1
|
Vidman S, Ma YHE, Fullenkamp N, Plant GW. Human induced pluripotent stem cell-derived therapies for regeneration after central nervous system injury. Neural Regen Res 2025; 20:3063-3075. [PMID: 39715081 DOI: 10.4103/nrr.nrr-d-24-00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/25/2024] Open
Abstract
In recent years, the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine. Considering the non-regenerative nature of the mature central nervous system, the concept that "blank" cells could be reprogrammed and functionally integrated into host neural networks remained intriguing. Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells, such as neurons. While embryonic stem cells demonstrated great potential in treating central nervous system pathologies, ethical and technical concerns remained. These barriers, along with the clear necessity for this type of treatment, ultimately prompted the advent of induced pluripotent stem cells. The advantage of pluripotent cells in central nervous system regeneration is multifaceted, permitting differentiation into neural stem cells, neural progenitor cells, glia, and various neuronal subpopulations. The precise spatiotemporal application of extrinsic growth factors in vitro, in addition to microenvironmental signaling in vivo, influences the efficiency of this directed differentiation. While the pluri- or multipotency of these cells is appealing, it also poses the risk of unregulated differentiation and teratoma formation. Cells of the neuroectodermal lineage, such as neuronal subpopulations and glia, have been explored with varying degrees of success. Although the risk of cancer or teratoma formation is greatly reduced, each subpopulation varies in effectiveness and is influenced by a myriad of factors, such as the timing of the transplant, pathology type, and the ratio of accompanying progenitor cells. Furthermore, successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration. Lastly, host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression. Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes. This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.
Collapse
Affiliation(s)
- Stephen Vidman
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
2
|
Pandala NG, Han IC, Renze LJ, Steffen HJ, Meyering EE, Stone EM, Mulfaul K, Mullins RF, Tucker BA. Development of self-healing hydrogels to support choroidal endothelial cell transplantation for the treatment of early age related macular degeneration. Acta Biomater 2024:S1742-7061(24)00771-2. [PMID: 39710218 DOI: 10.1016/j.actbio.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
In retinal diseases such as age-related macular degeneration (AMD) and choroideremia, a key pathophysiologic step is loss of endothelial cells of the choriocapillaris. Repopulation of choroidal vasculature early in the disease process may halt disease progression. Prior studies have shown that injection of donor cells in suspension results in significant cellular efflux and poor cell survival. As such, the goal of this study was to develop a hydrogel system designed to support choroidal endothelial cell transplantation. A library of hydrogels was synthesized using laminin (i.e., LN111, LN121, and LN421), carboxy methyl chitosan, and oxidized dextran via reversible Schiff base chemistry. Each of the developed self-healing hydrogels was readily injectable into the suprachoroidal space, with ideal gelation, mechanical, and degradation properties. While all hydrogels were found to be compatible with choroidal endothelial cell survival in vitro, only LN111 and LN121 gels were well-tolerated in vivo. To determine if hydrogel mediated cell delivery enhances donor cell retention and survival in vivo, iPSC-derived choroidal endothelial cell laden hydrogels were injected into the suprachoroidal space of an immunocompromised choroidal cell injury rat model. Significantly more donor cells were retained and survived in eyes that received cell laden hydrogels versus contralateral hydrogel free controls. Furthermore, donor cells positive for human nuclear antigen were identified in the choroid of hydrogel eyes only. These findings pave the way for future cell replacement studies in large animal models of choroidal cell dropout focused on evaluating functional integration of donor cells within decellularized vascular tubes. STATEMENT OF SIGNIFICANCE: Age related macular degeneration (AMD) is a leading cause of untreatable blindness in the industrial world. A key pathologic step in AMD is loss of the choriocapillaris endothelial cells, which provide vascular support to the overlying retina. Choroidal cell replacement early in disease may prevent retinal cell death and subsequent vision loss. In this study, we present a strategy for repopulating the choriocapillaris using choroidal endothelial cell laden hydrogels. Specifically, we demonstrate the synthesis and characterization of 3 different laminin-based hydrogel systems. LN111 and LN121 hydrogels were found to have excellent biocompatibility both in vitro and in vivo. Hydrogel mediated delivery of iPSC-derived choroidal endothelial cells enhanced donor cell retention and survival, paving the way for functional large animal studies.
Collapse
Affiliation(s)
- Narendra G Pandala
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Ian C Han
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Lauryn J Renze
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Hailey J Steffen
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Emily E Meyering
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Kelly Mulfaul
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Zhu S, Gu C, Gao L, Du S, Feng D, Gu Z. Lipiodol emulsion as a dual chemoradiation-sensitizer for pancreatic cancer treatment. J Control Release 2024; 374:242-253. [PMID: 39153723 DOI: 10.1016/j.jconrel.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a low survival rate and limited treatment options. Concurrent chemoradiotherapy is considered beneficial to improve tumor control, but the low drug bioavailability at tumor site and the low radiation tolerance of surrounding healthy organs greatly limits its effectiveness. Lipiodol, a natural drug carrier used in clinical transarterial chemoembolization, has shown potential as a radiosensitizer due to its high Z element iodine composition. Thus, this study aims to repurpose lipiodol as a sensitizer to simultaneously enhance chemo- and radiotherapy for PDAC. To this end, a stable lipiodol emulsion (IOE) loaded with gemcitabine is designed using clinically approved surfactants. At in vivo level, IOE demonstrates better radiotherapeutic effect than existing nanoradiosensitizers and enhanced drug bioavailability over free drug, leading to significant tumor inhibition and improved survival rates under concurrent chemo-radiotherapy. This may due to the sustained drug release, homogenous spatial distribution, and long-term retention ability of IOE in solid PDAC tumor. Furthermore, to better understand the functioning mechanism of drug-loaded IOE, in vitro study is conducted to reveal the ROS- and DNA damage-related therapeutic pathways. Lastly, a comprehensive toxicity assessment also proves the good biocompatibility and safety of as-prepared IOE. This study offers a clinically feasible sensitizer for simultaneous chemoradiotherapy and holds potential for other types of cancer treatment in clinics.
