1
|
Hamed YMF, Ghosh B, Marshall KL. PIEZO ion channels: force sensors of the interoceptive nervous system. J Physiol 2024; 602:4777-4788. [PMID: 38456626 DOI: 10.1113/jp284077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Many organs are designed to move: the heart pumps each second, the gastrointestinal tract squeezes and churns to digest food, and we contract and relax skeletal muscles to move our bodies. Sensory neurons of the peripheral nervous system detect signals from bodily tissues, including the forces generated by these movements, to control physiology. The processing of these internal signals is called interoception, but this is a broad term that includes a wide variety of both chemical and mechanical sensory processes. Mechanical senses are understudied, but rapid progress has been made in the last decade, thanks in part to the discovery of the mechanosensory PIEZO ion channels (Coste et al., 2010). The role of these mechanosensors within the interoceptive nervous system is the focus of this review. In defining the transduction molecules that govern mechanical interoception, we will have a better grasp of how these signals drive physiology.
Collapse
Affiliation(s)
- Yasmeen M F Hamed
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Britya Ghosh
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Kara L Marshall
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
- Lead contact
| |
Collapse
|
2
|
Zhang L, Nagel M, Olson WP, Chesler AT, O'Connor DH. Trigeminal innervation and tactile responses in mouse tongue. Cell Rep 2024; 43:114665. [PMID: 39215998 PMCID: PMC11500437 DOI: 10.1016/j.celrep.2024.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The neural basis of tongue mechanosensation remains largely mysterious despite the tongue's high tactile acuity, sensitivity, and relevance to ethologically important functions. We studied terminal morphologies and tactile responses of lingual afferents from the trigeminal ganglion. Fungiform papillae, the taste-bud-holding structures in the tongue, were convergently innervated by multiple Piezo2+ trigeminal afferents, whereas single trigeminal afferents branched into multiple adjacent filiform papillae. In vivo single-unit recordings from the trigeminal ganglion revealed lingual low-threshold mechanoreceptors (LTMRs) with distinct tactile properties ranging from intermediately adapting (IA) to rapidly adapting (RA). The receptive fields of these LTMRs were mostly less than 0.1 mm2 and concentrated at the tip of the tongue, resembling the distribution of fungiform papillae. Our results indicate that fungiform papillae are mechanosensory structures and suggest a simple model that links functional and anatomical properties of tactile sensory neurons in the tongue.
Collapse
Affiliation(s)
- Linghua Zhang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Maximilian Nagel
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, Bethesda, MD 20892, USA
| | - William P Olson
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Alexander T Chesler
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, Bethesda, MD 20892, USA
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.
| |
Collapse
|
3
|
D’Silva NJ, Pandiyan P. Neuroimmune cell interactions and chronic infections in oral cancers. Front Med (Lausanne) 2024; 11:1432398. [PMID: 39050547 PMCID: PMC11266022 DOI: 10.3389/fmed.2024.1432398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammation is a process that is associated with the activation of distal immunosuppressive pathways that have evolved to restore homeostasis and prevent excessive tissue destruction. However, long-term immunosuppression resulting from systemic and local inflammation that may stem from dysbiosis, infections, or aging poses a higher risk for cancers. Cancer incidence and progression dramatically increase with chronic infections including HIV infection. Thus, studies on pro-tumorigenic effects of microbial stimulants from resident microbiota and infections in the context of inflammation are needed and underway. Here, we discuss chronic infections and potential neuro-immune interactions that could establish immunomodulatory programs permissive for tumor growth and progression.
Collapse
Affiliation(s)
- Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Center for AIDS Research, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Aragona M, Mhalhel K, Cometa M, Franco GA, Montalbano G, Guerrera MC, Levanti M, Laurà R, Abbate F, Vega JA, Germanà A. Piezo 1 and Piezo 2 in the Chemosensory Organs of Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:7404. [PMID: 39000511 PMCID: PMC11242578 DOI: 10.3390/ijms25137404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The ion channels Piezo 1 and Piezo 2 have been identified as membrane mechano-proteins. Studying mechanosensitive channels in chemosensory organs could help in understanding the mechanisms by which these channels operate, offering new therapeutic targets for various disorders. This study investigates the expression patterns of Piezo proteins in zebrafish chemosensory organs. For the first time, Piezo protein expression in adult zebrafish chemosensory organs is reported. In the olfactory epithelium, Piezo 1 immunolabels kappe neurons, microvillous cells, and crypt neurons, while Calretinin is expressed in ciliated sensory cells. The lack of overlap between Piezo 1 and Calretinin confirms Piezo 1's specificity for kappe neurons, microvillous cells, and crypt neurons. Piezo 2 shows intense immunoreactivity in kappe neurons, one-ciliated sensory cells, and multi-ciliated sensory cells, with overlapping Calretinin expression, indicating its olfactory neuron nature. In taste buds, Piezo 1 immunolabels Merkel-like cells at the bases of cutaneous and pharyngeal taste buds and the light and dark cells of cutaneous and oral taste buds. It also marks the dark cells of pharyngeal taste buds and support cells in oral taste buds. Piezo 2 is found in the light and dark cells of cutaneous and oral taste buds and isolated chemosensory cells. These findings provide new insights into the distribution of Piezo channels in zebrafish chemosensory organs, enhancing our understanding of their sensory processing and potential therapeutic applications.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Gianluca Antonio Franco
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
5
|
Cuendias P, Vega JA, García-Suárez O, Suazo I, Cobo R, García-Piqueras J, García-Mesa Y. Axonal and Glial PIEZO1 and PIEZO2 Immunoreactivity in Human Clitoral Krause's Corpuscles. Int J Mol Sci 2024; 25:6722. [PMID: 38928429 PMCID: PMC11203881 DOI: 10.3390/ijms25126722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Krause's corpuscles are typical of cutaneous mucous epithelia, like the lip vermillion or the glans clitoridis, and are associated with rapidly adapting low-threshold mechanoreceptors involved in gentle touch or vibration. PIEZO1 and PIEZO2 are transmembrane mechano-gated proteins that form a part of the cationic ion channels required for mechanosensitivity in mammalian cells. They are involved in somatosensitivity, especially in the different qualities of touch, but also in pain and proprioception. In the present study, immunohistochemistry and immunofluorescence were used to analyze the occurrence and cellular location of PIEZO1 and PIEZO2 in human clitoral Krause's corpuscles. Both PIEZO1 and PIEZO2 were detected in Krause's corpuscles in both the axon and the terminal glial cells. The presence of PIEZOs in the terminal glial cells of Kraus's corpuscles is reported here for the first time. Based on the distribution of PIEZO1 and PIEZO2, it may be assumed they could be involved in mechanical stimuli, sexual behavior, and sexual pleasure.
