1
|
Wang Q, Li A, Li Q, Li J, Wang Q, Wu S, Meng J, Liu C, Wang D, Chen Y. Carbon monoxide attenuates cellular senescence-mediated pulmonary fibrosis via modulating p53/PAI-1 pathway. Eur J Pharmacol 2024; 980:176843. [PMID: 39068977 DOI: 10.1016/j.ejphar.2024.176843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF) is a fatal progressive condition often requiring lung transplantation. Accelerated senescence of type II alveolar epithelial cells (AECII) plays a crucial role in pulmonary fibrosis progression through the secretion of the senescence-associated secretory phenotype (SASP). Low-dose carbon monoxide (CO) possesses anti-inflammatory, anti-oxidative, and anti-aging properties. This study aims to explore the preventive effects of CO-releasing molecule 2 (CORM2) in a bleomycin-induced pulmonary fibrosis model. METHODS We established an pulmonary fibrosis model in C57BL/6J mice and evaluated the impact of CORM2 on fibrosis pathology using Masson's trichrome staining, fluorescence staining, and pulmonary function tests. Fibrogenic marker expression and SASP secretion in tissues and AECII cells were analyzed using qRT-PCR, Western blot, and ELISA assays both in vivo and in vitro. Additionally, we investigated DNA damage and cellular senescence through immunofluorescence and SA-β-gal staining. RESULTS CORM2 showed a preventive effect on bleomycin-induced lung fibrosis by improving pulmonary function and reducing the expression of fibrosis-related genes, such as TGF-β, α-SMA, Collagen I/III. CORM2 decreased the DNA damage response by inhibiting γ-H2AX, p53, and p21. We identified PAI-1 as a new target gene that was downregulated by CORM2, and which was associated with cellular senescence and fibrosis. CORM2 effectively inhibited cellular senescence and delayed EMT occurrence in AECII cells. CONCLUSION Our study highlights the potential of CORM2 in preventing DNA damage-induced cellular senescence in bleomycin-induced pulmonary fibrosis through modulation of the p53/PAI-1 signaling pathway. These findings underscore the promising prospects of CORM2 in targeting cellular senescence and the p53/PAI-1 pathway as a potential preventive strategy for IPF.
Collapse
Affiliation(s)
- Qianqian Wang
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Aohan Li
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Qian Li
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Jiaxin Li
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China; Case Statistics Office, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150011, China
| | - Qi Wang
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Siyuan Wu
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Jiaojiao Meng
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Changpeng Liu
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Dan Wang
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.
| | - Yingqing Chen
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.
| |
Collapse
|
2
|
Wei S, Xiao J, Ju F, Li J, Liu T, Hu Z. Aloperine Attenuates Hepatic Ischemia/Reperfusion-Induced Liver Injury via STAT-3 Signaling in a Murine Model. J Pharmacol Exp Ther 2024; 391:51-63. [PMID: 39164092 DOI: 10.1124/jpet.123.001992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Hepatic ischemia/reperfusion (I/R) damage is one of the most common side effects of liver surgery. This pathophysiological process may lead to excessive hepatic damage. Aloperine is an active ingredient isolated from Sophora alopecuroides Linn and has a variety of therapeutic effects, including organ protection. However, the hepatoprotective effect of aloperine against hepatic I/R damage has not yet been determined. C57BL/6 mice were allocated to the sham-operated (sham), hepatic ischemia/reperfusion (I/R), and aloperine groups. The mice were exposed to 30 min of hepatic hilum occlusion. Then a 3-h reperfusion was performed. Mice in the sham group underwent sham surgery. Hepatic injury was evaluated by plasma aspartate aminotransferase (AST) and transaminase alanine aminotransferase (ALT) levels, histological evaluation, cell apoptosis, the number of activated inflammatory cells, and the expression levels of inflammatory cytokines, including tumor necrosis factor-α and interleukin-6. The protein phosphorylation status of the reperfusion-associated survival pathways was evaluated. Mice with hepatic I/R injury presented increased plasma ALT and AST levels, increased hepatic apoptosis, abnormal histological structure, and elevated inflammatory responses. However, aloperine ameliorated hepatic I/R-induced injury. Moreover, aloperine enhanced the level of signal transducer and activator of transcription (STAT)-3 phosphorylation after I/R. Ag490, an agent that inhibits STAT-3 activity, abolished aloperine-induced STAT-3 phosphorylation and liver protection. Aloperine ameliorates hepatic I/R-induced liver injury via a STAT-3-mediated protective mechanism. Patients with hepatic I/R injury may benefit from aloperine treatment. SIGNIFICANCE STATEMENT: Hepatic I/R can cause excessive liver damage. This study revealed that aloperine, an active component isolated from Sophora alopecuroides Linn, ameliorates hepatic I/R injury and related liver damage in vivo. The underlying protective mechanism may involve the STAT-3 signaling pathway. These findings may lead to the development of a novel approach for treating hepatic I/R damage in clinical practice.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxue Li
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Mohammed SM, Al-Saedi HFS, Mohammed AQ, Amir AA, Radi UK, Sattar R, Ahmad I, Ramadan MF, Alshahrani MY, Balasim HM, Alawadi A. Mechanisms of Bleomycin-induced Lung Fibrosis: A Review of Therapeutic Targets and Approaches. Cell Biochem Biophys 2024; 82:1845-1870. [PMID: 38955925 DOI: 10.1007/s12013-024-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Pulmonary toxicity is a serious side effect of some specific anticancer drugs. Bleomycin is a well-known anticancer drug that triggers severe reactions in the lungs. It is an approved drug that may be prescribed for the treatment of testicular cancers, Hodgkin's and non-Hodgkin's lymphomas, ovarian cancer, head and neck cancers, and cervical cancer. A large number of experimental studies and clinical findings show that bleomycin can concentrate in lung tissue, leading to massive oxidative stress, alveolar epithelial cell death, the proliferation of fibroblasts, and finally the infiltration of immune cells. Chronic release of pro-inflammatory and pro-fibrotic molecules by immune cells and fibroblasts leads to pneumonitis and fibrosis. Both fibrosis and pneumonitis are serious concerns for patients who receive bleomycin and may lead to death. Therefore, the management of lung toxicity following cancer therapy with bleomycin is a critical issue. This review explains the cellular and molecular mechanisms of pulmonary injury following treatment with bleomycin. Furthermore, we review therapeutic targets and possible promising strategies for ameliorating bleomycin-induced lung injury.
Collapse
Affiliation(s)
- Shaimaa M Mohammed
- Department of Pharmacy, Al- Mustaqbal University College, 51001, Hilla, Babylon, Iraq
| | | | | | - Ahmed Ali Amir
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ruaa Sattar
- Al-Hadi University College, Baghdad, 10011, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Halah Majeed Balasim
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Hilla, Iraq
| |
Collapse
|
4
|
Guo W, Zhou H, Wang J, Lu J, Dong Y, Kang Z, Qiu X, Ouyang X, Chen Q, Li J, Cheng X, Du K, Li M, Lin Z, Jin M, Zhang L, Sarapultsev A, Shi K, Li F, Zhang G, Wu K, Rong Y, Heissmeyer V, Liu Y, Li Y, Huang K, Luo S, Hu D. Aloperine Suppresses Cancer Progression by Interacting with VPS4A to Inhibit Autophagosome-lysosome Fusion in NSCLC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308307. [PMID: 39166458 PMCID: PMC11336898 DOI: 10.1002/advs.202308307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/12/2024] [Indexed: 08/23/2024]
Abstract
Aloperine (ALO), a quinolizidine-type alkaloid isolated from a natural Chinese herb, has shown promising antitumor effects. Nevertheless, its common mechanism of action and specific target remain elusive. Here, it is demonstrated that ALO inhibits the proliferation and migration of non-small cell lung cancer cell lines in vitro and the tumor development in several mouse tumor models in vivo. Mechanistically, ALO inhibits the fusion of autophagosomes with lysosomes and the autophagic flux, leading to the accumulation of sequestosome-1 (SQSTM1) and production of reactive oxygen species (ROS), thereby inducing tumor cell apoptosis and preventing tumor growth. Knockdown of SQSTM1 in cells inhibits ROS production and reverses ALO-induced cell apoptosis. Furthermore, VPS4A is identified as a direct target of ALO, and the amino acids F153 and D263 of VPS4A are confirmed as the binding sites for ALO. Knockout of VPS4A in H1299 cells demonstrates a similar biological effect as ALO treatment. Additionally, ALO enhances the efficacy of the anti-PD-L1/TGF-β bispecific antibody in inhibiting LLC-derived subcutaneous tumor models. Thus, ALO is first identified as a novel late-stage autophagy inhibitor that triggers tumor cell death by targeting VPS4A.