Collapse
Affiliation(s)
- Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Spallation Neutron Source Science Center, Institute of High Energy Physics, Dongguan 523803, China
| | - Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Gao
- Shanxi Provincial Clinical Research Center for Interventional Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Oncological and Vascular Intervention, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shuanglong Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duiping Feng
- Shanxi Provincial Clinical Research Center for Interventional Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Oncological and Vascular Intervention, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Gade S, Glover K, Mishra D, Sharma S, Guy O, Donnelly RF, Vora LK, Thakur RRS. Hollow microneedles for ocular drug delivery. J Control Release 2024; 371:43-66. [PMID: 38735395 DOI: 10.1016/j.jconrel.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Microneedles (MNs) are micron-sized needles, typically <2 mm in length, arranged either as an array or as single needle. These MNs offer a minimally invasive approach to ocular drug delivery due to their micron size (reducing tissue damage compared to that of hypodermic needles) and overcoming significant barriers in drug administration. While various types of MNs have been extensively researched, significant progress has been made in the use of hollow MNs (HMNs) for ocular drug delivery, specifically through suprachoroidal injections. The suprachoroidal space, situated between the sclera and choroid, has been targeted using optical coherence tomography-guided injections of HMNs for the treatment of uveitis. Unlike other MNs, HMNs can deliver larger volumes of formulations to the eye. This review primarily focuses on the use of HMNs in ocular drug delivery and explores their ocular anatomy and the distribution of formulations following potential HMN administration routes. Additionally, this review focuses on the influence of formulation characteristics (e.g., solution viscosity, particle size), HMN properties (e.g., bore or lumen diameter, MN length), and routes of administration (e.g., periocular transscleral, suprachoroidal, intravitreal) on the ocular distribution of drugs. Overall, this paper highlights the distinctive properties of HMNs, which make them a promising technology for improving drug delivery efficiency, precision, and patient outcomes in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Shilpkala Gade
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Sanjiv Sharma
- College of Engineering, Swansea University, Swansea, UK; Pharmacology and Therapeutics, University of Liverpool, UK
| | - Owen Guy
- Department of Chemistry, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| | | |
Collapse
|
5
|
Klar RM, Cox J, Raja N, Lohfeld S. The 3D-McMap Guidelines: Three-Dimensional Multicomposite Microsphere Adaptive Printing. Biomimetics (Basel) 2024; 9:94. [PMID: 38392141 PMCID: PMC10886723 DOI: 10.3390/biomimetics9020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Microspheres, synthesized from diverse natural or synthetic polymers, are readily utilized in biomedical tissue engineering to improve the healing of various tissues. Their ability to encapsulate growth factors, therapeutics, and natural biomolecules, which can aid tissue regeneration, makes microspheres invaluable for future clinical therapies. While microsphere-supplemented scaffolds have been investigated, a pure microsphere scaffold with an optimized architecture has been challenging to create via 3D printing methods due to issues that prevent consistent deposition of microsphere-based materials and their ability to maintain the shape of the 3D-printed structure. Utilizing the extrusion printing process, we established a methodology that not only allows the creation of large microsphere scaffolds but also multicomposite matrices into which cells, growth factors, and therapeutics encapsulated in microspheres can be directly deposited during the printing process. Our 3D-McMap method provides some critical guidelines for issues with scaffold shape fidelity during and after printing. Carefully timed breaks, minuscule drying steps, and adjustments to extrusion parameters generated an evenly layered large microsphere scaffold that retained its internal architecture. Such scaffolds are superior to other microsphere-containing scaffolds, as they can release biomolecules in a highly controlled spatiotemporal manner. This capability permits us to study cell responses to the delivered signals to develop scaffolds that precisely modulate new tissue formation.
Collapse
Affiliation(s)
- Roland M Klar
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - James Cox
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Naren Raja
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Stefan Lohfeld
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
6
|
Evans D, Barcons AM, Basit RH, Adams C, Chari DM. Evaluating the Feasibility of Hydrogel-Based Neural Cell Sprays. J Funct Biomater 2023; 14:527. [PMID: 37888192 PMCID: PMC10607175 DOI: 10.3390/jfb14100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Neurological injuries have poor prognoses with serious clinical sequelae. Stem cell transplantation enhances neural repair but is hampered by low graft survival (ca. 80%) and marker expression/proliferative potential of hydrogel-sprayed astrocytes was retained. Combining a cell spray format with polymer encapsulation technologies could form the basis of a non-invasive graft delivery method, offering potential advantages over current cell delivery approaches.
Collapse
Affiliation(s)
- Daisy Evans
- Keele University School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Aina Mogas Barcons
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3AZ, UK;
| | - Raja Haseeb Basit
- Department of General Surgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
| | - Christopher Adams
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| | - Divya Maitreyi Chari
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
7
|
Krisdiyanto, Bin Raja Ghazilla RA, Azuddin M, Bin Ahmad Hairuddin MKF, Risdiana N. An analysis of the effect of syringe barrel volume on performance and user perception. Medicine (Baltimore) 2023; 102:e33983. [PMID: 37335669 PMCID: PMC10256405 DOI: 10.1097/md.0000000000033983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/22/2023] [Indexed: 06/21/2023] Open
Abstract
In the market, there are many types and shapes of syringes. One of the groupings of syringe types is based on barrel volume. The shape of the product design affects performance and user perception. The aim of this study is to investigate the effect of barrel volume on its performance and user perception. We performed analysis following international organization for standardization 7886 procedures on syringe with 1 mL, 3 mL, 5 mL, and 10 mL volume. In addition, a user perception test was conducted on 29 respondents using a questionnaire with the Likert chart method. This study indicates that the bigger the syringe volume, the larger the dead space and the force to operate the piston are. A larger syringe volume also raises the volume that changes due to the plunger position increase. Meanwhile, the barrel volume does not affect water and water leakage, as we did not observe any leak during the syringe tests in our experiment. In addition, the user perception test shows that the barrel's length influences the ease of device control during the injection. The volume of the barrel negatively correlated with its effect to the environment. The safety features of all syringes are similar except for the 3 mL syringe, which has a value of 0.1 points difference to other syringes.
Collapse
Affiliation(s)
- Krisdiyanto
- CPDM, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta, Daerah Istimewa Yogyakarta, Indonesia
| | | | - M. Azuddin
- CPDM, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Nurvita Risdiana
- Department of Mental Health Nursing, School of Nursing, Universitas Muhammadiyah Yogyakarta, Daerah Istimewa Yogyakarta, Indonesia
| |
Collapse
|
8
|
Ma H, Siu WS, Leung PC. The Potential of MSC-Based Cell-Free Therapy in Wound Healing-A Thorough Literature Review. Int J Mol Sci 2023; 24:ijms24119356. [PMID: 37298306 DOI: 10.3390/ijms24119356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
A wound is an interruption of the normal anatomic structure and function of the skin, which is critical in protecting against foreign pathogens, regulating body temperature and water balance. Wound healing is a complex process involving various phases, including coagulation, inflammation, angiogenesis, re-epithelialization, and re-modeling. Factors such as infection, ischemia, and chronic diseases such as diabetes can compromise wound healing, leading to chronic and refractory ulcers. Mesenchymal stem cells (MSCs) have been used to treat various wound models due to their paracrine activity (secretome) and extracellular vehicles (exosomes) that contain several molecules, including long non-coding RNAs (lncRNAs), micro-RNAs (miRNAs), proteins, and lipids. Studies have shown that MSCs-based cell-free therapy using secretome and exosomes has great potential in regenerative medicine compared to MSCs, as there are fewer safety concerns. This review provides an overview of the pathophysiology of cutaneous wounds and the potential of MSCs-based cell-free therapy in each phase of wound healing. It also discusses clinical studies of MSCs-based cell-free therapies.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
9
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Sarker S, Colton A, Wen Z, Xu X, Erdi M, Jones A, Kofinas P, Tubaldi E, Walczak P, Janowski M, Liang Y, Sochol RD. 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201641. [PMID: 37064271 PMCID: PMC10104452 DOI: 10.1002/admt.202201641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/19/2023]
Abstract
Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with "ex situ direct laser writing (esDLW)" is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles-with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing-directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Adira Colton
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Anthony Jones
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yajie Liang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Awonusi O, Harbin ZJ, Brookes S, Zhang L, Kaefer S, Morrison RA, Newman S, Voytik-Harbin S, Halum S. Impact of Needle Selection on Survival of Muscle-Derived Cells When Used for Laryngeal Injections. JOURNAL OF CELL SCIENCE & THERAPY 2022; 14:377. [PMID: 37250272 PMCID: PMC10217785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Objective To describe how differing injector needles and delivery vehicles impact Autologous Muscle-Derived Cell (AMDC) viability when used for laryngeal injection. Methods In this study, adult porcine muscle tissue was harvested and used to create AMDC populations. While controlling cell concentration (1 × 107 cells/ml), AMDCs including Muscle Progenitor Cells (MPCs) or Motor Endplate Expressing Cells (MEEs) were suspended in either phosphate-buffered saline or polymerizable (in-situ scaffold forming) type I oligomeric collagen solution. Cell suspensions were then injected through 23- and 27-gauge needles of different lengths at the same rate (2 ml/min) using a syringe pump. Cell viability was measured immediately after injection and 24- and 48-hours post-injection, and then compared to baseline cell viability prior to injection. Results The viability of cells post-injection was not impacted by needle length or needle gauge but was significantly impacted by the delivery vehicle. Overall, injection of cells using collagen as a delivery vehicle maintained the highest cell viability. Conclusion Needle gauge, needle length, and delivery vehicle are important factors that can affect the viability of injected cell populations. These factors should be considered and adapted to improve injectable MDC therapy outcomes when used for laryngeal applications.