Collapse
Affiliation(s)
- Patricia Cuendias
- Grupo de Investigación SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (P.C.); (J.A.V.); (O.G.-S.); (J.G.-P.)
| | - José A. Vega
- Grupo de Investigación SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (P.C.); (J.A.V.); (O.G.-S.); (J.G.-P.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia, Santiago de Chile 4810010, Chile;
| | - Olivia García-Suárez
- Grupo de Investigación SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (P.C.); (J.A.V.); (O.G.-S.); (J.G.-P.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Iván Suazo
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia, Santiago de Chile 4810010, Chile;
| | - Ramón Cobo
- Servicio de Otorrinolaringología, Hospital Universitario “Marqués de Valdecilla”, 39008 Santander, Spain;
| | - Jorge García-Piqueras
- Grupo de Investigación SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (P.C.); (J.A.V.); (O.G.-S.); (J.G.-P.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Yolanda García-Mesa
- Grupo de Investigación SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (P.C.); (J.A.V.); (O.G.-S.); (J.G.-P.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
6
|
Kim B, Rothenberg ME, Sun X, Bachert C, Artis D, Zaheer R, Deniz Y, Rowe P, Cyr S. Neuroimmune interplay during type 2 inflammation: Symptoms, mechanisms, and therapeutic targets in atopic diseases. J Allergy Clin Immunol 2024; 153:879-893. [PMID: 37634890 PMCID: PMC11215634 DOI: 10.1016/j.jaci.2023.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Type 2 inflammation is characterized by overexpression and heightened activity of type 2 cytokines, mediators, and cells that drive neuroimmune activation and sensitization to previously subthreshold stimuli. The consequences of altered neuroimmune activity differ by tissue type and disease; they include skin inflammation, sensitization to pruritogens, and itch amplification in atopic dermatitis and prurigo nodularis; airway inflammation and/or hyperresponsiveness, loss of expiratory volume, airflow obstruction and increased mucus production in asthma; loss of sense of smell in chronic rhinosinusitis with nasal polyps; and dysphagia in eosinophilic esophagitis. We describe the neuroimmune interactions that underlie the various sensory and autonomic pathologies in type 2 inflammatory diseases and present recent advances in targeted treatment approaches to reduce type 2 inflammation and its associated symptoms in these diseases. Further research is needed to better understand the neuroimmune mechanisms that underlie chronic, sustained inflammation and its related sensory pathologies in diseases associated with type 2 inflammation.
Collapse
Affiliation(s)
- Brian Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, Calif
| | - Claus Bachert
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Muenster, Muenster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | - Sonya Cyr
- Regeneron Pharmaceuticals, Tarrytown, NY
| |
Collapse
|
7
|
Koehler M, Benthin J, Karanth S, Wiesenfarth M, Sebald K, Somoza V. Biophysical investigations using atomic force microscopy can elucidate the link between mouthfeel and flavour perception. NATURE FOOD 2024; 5:281-287. [PMID: 38605131 DOI: 10.1038/s43016-024-00958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Food texture, along with taste and odour, is an important factor in determining food flavour. However, the physiological properties of oral texture perception require greater examination and definition. Here we explore recent trends and perspectives related to mouthfeel and its relevance in food flavour perception, with an emphasis on the biophysical point of view and methods. We propose that atomic force microscopy, combined with other biophysical techniques and more traditional food science approaches, offers a unique opportunity to study the mechanisms of mouthfeel at cellular and molecular levels. With this knowledge, food composition could be modified to develop healthier products by limiting salt, sugar, fat and calories while maintaining sensory qualities and consumer acceptance.
