotaniya
- ICAR-Directorate of Rapeseed Mustard Research, Bharatpur 321303, India
| | - Abhijit Sarkar
- ICAR-Indian Institute of Soil Science, Bhopal 462038, India
| | | |
Collapse
|
17
|
Renu S, Sarim KM, Singh DP, Sahu U, Bhoyar MS, Sahu A, Kaur B, Gupta A, Mandal A, Thakur JK, Manna MC, Saxena AK. Deciphering Cadmium (Cd) Tolerance in Newly Isolated Bacterial Strain, Ochrobactrum intermedium BB12, and Its Role in Alleviation of Cd Stress in Spinach Plant ( Spinacia oleracea L.). Front Microbiol 2022; 12:758144. [PMID: 35140690 PMCID: PMC8819065 DOI: 10.3389/fmicb.2021.758144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
A cadmium (Cd)-tolerant bacterium Ochrobactrum intermedium BB12 was isolated from sewage waste collected from the municipal sewage dumping site of Bhopal, India. The bacterium showed multiple heavy metal tolerance ability and had the highest minimum inhibitory concentration of 150 mg L-1 of Cd. Growth kinetics, biosorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy studies on BB12 in the presence of Cd suggested biosorption as primary mode of interaction. SEM and TEM studies revealed surface deposition of Cd. FTIR spectra indicated nitrogen atom in exopolysaccharides secreted by BB12 to be the main site for Cd attachment. The potential of BB12 to alleviate the impact of Cd toxicity in spinach plants (Spinacia oleracea L.) var. F1-MULAYAM grown in the soil containing Cd at 25, 50, and 75 mg kg-1 was evaluated. Without bacterial inoculation, plants showed delayed germination, decrease in the chlorophyll content, and stunted growth at 50 and 75 mg kg-1 Cd content. Bacterial inoculation, however, resulted in the early germination, increased chlorophyll, and increase in shoot (28.33%) and root fresh weight (72.60%) at 50 mg kg-1 of Cd concentration after 75 days of sowing. Due to bacterial inoculation, elevated proline accumulation and lowered down superoxide dismutase (SOD) enzyme activity was observed in the Cd-stressed plants. The isolate BB12 was capable of alleviating Cd from the soil by biosorption as evident from significant reduction in the uptake/translocation and bioaccumulation of Cd in bacteria itself and in the plant parts of treated spinach. Potential PGP prospects and heavy metal bioremediation capability of BB12 can make the environmental application of the organism a promising approach to reduce Cd toxicity in the crops grown in metal-contaminated soils.
Collapse
Affiliation(s)
- S. Renu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Khan Mohd. Sarim
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Dhananjaya Pratap Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Upasana Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Manish S. Bhoyar
- Intellectual Property Management Unit, National Innovation Foundation, Gandhinagar, India
| | - Asha Sahu
- ICAR-Indian Institute of Soil Sciences, Bhopal, India
| | - Baljeet Kaur
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amrita Gupta
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Asit Mandal
- ICAR-Indian Institute of Soil Sciences, Bhopal, India
| | | | | | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
18
|
Saha J, Sarkar M, Mandal P, Pal A. Comparative Study of Heavy Metal Uptake and Analysis of Plant Growth Promotion Potential of Multiple Heavy Metal-Resistant Bacteria Isolated From Arable Land. Curr Microbiol 2021; 79:7. [PMID: 34905111 DOI: 10.1007/s00284-021-02704-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
Heavy metal-induced pollution is a serious environmental concern. This study was aimed at exploring indigenous heavy metal-resistant and plant growth promoting bacteria from arable land that might be useful for developing green strategies to counter the challenges related to bioremediation and sustainable agriculture. A thorough screening and characterization of all the twenty heavy metal-resistant bacterial isolates obtained in this study was done. Of these, three potent isolates were further analyzed to unravel their heavy metal resistance and uptake potentiality. Minimum inhibitory concentration determination depicted considerable tolerance (≥ 500 µg/mL) of the three isolates to Ni, Zn, Fe, Cd, Cu, etc. Growth kinetics of the isolates in presence of various heavy metals indicated differences between normal and metal-induced growth. pH tolerance and pigmentation ability of the isolates were also analyzed. Inductively Coupled Plasma-Mass Spectrometry study revealed maximum Cd uptake by the isolates during exponential phase of growth. One of the isolates demonstrated plant growth promotion ability detected using different in vitro qualitative screening tests. Molecular identification using 16S rRNA depicted the isolates as strains of Pseudomonas aeruginosa. This was the first study of heavy metal-resistant and plant growth promoting bacteria from this region. Further exploration of such multi metal-resistant indigenous bacteria may pave the way for designing effective strategies for bioremediation and sustainable agriculture.