Collapse
Affiliation(s)
- Oluwaseyi Awonusi
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Zachary J. Harbin
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sarah Brookes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Lujuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Samuel Kaefer
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Rachel A. Morrison
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sharlé Newman
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| | - Sherry Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Stacey Halum
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
| |
Collapse
|
12
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
13
|
Optimal Intravenous Administration Procedure for Efficient Delivery of Canine Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232314681. [PMID: 36499004 PMCID: PMC9740176 DOI: 10.3390/ijms232314681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Mesenchymal stem cells (MSC) are currently being investigated for their therapeutic applications in a wide range of diseases. Although many studies examined peripheral venous administration of MSC, few have investigated the detailed intravenous administration procedures of MSC from their preparation until they enter the body. The current study therefore aimed to explore the most efficient infusion procedure for MSC delivery by preparing and infusing them under various conditions. Canine adipose-derived mesenchymal stem cells (cADSC) were infused using different infusion apparatuses, suspension solutions, allogenic serum supplementation, infusion time and rates, and cell densities, respectively. Live and dead cell counts were then assessed by manual measurements and flow cytometry. Efficiency of live- and dead-cell infusion and cell viability were calculated from the measured cell counts and compared under each condition. Efficiency of live-cell infusion differed significantly according to the infusion apparatus, infusion rate, and combination of cell density and serum supplementation. Cell viability after infusion differed significantly between the infusion apparatuses. The optimal infusion procedure resulting in the highest cell delivery and viability involved suspending cADSC in normal saline supplemented with 5% allogenic serum at a density of 5 × 105 cells/mL, and infusing them using an automatic infusion device for 15 min. This procedure is therefore recommended as the standard procedure for the intravenous administration of ADSC in terms of cell-delivery efficiency.
Collapse
|
14
|
Hasturk O, Smiley JA, Arnett M, Sahoo JK, Staii C, Kaplan DL. Cytoprotection of Human Progenitor and Stem Cells through Encapsulation in Alginate Templated, Dual Crosslinked Silk and Silk-Gelatin Composite Hydrogel Microbeads. Adv Healthc Mater 2022; 11:e2200293. [PMID: 35686928 PMCID: PMC9463115 DOI: 10.1002/adhm.202200293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Indexed: 01/27/2023]
Abstract
Susceptibility of mammalian cells against harsh processing conditions limit their use in cell transplantation and tissue engineering applications. Besides modulation of the cell microenvironment, encapsulation of mammalian cells within hydrogel microbeads attract attention for cytoprotection through physical isolation of the encapsulated cells. The hydrogel formulations used for cell microencapsulation are largely dominated by ionically crosslinked alginate (Alg), which suffer from low structural stability under physiological culture conditions and poor cell-matrix interactions. Here the fabrication of Alg templated silk and silk/gelatin composite hydrogel microspheres with permanent or on-demand cleavable enzymatic crosslinks using simple and cost-effective centrifugation-based droplet processing are demonstrated. The composite microbeads display structural stability under ion exchange conditions with improved mechanical properties compared to ionically crosslinked Alg microspheres. Human mesenchymal stem and neural progenitor cells are successfully encapsulated in the composite beads and protected against environmental factors, including exposure to polycations, extracellular acidosis, apoptotic cytokines, ultraviolet (UV) irradiation, anoikis, immune recognition, and particularly mechanical stress. The microbeads preserve viability, growth, and differentiation of encapsulated stem and progenitor cells after extrusion in viscous polyethylene oxide solution through a 27-gauge fine needle, suggesting potential applications in injection-based delivery and three-dimensional bioprinting of mammalian cells with higher success rates.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jordan A. Smiley
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Miles Arnett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
15
|
Lee N, Park GT, Lim JK, Choi EB, Moon HJ, Kim DK, Choi SM, Song YC, Kim TK, Kim JH. Mesenchymal stem cell spheroids alleviate neuropathic pain by modulating chronic inflammatory response genes. Front Immunol 2022; 13:940258. [PMID: 36003384 PMCID: PMC9393760 DOI: 10.3389/fimmu.2022.940258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic neuropathic pain is caused by dysfunction of the peripheral nerves associated with the somatosensory system. Mesenchymal stem cells (MSCs) have attracted attention as promising cell therapeutics for chronic pain; however, their clinical application has been hampered by the poor in vivo survival and low therapeutic efficacy of transplanted cells. Increasing evidence suggests enhanced therapeutic efficacy of spheroids formed by three-dimensional culture of MSCs. In the present study, we established a neuropathic pain murine model by inducing a chronic constriction injury through ligation of the right sciatic nerve and measured the therapeutic effects and survival efficacy of spheroids. Monolayer-cultured and spheroids were transplanted into the gastrocnemius muscle close to the damaged sciatic nerve. Transplantation of spheroids alleviated chronic pain more potently and exhibited prolonged in vivo survival compared to monolayer-cultured cells. Moreover, spheroids significantly reduced macrophage infiltration into the injured tissues. Interestingly, the expression of mouse-origin genes associated with inflammatory responses, Ccl11/Eotaxin, interleukin 1A, tumor necrosis factor B, and tumor necrosis factor, was significantly attenuated by the administration of spheroids compared to that of monolayer. These results suggest that MSC spheroids exhibit enhanced in vivo survival after cell transplantation and reduced the host inflammatory response through the regulation of main chronic inflammatory response-related genes.
Collapse
Affiliation(s)
- Nayeon Lee
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, South Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Gyu Tae Park
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, South Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jae Kyung Lim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Eun Bae Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Hye Ji Moon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Dae Kyoung Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Seong Min Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Young Cheol Song
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Tae Kyun Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jae Ho Kim
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, South Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
- *Correspondence: Jae Ho Kim,
| |
Collapse
|
16
|
El Hage R, Knippschild U, Arnold T, Hinterseher I. Stem Cell-Based Therapy: A Promising Treatment for Diabetic Foot Ulcer. Biomedicines 2022; 10:1507. [PMID: 35884812 PMCID: PMC9312797 DOI: 10.3390/biomedicines10071507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a severe complication of diabetes and a challenging medical condition. Conventional treatments for DFU have not been effective enough to reduce the amputation rates, which urges the need for additional treatment. Stem cell-based therapy for DFU has been investigated over the past years. Its therapeutic effect is through promoting angiogenesis, secreting paracrine factors, stimulating vascular differentiation, suppressing inflammation, improving collagen deposition, and immunomodulation. It is controversial which type and origin of stem cells, and which administration route would be the most optimal for therapy. We reviewed the different types and origins of stem cells and routes of administration used for the treatment of DFU in clinical and preclinical studies. Diabetes leads to the impairment of the stem cells in the diseased patients, which makes it less ideal to use autologous stem cells, and requires looking for a matching donor. Moreover, angioplasty could be complementary to stem cell therapy, and scaffolds have a positive impact on the healing process of DFU by stem cell-based therapy. In short, stem cell-based therapy is promising in the field of regenerative medicine, but more studies are still needed to determine the ideal type of stem cells required in therapy, their safety, proper dosing, and optimal administration route.