Collapse
Affiliation(s)
- Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany.
| | - Julia Benthin
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Marina Wiesenfarth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Karin Sebald
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
García-Mesa Y, Cuendias P, Alonso-Guervós M, García-Piqueras J, Martín-Biedma B, Cobo T, García-Suárez O, Vega JA. Immunohistochemical detection of PIEZO1 and PIEZO2 in human digital Meissner´s corpuscles. Ann Anat 2024; 252:152200. [PMID: 38109982 DOI: 10.1016/j.aanat.2023.152200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The cutaneous end organ complexes or cutaneous sensory corpuscles are specialized sensory organs associated to low-threshold mechanoreceptors. Mechano-gated proteins forming a part of ion channels have been detected in both the axon and terminal glial cells of Meissner corpuscles, a specific cutaneous end organ complex in the human glabrous skin. The main candidates to mechanotransduction in Meissner corpuscles are members of the Piezo family of cationic ion channels. PIEZO2 has been detected in the axon of these sensory structures whereas no data exists about the occurrence and cell localization of PIEZO1. METHODS Skin samples (n = 18) from the palmar aspect of the distal phalanx of the first and second fingers were analysed (8 female and 10 males; age range 26 to 61 26-61 years). Double immunofluorescence for PIEZO1 and PIEZO2 together with axonal or terminal glial cell markers was captured by laser confocal microscopy, and the percentage of PIEZOs positive Meissner corpuscles was evaluated. RESULTS MCs from human fingers showed variable morphology and degree of lobulation. Regarding the basic immunohistochemical profile, in all cases the axons were immunoreactive for neurofilament proteins, neuron specific enolase and synaptophysin, while the lamellar cells displayed strong S100P immunoreactivity. PIEZO1 was detected co-localizing with axonal markers, but never with terminal glial cell markers, in the 56% of Meissner corpuscles; weak but specific immunofluorescence was additionally detected in the epidermis, especially in basal keratinocytes. Similarly, PIEZO2 immunoreactivity was found restricted to the axon in the 85% of Meissner corpuscles. PIEZO2 positive Merkel cells were also regularly found. CONCLUSIONS PIEZO1 and PIEZO2 are expressed exclusively in the axon of a subpopulation of human digital Meissner corpuscles, thus suggesting that not only PIEZO2, but also PIEZO1 may be involved in the mechanotransduction from low-threshold mechanoreceptors.
Collapse
Affiliation(s)
- Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain.
| | - Patricia Cuendias
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain.
| | - Marta Alonso-Guervós
- Unidad de Microscopía Fotónica y Análisis de Imágenes, Servicios Científico-Técnicos, Universidad de Oviedo, Spain.
| | - Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid, Spain.
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Spain.
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain.
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain.
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia, Santiago de Chile, Chile.
| |
Collapse
|
9
|
Tong C, Moayedi Y, Lumpkin EA. Merkel cells and keratinocytes in oral mucosa are activated by mechanical stimulation. Physiol Rep 2024; 12:e15826. [PMID: 38246872 PMCID: PMC10800296 DOI: 10.14814/phy2.15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 01/23/2024] Open
Abstract
The detection of mechanical qualities of foodstuffs is essential for nutrient acquisition, evaluation of food freshness, and bolus formation during mastication. However, the mechanisms through which mechanosensitive cells in the oral cavity transmit mechanical information from the periphery to the brain are not well defined. We hypothesized Merkel cells, which are epithelial mechanoreceptors and important for pressure and texture sensing in the skin, can be mechanically activated in the oral cavity. Using live-cell calcium imaging, we recorded Merkel cell activity in ex vivo gingival and palatal preparations from mice in response to mechanical stimulation. Merkel cells responded with distinct temporal patterns and activation thresholds in a region-specific manner, with Merkel cells in the hard palate having a higher mean activation threshold than those in the gingiva. Unexpectedly, we found that oral keratinocytes were also activated by mechanical stimulation, even in the absence of Merkel cells. This indicates that mechanical stimulation of oral mucosa independently activates at least two subpopulations of epithelial cells. Finally, we found that oral Merkel cells contribute to preference for consuming oily emulsion. To our knowledge, these data represent the first functional study of Merkel-cell physiology and its role in flavor detection in the oral cavity.
Collapse
Affiliation(s)
- Chi‐Kun Tong
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
| | - Yalda Moayedi
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
- Present address:
Departments of Neurology and Otolaryngology‐Head and Neck SurgeryColumbia UniversityNew YorkNYUSA
| | - Ellen A. Lumpkin
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
- Department of DermatologyColumbia University Medical CenterNew YorkNew YorkUSA
- Present address:
Department of Molecular and Cell BiologyHelen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyCAUSA
| |
Collapse
|
10
|
Villarino NW, Hamed YMF, Ghosh B, Dubin AE, Lewis AH, Odem MA, Loud MC, Wang Y, Servin-Vences MR, Patapoutian A, Marshall KL. Labeling PIEZO2 activity in the peripheral nervous system. Neuron 2023; 111:2488-2501.e8. [PMID: 37321223 PMCID: PMC10527906 DOI: 10.1016/j.neuron.2023.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Sensory neurons detect mechanical forces from both the environment and internal organs to regulate physiology. PIEZO2 is a mechanosensory ion channel critical for touch, proprioception, and bladder stretch sensation, yet its broad expression in sensory neurons suggests it has undiscovered physiological roles. To fully understand mechanosensory physiology, we must know where and when PIEZO2-expressing neurons detect force. The fluorescent styryl dye FM 1-43 was previously shown to label sensory neurons. Surprisingly, we find that the vast majority of FM 1-43 somatosensory neuron labeling in mice in vivo is dependent on PIEZO2 activity within the peripheral nerve endings. We illustrate the potential of FM 1-43 by using it to identify novel PIEZO2-expressing urethral neurons that are engaged by urination. These data reveal that FM 1-43 is a functional probe for mechanosensitivity via PIEZO2 activation in vivo and will facilitate the characterization of known and novel mechanosensory processes in multiple organ systems.