Collapse
Affiliation(s)
- Weina Guo
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Department of Laboratory MedicineWuhan Children's Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Junjie Lu
- Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang441000China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Zhenyu Kang
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xiaoyuan Qiu
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xiang Cheng
- Hubei Key Laboratory of Biological Targeted TherapyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Keye Du
- Department of NeurosurgeryUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Mingyue Li
- Department of GastroenterologyZhongda Hospital, Southeast UniversityNanjing210000China
| | - Zhihao Lin
- Institute of Neuroscience, School of MedicineXiamen UniversityXiamen361000China
| | - Min Jin
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
| | - Alexey Sarapultsev
- School of Medical BiologySouth Ural State UniversityChelyabinsk454087Russia
| | - Kuangyu Shi
- Department of Nuclear MedicineUniversity of BernBern3007Switzerland
| | - Fangfei Li
- Shum Yiu Foon Sum Bik Chuen Memorial Centre for Cancer and Inflammation Research School of Chinese MedicineHong Kong Baptist UniversityHong KongSAR999077China
| | - Ge Zhang
- Institute of Integrated Bioinfomedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong KongSAR999077China
| | - Kongming Wu
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Yueguang Rong
- School of Basic Medicine of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Vigo Heissmeyer
- Institute for Immunology Biomedical CenterLudwig‐Maximilians‐Universität München82152Planegg‐MartinsriedGermany
| | - Yue Liu
- Cardiovascular Disease CenterXiyuan hospital of China academy of Chinese medical SciencesBeijing100102China
| | - Yunlun Li
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
- Innovation Research Institute of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinan250355China
| | - Kun Huang
- School of Pharmacy of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shanshan Luo
- Institute of Hematology, Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Hubei Key Laboratory of Biological Targeted TherapyChina‐Russia Medical Research Center for Stress ImmunologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| |
Collapse
|
5
|
Wei S, Ju F, Xiao J, Li J, Liu T, Hu Z. Aloperine Alleviates Myocardial Injury Induced by Myocardial Ischemia and Reperfusion by Activating the ERK1/2/β-catenin Signaling Pathway. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07566-0. [PMID: 38416285 DOI: 10.1007/s10557-024-07566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (I/R) injury can cause severe cardiac damage. Aloperine is a quinolizidine alkaloid found in the leaves and seeds of Sophora alopecuroides L. It has been recognized that aloperine has organ-protective properties; however, its role in cardioprotection is poorly characterized. This study aimed to evaluate the cardioprotective effects of aloperine against myocardial I/R injury in vivo. METHODS Adult male Sprague‒Dawley rats were randomly divided into sham-operated, control, and aloperine groups. All rats except for the sham-operated rats were subjected to 45 min of myocardial ischemia (by left anterior descending ligation) followed by 3 h of reperfusion. Aloperine (10 mg/kg) was given intravenously at the onset of reperfusion. The cardioprotective effects of aloperine were evaluated by determining infarct size, hemodynamics, histological changes, cardiac biomarkers, and cardiac apoptosis. RESULTS Aloperine limited infarct size; improved hemodynamics; attenuated myocardial I/R-induced histological deterioration; decreased serum LDH, CK-MB, and α-HBDH levels; and inhibited apoptosis after myocardial I/R injury. Moreover, aloperine stimulated the phosphorylation of ventricular ERK1/2, which is a major module of MAPK signaling pathways. Furthermore, aloperine increased the ventricular expression levels of β-catenin. Pharmacological inhibition of ERK1/2 diminished aloperine-induced cardioprotection and blocked ERK1/2/β-catenin signaling. CONCLUSIONS These data support the cardioprotective effect of aloperine against myocardial I/R injury, which is mediated, at least in part, by the ERK1/2/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxue Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Washimkar KR, Tomar MS, Kulkarni C, Verma S, Shrivastava A, Chattopadhyay N, Mugale MN. Longitudinal assessment of bleomycin-induced pulmonary fibrosis by evaluating TGF-β1/Smad2, Nrf2 signaling and metabolomic analysis in mice. Life Sci 2023; 331:122064. [PMID: 37657527 DOI: 10.1016/j.lfs.2023.122064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Pulmonary fibrosis (PF) is characterized by an increase in collagen synthesis and deposition of extracellular matrix. Several factors, including transforming growth factor-β1 (TGF-β1), mothers against decapentaplegic homolog family proteins (Smad), and alpha-smooth muscle actin (α-SMA) trigger extracellular matrix (ECM) accumulation, fibroblast to myofibroblasts conversion, and epithelial-to-mesenchymal-transition (EMT) leading to PF. However, the role of cellular defense mechanisms such as the role of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling during the onset and progression of PF is not understood completely. AIM The present study aims to analyze the involvement of TGF-β1/Smad signaling, and Nrf2 in the EMT and metabolic alterations that promote fibrosis in a time-dependent manner using bleomycin (BLM)-induced PF model in C57BL/6 mice. KEY FINDINGS Histopathological studies revealed loss of lung architecture and increased collagen deposition in BLM-exposed mice. BLM upregulated TGF-β1/Smad signaling and α-SMA at all time-points. The gradual increase in the accumulation of α-SMA and collagen implied the progression of PF. BLM exposure raises Nrf2 throughout each specified time-point, which suggests that Nrf2 activation might be responsible for TGF-β1-induced EMT and the development of PF. Further, metabolomic studies linked the development of PF to alterations in metabolic pathways. The pentose phosphate pathway (PPP) was consistently enriched across all the time-points. Additionally, alterations in 22 commonly enriched pathways, associated with fatty acid (FA) and amino acid metabolism were observed in 30- and 60-days. SIGNIFICANCE This study elucidates the association of TGF-β1/Smad and Nrf2 signaling in the EMT and metabolic alterations associated with the etiology and progression of PF.