Collapse
Affiliation(s)
- Racha El Hage
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Tobias Arnold
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Irene Hinterseher
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
- Berlin Institute of Health, Vascular Surgery Clinic, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane und der Brandenburgischen Technischen Universität Cottbus—Senftenberg, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
17
|
Rosser AE, Busse ME, Gray WP, Badin RA, Perrier AL, Wheelock V, Cozzi E, Martin UP, Salado-Manzano C, Mills LJ, Drew C, Goldman SA, Canals JM, Thompson LM. Translating cell therapies for neurodegenerative diseases: Huntington's disease as a model disorder. Brain 2022; 145:1584-1597. [PMID: 35262656 PMCID: PMC9166564 DOI: 10.1093/brain/awac086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022] Open
Abstract
There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease.
Collapse
Affiliation(s)
- Anne E. Rosser
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Cardiff University Brain Repair Group, School of Biosciences, Life Sciences Building, Cardiff CF10 3AX, UK
- Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
| | - Monica E. Busse
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - William P. Gray
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
- University Hospital of Wales Healthcare NHS Trust, Department of Neurosurgery, Cardiff CF14 4XW, UK
| | - Romina Aron Badin
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, 92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Anselme L. Perrier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, 92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Vicki Wheelock
- University of California Davis, Department of Neurology, 95817 Sacramento, CA, USA
| | - Emanuele Cozzi
- Transplant Immunology Unit, Department of Cardiac, Thoracic and Vascular Sciences, Padua University Hospital—Ospedale Giustinianeo, Padova, Italy
| | - Unai Perpiña Martin
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Laura J. Mills
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - Cheney Drew
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - Steven A. Goldman
- Centre for Translational Neuromedicine, University of Rochester, 14642 Rochester, NY, USA
- University of Copenhagen Faculty of Health and Medical Sciences, DK-2200 Kobenhavn, Denmark
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Leslie M. Thompson
- University of California Irvine, Department of Psychiatry and Human Behaviour, Department of Neurobiology and Behavior and the Sue and Bill Gross Stem Cell Center, 92697 Irvine, CA, USA
| |
Collapse
|
18
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
19
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
20
|
Chen CH, Curran MA. Method of long-term, recurrent, intracerebroventricular infusion of cellular therapy in mice. J Neurosci Methods 2022; 371:109529. [PMID: 35183615 PMCID: PMC8917793 DOI: 10.1016/j.jneumeth.2022.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
|
21
|
Varier P, Raju G, Madhusudanan P, Jerard C, Shankarappa SA. A Brief Review of In Vitro Models for Injury and Regeneration in the Peripheral Nervous System. Int J Mol Sci 2022; 23:816. [PMID: 35055003 PMCID: PMC8775373 DOI: 10.3390/ijms23020816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve axonal injury and associated cellular mechanisms leading to peripheral nerve damage are important topics of research necessary for reducing disability and enhancing quality of life. Model systems that mimic the biological changes that occur during human nerve injury are crucial for the identification of cellular responses, screening of novel therapeutic molecules, and design of neural regeneration strategies. In addition to in vivo and mathematical models, in vitro axonal injury models provide a simple, robust, and reductionist platform to partially understand nerve injury pathogenesis and regeneration. In recent years, there have been several advances related to in vitro techniques that focus on the utilization of custom-fabricated cell culture chambers, microfluidic chamber systems, and injury techniques such as laser ablation and axonal stretching. These developments seem to reflect a gradual and natural progression towards understanding molecular and signaling events at an individual axon and neuronal-soma level. In this review, we attempt to categorize and discuss various in vitro models of injury relevant to the peripheral nervous system and highlight their strengths, weaknesses, and opportunities. Such models will help to recreate the post-injury microenvironment and aid in the development of therapeutic strategies that can accelerate nerve repair.
Collapse
Affiliation(s)
| | | | | | | | - Sahadev A. Shankarappa
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (P.V.); (G.R.); (P.M.); (C.J.)
| |
Collapse
|
22
|
Drew CJG, Busse M. Considerations for clinical trial design and conduct in the evaluation of novel advanced therapeutics in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:235-279. [PMID: 36424094 DOI: 10.1016/bs.irn.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent advances in the development of potentially disease modifying cell and gene therapies for neurodegenerative disease has resulted in the production of a number of promising novel therapies which are now moving forward to clinical evaluation. The robust evaluation of these therapies pose a significant number of challenges when compared to more traditional evaluations of pharmacotherapy, which is the current mainstay of neurodegenerative disease symptom management. Indeed, there is an inherent complexity in the design and conduct of these trials at multiple levels. Here we discuss specific aspects requiring consideration in the context of investigating novel cell and gene therapies for neurodegenerative disease. This extends to overarching trial designs that could be employed and the factors that underpin design choices such outcome assessments, participant selection and methods for delivery of cell and gene therapies. We explore methods of data collection that may improve efficiency in trials of cell and gene therapy to maximize data sharing and collaboration. Lastly, we explore some of the additional context beyond efficacy evaluations that should be considered to ensure implementation across relevant healthcare settings.
Collapse
Affiliation(s)
- Cheney J G Drew
- Centre For Trials Research, Cardiff University, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics Unit (BRAIN), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.
| | - Monica Busse
- Centre For Trials Research, Cardiff University, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics Unit (BRAIN), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
23
|
Madhavikutty AS, Ohta S, Chandel AKS, Qi P, Ito T. Analysis of Endoscopic Injectability and Post-Ejection Dripping of Yield Stress Fluids: Laponite, Carbopol and Xanthan Gum. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021; 54:500-511. [DOI: 10.1252/jcej.21we018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | - Seiichi Ohta
- Institute of Engineering Innovation, The University of Tokyo
| | | | - Pan Qi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo
| |
Collapse
|
24
|
Fernandez-Muñoz B, Garcia-Delgado AB, Arribas-Arribas B, Sanchez-Pernaute R. Human Neural Stem Cells for Cell-Based Medicinal Products. Cells 2021; 10:2377. [PMID: 34572024 PMCID: PMC8469920 DOI: 10.3390/cells10092377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Neural stem cells represent an attractive tool for the development of regenerative therapies and are being tested in clinical trials for several neurological disorders. Human neural stem cells can be isolated from the central nervous system or can be derived in vitro from pluripotent stem cells. Embryonic sources are ethically controversial and other sources are less well characterized and/or inefficient. Recently, isolation of NSC from the cerebrospinal fluid of patients with spina bifida and with intracerebroventricular hemorrhage has been reported. Direct reprogramming may become another alternative if genetic and phenotypic stability of the reprogrammed cells is ensured. Here, we discuss the advantages and disadvantages of available sources of neural stem cells for the production of cell-based therapies for clinical applications. We review available safety and efficacy clinical data and discuss scalability and quality control considerations for manufacturing clinical grade cell products for successful clinical application.