Collapse
Affiliation(s)
- Nicholas W Villarino
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yasmeen M F Hamed
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030
| | - Britya Ghosh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrienne E Dubin
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Max A Odem
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meaghan C Loud
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Wang
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - M Rocio Servin-Vences
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kara L Marshall
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Ibrahim T, Wu P, Wang LJ, Fang-Mei C, Murillo J, Merlo J, Shein SS, Tumanov AV, Lai Z, Weldon K, Chen Y, Ruparel S. Sex-dependent differences in the genomic profile of lingual sensory neurons in naïve and tongue-tumor bearing mice. Sci Rep 2023; 13:13117. [PMID: 37573456 PMCID: PMC10423281 DOI: 10.1038/s41598-023-40380-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
Mechanisms of sex-dependent orofacial pain are widely understudied. A significant gap in knowledge exists about comprehensive regulation of tissue-specific trigeminal sensory neurons in diseased state of both sexes. Using RNA sequencing of FACS sorted retro-labeled sensory neurons innervating tongue tissue, we determined changes in transcriptomic profiles in males and female mice under naïve as well as tongue-tumor bearing conditions Our data revealed the following interesting findings: (1) FACS sorting obtained higher number of neurons from female trigeminal ganglia (TG) compared to males; (2) Naïve female neurons innervating the tongue expressed immune cell markers such as Csf1R, C1qa and others, that weren't expressed in males. This was validated by Immunohistochemistry. (3) Accordingly, immune cell markers such as Csf1 exclusively sensitized TRPV1 responses in female TG neurons. (4) Male neurons were more tightly regulated than female neurons upon tumor growth and very few differentially expressed genes (DEGs) overlapped between the sexes, (5) Male DEGs contained higher number of transcription factors whereas female DEGs contained higher number of enzymes, cytokines and chemokines. Collectively, this is the first study to characterize the effect of sex as well as of tongue-tumor on global gene expression, pathways and molecular function of tongue-innervating sensory neurons.
Collapse
Affiliation(s)
- Tarek Ibrahim
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ping Wu
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Li-Ju Wang
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, San Antonio, USA
| | - Chang Fang-Mei
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Josue Murillo
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jaclyn Merlo
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Sergey S Shein
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, USA
| | - Zhao Lai
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, San Antonio, USA
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
12
|
Wei F, Wang J, Luo L, Tayyab Rashid M, Zeng L. The perception and influencing factors of astringency, and health-promoting effects associated with phytochemicals: A comprehensive review. Food Res Int 2023; 170:112994. [PMID: 37316067 DOI: 10.1016/j.foodres.2023.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
Astringency as the complex sensory of drying or shrinking can be perceived from natural foods, including abundant phenolic compounds. Up to now, there have been two possible astringency perception mechanisms of phenolic compounds. The first possible mechanism involved chemosensors and mechanosensors and took salivary binding proteins as the premise. Although piecemeal reports about chemosensors, friction mechanosensor's perception mechanisms were absent. There might be another perception way because a part of astringent phenolic compounds also triggered astringency although they could not bind with salivary proteins, however, the specific mechanism was unclear. Structures caused the differences in astringency perception mechanisms and intensities. Except for structures, other influencing factors also changed astringency perception intensity and aimed to decrease it, which probably ignored the health-promoting effects of phenolic compounds. Therefore, we roundly summarized the chemosensor's perception processes of the first mechanism. Meanwhile, we speculated that friction mechanosensor's probably activated Piezo2 ion channel on cell membranes. Phenolic compounds directly binds with oral epithelial cells, activating Piezo2 ion channel probably the another astringency perception mechanism. Except for structure, the increase of pH values, ethanol concentrations, and viscosity not only lowered astringency perception but were beneficial to improve the bioaccessibility and bioavailability of astringent phenolic compounds, which contributed to stronger antioxidant, anti-inflammatory, antiaging and anticancer effects.
Collapse
Affiliation(s)
- Fang Wei
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Jie Wang
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Yongchuan, Chongqing 402160, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China; Tea Research Institute, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
13
|
Qi L, Iskols M, Handler A, Ginty DD. Krause corpuscles of the genitalia are vibrotactile sensors required for normal sexual behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545006. [PMID: 37398085 PMCID: PMC10312780 DOI: 10.1101/2023.06.14.545006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Krause corpuscles, first discovered in the 1850s, are enigmatic sensory structures with unknown physiological properties and functions found within the genitalia and other mucocutaneous tissues. Here, we identified two distinct somatosensory neuron subtypes that innervate Krause corpuscles of the mouse penis and clitoris and project to a unique sensory terminal region of the spinal cord. Using in vivo electrophysiology and calcium imaging, we found that both Krause corpuscle afferent types are A-fiber rapid-adapting low-threshold mechanoreceptors, optimally tuned to dynamic, light touch and mechanical vibrations (40-80 Hz) applied to the clitoris or penis. Optogenetic activation of male Krause corpuscle afferent terminals evoked penile erection, while genetic ablation of Krause corpuscles impaired intromission and ejaculation of males as well as reduced sexual receptivity of females. Thus, Krause corpuscles, which are particularly dense in the clitoris, are vibrotactile sensors crucial for normal sexual behavior.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
14
|
Ibrahim T, Wu P, Wang LJ, Fang-Mei C, Murillo J, Merlo J, Tumanov A, Lai Z, Weldon K, Chen Y, Ruparel S. Sex-dependent Differences in the Genomic Profile of Lingual Sensory Neurons in Naïve and Tongue-Tumor Bearing Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.14.524011. [PMID: 36711730 PMCID: PMC9882171 DOI: 10.1101/2023.01.14.524011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mechanisms of sex-dependent orofacial pain are widely understudied. A significant gap in knowledge exists about comprehensive regulation of tissue-specific trigeminal sensory neurons in diseased state of both sexes. Using RNA sequencing of FACS sorted retro-labeled sensory neurons innervating tongue tissue, we determined changes in transcriptomic profiles in males and female mice under naïve as well as tongue-tumor bearing conditions Our data revealed the following interesting findings: 1) Tongue tissue of female mice was innervated with higher number of trigeminal neurons compared to males; 2) Naïve female neurons innervating the tongue exclusively expressed immune cell markers such as Csf1R, C1qa and others, that weren't expressed in males. This was validated by Immunohistochemistry. 4) Accordingly, immune cell markers such as Csf1 exclusively sensitized TRPV1 responses in female TG neurons. 3) Male neurons were more tightly regulated than female neurons upon tumor growth and very few differentially expressed genes (DEGs) overlapped between the sexes, 5) Male DEGs contained higher number of transcription factors whereas female DEGs contained higher number of enzymes, cytokines and chemokines. Collectively, this is the first study to characterize the effect of sex as well as of tongue-tumor on global gene expression, pathways and molecular function of tongue-innervating sensory neurons.