Collapse
Affiliation(s)
- Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manendra Singh Tomar
- Centre for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, India
| | - Chirag Kulkarni
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Shrivastava
- Centre for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Shan X, Gegentuya, Wang J, Feng H, Zhang Z, Zheng Q, Zhang Q, Yang K, Wang J, Xu L. Aloperine protects pulmonary hypertension via triggering PPARγ signaling and inhibiting calcium regulatory pathway in pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 2023; 325:C1058-C1072. [PMID: 37661916 DOI: 10.1152/ajpcell.00286.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Previous studies have reported the beneficial role of Aloperine (ALO), an active vasodilator purified from the seeds and leaves of the herbal plant Sophora alopecuroides L., on experimental pulmonary hypertension (PH); however, detailed mechanisms remain unclear. In this study, monocrotaline-induced PH (MCT-PH) rat model and primarily cultured rat distal pulmonary arterial smooth muscle cells (PASMCs) were used to investigate the mechanisms of ALO on experimental PH, pulmonary vascular remodeling, and excessive proliferation of PASMCs. Results showed that first, ALO significantly prevented the disease development of MCT-PH by inhibiting right ventricular systolic pressure (RVSP) and right ventricular hypertrophy indexed by the Fulton Index, normalizing the pulmonary arterials (PAs) remodeling and improving the right ventricular function indexed by transthoracic echocardiography. ALO inhibited the excessive proliferation of both PAs and PASMCs. Then, isometric tension measurements showed vasodilation of ALO on precontracted PAs isolated from both control and MCT-PH rats via activating the KCNQ channel, which was blocked by specific KCNQ potassium channel inhibitor linopirdine. Moreover, by using immunofluorescence staining and nuclear/cytosol fractionation, we further observed that ALO significantly enhanced the PPARγ nuclear translocation and activation in PASMCs. Transcriptome analyses also revealed activated PPARγ signaling and suppressed calcium regulatory pathway in lungs from MCT-PH rats treated with ALO. In summary, ALO could attenuate MCT-PH through both transient vasodilation of PAs and chronic activation of PPARγ signaling pathway, which exerted antiproliferative roles on PASMCs and remodeled PAs.NEW & NOTEWORTHY Aloperine attenuates monocrotaline-induced pulmonary hypertension (MCT-PH) in rats by inhibiting the pulmonary vascular remodeling and proliferation of pulmonary arterial smooth muscle cells (PASMCs). In mechanism, Aloperine not only exerts a transient KCNQ-dependent vasodilation in precontracted pulmonary arteries (PAs) from both control and MCT-PH rats but also activates PPARγ nuclear translocation and signaling transduction in PASMCs, which chronically inhibits the calcium regulatory pathway and proliferation of PASMCs.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/prevention & control
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/pathology
- KCNQ Potassium Channels/metabolism
- KCNQ Potassium Channels/genetics
- Monocrotaline/toxicity
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Piperidines/pharmacology
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Quinolizidines/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Xiaoqian Shan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gegentuya
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Jing Wang
- Department of Scientific Research, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huazhuo Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zizhou Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Qiuyu Zheng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Lei Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
8
|
Ma X, Xia K, Xie J, Yan B, Han X, Li S, Wang Y, Fu T. Treatment of Idiopathic Pulmonary Fibrosis by Inhaled Silybin Dry Powder Prepared via the Nanosuspension Spray Drying Technology. ACS Pharmacol Transl Sci 2023; 6:878-891. [PMID: 37325446 PMCID: PMC10262316 DOI: 10.1021/acsptsci.3c00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 06/17/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a kind of life-threatening interstitial lung disease characterized by progressive dyspnea with accurate pathogenesis unknown. At present, heat shock protein inhibitors are gradually used to treat IPF. Silybin, a heat shock protein C-terminal inhibitor, has high safety and good application prospects. In this work, we have developed a silybin powder able to be used for inhalation administration for the treatment of IPF. Silybin powder was prepared by the spray drying method and identified using cascade impactometry, particle size, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. A rat model of bleomycin-induced IPF was used to assess the effect of inhaled silybin spray-dried powder. Lung hydroxyproline content, wet weight, histology, inflammatory factor expression, and gene expression were examined. The results showed that inhaled silybin spray-dried powder alleviated inflammation and fibrosis, limited hydroxyproline accumulation in the lungs, modulated gene expression in the development of IPF, and improved postoperative survival. The results of this study suggest that silybin spray-dried powder is an attractive candidate for the treatment of IPF.
Collapse
Affiliation(s)
| | | | - Jianjun Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baofei Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingxing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sipan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
9
|
Wang Y, Chen D, Xie H, Zhou S, Jia M, He X, Guo F, Lai Y, Tang XX. LncRNA GAS5 suppresses TGF-β1-induced transformation of pulmonary pericytes into myofibroblasts by recruiting KDM5B and promoting H3K4me2/3 demethylation of the PDGFRα/β promoter. Mol Med 2023; 29:32. [PMID: 36918759 PMCID: PMC10015786 DOI: 10.1186/s10020-023-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a condition that may cause persistent pulmonary damage. The transformation of pericytes into myofibroblasts has been recognized as a key player during IPF progression. This study aimed to investigate the functions of lncRNA growth arrest-specific transcript 5 (GAS5) in myofibroblast transformation during IPF progression. METHODS We created a mouse model of pulmonary fibrosis (PF) via intratracheal administration of bleomycin. Pericytes were challenged with exogenous transforming growth factor-β1 (TGF-β1). To determine the expression of target molecules, we employed quantitative reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemical and immunofluorescence staining. The pathological changes in the lungs were evaluated via H&E and Masson staining. Furthermore, the subcellular distribution of GAS5 was examined using FISH. Dual-luciferase reporter assay, ChIP, RNA pull-down, and RIP experiments were conducted to determine the molecular interaction. RESULTS GAS5 expression decreased whereas PDGFRα/β expression increased in the lungs of IPF patients and mice with bleomycin-induced PF. The in vitro overexpression of GAS5 or silencing of PDGFRα/β inhibited the TGF-β1-induced differentiation of pericytes to myofibroblasts, as evidenced by the upregulation of pericyte markers NG2 and desmin as well as downregulation of myofibroblast markers α-SMA and collagen I. Further mechanistic analysis revealed that GAS5 recruited KDM5B to promote H3K4me2/3 demethylation, thereby suppressing PDGFRα/β expression. In addition, KDM5B overexpression inhibited pericyte-myofibroblast transformation and counteracted the promotional effect of GAS5 knockdown on pericyte-myofibroblast transformation. Lung fibrosis in mice was attenuated by GAS5 overexpression but promoted by GAS5 deficiency. CONCLUSION GAS5 represses pericyte-myofibroblast transformation by inhibiting PDGFRα/β expression via KDM5B-mediated H3K4me2/3 demethylation in IPF, identifying GAS5 as an intervention target for IPF.
Collapse
Affiliation(s)
- Yichun Wang
- Department of Critical Care Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, People's Republic of China.
| | - Diyu Chen
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Han Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuhua Zhou
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mingwang Jia
- Department of Critical Care Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Xiaobo He
- Department of Critical Care Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Feifei Guo
- Department of Critical Care Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Yihuan Lai
- Department of Critical Care Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, No. 195 Dongfeng West Road, Yuexiu District, Guangzhou, 510150, Guangdong Province, People's Republic of China.
| |
Collapse
|
10
|
Kadam AH, Schnitzer JE. Characterization of acute lung injury in the bleomycin rat model. Physiol Rep 2023; 11:e15618. [PMID: 36898724 PMCID: PMC10005890 DOI: 10.14814/phy2.15618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
The aim of this study was to describe and characterize the pathophysiological changes occurring during the early inflammatory phase (first 3 days) in the rat bleomycin model of lung injury preceding the development of fibrosis. Further, we wanted to understand the kinetics and factors contributing to bleomycin-induced acute lung injury (ALI) and provide a robust, reliable and reproducible framework of features of ALI readouts to assess effects of therapeutics on bleomycin-induced ALI in rats. We induced ALI in rats with intratracheal (i.t.) installation of bleomycin. The animals were sacrificed on predetermined time points, that is, Day 0, 1, 2, and 3 post the bleomycin challenge. We analyzed bronchoalveolar lavage fluid (BALF) and lung tissue to establish and assess relevant experimental features of ALI. We demonstrated that bleomycin induced key features of experimental ALI including a profound increase in neutrophils in BALF (50-60%), pulmonary edema, and lung pathology on Day 3 after challenge. Furthermore, we showed that TGF-β1, IL-1β, TNF-α, IL-6, CINC-1, TIMP-1, and WISP-1 were induced by studying their kinetic profile during the first 3 days after bleomycin injury consistent with their known role ALI. We also confirmed that detectable fibrogenesis occurs at the earliest on Day 3 after injury based on collagen content, along with changes in the TGF-β/Smad signaling pathway and increased expression of Galectin-3, Vimentin, and Fibronectin in lung homogenate. Our report presents robust features and contributing mediators/factors to the pathology of bleomycin-induced ALI in rats on Day 3. The kinetic data provide insights on the progression of ALI and a detailed understanding of early events before actual fibrosis development. This set of experimental endpoints is very appropriate and invaluable for efficacy testing of potential novel therapeutic treatments (single or combined) in ALI and understanding their mechanism of action.