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Monalisha Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
19
|
Urooj N, Bano A, Riaz A. Role of PGPR on the physiology of sunflower irrigated with produced water containing high total dissolved solids (TDS) and its residual effects on soil fertility. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:567-579. [PMID: 34505549 DOI: 10.1080/15226514.2021.1957771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study was conducted to evaluate the bioremediation potential of plant growth-promoting rhizobacteria (PGPR) PGPR isolates from high total dissolved solids (TDS) bearing produced water on the water quality, soil physicochemical properties and growth and physiology of sunflower irrigated with high TDS bearing produced water having salinity level 130 times higher above seawater and also containing traces of oil and grease. Seeds of sunflower hybrid Parsun 3 were soaked for 3-4 h prior to sowing in 72 h old culture of PGPR strains W1 and W2 isolated from high TDS bearing polluted water. The control plants were irrigated with 90% diluted TDS water supplemented with 5 ml LB media. Whereas, the inoculated plants were irrigated with 90% diluted TDS water supplemented with 5 ml PGPR inocula.in LB media. The plants were grown under natural conditions. The 16S rRNA sequence analyses identified the isolate W1 bearing 100% similarity with the plant growth-promoting rhizobacteria (PGPR) Ralstonia pickettii and W2 bearing 99.7% similarity with Brevibacillus invocatus. Both the isolate were catalase and oxidase positive. The Ralstonia pickettii and Brevibacillus invocatus treatments decreased the EC and TDS values significantly such that the EC and TDS values of 90% diluted TDS water were 29 times and 19 times higher than tap water. Sodium adsorption ratio (SAR), organic matter, nitrogen, potassium, magnesium and carbon content were 1.96, 1.10, 2.28 1.20, 6.63 and 1.00 times greater than control in the rhizosphere soil of Ralstonia pickettii inoculated plants irrigated with high TDS bearing water There were significant increases in plant growth, sugar, flavonoids and phenolics, chlorophyll b, total chlorophyll, carotenoids content and activities of superoxide dismutase, catalase and peroxidase in plants inoculated with Ralstonia pickettii and Brevibacillus invocatus. The flavonoids, phenolics and proline contents were 0.54, 0.72 and 0.30 times higher in Ralstonia pickettii inoculated plants. Shoot/root dry weight ratio was about (50%) lower than control in Ralstonia pickettii and Brevibacillus invocatus treatments. Ralstonia pickettii was more effective than Brevibacillus invocatus to combat oxidative and osmotic stresses. It is inferred that the high TDS bearing produced water from oil factory harbor Plant growth-promoting rhizobacteria (PGPR) having the potential to combat high salinity stress in plants when used as bioinoculant. The broth culture containing the bacteria may be supplemented with the saline water used for irrigation as it provides nutrients for the growth and proliferation of bacteria present in the saline water and hence the synergistic action of bacterial inocula with the indigenous bacteria present in saline water may better alleviate osmotic and oxidative stresses of plants encountered under salinity stress. The residual effect of Ralstonia pickettii on organic matter and Ca, Mg, K and P content of the rhizosphere soil was notably higher for succeeding crops. Novelty statement This is the first report demonstrating that rhizobacteria can proliferate in water containing salinity higher above seawater in addition to oil grease and TSS. Their efficiency to reduce TDS can be augmented by an exogenous supply of LB broth culture of PGPR isolated from the polluted water. These indigenous rhizobacteria when used as bioinoculant on the plant can act as plant growth promoters as well as bioremediation of salinity effects.
Collapse
Affiliation(s)
- Neelam Urooj
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Asif Riaz
- Nano Biosolution, Islamabad, Pakistan
| |
Collapse
|
20
|
Sundh I, Del Giudice T, Cembalo L. Reaping the Benefits of Microorganisms in Cropping Systems: Is the Regulatory Policy Adequate? Microorganisms 2021; 9:microorganisms9071437. [PMID: 34361873 PMCID: PMC8303151 DOI: 10.3390/microorganisms9071437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Within food plant cropping systems, microorganisms provide vital functions and ecosystem services, such as biological pest and disease control, promotion of plant growth and crop quality, and biodegradation of organic matter and pollutants. The beneficial effects of microorganisms can be achieved and/or enhanced by agricultural management measures that target the resident microbial biodiversity or by augmentation with domesticated and propagated microbial strains. This study presents a critical review of the current legislation and regulatory policies pertaining to the utilization of plant-beneficial microorganisms in the European Union (EU). For augmentative approaches, the nature of the intended effect and the product claim determine how a microbiological product is categorized and regulated, and pre-market authorization may be mandatory. Typically, microbial products have been incorporated into frameworks that were designed for evaluating non-living substances, and are therefore not well suited to the specific properties of live microorganisms. We suggest that regulatory harmonization across the sector could stimulate technical development and facilitate implementation of crop management methods employing microorganisms. Possible scenarios for regulatory reform in the longer term are discussed, but more investigation into their feasibility is needed. The findings of this study should serve as a catalyst for more efficient future use of plant-beneficial microorganisms, to the benefit of agriculture as well as the environment.