Collapse
Affiliation(s)
- Tarek Ibrahim
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Ping Wu
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Li-Ju Wang
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, USA
| | - Chang Fang-Mei
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Josue Murillo
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Jaclyn Merlo
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Alexei Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, USA
| | - Zhao Lai
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, USA
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| |
Collapse
|
15
|
Scheff NN, Nilsen ML, Li J, Harris AL, Acharya R, Swartz A, Hsieh RW, Anderson JL, Ferris RL, Menk AV, Delgoffe GM, Zandberg DP. The effect of opioids on the efficacy of immunotherapy in recurrent/metastatic squamous cell carcinoma of the head and neck. Oral Oncol 2023; 140:106363. [PMID: 36963232 PMCID: PMC10450941 DOI: 10.1016/j.oraloncology.2023.106363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) causes severe pain and opioids, the mainstay of pain management, may have immunomodulatory effects. We evaluated the effect of opioids on immunotherapy efficacy in recurrent/metastatic (R/M) HNSCC patients. MATERIALS AND METHODS In a retrospective study of 66 R/M HNSCC patients from 2015 to 2020, opioid dosage, calculated as mean morphine milligram equivalent per day, was assessed on the day of anti-PD-1 monoclonal antibody (mAb) treatment and most recent prior visit. Intratumoral T cells were evaluated by single cell RNAseq and immunohistochemistry prior to treatment. Univariable and multivariable Cox proportional hazards and logistic regression models were used to estimate the association between opioid usage, progression-free survival (PFS), overall survival (OS), disease control rate. RESULTS Patients were 79% male, 35% oropharynx, 35% oral cavity, 40% locoregional recurrence, and 56% platinum failure. Higher opioid dosage by continuous variable was significantly associated with lower PFS (p = 0.016) and OS (p < 0.001). In multivariable analysis, including platinum failure status and PD-L1, higher opioids were associated with lower OS. Opioid usage by categorical variable was associated with significantly lower intratumoral CD8+ T cells. Opioid receptor, OPRM1, expression was identified in intratumoral and circulating T cells. CONCLUSIONS In our study cohort of anti-PD-1 mAb treatment in R/M HNSCC patients, higher opioids were associated with significantly lower PFS and OS and lower CD8+ T cells in the tumor microenvironment. To our knowledge, this is the first analysis in R/M HNSCC patients and further research into the clinical and biologic effect of opioids is warranted.
Collapse
Affiliation(s)
- Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Marci L Nilsen
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States; Department of Acute and Tertiary Care, University of Pittsburgh, School of Nursing, Pittsburgh, PA, United States; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Jinhong Li
- Department of Biostatistics, University of Pittsburgh, School of Public Health, Pittsburgh, PA, United States
| | - Alexandria L Harris
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Rajesh Acharya
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Andrew Swartz
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ronan W Hsieh
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Jennifer L Anderson
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Robert L Ferris
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ashley V Menk
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Greg M Delgoffe
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Dan P Zandberg
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States.
| |
Collapse
|
16
|
Cole CL, Yu VX, Perry S, Seenauth A, Lumpkin EA, Troche MS, Pitman MJ, Moayedi Y. Healthy Human Laryngopharyngeal Sensory Innervation Density Correlates with Age. Laryngoscope 2023; 133:773-784. [PMID: 35841384 DOI: 10.1002/lary.30287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Somatosensory feedback from upper airway structures is essential for swallowing and airway defense but little is known about the identities and distributions of human upper airway neurons. Furthermore, whether sensory innervation modifies with aging is unknown. In this study, we quantify neuronal and chemosensory cell density in upper airway structures and correlate with age. METHODS Participants underwent biopsies from base of tongue, lateral and midline pharyngeal wall, epiglottis, and arytenoids (N = 25 13 female/12 male; 20-80 years, mean 51.4 years without clinical diagnosis of dysphagia or clinical indication for biopsy). Tissue sections were labeled with antibodies for all neurons, myelinated neurons, and chemosensory cells. Densities of lamina propria innervation, epithelial innervation, solitary chemosensory cells, and taste buds were calculated and correlated with age. RESULTS Arytenoid had the highest density of innervation and chemosensory cells across all measures compared to other sites. Taste buds were frequently observed in arytenoid and epiglottis. Base of tongue, lateral pharynx, and midline posterior pharynx had minimal innervation and few chemosensory cells. Epithelial innervation was present primarily in close proximity to chemosensory cells and taste buds. Overall innervation and myelinated fibers in the arytenoid lamina propria decline with aging. CONCLUSION Findings establish the architecture of healthy adult sensory innervation and demonstrate the varied distribution of laryngopharyngeal innervation, necessary steps toward understanding the sensory basis for swallowing and airway defense. We also document age-related decline in arytenoid innervation density. These findings suggest that sensory afferent denervation of the upper airway may be a contributing factor to presbyphagia. LEVEL OF EVIDENCE NA Laryngoscope, 133:773-784, 2023.