Collapse
Affiliation(s)
- Anil Hari Kadam
- Proteogenomics Research Institute for Systems Medicine (PRISM)La JollaCaliforniaUSA
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM)La JollaCaliforniaUSA
| |
Collapse
|
11
|
Zheng Q, Lei Y, Hui S, Tong M, Liang L. HDAC3 promotes pulmonary fibrosis by activating NOTCH1 and STAT1 signaling and up-regulating inflammasome components AIM2 and ASC. Cytokine 2022; 153:155842. [DOI: 10.1016/j.cyto.2022.155842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
|
12
|
Aloperine: A Potent Modulator of Crucial Biological Mechanisms in Multiple Diseases. Biomedicines 2022; 10:biomedicines10040905. [PMID: 35453655 PMCID: PMC9028564 DOI: 10.3390/biomedicines10040905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023] Open
Abstract
Aloperine is an alkaloid found in the seeds and leaves of the medicinal plant Sophora alopecuroides L. It has been used as herbal medicine in China for centuries due to its potent anti-inflammatory, antioxidant, antibacterial, and antiviral properties. Recently, aloperine has been widely investigated for its therapeutic activities. Aloperine is proven to be an effective therapeutic agent against many human pathological conditions, including cancer, viral diseases, and cardiovascular and inflammatory disorders. Aloperine is reported to exert therapeutic effects through triggering various biological processes, including cell cycle arrest, apoptosis, autophagy, suppressing cell migration, and invasion. It has also been found to be associated with the modulation of various signaling pathways in different diseases. In this review, we summarize the most recent knowledge on the modulatory effects of aloperine on various critical biological processes and signaling mechanisms, including the PI3K, Akt, NF-κB, Ras, and Nrf2 pathways. These data demonstrate that aloperine is a promising therapeutic candidate. Being a potent modulator of signaling mechanisms, aloperine can be employed in clinical settings to treat various human disorders in the future.
Collapse
|
13
|
Thakur D, Taliaferro O, Atkinson M, Stoffel R, Guleria RS, Gupta S. Inhibition of nuclear factor κB in the lungs protect bleomycin-induced lung fibrosis in mice. Mol Biol Rep 2022; 49:3481-3490. [PMID: 35083615 PMCID: PMC9174314 DOI: 10.1007/s11033-022-07185-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pulmonary fibrosis is a debilitating condition with limited therapeutic avenues. The pathogenicity of pulmonary fibrosis constitutes involvement of cellular proliferation, activation, and transformational changes of fibroblast to myofibroblasts. It is a progressive lung disease and is primarily characterized by aberrant accumulation of extracellular matrix proteins in the lungs with poor prognosis. The inflammatory response in the pathogenesis of lung fibrosis is suggested because of release of several cytokines; however, the underlying mechanism remains undefined. A genetic model is the appropriate way to delineate the underlying mechanism of pulmonary fibrosis. METHODS AND RESULTS In this report, we have used cc-10 promoter based IκBα mutant mice (IKBM, an inhibitor of NF-κB) which were challenged with bleomycin (BLM). Compared to wild-type (WT) mice, the IKBM mice showed significant reduction in several fibrotic, vascular, and inflammatory genes. Moreover, we have identified a new set of dysregulated microRNAs (miRNAs) by miRNA array analysis in BLM-induced WT mice. Among these miRNAs, let-7a-5p and miR-503-5p were further analyzed. Our data showed that these two miRNAs were upregulated in WT-BLM and were reduced in IKBM-BLM mice. Bioinformatic analyses showed that let-7a-5p and miR-503-5p target for endothelin1 and bone morphogenic receptor 1A (BMPR1A), respectively, and were downregulated in WT-BLM mice indicating a link in pulmonary fibrosis. CONCLUSION We concluded that inhibition of NF-κB and modulation of let-7a-5p and miR-503-5p contribute a pivotal role in pulmonary fibrosis and may be considered as possible therapeutic target for the clinical management of lung fibrosis.
Collapse
Affiliation(s)
- Devaang Thakur
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US
| | - Olivia Taliaferro
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US
| | - Madeleine Atkinson
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US
| | - Ryan Stoffel
- Animal Facility, Baylor University, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US
| | - Rakeshwar S Guleria
- Biomarkers and Genetics Core, VISN 17 Center of Excellence On Returning War Veterans, 4800 Memorial Drive, Waco, TX, 76711, US.,Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, US
| | - Sudhiranjan Gupta
- Biomarkers and Genetics Core, VISN 17 Center of Excellence On Returning War Veterans, 4800 Memorial Drive, Waco, TX, 76711, US. .,Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US. .,Animal Facility, Baylor University, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US.
| |
Collapse
|
14
|
He W, Zhou H, He X. Aloperine protects beta-cells against streptozocin-induced injury to attenuate diabetes by targeting NOS1. Eur J Pharmacol 2021; 916:174721. [PMID: 34954231 DOI: 10.1016/j.ejphar.2021.174721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
Type 1 diabetes (T1D) is a metabolic dysfunction characterized by the selective destruction of islet β-cells, with oxidative stress playing an essential role in the manifestation of this disease state. Aloperine (ALO) represents the main active alkaloid extracted from the traditional Chinese herbal Sophora alopecuroidesL. and features outstanding antioxidative properties. In this study, T1D was induced by a single high dose streptozotocin (STZ, 150 mg/kg, intraperitoneal) in mice. Diabetic animals were intragastrically administered ALO at a dose of 50 mg/kg/day. Notably, treatment of ALO (50 mg/kg/day) for seven consecutive days could observably reverse the onset of diabetes induced by STZ accompanied by weight gain, lower blood glucose levels, and relief of β-cells damage. Our in vitro study further demonstrated that ALO protected β-cells from STZ/hydrogen peroxide-induced oxidative damage as manifested by increased expression of MnSOD and CAT. Furthermore, a network pharmacology study revealed that NOS1 represented the main target of ALO. Mechanistic studies subsequently showed that treatment of ALO increased the expression of NOS1, whereas NOS2 was decreased. Moreover, a docking study carried out suggested that ALO could fit into the binding pocket of human NOS1 and molecular dynamics simulation further validated this docking event. Collectively, the administration of ALO prior to diabetes could be a viable approach to the prevention of β-cell injury. This study may offer a novel potential herbal medicine against T1D and may further help improve the understanding of the underlying molecular mechanisms of ALO-mediated protection against oxidative stress.