Collapse
Affiliation(s)
- Beatriz Fernandez-Muñoz
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Ana Belen Garcia-Delgado
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Blanca Arribas-Arribas
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Rosario Sanchez-Pernaute
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| |
Collapse
|
25
|
Thomas HM, Ahangar P, Fitridge R, Kirby GTS, Mills SJ, Cowin AJ. Plasma-polymerized pericyte patches improve healing of murine wounds through increased angiogenesis and reduced inflammation. Regen Biomater 2021; 8:rbab024. [PMID: 34221447 PMCID: PMC8242226 DOI: 10.1093/rb/rbab024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Pericytes have the potential to be developed as a cell therapy for the treatment of wounds; however, the efficacy of any cell therapy relies on the successful delivery of intact and functioning cells. Here, the effect of delivering pericytes on wound repair was assessed alongside the development of a surface-functionalized pericyte patch. Plasma polymerization (PP) was used to functionalize the surface of silicone patches with heptylamine (HA) or acrylic acid (AA) monomers. Human pericytes were subsequently delivered to murine excisional wounds by intradermal injection or using the pericyte-laden patches and the comparative effects on wound healing, inflammation and revascularization determined. The AA surface provided the superior transfer of the cells to de-epidermized dermis. Excisional murine wounds treated either with pericytes injected directly into the wound or with the pericyte-laden AA patches showed improved healing with decreased neutrophil infiltration and reduced numbers of macrophages in the wounds. Pericyte delivery also enhanced angiogenesis through a mechanism independent of VEGF signalling. Pericytes, when delivered to wounds, improved healing responses by dampening inflammation and promoting angiogenesis. Delivery of pericytes using PP-AA-functionalized patches was equally as effective as direct injection of pericytes into wounds. Pericyte-functionalized dressings may therefore be a clinically relevant approach for the treatment of wounds.
Collapse
Affiliation(s)
- Hannah M Thomas
- Future Industries Institute, University of South Australia, Mawson Lakes SA 5095, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide SA 5000, Australia
| | - Parinaz Ahangar
- Future Industries Institute, University of South Australia, Mawson Lakes SA 5095, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide SA 5000, Australia
| | - Robert Fitridge
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide SA 5005, Australia
| | - Giles T S Kirby
- Future Industries Institute, University of South Australia, Mawson Lakes SA 5095, Australia
| | - Stuart J Mills
- Future Industries Institute, University of South Australia, Mawson Lakes SA 5095, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide SA 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes SA 5095, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide SA 5000, Australia
| |
Collapse
|
26
|
Intravascular Application of Labelled Cell Spheroids: An Approach for Ischemic Peripheral Artery Disease. Int J Mol Sci 2021; 22:ijms22136831. [PMID: 34202056 PMCID: PMC8269343 DOI: 10.3390/ijms22136831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSC) are known for their vascular regeneration capacity by neoangiogenesis. Even though, several delivery approaches exist, particularly in the case of intravascular delivery, only limited number of cells reach the targeted tissue and are not able to remain on site. Applicated cells exhibit poor survival accompanied with a loss of functionality. Moreover, cell application techniques lead to cell death and impede the overall MSC function and survival. 3D cell spheroids mimic the physiological microenvironment, thus, overcoming these limitations. Therefore, in this study we aimed to evaluate and assess the feasibility of 3D MSCs spheroids for endovascular application, for treatment of ischemic peripheral vascular pathologies. Multicellular 3D MSC spheroids were generated at different cell seeding densities, labelled with ultra-small particles of iron oxide (USPIO) and investigated in vitro in terms of morphology, size distribution, mechanical stability as well as ex vivo with magnetic resonance imaging (MRI) to assess their trackability and distribution. Generated 3D spheroids were stable, viable, maintained stem cell phenotype and were easily trackable and visualized via MRI. MSC 3D spheroids are suitable candidates for endovascular delivery approaches in the context of ischemic peripheral vascular pathologies.
Collapse
|
27
|
Yang W, Chen L, Jhuang Y, Lin Y, Hung P, Ko Y, Tsai M, Lee Y, Hsu L, Yeh C, Hsu H, Huang C. Injection of hybrid 3D spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells into the renal cortex improves kidney function and replenishes glomerular podocytes. Bioeng Transl Med 2021; 6:e10212. [PMID: 34027096 PMCID: PMC8126810 DOI: 10.1002/btm2.10212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Podocytes are highly differentiated epithelial cells that are crucial for maintaining the glomerular filtration barrier in the kidney. Podocyte injury followed by depletion is the major cause of pathological progression of kidney diseases. Although cell therapy has been considered a promising alternative approach to kidney transplantation for the treatment of kidney injury, the resultant therapeutic efficacy in terms of improved renal function is limited, possibly owing to significant loss of engrafted cells. Herein, hybrid three-dimensional (3D) cell spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells were designed to mimic the glomerular microenvironment and as a cell delivery vehicle to replenish the podocyte population by cell transplantation. After creating a native glomerulus-like condition, the expression of multiple genes encoding growth factors and basement membrane factors that are strongly associated with podocyte maturation and functionality was significantly enhanced. Our in vivo results demonstrated that intrarenal transplantation of podocytes in the form of hybrid 3D cell spheroids improved engraftment efficiency and replenished glomerular podocytes. Moreover, the proteinuria of the experimental mice with hypertensive nephropathy was effectively reduced. These data clearly demonstrated the potential of hybrid 3D cell spheroids for repairing injured kidneys.
Collapse
Affiliation(s)
- Wen‐Yu Yang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Li‐Chi Chen
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Ya‐Ting Jhuang
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Yu‐Jie Lin
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Pei‐Yu Hung
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Yi‐Ching Ko
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Meng‐Yu Tsai
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Yun‐Wei Lee
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Li‐Wen Hsu
- Bioresource Collection and Research CenterFood Industry Research and Development InstituteHsinchuTaiwan
| | - Chih‐Kuang Yeh
- Department of Biomedical Engineering and Environmental ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsiang‐Hao Hsu
- Kidney Research Center, Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
- College of Medicine, School of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chieh‐Cheng Huang
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
28
|
Danalache M, Knoll J, Linzenbold W, Enderle M, Abruzzese T, Stenzl A, Aicher WK. Injection of Porcine Adipose Tissue-Derived Stromal Cells by a Novel Waterjet Technology. Int J Mol Sci 2021; 22:ijms22083958. [PMID: 33921246 PMCID: PMC8070533 DOI: 10.3390/ijms22083958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Previously, we developed a novel, needle-free waterjet (WJ) technology capable of injecting viable cells by visual guided cystoscopy in the urethral sphincter. In the present study, we aimed to investigate the effect of WJ technology on cell viability, surface markers, differentiation and attachment capabilities, and biomechanical features. Porcine adipose tissue-derived stromal cells (pADSCs) were isolated, expanded, and injected by WJ technology. Cell attachment assays were employed to investigate cell-matrix interactions. Cell surface molecules were analyzed by flow cytometry. Cells injected by Williams Needle (WN), normal cannula, or not injected cells served as controls. Biomechanical properties were assessed by atomic force microscopy (AFM). pADSCs injected by the WJ were viable (85.9%), proliferated well, and maintained their in vitro adipogenic and osteogenic differentiation capacities. The attachment of pADSCs was not affected by WJ injection and no major changes were noted for cell surface markers. AFM measurements yielded a significant reduction of cellular stiffness after WJ injections (p < 0.001). WJ cell delivery satisfies several key considerations required in a clinical context, including the fast, simple, and reproducible delivery of viable cells. However, the optimization of the WJ device may be necessary to further reduce the effects on the biomechanical properties of cells.
Collapse
Affiliation(s)
- Marina Danalache
- Department of Orthopaedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany;
| | - Jasmin Knoll
- Department of Urology, University Hospital Tübingen, Waldhörnlestrasse 22, 72072 Tübingen, Germany; (J.K.); (T.A.); (A.S.)
| | - Walter Linzenbold
- ERBE Elektromedizin GmbH Tübingen, 72072 Tübingen, Germany; (W.L.); (M.E.)
| | - Markus Enderle
- ERBE Elektromedizin GmbH Tübingen, 72072 Tübingen, Germany; (W.L.); (M.E.)
| | - Tanja Abruzzese
- Department of Urology, University Hospital Tübingen, Waldhörnlestrasse 22, 72072 Tübingen, Germany; (J.K.); (T.A.); (A.S.)