Collapse
Affiliation(s)
- Caroline L Cole
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Victoria X Yu
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, New York, USA
| | - Sarah Perry
- Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA.,Department of Medicine, University of Otago, Christchurch, New Zealand.,The University of Canterbury Rose Center for Stroke Recovery & Research at St. George's Medical Center, Christchurch, New Zealand
| | - Anisa Seenauth
- Department of Neurology, Columbia University, New York, New York, USA
| | - Ellen A Lumpkin
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Michelle S Troche
- Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, New York, USA
| | - Yalda Moayedi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, New York, USA.,Department of Neurology, Columbia University, New York, New York, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| |
Collapse
|
17
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
18
|
Moayedi Y, Xu S, Obayashi SK, Hoffman BU, Gerling GJ, Lumpkin EA. The cellular basis of mechanosensation in mammalian tongue. Cell Rep 2023; 42:112087. [PMID: 36763499 PMCID: PMC10409885 DOI: 10.1016/j.celrep.2023.112087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Mechanosensory neurons that innervate the tongue provide essential information to guide feeding, speech, and social grooming. We use in vivo calcium imaging of mouse trigeminal ganglion neurons to identify functional groups of mechanosensory neurons innervating the anterior tongue. These sensory neurons respond to thermal and mechanical stimulation. Analysis of neuronal activity patterns reveal that most mechanosensory trigeminal neurons are tuned to detect moving stimuli across the tongue. Using an unbiased, multilayer hierarchical clustering approach to classify pressure-evoked activity based on temporal response dynamics, we identify five functional classes of mechanosensory neurons with distinct force-response relations and adaptation profiles. These populations are tuned to detect different features of touch. Molecular markers of functionally distinct clusters are identified by analyzing cluster representation in genetically marked neuronal subsets. Collectively, these studies provide a platform for defining the contributions of functionally distinct mechanosensory neurons to oral behaviors crucial for survival in mammals.
Collapse
Affiliation(s)
- Yalda Moayedi
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Otolaryngology - Head & Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Shan Xu
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904, USA
| | - Sophie K Obayashi
- Department of Molecular & Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin U Hoffman
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Gregory J Gerling
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904, USA.
| | - Ellen A Lumpkin
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Molecular & Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Clary RC, Jenkins BA, Lumpkin EA. Spatiotemporal dynamics of sensory neuron and Merkel-cell remodeling are decoupled during epidermal homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528558. [PMID: 36824872 PMCID: PMC9949164 DOI: 10.1101/2023.02.14.528558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
As the juncture between the body and environment, epithelia are both protective barriers and sensory interfaces that continually renew. To determine whether sensory neurons remodel to maintain homeostasis, we used in vivo two-photon imaging of somatosensory axons innervating Merkel cells in adult mouse skin. These touch receptors were highly plastic: 63% of Merkel cells and 89% of branches appeared, disappeared, grew, regressed and/or relocated over a month. Interestingly, Merkel-cell plasticity was synchronized across arbors during rapid epithelial turnover. When Merkel cells remodeled, the degree of plasticity between Merkel-cell clusters and their axons was well correlated. Moreover, branches were stabilized by Merkel-cell contacts. These findings highlight the role of epithelial-neural crosstalk in homeostatic remodeling. Conversely, axons were also dynamic when Merkel cells were stable, indicating that intrinsic neural mechanisms drive branch plasticity. Two terminal morphologies innervated Merkel cells: transient swellings called boutons, and stable cups termed kylikes. In Atoh1 knockout mice that lack Merkel cells, axons showed higher complexity than control mice, with exuberant branching and no kylikes. Thus, Merkel cells limit axonal branching and promote branch maturation. Together, these results reveal a previously unsuspected high degree of plasticity in somatosensory axons that is biased, but not solely dictated, by plasticity of target epithelial cells. This system provides a platform to identify intrinsic and extrinsic mechanisms that govern axonal patterning in epithelial homeostasis.
Collapse
|
20
|
FM1-43 Dye Memorizes Piezo1 Activation in the Trigeminal Nociceptive System Implicated in Migraine Pain. Int J Mol Sci 2023; 24:ijms24021688. [PMID: 36675204 PMCID: PMC9861983 DOI: 10.3390/ijms24021688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
It has been proposed that mechanosensitive Piezo1 channels trigger migraine pain in trigeminal nociceptive neurons, but the mechanosensitivity of satellite glial cells (SGCs) supporting neuronal sensitization has not been tested before. Moreover, tools to monitor previous Piezo1 activation are not available. Therefore, by using live calcium imaging with Fluo-4 AM and labeling with FM1-43 dye, we explored a new strategy to identify Piezo channels' activity in mouse trigeminal neurons, SGCs, and isolated meninges. The specific Piezo1 agonist Yoda1 induced calcium transients in both neurons and SGCs, suggesting the functional expression of Piezo1 channels in both types of cells. In Piezo1-transfected HEK cells, FM1-43 produced only a transient fluorescent response, whereas co-application with Yoda1 provided higher transient signals and a remarkable long-lasting FM1-43 'tail response'. A similar Piezo1-related FM1-43 trapping was observed in neurons and SGCs. The non-specific Piezo channel blocker, Gadolinium, inhibited the transient peak, confirming the involvement of Piezo1 receptors. Finally, FM1-43 labeling demonstrated previous activity in meningeal tissues 3.5 h after Yoda1 washout. Our data indicated that trigeminal neurons and SGCs express functional Piezo channels, and their activation provides sustained labeling with FM1-43. This long-lasting labelling can be used to monitor the ongoing and previous activation of Piezo1 channels in the trigeminal nociceptive system, which is implicated in migraine pain.