Collapse
Affiliation(s)
- Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China; Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430043, China; Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiaoyu He
- Branch of National Clinical Research Center for Metabolic Diseases, Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China; Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
| |
Collapse
|
15
|
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44:903-986. [PMID: 34907492 PMCID: PMC8671057 DOI: 10.1007/s12272-021-01354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
| | - Dalila Souguir
- Institut National de Recherches en Génie Rural, Eaux et Forêts (INRGREF), Université de Carthage, 10 Rue Hédi Karray, Manzeh IV, 2080, Ariana, Tunisia
| | - Mohamed O Radwan
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
16
|
Cheng Y, Rauf A, Pan X. Research Progress on the Natural Product Aloperine and Its Derivatives. Mini Rev Med Chem 2021; 22:729-742. [PMID: 34488611 DOI: 10.2174/1389557521666210831155426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/01/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
In this review, an effort towards the presentation of an all-around account of the recent progress on the natural product, aloperine is made, and the antivirus structure-activity relationship of its derivatives is also summarized comprehensively. In addition, the principal pharmacological effects and corresponding molecular mechanisms of aloperine are discussed. Some new modification directions of aloperine are given in the end, which might be brief guidance for further investigations on the natural product aloperine.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050. China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK. Pakistan
| | - Xiandao Pan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050. China
| |
Collapse
|
17
|
Hosseini SA, Zahedipour F, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pulmonary fibrosis: Therapeutic and mechanistic insights into the role of phytochemicals. Biofactors 2021; 47:250-269. [PMID: 33548106 DOI: 10.1002/biof.1713] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary fibrosis (PF) is the devastating consequence of various inflammatory diseases of the lung. PF leads to a reduction of lung function, respiratory failure, and death. Several molecular pathways are involved in PF, such as inflammatory cytokines including tumor necrosis factor α (TNFα), tumor necrosis factor β1 (TNFβ1), interleukin 6 (IL-6), and interleukin 4 (IL-4), reactive oxygen species, matrix metalloproteases, and transforming growth factor-beta (TGF-β). Targeting these processes involved in the progression of PF is essential for the treatment of this disease. Natural products, including plant extracts and active compound that directly target the processes involved in PF, could be suitable therapeutic options with less adverse effects. In the present study, we reviewed the protective effects and the therapeutic role of various bioactive compounds from plants in PF management.
Collapse
Affiliation(s)
- Seyede Atefe Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
18
|
Dopamine receptor agonists ameliorate bleomycin-induced pulmonary fibrosis by repressing fibroblast differentiation and proliferation. Biomed Pharmacother 2021; 139:111500. [PMID: 33901873 DOI: 10.1016/j.biopha.2021.111500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fatal interstitial lung disease, with limited therapeutic options. The abnormal and uncontrolled differentiation and proliferation of fibroblasts have been confirmed to play a crucial role in driving the pathogenesis of IPF. Therefore, effective and well-tolerated antifibrotic agents that interfere with fibroblasts would be an ideal treatment, but no such treatments are available. Remarkably, we found that dopamine (DA) receptor D1 (D1R) and DA receptor D2 (D2R) were both upregulated in myofibroblasts in lungs of IPF patients and a bleomycin (BLM)-induced mouse model. Then, we explored the safety and efficacy of DA, fenoldopam (FNP, a selective D1R agonist) and sumanirole (SMR, a selective D2R agonist) in reversing BLM-induced pulmonary fibrosis. Further data showed that DA receptor agonists exerted potent antifibrotic effects in BLM-induced pulmonary fibrosis by attenuating the differentiation and proliferation of fibroblasts. Detailed pathway analysis revealed that DA receptor agonists decreased the phosphorylation of Smad2 induced by TGF-β1 in primary human lung fibroblasts (PHLFs) and IMR-90 cells. Overall, DA receptor agonists protected mice from BLM-induced pulmonary fibrosis and may be therapeutically beneficial for IPF patients in a clinical setting.
Collapse
|
19
|
Huang S, Zhang Y, Zhang Y, Liu J, Liu Z, Wang X. Establishment of LC-MS/MS method for determination of aloperine in rat plasma and its application in preclinical pharmacokinetics. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122671. [PMID: 33819795 DOI: 10.1016/j.jchromb.2021.122671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Aloperine, a novel natural active alkaloid derived from Sophora alopecuroides L., has attracted much attention for its anti-inflammatory, antiviral, anti-tumor, anti-allergy and other pharmacological activities. In this study, we first established and validated an efficient and sensitive high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of aloperine in rat plasma. Cytisine was used as the internal standard (IS). The separation of aloperine and IS was conducted on a Phenomenex Luna Omega Polar C18 column (2.1 × 50 mm, 1.6 μm) with 0.3% (v/v) formic acid aqueous (containing 5 mM ammonium acetate) and 0.3% (v/v) formic acid acetonitrile using isocratic elution condition at a flow rate of 0.20 mL/min. Aloperine and IS were determined under the transitions of m/z 233.2 → 98.1 and m/z 191.2 → 148.2 (positive ionization mode), respectively. The calibration curve of aloperine was established in the range of 5 (LLOQ) to 2000 ng/mL (r2 = 0.994). The well validated method was full compliance with the bioanalytical method validation of FDA, and was applied to the pharmacokinetic study of aloperine in Sprague-Dawley rats after 50 mg/kg oral administration and 5 mg/kg intravenous injection. This study provides valuable references for the further study of Sophora alopecuroides L., especially for the drug development and clinical application of aloperine.
Collapse
Affiliation(s)
- Shengbo Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanfang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zongjun Liu
- Department of Cardiology, Central Hospital of Shanghai Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
20
|
Zhou H, Li J, Sun F, Wang F, Li M, Dong Y, Fan H, Hu D. A Review on Recent Advances in Aloperine Research: Pharmacological Activities and Underlying Biological Mechanisms. Front Pharmacol 2021; 11:538137. [PMID: 33536900 PMCID: PMC7849205 DOI: 10.3389/fphar.2020.538137] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Aloperine, a quinolizidine-type alkaloid, was first isolated from the seeds and leaves of herbal plant, Sophora alopecuroides L. Empirically, Sophora alopecuroides L. is appreciated for its anti-dysentry effect, a property that is commonly observed in other Sophora Genus phytomedicines. Following the rationale of reductionism, subsequent biochemical analyses attribute such anti-dysentry effect to the bactericidal activity of aloperine. From then on, the multiple roles of aloperine are gradually revealed. Accumulating evidence suggests that aloperine possesses multiple pharmacological activities and holds a promising potential in clinical conditions including skin hyper-sensitivity, tumor and inflammatory disorders etc.; however, the current knowledge on aloperine is interspersed and needs to be summarized. To facilitate further investigation, herein, we conclude the key pharmacological functions of aloperine, and most importantly, the underlying cellular and molecular mechanisms are clarified in detail to explain the functional mode of aloperine.
Collapse
Affiliation(s)
- Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faxi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Fang Y, Tian J, Fan Y, Cao P. Latest progress on the molecular mechanisms of idiopathic pulmonary fibrosis. Mol Biol Rep 2020; 47:9811-9820. [PMID: 33230784 DOI: 10.1007/s11033-020-06000-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious life-threatening lung disease, and the median survival period of PF patients after diagnosis is only 2.5-3.5 years. At present, there are no effective drugs or therapeutics to reverse or even inhibit IPF. The main pathological characteristics of pulmonary fibrosis (PF) include damage to alveolar epithelial cells, fibroblast activation and extracellular matrix accumulation, which gradually lead to damage to the lung structure and decreased lung function. It is important to understand the cellular and molecular mechanisms of PF comprehensively and clearly. In this paper, critical signaling pathways related to PF were reviewed to present updates on the molecular mechanisms of PF.
Collapse
Affiliation(s)
- Yue Fang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20 East Road of 2nd South Ring, Yuhua District, Shijiazhuang, 050024, China.,Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jingya Tian
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20 East Road of 2nd South Ring, Yuhua District, Shijiazhuang, 050024, China.,College of Chemistry and Environmental Sciences, Hebei University, Baoding, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20 East Road of 2nd South Ring, Yuhua District, Shijiazhuang, 050024, China.