Collapse
Affiliation(s)
- Ingvar Sundh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
- Correspondence:
| | - Teresa Del Giudice
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (T.D.G.); (L.C.)
| | - Luigi Cembalo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (T.D.G.); (L.C.)
| |
Collapse
|
21
|
Alka S, Shahir S, Ibrahim N, Rahmad N, Haliba N, Abd Manan F. Histological and proteome analyses of Microbacterium foliorum-mediated decrease in arsenic toxicity in Melastoma malabathricum. 3 Biotech 2021; 11:336. [PMID: 34221807 PMCID: PMC8208456 DOI: 10.1007/s13205-021-02864-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Arsenic (As) is an increasing threat across the globe, widely known as a non-threshold carcinogen, and it is reaching harmful values in several areas of the world. In this study, the effect of plant growth promoting bacteria (Microbacterium foliorum) on inorganic arsenic (Arsenate) phytoremediation by Melastoma malabathricum plants was investigated through histological analysis and proteome profiling of the M. malabathricum plants. Two-dimensional gel electrophoresis and transmission electron microscopy were used to conduct the proteome and histological analysis. When arsenic-treated cells were compared to untreated cells, substantial changes were found (1) severely altered the morphology of the cells, intensely disturbed; (2) the cell wall was thicker; (3) drastically changed the cytoplasm, the cells were polygonal in shape, different in size (scattered), and relatively dense. Compared to the control group, the ultra-structure of the root cells of the control group revealed intact cytoplasm, vacuole, and cell wall under exposure to As + bacteria that had a minor effect on the cell form. To further understand As + bacteria interaction, proteome profiling of the root cell was analyzed. The As-induced oxidative stress enrichment was confirmed by the up-regulation of tubulin, nucleoside diphosphate kinase, and major allergen during As + bacteria exposure It was observed that the profusion of proteins involved in defence, protein biogenesis, signaling, photosynthesis, nucleoside and energy metabolism was greater in As + bacteria as compared to the rooting out of As only. Overall, it can be obviously seen that the current study demonstrates the effectiveness of phytoremediation by M. foliorum on proteins involved and responsive pathways in dealing with As toxicity in M. malabathricum plant.
Collapse
Affiliation(s)
- Sadiya Alka
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Shafinaz Shahir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Norahim Ibrahim
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute, National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquater, 43400 Serdang, Selangor Malaysia
| | - Norhazalina Haliba
- University Industry Research Laboratory, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| |
Collapse
|
22
|
Chen J, Tian Y. Hexavalent chromium reducing bacteria: mechanism of reduction and characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20981-20997. [PMID: 33689130 DOI: 10.1007/s11356-021-13325-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a common heavy metal, chromium and its compounds are widely used in industrial applications, e.g., leather tanning, electroplating, and in stainless steel, paints and fertilizers. Due to the strong toxicity of Cr(VI), chromium is regarded as a major source of pollution with a serious impact on the environment and biological systems. The disposal of Cr(VI) by biological treatment methods is more favorable than traditional treatment methods because the biological processes are environmentally friendly and cost-efficient. This review describes how bacteria tolerate and reduce Cr(VI) and the effects of some physical and chemical factors on the reduction of Cr(IV). The practical applications for Cr(VI) reduction of bacterial cells are also included in this review.