Collapse
|
21
|
Atherton MA, Park S, Horan NL, Nicholson S, Dolan JC, Schmidt BL, Scheff NN. Sympathetic modulation of tumor necrosis factor alpha-induced nociception in the presence of oral squamous cell carcinoma. Pain 2023; 164:27-42. [PMID: 35714327 PMCID: PMC9582047 DOI: 10.1097/j.pain.0000000000002655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/08/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Head and neck squamous cell carcinoma (HNSCC) causes more severe pain and psychological stress than other types of cancer. Despite clinical evidence linking pain, stress, and cancer progression, the underlying relationship between pain and sympathetic neurotransmission in oral cancer is unknown. We found that human HNSCC tumors and mouse tumor tissue are innervated by peripheral sympathetic and sensory nerves. Moreover, β-adrenergic 1 and 2 receptors (β-ARs) are overexpressed in human oral cancer cell lines, and norepinephrine treatment increased β-AR2 protein expression as well as cancer cell proliferation in vitro. We have recently demonstrated that inhibition of tumor necrosis factor alpha (TNFα) signaling reduces oral cancer-induced nociceptive behavior. Norepinephrine-treated cancer cell lines secrete more TNFα which, when applied to tongue-innervating trigeminal neurons, evoked a larger Ca 2+ transient; TNF-TNFR inhibitor blocked the increase in the evoked Ca 2+ transient. Using an orthotopic xenograft oral cancer model, we found that mice demonstrated significantly less orofacial cancer-induced nociceptive behavior during systemic β-adrenergic inhibitory treatment with propranolol. Furthermore, chemical sympathectomy using guanethidine led to a significant reduction in tumor size and nociceptive behavior. We infer from these results that sympathetic signaling modulates oral cancer pain through TNFα secretion and tumorigenesis. Further investigation of the role of neurocancer communication in cancer progression and pain is warranted.
Collapse
Affiliation(s)
- Megan A Atherton
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Stella Park
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - Nicole L Horan
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Samuel Nicholson
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - John C Dolan
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, DDS Program, College of Dentistry, New York University, New York, NY, United States
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
22
|
Liu J, Xie J, Lin J, Xie X, Fan S, Han X, Zhang DK, Han L. The Material Basis of Astringency and the Deastringent Effect of Polysaccharides: A Review. Food Chem 2022; 405:134946. [DOI: 10.1016/j.foodchem.2022.134946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
23
|
Nakatomi C, Sako N, Miyamura Y, Horie S, Shikayama T, Morii A, Naniwa M, Hsu CC, Ono K. Novel approaches to the study of viscosity discrimination in rodents. Sci Rep 2022; 12:16448. [PMID: 36180505 PMCID: PMC9525710 DOI: 10.1038/s41598-022-20441-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Texture has enormous effects on food preferences. The materials used to study texture discrimination also have tastes that experimental animal can detect; therefore, such studies must be designed to exclude taste differences. In this study, to minimize the effects of material tastes, we utilized high- and low-viscosity forms of carboxymethyl cellulose (CMC-H and CMC-L, respectively) at the same concentrations (0.1-3%) for viscosity discrimination tests in rats. In two-bottle preference tests of water and CMC, rats avoided CMC-H solutions above 1% (63 mPa·s) but did not avoid less viscous CMC-L solutions with equivalent taste magnitudes, suggesting that rats spontaneously avoided high viscosity. To evaluate low-viscosity discrimination, we performed conditioned aversion tests to 0.1% CMC, which initially showed a comparable preference ratio to water in the two-bottle preference tests. Conditioning with 0.1% CMC-L (1.5 mPa·s) did not induce aversion to 0.1% CMC-L or CMC-H. However, rats acquired a conditioned aversion to 0.1% CMC-H (3.6 mPa·s) even after latent inhibition to CMC taste by pre-exposure to 0.1% CMC-L. These results suggest that rats can discriminate considerably low viscosity independent of CMC taste. This novel approach for viscosity discrimination can be used to investigate the mechanisms of texture perception in mammals.
Collapse
Affiliation(s)
- Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Noritaka Sako
- Department of Oral Physiology, Asahi University School of Dentistry, Gifu, 501-0296, Japan
| | - Yuichi Miyamura
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Seiwa Horie
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Takemi Shikayama
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Aoi Morii
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Mako Naniwa
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Chia-Chien Hsu
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan.
| |
Collapse
|
24
|
Catalfamo LM, Marrone G, Basilicata M, Vivarini I, Paolino V, Della-Morte D, De Ponte FS, Di Daniele F, Quattrone D, De Rinaldis D, Bollero P, Di Daniele N, Noce A. The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11187. [PMID: 36141454 PMCID: PMC9517535 DOI: 10.3390/ijerph191811187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Capsaicin is a chili peppers extract, genus Capsicum, commonly used as a food spice. Since ancient times, Capsaicin has been used as a "homeopathic remedy" for treating a wild range of pathological conditions but without any scientific knowledge about its action. Several studies have demonstrated its potentiality in cardiovascular, nephrological, nutritional, and other medical fields. Capsaicin exerts its actions thanks to the bond with transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is a nociceptive receptor, and its activation starts with a neurosensitive impulse, responsible for a burning pain sensation. However, constant local application of Capsaicin desensitized neuronal cells and leads to relief from neuropathic pain. In this review, we analyze the potential adjuvant role of Capsaicin in the treatment of different pathological conditions either in internal medicine or dentistry. Moreover, we present our experience in five patients affected by oro-facial pain consequent to post-traumatic trigeminal neuropathy, not responsive to any remedy, and successfully treated with topical application of Capsaicin. The topical application of Capsaicin is safe, effective, and quite tolerated by patients. For these reasons, in addition to the already-proven beneficial actions in the internal field, it represents a promising method for the treatment of neuropathic oral diseases.