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, 20 East Road of 2nd South Ring, Yuhua District, Shijiazhuang, 050024, China.
| |
Collapse
|
22
|
Wang YC, Xie H, Zhang YC, Meng QH, Xiong MM, Jia MW, Peng F, Tang DL. Exosomal miR-107 antagonizes profibrotic phenotypes of pericytes by targeting a pathway involving HIF-1 α/Notch1/PDGFR β/YAP1/Twist1 axis in vitro. Am J Physiol Heart Circ Physiol 2020; 320:H520-H534. [PMID: 33216617 DOI: 10.1152/ajpheart.00373.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microvascular pericytes have been demonstrated as an origin for myofibroblasts that produce excessive extracellular matrix (ECM) proteins such as α-smooth muscle actin (α-SMA) and type I collagen (ColIA1) and contribute to pulmonary fibrosis (PF). However, the signaling mechanism responsible for ECM production within pericytes is poorly understood. In this study, we examined exosomal miR-107 in the fibrotic phenotypes of pericytes and the pathogenesis of PF. Using RT-qPCR, MiR-107 level was compared between clinical or bleomycin-induced PF and normal pulmonary tissues. Exosomes were isolated from cultured microvascular endothelial cells (ECs) derived from either normal or PF tissues, characterized using dynamic light scattering, transmission electron microscopy, flow cytometry, Western blot, and immunofluorescence, and then applied to pericytes. The effects of exosomes or different fibrosis-related signaling molecules were examined by Western blot, and the potential regulations between the signaling molecules were identified using bioinformatic analysis and assessed by electrophoretic mobility shift assay, chromatin immunoprecipitation, luciferase assay, and RNA binding protein immunoprecipitation. MiR-107 was downregulated in clinical or experimental PF tissues and also in exosomes from PF-derived ECs. EC-derived exosomal miR-107 essentially controlled the miR-107 level and inhibited α-SMA and ColIA1 expression in pericytes. The antifibrosis effect of miR-107 was mediated through the suppression of a pathway involving HIF-1α/Notch1/PDGFRβ/YAP1/Twist1, where miR-107 directly targeted HIF-1α mRNA, whereas the latter directly activated the transcriptions of both Notch1 and PDGFRβ. Functionally, targeting miR-107 promoted and targeting HIF-1α abolished the fibrotic phenotypes of pericytes. Exosomal miR-107 produced by pulmonary vascular ECs may alleviate pericyte-induced fibrosis by inhibiting a signaling pathway involving HIF-1α/Notch1/PDGFRβ/YAP1/Twist1.NEW & NOTEWORTHY This work reveals a novel mechanism by which pulmonary vascular endothelial cells, via regulating the transdifferentiation of microvascular pericytes into myofibroblasts, contribute to the pathogenesis of pulmonary fibrosis. Since targeting the formation of myofibroblasts may prevent the development and benefit the treatment of pulmonary fibrosis, this study provides not only mechanistic understanding but also promising therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Han Xie
- University of Central South China/Department of Critical Care Medicine, Hunan Cancer Hospital, Changsha, People's Republic of China
| | - Yong-Chang Zhang
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Changsha, People's Republic of China
| | - Qing-He Meng
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Ming-Mei Xiong
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ming-Wang Jia
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Dao-Lin Tang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
23
|
Araki K, Kinoshita R, Tomonobu N, Gohara Y, Tomida S, Takahashi Y, Senoo S, Taniguchi A, Itano J, Yamamoto KI, Murata H, Suzawa K, Shien K, Yamamoto H, Okazaki M, Sugimoto S, Ichimura K, Nishibori M, Miyahara N, Toyooka S, Sakaguchi M. The heterodimer S100A8/A9 is a potent therapeutic target for idiopathic pulmonary fibrosis. J Mol Med (Berl) 2020; 99:131-145. [PMID: 33169236 DOI: 10.1007/s00109-020-02001-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
In patients with interstitial pneumonia, pulmonary fibrosis is an irreversible condition that can cause respiratory failure. Novel treatments for pulmonary fibrosis are necessary. Inflammation is thought to activate lung fibroblasts, resulting in pulmonary fibrosis. Of the known inflammatory molecules, we have focused on S100A8/A9 from the onset of inflammation to the subsequent progression of inflammation. Our findings confirmed the high expression of S100A8/A9 in specimens from patients with pulmonary fibrosis. An active role of S100A8/A9 was demonstrated not only in the proliferation of fibroblasts but also in the fibroblasts' differentiation to myofibroblasts (the active form of fibroblasts). S100A8/A9 also forced fibroblasts to upregulate the production of collagen. These effects were induced via the receptor of S100A8/A9, i.e., the receptor for advanced glycation end products (RAGE), on fibroblasts. The anti-S100A8/A9 neutralizing antibody inhibited the effects of S100A8/A9 on fibroblasts and suppressed the progression of fibrosis in bleomycin (BLM)-induced pulmonary fibrosis mouse model. Our findings strongly suggest a crucial role of S100A8/A9 in pulmonary fibrosis and the usefulness of S100A8/A9-targeting therapy for fibrosis interstitial pneumonia. HIGHLIGHTS: S100A8/A9 level is highly upregulated in the IPF patients' lungs as well as the blood. S100A8/A9 promotes not only the growth of fibroblasts but also differentiation to myofibroblasts. The cell surface RAGE acts as a crucial receptor to the extracellular S100A8/A9 in fibroblasts. The anti-S100A8/A9 antibody effectively suppresses the progression of IPF in a mouse model. In idiopathic pulmonary fibrosis (IPF), S100A8/A9, a heterodimer composed of S100A8 and S100A9 proteins, plays a crucial role in the onset of inflammation and the subsequent formation of a feed-forward inflammatory loop that promotes fibrosis. (1) The local, pronounced increase in S100A8/A9 in the injured inflammatory lung region-which is provided mainly by the activated neutrophils and macrophages-exerts strong inflammatory signals accompanied by dozens of inflammatory soluble factors including cytokines, chemokines, and growth factors that further act to produce and secrete S100A8/A9, eventually making a sustainable inflammatory circuit that supplies an indefinite presence of S100A8/A9 in the extracellular space with a mal-increased level. (2) The elevated S100A8/A9 compels fibroblasts to activate through receptor for advanced glycation end products (RAGE), one of the major S100A8/A9 receptors, resulting in the activation of NFκB, leading to fibroblast mal-events (e.g., elevated cell proliferation and transdifferentiation to myofibroblasts) that actively produce not only inflammatory cytokines but also collagen matrices. (3) Finally, the S100A8/A9-derived activation of lung fibroblasts under a chronic inflammation state leads to fibrosis events and constantly worsens fibrosis in the lung. Taken together, these findings suggest that the extracellular S100A8/A9 heterodimer protein is a novel mainstay soluble factor for IPF that exerts many functions as described above (1-3). Against this background, we herein applied the developed S100A8/A9 neutralizing antibody to prevent IPF. The IPF imitating lung fibrosis in an IPF mouse model was effectively blocked by treatment with the antibody, leading to enhanced survival. The developed S100A8/A9 antibody, as an innovative novel biologic, may help shed light on the difficulties encountered with IPF therapy in clinical settings.