Collapse
Affiliation(s)
- Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- Key Laboratory of Leather Chemistry and Engineering, (Sichuan University), Ministry of Education, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
23
|
Ali J, Ali F, Ahmad I, Rafique M, Munis MFH, Hassan SW, Sultan T, Iftikhar M, Chaudhary HJ. Mechanistic elucidation of germination potential and growth of Sesbania sesban seedlings with Bacillus anthracis PM21 under heavy metals stress: An in vitro study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111769. [PMID: 33396087 DOI: 10.1016/j.ecoenv.2020.111769] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 05/06/2023]
Abstract
Soils contaminated with heavy metals such as Chromium (Cr) and Cadmium (Cd) severely impede plant growth. Several rhizospheric microorganisms support plant growth under heavy metal stress. In this study, Cr and Cd stress was applied to in vitro germinating seedlings of a Legume plant species, Sesbania sesban, and investigated the plant growth potential in presence and absence of Bacillus anthracis PM21 bacterial strain under heavy metal stress. The seedlings were exposed to different concentrations of Cr (25-75 mg/L) and Cd (100-200 mg/L) in Petri plates. Growth curve analysis of B. anthracis PM21 revealed its potential to adapt Cr and Cd stress. The bacteria supported plant growth by exhibiting ACC-deaminase activity (1.57-1.75 μM of α-ketobutyrate/h/mg protein), producing Indole-3-acetic acid (99-119 μM/mL) and exopolysaccharides (2.74-2.98 mg/mL), under heavy metal stress condition. Analysis of variance revealed significant differences in growth parameters between the seedlings with and without bacterial inoculation in metal stress condition. The combined Cr+Cd stress (75 + 200 mg/L) significantly reduced root length (70%), shoot length (24%), dry weight (54%) and fresh weight (57%) as compared to control. Conversely, B. anthracis PM21 inoculation to seedlings significantly increased (p ≤ 0.05) seed germination percentage (5%), root length (31%), shoot length (23%) and photosynthetic pigments (Chlorophyll a: 20%; Chlorophyll b: 16% and total chlorophyll: 18%), as compared to control seedlings without B. anthracis PM21 inoculation. The B. anthracis PM21 inoculation also enhanced activities of antioxidant enzymes, including superoxide dismutase (52%), peroxidase (66%), and catalase (21%), and decreased proline content (56%), electrolyte leakage (50%), and malondialdehyde concentration (46%) in seedlings. The B. anthracis PM21 inoculated seedlings of S. sesban exhibited significantly high (p ≤ 0.05) tissue deposition of Cr (17%) and Cd (16%) as compared to their control counterparts. Findings of the study suggested that B. anthracis PM21 endured metal stress through homeostasis of antioxidant activities, and positively impacted S. sesban growth and biomass. Further experiments in controlled conditions are necessary for investigating phytoremediation potential of S. sesban in metal-contaminated soils in presence of B. anthracis PM21 bacterial strain.
Collapse
Affiliation(s)
- Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fawad Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100 Vehari, Pakistan
| | - Mazhar Rafique
- Department of Soil and Climate Sciences, Faculty of Agriculture Sciences, The University of Haripur, Pakistan
| | | | | | - Tariq Sultan
- Soil Biology Program, Land Resources Research Institute, National Agricultural Research Center, Islamabad, Pakistan
| | - Muhammad Iftikhar
- Soil Biology Program, Land Resources Research Institute, National Agricultural Research Center, Islamabad, Pakistan
| | | |
Collapse
|
24
|
Huang H, Zhao Y, Fan L, Jin Q, Yang G, Xu Z. Improvement of manganese phytoremediation by Broussonetia papyrifera with two plant growth promoting (PGP) Bacillus species. CHEMOSPHERE 2020; 260:127614. [PMID: 32693260 DOI: 10.1016/j.chemosphere.2020.127614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 05/20/2023]
Abstract
Combining phytoremediation plants and microorganisms is a promising method of remediating heavy metal contaminated soil. In this study, two manganese-tolerant strains were isolated from Mn slag and identified as Bacillus cereus HM5 and Bacillus thuringiensis HM7. These two Bacillus spp. have the ability to dissolve phosphorus, produce IAA and iron carrier. A pot experiment of Broussonetia papyrifera was conducted to explore potential of B. cereus HM5 and B. thuringiensis HM7 to improve effect of remedying Mn pollution by B. papyrifera. The strains were inoculated under different Mn treated (5 mmol/L, 50 mmol/L, Mn slag) respectively and the growth, root structure, root activity, physiological and biochemical characteristics of the leaves and accumulation of Mn for B. papyrifera were determinated. The effects of the soil environment to remediation were observed, the results showed that the biomass, total root length, surface area, crossings, tips, forks and root activity of B. papyrifera with inoculated strain were higher than those of the control group. The inoculation of these two Bacillus spp. increased the absorption of Mn by B. papyrifera and the concentration of Mn in the aerial parts of plants, indicating that the two strains could promote the growth of B. papyrifera and the accumulation of Mn. In addition, microbes reduced malonaldehyde content and the activities of antioxidant enzymes in leaves, suggesting that the two Bacillus spp. reduced Mn-induced oxidative stress. The principal component analysis showed that the added Bacillus strain prefer to promote plant root function maintenance and improve soil environment, rather than direct adsorption of heavy metals. These observations indicated that B. cereus HM5 and B. thuringiensis HM7 were valuable microorganisms, which could improve the remediating efficiency of B. papyrifera under Mn-contaminated soil.