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, Waldhörnlestrasse 22, 72072 Tübingen, Germany; (J.K.); (T.A.); (A.S.)
| | - Wilhelm K. Aicher
- Department of Urology, University Hospital Tübingen, Waldhörnlestrasse 22, 72072 Tübingen, Germany; (J.K.); (T.A.); (A.S.)
- Correspondence: ; Tel.: +49-7071-298-7021; Fax: +49-7071-292-5072
| |
Collapse
|
29
|
Rosell-Valle C, Antúnez C, Campos F, Gallot N, García-Arranz M, García-Olmo D, Gutierrez R, Hernán R, Herrera C, Jiménez R, Leyva-Fernández L, Maldonado-Sanchez R, Muñoz-Fernández R, Nogueras S, Ortiz L, Piudo I, Ranchal I, Rodríguez-Acosta A, Segovia C, Fernández-Muñoz B. Evaluation of the effectiveness of a new cryopreservation system based on a two-compartment vial for the cryopreservation of cell therapy products. Cytotherapy 2021; 23:740-753. [PMID: 33714705 DOI: 10.1016/j.jcyt.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AIMS Successful cell cryopreservation and banking remain a major challenge for the manufacture of cell therapy products, particularly in relation to providing a hermetic, sterile cryovial that ensures optimal viability and stability post-thaw while minimizing exposure to toxic cryoprotective agents, typically dimethyl sulfoxide (Me2SO). METHODS In the present study, the authors evaluated the effectiveness and functionality of Limbo technology (Cellulis S.L., Santoña, Spain). This system provides a hermetic vial with two compartments (one for adding cells with the cryoprotective agent solution and the other for the diluent solution) and an automated defrosting device. Limbo technology (Cellulis S.L.) allows reduction of the final amount of Me2SO, sidestepping washing and dilution steps and favoring standardization. The study was performed in several Good Manufacturing Practice laboratories manufacturing diverse cell therapy products (human mesenchymal stromal cells, hematopoietic progenitor cells, leukapheresis products, fibroblasts and induced pluripotent stem cells). Laboratories compared Limbo technology (Cellulis S.L.) with their standard cryopreservation procedure, analyzing cell recovery, viability, phenotype and functionality. RESULTS Limbo technology (Cellulis S.L.) maintained the viability and functionality of most of the cell products and preserved sterility while reducing the final concentration of Me2SO. CONCLUSIONS Results showed that use of Limbo technology (Cellulis S.L.) offers an overall safe alternative for cell banking and direct infusion of cryopreserved cell products into patients.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain.
| | - Cristina Antúnez
- Unidad de Expansión y Terapia Celular. Centro de Transfusión, Tejidos y Células, Málaga, Spain
| | - Fernando Campos
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | | | | | | | - Rosario Gutierrez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Concha Herrera
- Unidad de Terapia Celular, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Rosario Jiménez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laura Leyva-Fernández
- Unidad de Producción Celular, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | | | - Sonia Nogueras
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Lourdes Ortiz
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Inmaculada Piudo
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | - Isidora Ranchal
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | | | - Cristina Segovia
- Unidad de Expansión y Terapia Celular. Centro de Transfusión, Tejidos y Células, Málaga, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain.
| |
Collapse
|
30
|
Baldwin A, Uy L, Booth BW. Characterization of collagen type I/tannic acid beads as a cell scaffold. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911520988306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. Surgical removal of tumors is often necessary and many patients suffer complications due to subsequent breast reconstruction. A safe and effective breast reconstructive material is needed for patients recovering from surgical removal of small breast cancer tumors. Our lab has developed injectable collagen/tannic acid beads seeded with patient-derived preadipocytes for regeneration of healthy breast tissue in patients post-lumpectomy. Previous research indicates that the inclusion of tannic acid in the matrix imparts an anticancer property. This research seeks to determine the variables needed to control collagen/tannic acid bead diameter and seeded cell attachment, which are essential to proper bead implantation and function. We found that as tannic acid concentration increases within the beads, cell attachment decreases. Bead diameter is controlled by bead generator voltage, solution osmolality, the degree of cell attachment, and tannic acid concentrations. Higher voltages resulted in significant decrease in bead diameter. Collagen/tannic acid beads decreased in diameter when placed in solutions of increasing osmolality. Higher degrees of cell attachment across the surface of the beads were associated with a significant decrease in diameter. In beads made with high concentrations of tannic acid, bead diameter was found to decrease. Collagen/TA beads are a promising subdermal tissue regenerative matrix with anticancer activity as an alternative to simple lipofilling in breast reconstructive procedures. This study was conducted to better understand the properties of collagen/TA beads in order to improve injection efficacy and tissue regenerative activity.
Collapse
Affiliation(s)
- Andrew Baldwin
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Lisa Uy
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Brian W Booth
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
31
|
Dromel PC, Singh D, Christoff-Tempesta T, Martheswaran T, Alexander-Katz A, Spector M, Young M. Controlling Growth Factor Diffusion by Modulating Water Content in Injectable Hydrogels. Tissue Eng Part A 2021; 27:714-723. [PMID: 33256564 DOI: 10.1089/ten.tea.2020.0313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent advancements in the delivery of therapeutics for retinal diseases include the development of injectable hydrogels, networks of one or more hydrophilic polymers that contain a high-volume fraction of water. These systems are of particular interest due to their biocompatibility, permeability to water-soluble metabolites, and function as minimally invasive injectable delivery vehicles. Recently, hydrogels for ophthalmic applications have been developed that display a controlled release of factors necessary for cellular survival and proliferation. Understanding the relationship between the volume water fraction and the physical, chemical, and diffusion properties of the hydrogel scaffold could aid in the improvement of existing drug delivery treatments for retinal regeneration. In this study, we compared the diffusion and release of human epidermal growth factor (hEGF) encapsulated in different injectable homogenous and heterogenous hydrogels, namely gelatin-hydroxyphenyl propionic acid (Gtn-HPA) and hyaluronic acid-tyramine (HA-Tyr)-based hydrogels. These experimental results were compared with the measured stiffness and water content of these hydrogels and applied to different diffusion theories of polymers to determine the model of best fit. We find that the normalized diffusion and release of hEGF increases with free water content in injectable hydrogels: ranging from 0.176 at 41% free water in HA-Tyr to 0.2 at 53% free water in Gtn-HPA, whereas it decreases with hydrogel stiffness: 600 Pa for Gtn-HPA and 1440 Pa for HA-Tyr. Further, we compared our experimental data with theoretical diffusion models. We found that homogeneous theoretical models, notably the hydrodynamic model (giving a normalized diffusion close to 0.2), provide the most suitable explanation for the measured solute diffusion coefficient. Impact statement Diffusion in a three-dimensional system is a key factor in designing new hydrogel-based materials. It allows to control and predict diffusion in implants and delivery systems. However, very little is done to explore and test the diffusion since it is a complex process. Many models can predict solute diffusion; however, practical application using these models has not yet been done. We have shown the variation of these models in a practical extent, which could have a tremendous impact on designing biomaterial for biological application as it allows one to understand the diffusion of injected drugs and growth factors.