Collapse
Affiliation(s)
- Kota Araki
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuma Gohara
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yuta Takahashi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Senoo
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Junko Itano
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Kouichi Ichimura
- Department of Pathology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuaki Miyahara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.,Department of Medical Technology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
24
|
Zhang L, Liang J, Liu X, Wu J, Tan D, Hu W. Aloperine Exerts Antitumor Effects on Bladder Cancer in vitro. Onco Targets Ther 2020; 13:10351-10360. [PMID: 33116615 PMCID: PMC7568640 DOI: 10.2147/ott.s260215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Human bladder cancer is the most common malignant tumor of the urinary system and one of the 10 most common tumors of the whole body. Although most patients with bladder cancer exhibit a good prognosis with standard treatment, effective therapies for patients with a recurrent or advanced bladder cancer are unavailable. Therefore, highly effective drugs to treat such patients need to be developed. Aloperine (ALO), a natural compound isolated from Sophora alopecuroides, has antitumor properties. However, the role of ALO in human bladder cancer remains unclear. Methods In the present study, MTT was used to detect the cytotoxic effect of ALO on human BC cell line EJ and human urothelium cell line SV-HUC-1cells. Meanwhile, in order to investigate the effects of ALO on the proliferation, apoptosis, migration, and invasion of BC EJ cells and its mechanism by Cell Counting Kit-8 (CCK-8) assay, immunofluorescence, Hoechst 33342 staining, wound scratch assay, transwell migration and invasion assay, Western blot analysis. Results ALO can inhibit the proliferation and invasion of human bladder cancer EJ cells, and is low-toxic to human urothelium cells. Moreover, it can promote cellular apoptosis in vitro. Further analysis demonstrated the involvement of Caspase-dependent apoptosis following ALO treatment. ALO also downregulated the protein expression levels of Ras, p-Raf1 and p-Erk1/2. Conclusion ALO is a potential drug for human bladder cancer therapy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Jun Liang
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Xiaohua Liu
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Jianhua Wu
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Daqing Tan
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Wei Hu
- Department of Urology, The First Affiliated Hospital of University of South of China, Hengyang, Hunan Province, People's Republic of China
| |
Collapse
|
25
|
Structure-Activity Relationship of Aloperine Derivatives as New Anti-Liver Fibrogenic Agents. Molecules 2020; 25:molecules25214977. [PMID: 33121156 PMCID: PMC7663597 DOI: 10.3390/molecules25214977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022] Open
Abstract
Twenty-seven novel 12N-substituted aloperine derivatives were synthesized and investigated for their inhibitory effects on collagen α1 (I) (COL1A1) promotor in human hepatic stellate LX-2 cells, taking aloperine (1) as the hit. A structure-activity relationship (SAR) study disclosed that the introduction of suitable substituents on the 12N atom might enhance the activity. Compound 4p exhibited a good promise on down-regulating COL1A1 expression with the IC50 value of 16.5 μM. Its inhibitory activity against COL1A1 was further confirmed on both mRNA and protein levels. Meanwhile, it effectively inhibited the expression of other fibrogenic proteins, such as transforming growth factor β1 (TGF-β1) and smooth muscle actin (α-SMA). It also exhibited good in vivo safety profile with the oral LD50 value of 400 mg kg-1 in mice. The results initiated the anti-liver fibrogenic study of aloperine derivatives, and the key compound 4p was selected as a novel lead for further investigation against liver fibrogenesis.
Collapse
|
26
|
Common molecular pathways targeted by nintedanib in cancer and IPF: A bioinformatic study. Pulm Pharmacol Ther 2020; 64:101941. [DOI: 10.1016/j.pupt.2020.101941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
|
27
|
Fang L, Chen H, Kong R, Que J. Endogenous tryptophan metabolite 5-Methoxytryptophan inhibits pulmonary fibrosis by downregulating the TGF-β/SMAD3 and PI3K/AKT signaling pathway. Life Sci 2020; 260:118399. [PMID: 32918977 DOI: 10.1016/j.lfs.2020.118399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is the end stage of many interstitial lung diseases, characterized by the deposition of excess extracellular matrix (ECM), destruction of normal alveolar structure, and resulting in the obstruction of gas exchange and respiratory failure. The idiopathic pulmonary fibrosis (IPF) is the most common form of pulmonary fibrosis with little effective therapies. 5-Methoxytryptophan (5-MTP) is a newly found tryptophan metabolite. Previous studies suggested that 5-MTP has the effects of anti-inflammatory, anti-tumorigenesis, vascular protection and anti-fibrosis in renal disease. Whether 5-MTP has therapeutic effect on pulmonary fibrosis is not clear. In our study, we used TGF-β1 to stimulate human lung fibroblasts (HLFs) and bleomycin (BLM) induced pulmonary fibrosis model to investigate the effect of 5-MTP on pulmonary fibrosis. Our study demonstrated that 5-MTP could improve the lung function and attenuate the destruction of alveolar structure in BLM-induced pulmonary fibrosis mice. Furthermore, 5-MTP significantly decreased accumulation of myofibroblasts and the deposition of ECM by inhibiting the differentiation of fibroblasts to myofibroblasts and suppressing the protein expression of the ECM both in vivo and in vitro. Our results also revealed 5-MTP could inhibit the proliferation and migration of the fibroblasts in vitro, which played an important role in the progressive pulmonary fibrosis. To further investigate the mechanism of the anti-fibrosis of 5-MTP, several canonical and noncanonical signaling pathways were examined. Our results revealed that 5-MTP could inhibit the pulmonary fibrosis through downregulating the phosphorylation of TGF-β/SMAD3, PI3K/AKT signaling pathways. Together, our study indicated that 5-MTP promises to be therapeutic agent of pulmonary fibrosis.
Collapse
Affiliation(s)
- Le Fang
- Department of Critical Care Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongtao Chen
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Renyi Kong
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Que
- Department of Critical Care Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Lv XQ, Zou LL, Tan JL, Li H, Li JR, Liu NN, Dong B, Song DQ, Peng ZG. Aloperine inhibits hepatitis C virus entry into cells by disturbing internalisation from endocytosis to the membrane fusion process. Eur J Pharmacol 2020; 883:173323. [PMID: 32622669 DOI: 10.1016/j.ejphar.2020.173323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Aloperine, a natural alkaloid isolated from the Chinese traditional herb Sophora alopecuroides, is a broad-spectrum antiviral agent with anti-inflammatory activity. Here, we found that aloperine effectively inhibited hepatitis C virus (HCV) propagation in Huh7.5 cells and primary human hepatocytes without cytotoxicity, and it blocked HCV cell-to-cell viral transmission. The antiviral mechanism evidence demonstrated that aloperine inhibits HCV internalisation from endocytosis to the membrane fusion process, and the target may be associated with host factors. Aloperine additively inhibited HCV propagation with direct-acting antivirals (DAAs) and was effective against HCV variants resistant to known DAAs. Therefore, aloperine might be a natural lead compound for the development of innovative antivirals, and the combined use of aloperine with DAAs might contribute to eliminating liver diseases caused by HCV infection.
Collapse
Affiliation(s)
- Xiao-Qin Lv
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li-Li Zou
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jia-Li Tan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Nan-Nan Liu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dan-Qing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
29
|
Yu J, Deng Y, Han M. Blocking protein phosphatase 2A with a peptide protects mice against bleomycin-induced pulmonary fibrosis. Exp Lung Res 2020; 46:234-242. [PMID: 32584210 DOI: 10.1080/01902148.2020.1774823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Emerging data indicate that endothelial-mesenchymal transition (EndMT) is involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF). A previous study noted that blocking the activity of protein phosphatase 2 A (PP2A) could attenuate EndMT. However, the treatment effects of PP2A inhibitors in pulmonary fibrosis remain not investigated. In the present study, we used a PP2A inhibitor, a newly designed peptide named TAT-Y127WT, to determine the role of PP2A in pulmonary fibrosis. Herein, we showed that TAT-Y127WT protected mice against BLM-induced pulmonary fibrosis by attenuating lung injury and fibrosis. Furthermore, a mechanistic study indicated that TAT-Y127WT could alleviate EndMT in the lungs following BLM induction. Overall, our data showed that PP2A might participate in pulmonary fibrogenesis by promoting EndMT, and TAT-Y127WT could be a potential candidate for new anti-fibrotic therapies for IPF patients.