Collapse
Affiliation(s)
- Huimin Huang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004, Changsha, Hunan Province, China; Hunan Urban and Rural Ecological Planning and Restoration Engineering Research Center, Hunan City University, 518 Yingbin Road, 413000, Yiyang, Hunan Province, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004, Changsha, Hunan Province, China
| | - Li Fan
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004, Changsha, Hunan Province, China
| | - Qi Jin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004, Changsha, Hunan Province, China
| | - Guiyan Yang
- Hunan Urban and Rural Ecological Planning and Restoration Engineering Research Center, Hunan City University, 518 Yingbin Road, 413000, Yiyang, Hunan Province, China; College of Forestry, Northwest A & F University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, 498 Shaoshan South Road, 410004, Changsha, Hunan Province, China; Hunan Urban and Rural Ecological Planning and Restoration Engineering Research Center, Hunan City University, 518 Yingbin Road, 413000, Yiyang, Hunan Province, China; College of Forestry, Northwest A & F University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Vijayaraj AS, Mohandass C, Joshi D. Microremediation of tannery wastewater by siderophore producing marine bacteria. ENVIRONMENTAL TECHNOLOGY 2020; 41:3619-3632. [PMID: 31070993 DOI: 10.1080/09593330.2019.1615995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The present study evaluated the microremediation potential of nine siderophore producing marine bacteria for hazardous raw tannery wastewater from common effluent treatment plant (CETP). Most of the pollutants detected in the wastewater were diminished after the bioremediation process. Further, among the three potent isolates selected for aerobic and anaerobic bioremediation study, Marinobacter hydrocarbonoclasticus demonstrated the highest bioremediation aerobically with a reduction in chromium (88%), sulphate (71%), phosphate (68%) and nitrate (57%). Notably, Nitratireductor kimnyeongensis could attack the effluent under both aerobic and anaerobic conditions as substantiated by statistically significant (p < .05) reduction in the pollutants [chromium (85%), sulphate (63%), Chemical Oxygen Demand (COD) (69%), phosphate (76%)]. From the study it is evident that the pollutant load reduction was achieved under both aerobic and anaerobic conditions, however, aerobic environment was more effective in reducing chromium, Biochemical Oxygen Demand (BOD), sulphate, nitrate and phosphate. The bioremediation efficiency was further confirmed by the bioassay experiments with plant and animal models where higher seed germination, greater plant length and biomass, as well as improved survival rate of Artemia nauplii for bioremediated wastewater was observed as compared to the untreated effluent indicating a significant reduction in toxicity. The results for simultaneous removal of multiple-toxicants thus signify effectiveness and ease of using the robust properties of these marine bacterial strains suggesting their potential application for bioremediation. Hence this could pave a promising way for an environment-friendly and economically feasible clean-up strategy for safer disposal of tannery wastewater.
Collapse
Affiliation(s)
- A S Vijayaraj
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - C Mohandass
- CSIR-National Institute of Oceanography, Regional Centre, Mumbai, India
| | - Devika Joshi
- Academy of Scientific and Innovative Research, CSIR-National Institute of Oceanography, Dona Paula, Goa, India
- The Energy & Resources Institute (TERI), Coastal Ecology and Marine Resources Center, St Cruz, Goa, India
| |
Collapse
|
26
|
Jain D, Kour R, Bhojiya AA, Meena RH, Singh A, Mohanty SR, Rajpurohit D, Ameta KD. Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization. Sci Rep 2020; 10:13865. [PMID: 32807871 PMCID: PMC7431563 DOI: 10.1038/s41598-020-70846-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
The increasing heavy metal contamination in agricultural soils has become a serious concern across the globe. The present study envisages developing microbial inoculant approach for agriculture in Zn contaminated soils. Potential zinc tolerant bacteria (ZTB) were isolated from zinc (Zn) contaminated soils of southern Rajasthan, India. Isolates were further screened based on their efficiency towards Zn tolerance and plant growth promoting activities. Four strains viz. ZTB15, ZTB24, ZTB28 and ZTB29 exhibited high degree of tolerance to Zn up to 62.5 mM. The Zn accumulation by these bacterial strains was also evidenced by AAS and SEM-EDS studies. Assessment of various plant growth promotion traits viz., IAA, GA3, NH3, HCN, siderophores, ACC deaminase, phytase production and P, K, Si solubilization studies revealed that these ZTB strains may serve as an efficient plant growth promoter under in vitro conditions. Gluconic acid secreted by ZTB strains owing to mineral solubilization was therefore confirmed using high performance liquid chromatography. A pot experiment under Zn stress conditions was performed using maize (Zea mays) variety (FEM-2) as a test crop. Zn toxicity reduced various plant growth parameters; however, inoculation of ZTB strains alleviated the Zn toxicity and enhanced the plant growth parameters. The effects of Zn stress on antioxidant enzyme activities in maize under in vitro conditions were also investigated. An increase in superoxide dismutase, peroxidase, phenylalanine ammonia lyase, catalase and polyphenol oxidase activity was observed on inoculation of ZTB strains. Further, ZIP gene expression studies revealed high expression in the ZIP metal transporter genes which were declined in the ZTB treated maize plantlets. The findings from the present study revealed that ZTB could play an important role in bioremediation in Zn contaminated soils.