Collapse
Affiliation(s)
- Pierre C Dromel
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepti Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Ty Christoff-Tempesta
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tanisha Martheswaran
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Alfredo Alexander-Katz
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Myron Spector
- VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Young
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Ghuman H, Matta R, Tompkins A, Nitzsche F, Badylak SF, Gonzalez AL, Modo M. ECM hydrogel improves the delivery of PEG microsphere-encapsulated neural stem cells and endothelial cells into tissue cavities caused by stroke. Brain Res Bull 2020; 168:120-137. [PMID: 33373665 DOI: 10.1016/j.brainresbull.2020.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Intracerebral implantation of neural stem cells (NSCs) to treat stroke remains an inefficient process with <5% of injected cells being retained. To improve the retention and distribution of NSCs after a stroke, we investigated the utility of NSCs' encapsulation in polyethylene glycol (PEG) microspheres. We first characterized the impact of the physical properties of different syringes and needles, as well as ejection speed, upon delivery of microspheres to the stroke injured rat brain. A 20 G needle size at a 10 μL/min flow rate achieved the most efficient microsphere ejection. Secondly, we optimized the delivery vehicles for in vivo implantation of PEG microspheres. The suspension of microspheres in extracellular matrix (ECM) hydrogel showed superior retention and distribution in a cortical stroke caused by photothrombosis, as well as in a striatal and cortical cavity ensuing middle cerebral artery occlusion (MCAo). Thirdly, NSCs or NSCs + endothelial cells (ECs) encapsulated into biodegradable microspheres were implanted into a large stroke cavity. Cells in microspheres exhibited a high viability, survived freezing and transport. Implantation of 110 cells/microsphere suspended in ECM hydrogel produced a highly efficient delivery that resulted in the widespread distribution of NSCs in the tissue cavity and damaged peri-infarct tissues. Co-delivery of ECs enhanced the in vivo survival and distribution of ∼1.1 million NSCs. The delivery of NSCs and ECs can be dramatically improved using microsphere encapsulation combined with suspension in ECM hydrogel. These biomaterial innovations are essential to advance clinical efforts to improve the treatment of stroke using intracerebral cell therapy.
Collapse
Affiliation(s)
- Harmanvir Ghuman
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, USA
| | - Rita Matta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Franziska Nitzsche
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA; Department of Radiology, University of Pittsburgh, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, USA; Department of Radiology, University of Pittsburgh, USA.
| |
Collapse
|
33
|
An Injectable Hyaluronan-Methylcellulose (HAMC) Hydrogel Combined with Wharton's Jelly-Derived Mesenchymal Stromal Cells (WJ-MSCs) Promotes Degenerative Disc Repair. Int J Mol Sci 2020; 21:ijms21197391. [PMID: 33036383 PMCID: PMC7582266 DOI: 10.3390/ijms21197391] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is one of the predominant causes of chronic low back pain (LBP), which is a leading cause of disability worldwide. Despite substantial progress in cell therapy for the treatment of IVD degeneration, significant challenges remain for clinical application. Here, we investigated the effectiveness of hyaluronan-methylcellulose (HAMC) hydrogels loaded with Wharton's Jelly-derived mesenchymal stromal cell (WJ-MSCs) in vitro and in a rat coccygeal IVD degeneration model. Following induction of injury-induced IVD degeneration, female Sprague-Dawley rats were randomized into four groups to undergo a single intradiscal injection of the following: (1) phosphate buffered saline (PBS) vehicle, (2) HAMC, (3) WJ-MSCs (2 × 104 cells), and (4) WJ-MSCs-loaded HAMC (WJ-MSCs/HAMC) (n = 10/each group). Coccygeal discs were removed following sacrifice 6 weeks after implantation for radiologic and histologic analysis. We confirmed previous findings that encapsulation in HAMC increases the viability of WJ-MSCs for disc repair. The HAMC gel maintained significant cell viability in vitro. In addition, combined implantation of WJ-MSCs and HAMC significantly promoted degenerative disc repair compared to WJ-MSCs alone, presumably by improving nucleus pulposus cells viability and decreasing extracellular matrix degradation. Our results suggest that WJ-MSCs-loaded HAMC promotes IVD repair more effectively than cell injection alone and supports the potential clinical use of HAMC for cell delivery to arrest IVD degeneration or to promote IVD regeneration.
Collapse
|
34
|
Ahangar P, Mills SJ, Cowin AJ. Mesenchymal Stem Cell Secretome as an Emerging Cell-Free Alternative for Improving Wound Repair. Int J Mol Sci 2020; 21:ijms21197038. [PMID: 32987830 PMCID: PMC7583030 DOI: 10.3390/ijms21197038] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem cells (MSC) for the treatment of cutaneous wounds is currently of enormous interest. However, the broad translation of cell therapies into clinical use is hampered by their efficacy, safety, manufacturing and cost. MSCs release a broad repertoire of trophic factors and immunomodulatory cytokines, referred to as the MSC secretome, that has considerable potential for the treatment of cutaneous wounds as a cell-free therapy. In this review, we outline the current status of MSCs as a treatment for cutaneous wounds and introduce the potential of the MSC secretome as a cell-free alternative for wound repair. We discuss the challenges and provide insights and perspectives for the future development of the MSC secretome as well as identify its potential clinical translation into a therapeutic treatment.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia; (P.A.); (S.J.M.)
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Stuart J. Mills
- Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia; (P.A.); (S.J.M.)
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia; (P.A.); (S.J.M.)
- Correspondence: ; Tel.: +61-8-8302-5018
| |
Collapse
|
35
|
Glaeser JD, Tawackoli W, Ju DG, Yang JH, Kanim LEA, Salehi K, Yu V, Saidara E, Vit J, Khnkoyan Z, NaPier Z, Stone LS, Bae HW, Sheyn D. Optimization of a rat lumbar IVD degeneration model for low back pain. JOR Spine 2020; 3:e1092. [PMID: 32613167 PMCID: PMC7323460 DOI: 10.1002/jsp2.1092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Intervertebral disc (IVD) degeneration is often associated with low back pain and radiating leg pain. The purpose of this study is to develop a reproducible and standardized preclinical model of painful lumbar IVD degeneration by evaluation of structural and behavioral changes in response to IVD injury with increasing needle sizes. This model can be used to develop new therapies for IVD degeneration. METHODS Forty-five female Sprague Dawley rats underwent anterior lumbar disc needle puncture at levels L4-5 and L5-6 under fluoroscopic guidance. Animals were randomly assigned to four different experimental groups: needle sizes of 18 Gauge (G), 21G, 23G, and sham control. To monitor the progression of IVD degeneration and pain, the following methods were employed: μMRI, qRT-PCR, histology, and biobehavioral analysis. RESULTS T1- and T2-weighted μMRI analysis showed a correlation between the degree of IVD degeneration and needle diameter, with the most severe degeneration in the 18G group. mRNA expression of markers for IVD degeneration markers were dysregulated in the 18G and 21G groups, while pro-nociceptive markers were increased in the 18G group only. Hematoxylin and Eosin (H&E) and Alcian Blue/Picrosirius Red staining confirmed the most pronounced IVD degeneration in the 18G group. Randall-Selitto and von Frey tests showed increased hindpaw sensitivity in the 18G group. CONCLUSION Our findings demonstrate that anterior disc injury with an 18G needle creates severe IVD degeneration and mechanical hypersensitivity, while the 21G needle results in moderate degeneration with no increased pain sensitivity. Therefore, needle sizes should be selected depending on the desired phenotype for the pre-clinical model.