Collapse
Affiliation(s)
- Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanjun Deng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Han
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
30
|
Liu P, Miao K, Zhang L, Mou Y, Xu Y, Xiong W, Yu J, Wang Y. Curdione ameliorates bleomycin-induced pulmonary fibrosis by repressing TGF-β-induced fibroblast to myofibroblast differentiation. Respir Res 2020; 21:58. [PMID: 32075634 PMCID: PMC7031930 DOI: 10.1186/s12931-020-1300-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible disease characterized by excessive fibroblast to myofibroblast differentiation with limited therapeutic options. Curdione, a sesquiterpene compound extracted from the essential oil of Curcuma aromatica Salisb, has anti-inflammatory and anti-tumor effects. However, the role of curdione in IPF is still unclear. Methods The effects of curdione were evaluated in a bleomycin (BLM)-induced pulmonary fibrosis mouse model. C57BL/6 mice were treated with BLM on day 0 by intratracheal injection and intraperitoneal administered curdione or vehicle. In vitro study, expression of fibrotic protein was examined and the transforming growth factor (TGF)-β-related signaling was evaluated in human pulmonary fibroblasts (HPFs) treated with curdione following TGF-β1 stimulation. Results Histological and immunofluorescent examination showed that curdione alleviated BLM-induced lung injury and fibrosis. Specifically, curdione significantly attenuated fibroblast to myofibroblast differentiation in the lung in BLM induced mice. Furthermore, curdione also decreased TGF-β1 induced fibroblast to myofibroblast differentiation in vitro, as evidenced by low expression of α-SMA, collagen 1 and fibronectin in a dose dependent manner. Mechanistically, curdione suppressed the phosphorylation of Smad3 following TGF-β1 treatment, thereby inhibiting fibroblast differentiation. Conclusions Overall, curdione exerted therapeutic effects against pulmonary fibrosis via attenuating fibroblast to myofibroblast differentiation. As curdione had been shown to be safe and well-tolerated in BLM-induced mouse model, curdione might be useful for developing novel therapeutics for IPF.
Collapse
Affiliation(s)
- Peng Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Kang Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yong Mou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.,Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai, 201999, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
31
|
Wang R, Deng X, Gao Q, Wu X, Han L, Gao X, Zhao S, Chen W, Zhou R, Li Z, Bai C. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112172. [PMID: 31442619 DOI: 10.1016/j.jep.2019.112172] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora alopecuroides L., which is called Kudouzi in China, is a medicinal plant distributed in Western and Central Asia, especially in China, and has been used for decades to treat fever, bacterial infection, heart disease, rheumatism, and gastrointestinal diseases. AIM OF THE REVIEW This review aims to provide up-to-date information on S. alopecuroides, including its botanical characterization, medicinal resources, traditional uses, phytochemistry, pharmacological research, and toxicology, in exploring future therapeutic and scientific potentials. MATERIALS AND METHODS The information related to this article was systematically collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, PhD and MS dissertations, and other web sources, such as the official website of Flora of China and Yao Zhi website (https://db.yaozh.com/). RESULTS A total of 128 compounds, such as alkaloids, flavonoids, steroids, and polysaccharides, were isolated from S. alopecuroides. Among these compounds, the effects of alkaloids, such as matrine and oxymatrine, were extensively studied and developed into new drugs. S. alopecuroides and its active components had a wide range of pharmacological activities, such as anticancer, antiviral, anti-inflammatory, antimicrobial, analgesic, and neuroprotective functions, as well as protective properties against pulmonary fibrosis and cardiac fibroblast proliferation. CONCLUSIONS As an important traditional Chinese medicine, modern pharmacological studies have demonstrated that S. alopecuroides has prominent bioactivities, especially on gynecological inflammation and hepatitis B, and anticancer activities. These activities provide prospects for novel drug development for cancer and some chronic diseases. Nevertheless, the comprehensive evaluation, quality control, understanding of the multitarget network pharmacology, long-term in vivo toxicity, and clinical efficacy of S. alopecuroides require further detailed research.
Collapse
Affiliation(s)
- Ruizhou Wang
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Xinxin Deng
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Qixia Gao
- College of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Xiuli Wu
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Lu Han
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Xiaojuan Gao
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Shipeng Zhao
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Weibin Chen
- Ningxia Doushun Biological Technology Co., Ltd., Yanchi, 751500, PR China
| | - Rongrong Zhou
- School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China
| | - Zhiyong Li
- College of Pharmacy, Minzu University of China, Beijing, 100081, PR China.
| | - Changcai Bai
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China.
| |
Collapse
|
32
|
Lysine-specific demethylase-1 regulates fibroblast activation in pulmonary fibrosis via TGF-β1/Smad3 pathway. Pharmacol Res 2020; 152:104592. [DOI: 10.1016/j.phrs.2019.104592] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/31/2019] [Accepted: 12/07/2019] [Indexed: 12/15/2022]
|
33
|
Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur J Med Chem 2019; 188:111972. [PMID: 31884408 DOI: 10.1016/j.ejmech.2019.111972] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, have been well concerned in the past several decades owing to the unique structural features and numerous pharmacological activities. Quinolizidine alkaloids consist of matrine, oxymatrine, sophoridine, sophocarpine and aloperine etc. Additionally, quinolizidine alkaloids exert various excellent activities, including anti-cancer, anti-inflammation, anti-fibrosis, anti-virus and anti-arrhythmia regulations. In this review, we comprehensively clarify the pharmacological activities of quinolizidine alkaloids, as well as the relationship between biological function and structure-activity of substituted quinolizidine alkaloids. We believe that biological agents based on the pharmacological functions of quinolizidine alkaloids could be well applied in clinical practice.
Collapse
|
34
|
Aly SH, Elissawy AM, Eldahshan OA, Elshanawany MA, Efferth T, Singab ANB. The pharmacology of the genus Sophora (Fabaceae): An updated review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153070. [PMID: 31514082 DOI: 10.1016/j.phymed.2019.153070] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The genus Sophora (Fabaceae) represents one of the important medicinal plant genera regarding its chemical constituents and outstanding pharmacological activities. PURPOSE In this review, we surveyed the latest findings on the bioactivities of different Sophora extracts and isolated phytochemicals during the past 8 years (2011-2019) updating the latest review article in 2011. The aim of this review is to focus on the molecular pharmacology of Sophora species to provide the rationale basis for the development of novel drugs. RESULTS Sophora and its bioactive compounds possess outstanding pharmacological properties, especially as anticancer and anti-inflammatory drugs, in addition to its antioxidant, antibacterial, antifungal and antiviral properties. CONCLUSION Based on their use in traditional medicine, Sophora species exert a plethora of cellular and molecular activities, which render them as attractive candidates for rationale drug development. Randomized, placebo-controlled clinical trials are required for further integration of Sophora-based phototherapies into conventional medicine.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, 55128 Mainz, Germany.
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
35
|
Autophagy Modulation in Human Thyroid Cancer Cells following Aloperine Treatment. Int J Mol Sci 2019; 20:ijms20215315. [PMID: 31731481 PMCID: PMC6862658 DOI: 10.3390/ijms20215315] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Aloperine, an alkaloid isolated from Sophoraalopecuroides, exhibits multiple pharmacological activities including anti-inflammatory, antioxidant, antiallergic, antinociceptive, antipathogenic, and antitumor effects. Furthermore, it exerts protective effects against renal and neuronal injuries. Several studies have reported antitumor effects of aloperine against various human cancers, including multiple myeloma; colon, breast, and prostate cancers; and osteosarcoma. Cell cycle arrest, apoptosis induction, and tumorigenesis suppression have been demonstrated following aloperine treatment. In a previous study, we demonstrated antitumor effects of aloperine on human thyroid cancer cells through anti-tumorigenesis and caspase-dependent apoptosis induction via the Akt signaling pathway. In the present study, we demonstrated the modulation of the autophagy mechanism following the incubation of multidrug-resistant papillary and anaplastic human thyroid cancer cells with aloperine; we also illustrate the underlying mechanisms, including AMPK, Erk, JNK, p38, and Akt signaling pathways. Further investigation revealed the involvement of the Akt signaling pathway in aloperine-modulated autophagy in human thyroid cancer cells. These results indicate a previously unappreciated function of aloperine in autophagy modulation in human thyroid cancer cells.
Collapse
|