Collapse
Affiliation(s)
- Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India.
| | - Ramandeep Kour
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Ali Asger Bhojiya
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India.,Department of Agriculture and Veterinary Sciences, Mewar University, Chittaurgarh, Rajasthan, India
| | - Ram Hari Meena
- Department of Soil Science and Agricultural Chemistry, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India.
| | - Santosh Ranjan Mohanty
- AINP on Soil Biodiversity-Bio-Fertilizers, Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, Madhya Pradesh, 462038, India
| | - Deepak Rajpurohit
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Kapil Dev Ameta
- Department of Horticulture, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
27
|
Iqbal A, Mushtaq MU, Khan AHA, Nawaz I, Yousaf S, Iqbal M. Influence of Pseudomonas japonica and organic amendments on the growth and metal tolerance of Celosia argentea L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24671-24685. [PMID: 31428967 DOI: 10.1007/s11356-019-06181-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, a pot experiment was piloted in a greenhouse to evaluate the potential of Celosia argentea var. cristata L. for tolerating/accumulating heavy metals in synthetic wastewater in the presence of Pseudomonas japonica and organic amendment, i.e., moss and compost. Two-week-old seedlings were transferred to pots, and after 4 weeks, the bacterial strain was inoculated, then watered with synthetic wastewater for 5 weeks and harvested after 9 weeks. After harvesting, physiological and biochemical parameters, as well as metal contents of plants, were quantified. The results indicated highest growth and biomass production in moss- and compost-associated plants while highest metal uptake has been found in the presence of P. japonica and synthetic wastewater-irrigated plants. Synthetic wastewater-irrigated plants have shown highest Pb uptake of 2899 mg kg-1 DW, while with P. japonica in soil those plants have shown highest Cd, Cu, Ni, and Cr uptake of 962, 1479, 1042, and 956 mg kg-1 DW, respectively. The production of antioxidant enzymes, i.e., catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione-s-transferase (GST), was high in P. japonica-amended plants because of increased uptake of metals. It is concluded that moss and compost have improved growth while P. japonica improved metal accumulation and translocation to aerial parts with little involvement in plant growth.
Collapse
Affiliation(s)
- Ameena Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Umair Mushtaq
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aqib Hassan Ali Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ismat Nawaz
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
28
|
Bruno LB, Karthik C, Ma Y, Kadirvelu K, Freitas H, Rajkumar M. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr 6+ reducing-thermotolerant plant growth promoting bacteria. CHEMOSPHERE 2020; 244:125521. [PMID: 31812764 DOI: 10.1016/j.chemosphere.2019.125521] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Climatic factors particularly increased atmospheric temperature (IAT) greatly alters plant microbe and heavy metal interactions and subsequently reduces plant growth and phytoremediation efficiency. The aim of the study was to assess the effects of inoculation of chromium reducing-thermotolerant plant growth promoting bacteria (CRT-PGPB) on plant growth, physiological responses and chromium (Cr) uptake by Sorghum bicolor under IAT condition. Three potential CRT-PGPB strains were isolated from Cr contaminated sites and identified as Bacillus cereus TCR17, Providencia rettgeri TCR21 and Myroides odoratimimus TCR22 through molecular characterization. These strains displayed the potential to reduce Cr6+ to Cr3+, produce siderophores, indole-3-acetic acid and solubilize phosphate. Inoculation of S. bicolor with CRT-PGPB increased plant growth, antioxidant status (superoxide dismutase, catalase and ascorbate peroxidase) and decreased proline and malondialdehyde contents in plants under Cr, IAT and Cr + IAT stress indicate that PGPB helped plants to reduce stress induced oxidative damage. Irrespective of IAT stress, inoculation of CRT-PGPB decreased the accumulation of Cr in plants compared with un-inoculated control suggest that CRT-PGPB might have the potential to improve phytostabilization process in Cr contaminated soils. Furthermore, gene expression studies confirmed that inoculation of TCR21 down-regulated the expression of proline synthesis gene (p5cs1) and up-regulated the expression of antioxidant related genes (sod, apx1 and cat) and stress tolerance genes (sHsp). Our results showed that CRT-PGPB exhibiting potential to tolerate Cr, temperature, produce plant beneficial metabolites and reduce Cr6+ to Cr3+, can be exploited as potential inoculants for improving plant growth and phytoremediation process in Cr contaminated soil under IAT condition.