Collapse
Affiliation(s)
- Juliane D. Glaeser
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Derek G. Ju
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Jae H. Yang
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Orthopedic SurgeryKorea University Guro HospitalSeoulSouth Korea
| | - Linda EA Kanim
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Victoria Yu
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Evan Saidara
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Jean‐Phillipe Vit
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zhanna Khnkoyan
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zachary NaPier
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Laura S. Stone
- McGill University, Faculty of DentistryAlan Edwards Centre for Research on PainMontrealCanada
| | - Hyun W. Bae
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
36
|
Connolly S, McGourty K, Newport D. The in vitro inertial positions and viability of cells in suspension under different in vivo flow conditions. Sci Rep 2020; 10:1711. [PMID: 32015362 PMCID: PMC6997401 DOI: 10.1038/s41598-020-58161-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
The influence of Poiseuille flow on cell viability has applications in the areas of cancer metastasis, lab-on-a-chip devices and flow cytometry. Indeed, retaining cell viability is important in the emerging field of cell therapy as cells need to be returned to patients’ bodies. Despite this, it is unclear how this fundamental fluid regime affects cell viability. This study investigated the influence that varying flow rate, and the corresponding wall shear stress (τw) has on the viability and inertial positions of circulating cells in laminar pipe flow. The viability of two representative cell lines under different shear stresses in two different systems were investigated while particle streak imaging was used to determine their inertial positions. It was found that peristaltic pumps have a negative effect on cell viability in comparison to syringe pumps. Increasing shear stress in a cone and plate above 3 Pa caused an increase in cell death, however, τw as high as 10 Pa in circulation has little to no effect on cell viability. Inertial lift forces that move cells towards the centre of the channel protect them from experiencing detrimental levels of τw, indicating that τw in Poiseuille flow is not a good predictor of cell viability during advection.
Collapse
Affiliation(s)
- Sinead Connolly
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- School of Natural Sciences, Bernal Institute, Health Research Institute, University of Limerick, Limerick, Ireland.
| | - David Newport
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
37
|
Abstract
Brain tissue lost after a stroke is not regenerated, although a repair response associated with neurogenesis does occur. A failure to regenerate functional brain tissue is not caused by the lack of available neural cells, but rather the absence of structural support to permit a repopulation of the lesion cavity. Inductive bioscaffolds can provide this support and promote the invasion of host cells into the tissue void. The putative mechanisms of bioscaffold degradation and its pivotal role to permit invasion of neural cells are reviewed and discussed in comparison to peripheral wound healing. Key differences between regenerating and non-regenerating tissues are contrasted in an evolutionary context, with a special focus on the neurogenic response as a conditio sine qua non for brain regeneration. The pivotal role of the immune system in biodegradation and the formation of a neovasculature are contextualized with regeneration of peripheral soft tissues. The application of rehabilitation to integrate newly forming brain tissue is suggested as necessary to develop functional tissue that can alleviate behavioral impairments. Pertinent aspects of brain tissue development are considered to provide guidance to produce a metabolically and functionally integrated de novo tissue. Although little is currently known about mechanisms involved in brain tissue regeneration, this review outlines the various components and their interplay to provide a framework for ongoing and future studies. It is envisaged that a better understanding of the mechanisms involved in brain tissue regeneration will improve the design of biomaterials and the methods used for implantation, as well as rehabilitation strategies that support the restoration of behavioral functions.
Collapse
Affiliation(s)
- Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States,Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Michel Modo,
| |
Collapse
|
38
|
|
39
|
Modo M, Badylak SF. A roadmap for promoting endogenous in situ tissue restoration using inductive bioscaffolds after acute brain injury. Brain Res Bull 2019; 150:136-149. [PMID: 31128250 DOI: 10.1016/j.brainresbull.2019.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
The regeneration of brain tissue remains one of the greatest unsolved challenges in medicine and by many is considered unfeasible. Indeed, the adult mammalian brain does not regenerate tissue, but there is ongoing endogenous neurogenesis, which is upregulated after injury and contributes to tissue repair. This endogenous repair response is a conditio sine que non for tissue regeneration. However, scarring around the lesion core and cavitation provide unfavorable conditions for tissue regeneration in the brain. Based on the success of using extracellular matrix (ECM)-based bioscaffolds in peripheral soft tissue regeneration, it is plausible that the provision of an inductive ECM-based hydrogel inside the volumetric tissue loss can attract neural cells and create a de novo viable tissue. Following perturbation theory of these successes in peripheral tissues, we here propose 9 perturbation parts (i.e. requirements) that can be solved independently to create an integrated series to build a functional and integrated de novo neural tissue. Necessities for tissue formation, anatomical and functional connectivity are further discussed to provide a new substrate to support the improvement of behavioral impairments after acute brain injury. We also consider potential parallel developments of this tissue engineering effort that can support therapeutic benefits in the absence of de novo tissue formation (e.g. structural support to veterate brain tissue). It is envisaged that eventually top-down inductive "natural" bioscaffolds composed of decellularized tissues (i.e. ECM) will be replaced by bottom-up synthetic designer hydrogels that will provide very defined structural and signaling properties, potentially even opening up opportunities we currently do not envisage using natural materials.
Collapse
Affiliation(s)
- Michel Modo
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Pittsburgh, Department of Radiology, Pittsburgh, PA, USA.
| | - Stephen F Badylak
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Pittsburgh, Department of Surgery, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Srivastava RK, Jablonska A, Chu C, Gregg L, Bulte JWM, Koehler RC, Walczak P, Janowski M. Biodistribution of Glial Progenitors in a Three Dimensional-Printed Model of the Piglet Cerebral Ventricular System. Stem Cells Dev 2019; 28:515-527. [PMID: 30760110 DOI: 10.1089/scd.2018.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
White matter damage persists in hypoxic-ischemic newborns even when treated with hypothermia. We have previously shown that intraventricular delivery of human glial progenitors (GPs) at the neonatal stage is capable of replacing abnormal host glia and rescuing the lifespan of dysmyelinated mice. However, such transplantation in the human brain poses significant challenges as related to high-volume ventricles and long cell migration distances. These challenges can only be studied in large animal model systems. In this study, we developed a three dimensional (3D)-printed model of the ventricular system sized to a newborn pig to investigate the parameters that can maximize a global biodistribution of injected GPs within the ventricular system, while minimizing outflow to the subarachnoid space. Bioluminescent imaging and magnetic resonance imaging were used to image the biodistribution of luciferase-transduced GPs in simple fluid containers and a custom-designed, 3D-printed model of the piglet ventricular system. Seven independent variables were investigated. The results demonstrated that a low volume (0.1 mL) of cell suspension is essential to keep cells within the ventricular system. If higher volumes (1 mL) are needed, a very slow infusion speed (0.01 mL/min) is necessary. Real-time magnetic resonance imaging demonstrated that superparamagnetic iron oxide (SPIO) labeling significantly alters the rheological properties of the GP suspension, such that, even at high speeds and high volumes, the outflow to the subarachnoid space is reduced. Several other factors, including GP species (human vs. mouse), type of catheter tip (end hole vs. side hole), catheter length (0.3 vs. 7.62 m), and cell concentration, had less effect on the overall distribution of GPs. We conclude that the use of a 3D-printed phantom model represents a robust, reproducible, and cost-saving alternative to in vivo large animal studies for determining optimal injection parameters.
Collapse
Affiliation(s)
- Rohit K Srivastava
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anna Jablonska
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chengyan Chu
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lydia Gregg
- 3 Visualization Core Laboratory, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff W M Bulte
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raymond C Koehler
- 4 Department of Anesthesiology and Critical Care Medicine, Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Piotr Walczak
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,5 Department of Neurology and Neurosurgery, University of Warmia and Mazury, Olsztyn, Poland
| | - Miroslaw Janowski
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|