Collapse
Affiliation(s)
- L Benedict Bruno
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, India
| | - Chinnannan Karthik
- DRDO - Bharathiar University - Centre for Life Sciences, Coimbatore, 641046, India
| | - Ying Ma
- Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - K Kadirvelu
- DRDO - Bharathiar University - Centre for Life Sciences, Coimbatore, 641046, India
| | - Helena Freitas
- Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Mani Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
29
|
Gupta P, Kumar V, Usmani Z, Rani R, Chandra A, Gupta VK. Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. CHEMOSPHERE 2020; 240:124944. [PMID: 31726591 DOI: 10.1016/j.chemosphere.2019.124944] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 05/27/2023]
Abstract
The present study explores the potential of two chromium tolerant and plant growth promoting bacterial strains, Klebsiella sp. and Enterobacter sp. in luxuriant growth of tomato plants under chromium stress conditions. For the assessment of potentiality of the two selected strains, a pot scale experiment was setup with tomato plant under different levels of chromium contamination. In pot experiment, different plant growth parameters, oxidative stress tolerance and chromium bioremediation potential were studied upon inoculation of the selected bacterial strains. The results of pot experiment showed that both the strains were effective in promotion of plant growth and enhanced the plant biomass but Enterobacter sp. was more prominent in enhancement of root length, shoot length, fresh and dry weight, and nutrient uptake in tomato plant. The enhancement of enzymes to combat oxidative stress in tomato plant under chromium stress was also observed for both the strains. Both strains enhanced the levels of superoxide dismutase, catalase, peroxidase, total phenolic, and ascorbic acid in tomato plant under different levels of chromium stress conditions. The chromium phytoremediation potential of tomato plant upon inoculation of both the strains was also studied. The results of phytoremediation showed greater chromium accumulation in roots with poor translocation in shoot upon inoculation of Klebsiella sp. while no significant enhancement in chromium uptake by tomato plant was observed on inoculation of Enterobacter sp. compared to control. Thus, these two strains can effectively be used in luxuriant growth of tomato plant under metal stress conditions.
Collapse
Affiliation(s)
- Pratishtha Gupta
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Vipin Kumar
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India.
| | - Zeba Usmani
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Rupa Rani
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Avantika Chandra
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Vijai Kumar Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
30
|
Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109779. [PMID: 31726280 DOI: 10.1016/j.jenvman.2019.109779] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/27/2019] [Accepted: 10/25/2019] [Indexed: 05/22/2023]
Abstract
Rapid industrialization, modern agricultural practices and other anthropogenic activities add a significant quantity of toxic heavy metals into the environment, which induces severe toxic effects on all form of living organisms, alter the soil properties and its biological activity. Remediation of heavy metal contaminated sites has become an urgent necessity. Among the existing strategies, phytoremediation is an eco-friendly and much convincing tool for the remediation of heavy metals. However, the applicability of phytoremediation in contaminated sites is restricted by two prime factors such as i) slow growth rate at higher metal contaminated sites and ii) metal bioavailability. This circumstance could be minimized and accelerate the phytoremediation efficiency by incorporating the potential plant growth promoting rhizobacterial (PGPR) as a combined approach. PGPR inoculation might improve the plant growth through the production of plant growth promoting substances and improve the heavy metal remediation efficiency by the secretion of chelating agents, acidification and redox changes. Moreover, rhizobacterial inoculation consolidates the metal tolerance and uptake by regulating the expression of various metal transporters, tolerant and metal chelator genes. However, the exact underlying molecular mechanism of PGPR mediated plant growth promotion and phytoremediation of heavy metals is poorly understood. Thus, the present review provides clear information about the molecular mechanisms excreted by PGPR strains in plant growth promotion and phytoremediation of heavy metals.
Collapse
Affiliation(s)
- Srinivas Ravi Manoj
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Chinnannan Karthik
- DRDO - BU - Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, Tamil Nadu, India.
| | - Krishna Kadirvelu
- DRDO - BU - Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, Tamil Nadu, India.
| | - Padikasan Indra Arulselvi
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Thangavel Shanmugasundaram
- DRDO - BU - Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, Tamil Nadu, India
| | - Benedict Bruno
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mani Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
31
|
Biological and Nonbiological Approaches for Treatment of Cr(VI) in Tannery Effluent. EMERGING ECO-FRIENDLY GREEN TECHNOLOGIES FOR WASTEWATER TREATMENT 2020. [DOI: 10.1007/978-981-15-1390-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Din BU, Rafique M, Javed MT, Kamran MA, Mehmood S, Khan M, Sultan T, Hussain Munis MF, Chaudhary HJ. Assisted phytoremediation of chromium spiked soils by Sesbania Sesban in association with Bacillus xiamenensis PM14: A biochemical analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:249-258. [PMID: 31765956 DOI: 10.1016/j.plaphy.2019.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 05/03/2023]
Abstract
Due to anthropogenic activities, chromium (Cr) contamination is ubiquitous with deleterious effects on plant and soil microbiota. Present study was designed to address beneficial effects of Bacillus xiamenensis PM14 on Sesbania sesban. Its physiological and biochemical attributes along with enhanced antioxidant enzyme activities under different levels of Cr toxicity (50, 100 and 200 mg kg-1) were evaluated. After harvesting at 50 days of sowing, plant growth attributes (root and shoot length, fresh and dry weight), physiological parameters (chlorophyll a, b and carotenoid content), antioxidant activities (superoxide dismutase, peroxidase and catalase), malondialdehyde content, electrolyte leakage, proline, relative water content and total Cr uptake in S. sesban were recorded. Experiment was statistically managed as complete randomized design (CRD). Results revealed that Cr stress reduced plant growth, relative water content at all levels of Cr contamination. However, inoculation of B. xiamenensis PM14 positively influence all parameters of S. sesban both under normal and stressed conditions. Inoculation of B. xiamenensis PM14 promoted plant growth (root length 17.08%, shoot length 28.36%) physiological attributes (chlorophyll a 55.26%, chlorophyll b 59.13%), antioxidant activities (superoxide dismutase 30.09%, peroxidase 6.96% and catalase 0.89%), relative water content 25.79%, enhanced total Cr uptake 47.33% and reduced proline 12.33%, malondialdehyde content 27.53% and electrolyte leakage 2.73% in S. sesban at 200 mg kg-1 Cr stress as compared to uninoculated plants grown under the same level of Cr. Our findings revealed first report of B. xiamenensis as phytoremediator and its inoculation on Sesbania plant. It also exposed dual effects of B. xiamenensis to ameliorate Cr stress along with improved plant growth and induced heavy metal stress tolerance in spiked soils.
Collapse
Affiliation(s)
- Bashir Ud Din
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mazhar Rafique
- Department of Soil Science, Faculty of Basic and Applied Sciences, The University of Haripiur, 22630, Khyber Pakhunkhwa, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, 38000, Faisalabad, Pakistan
| | - Muhammad Aqeel Kamran
- Department of Environmental Sciences, Zhejiang Provincial Key laboratory of Organic Pollution Process and Control, Zheijiang University, Hangzhou 310058 Zhejiang, China
| | - Shehzad Mehmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mursalin Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | | | | |
Collapse
|
33
|
Gupta P, Kumar V, Usmani Z, Rani R, Chandra A, Gupta VK. A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.). JOURNAL OF HAZARDOUS MATERIALS 2019; 377:391-398. [PMID: 31173990 DOI: 10.1016/j.jhazmat.2019.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Prevalence of metal pollutants exerts negative effects on human health and environment, thus propounding an urgent need for a safer substitute. This study was conducted to compare the chromium bioremediation and plant growth promotion ability of two bacterial strains, Klebsiella sp. strain CPSB4 (MH266218) and Enterobacter sp. strain CPSB49 (MH532567), isolated from the rhizospheric soils. A pot scale experiment was setup with Helianthus annuus (L.) as a test plant to compare the efficiency of both isolates in enhancement of plant growth, nutrients uptake, anti-oxidative enzymes production, lipid peroxidation, and chromium bioremediation. Inoculation of strains, CPSB4 and CPSB49 enhanced plant biomass, plant growth, nutrient uptake, anti-oxidative enzymes, and chromium bioremediation, while reduction in lipid peroxidation was observed compared to uninoculated control under chromium stress. The maximum increase in plant growth and nutrient uptake was found in treatments inoculated with CPSB49, while maximum chromium uptake by sunflower was observed in treatments inoculated with CPSB4. Moreover, an increase in anti-oxidative enzyme production and decrease in lipid peroxidation was observed on inoculation of the selected strains. Thus, the strains Klebsiella sp. and Enterobacter sp. can be effectively used in chromium bioremediation and plant growth promotion under chromium stress conditions.
Collapse
Affiliation(s)
- Pratishtha Gupta
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Vipin Kumar
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India.
| | - Zeba Usmani
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Rupa Rani
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Avantika Chandra
- Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Vijai Kumar Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|