Collapse
Affiliation(s)
- Luciano Maria Catalfamo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Michele Basilicata
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Ilaria Vivarini
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Francesco Saverio De Ponte
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Francesca Di Daniele
- School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Domenico Quattrone
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Danilo De Rinaldis
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
25
|
Feng J, Zhao Y, Xie Z, Zang K, Sviben S, Hu X, Fitzpatrick JAJ, Wen L, Liu Y, Wang T, Lawson K, Liu Q, Yan Y, Dong X, Han L, Wu GF, Kim BS, Hu H. Miswiring of Merkel cell and pruriceptive C fiber drives the itch-scratch cycle. Sci Transl Med 2022; 14:eabn4819. [PMID: 35857641 PMCID: PMC9888006 DOI: 10.1126/scitranslmed.abn4819] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Itch sensation provokes the scratch reflex to protect us from harmful stimuli in the skin. Although scratching transiently relieves acute itch through activation of mechanoreceptors, it propagates the vicious itch-scratch cycle in chronic itch by further aggravating itch over time. Although well recognized clinically, the peripheral mechanisms underlying the itch-scratch cycle remain poorly understood. Here, we show that mechanical stimulation of the skin results in activation of the Piezo2 channels on Merkel cells that pathologically promotes spontaneous itch in experimental dry skin. Three-dimensional reconstruction and immunoelectron microscopy revealed structural alteration of MRGPRA3+ pruriceptor nerve endings directed toward Merkel cells in the setting of dry skin. Our results uncover a functional miswiring mechanism under pathologic conditions, resulting in touch receptors triggering the firing of pruriceptors in the skin to drive the itch-scratch cycle.
Collapse
Affiliation(s)
- Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA.,Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.,Corresponding author: and
| | - Yonghui Zhao
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Kaikai Zang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Xueming Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Lu Wen
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Yifei Liu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Ting Wang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Katy Lawson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qin Liu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Yan Yan
- Department of Surgery, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liang Han
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gregory F Wu
- Department of Neurology, Washington University School of Medicine; Saint Louis, MO, 63110, USA
| | - Brian S Kim
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA.,Division of Dermatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine; Saint Louis, MO, 63110, USA.,Corresponding author: and
| |
Collapse
|
26
|
García-Mesa Y, Feito J, Cuendias P, García-Piqueras J, Germanà A, García-Suárez O, Martín-Biedma B, Vega JA. The acquisition of mechanoreceptive competence by human digital Merkel cells and sensory corpuscles during development: an immunohistochemical study of PIEZO2. Ann Anat 2022; 243:151953. [PMID: 35523396 DOI: 10.1016/j.aanat.2022.151953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND PIEZO2 is a transmembrane protein forming part of an ion channel required for mechanotransduction. In humans, PIEZO2 is present in axon terminals of adult Meissner and Pacinian corpuscles, as well as Merkel cells in Merkel cell-neurite complexes. METHODS To study the acquisition of functional capability for mechanotransduction of developing type I slowly adapting low-threshold mechanoreceptors, i.e., Merkel cell-neurite complexes, a battery of immunohistochemical and immunofluorescence techniques was performed on human skin specimens covering the whole development and growth, from 11 weeks of estimated gestational age to 20 years of life. In addition, developmental expression of PIEZO2 type I (Meissner's corpuscles) and type II (Pacinian corpuscles) rapidly adapting mechanoreceptors was studied in parallel. RESULTS The first evidence of Merkel cells showing the typical morphology and placement was at 13 weeks of estimated gestation age, and at this time positive immunoreactivity for PIEZO2 was achieved. PIEZO2 expression in axons terminals started at 23 WEGA in Pacinian corpuscles and at 36 WEGA in the case of Meissner corpuscles. The occurrence of PIEZO2 in Merkel cells, Meissner and Pacinian corpuscles was maintained for all the time investigated. Interestingly PIEZO2 was absent in most Aβ type I slowly adapting low-threshold mechanoreceptors that innervate MC while it was regularly present in most Aβ type I and type II rapidly adapting low-threshold mechanoreceptors that supplies Meissner and Pacinian corpuscles. CONCLUSION The present results provide evidence that human cutaneous mechanoreceptors could perform mechanotransduction already during embryonic development.
Collapse
Affiliation(s)
- Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Jorge Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain; Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Salamanca, Salamanca, Spain
| | - Patricia Cuendias
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
27
|
Zhang L, Shimada A, Kusunoki T, Inoue T, Kawamoto A, Takahashi K. Effect of aging and tooth loss on sensory function of alveolar mucosa. J Oral Rehabil 2022; 49:391-397. [PMID: 35119689 DOI: 10.1111/joor.13310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Maintain Quality of Life of elderly denture wearers is one of the most crucial tasks for dentists in the super-aged society. Although external mechanical load on removable dentures has been investigated to minimize a risk of soreness caused by dentures, sensory perception of the alveolar mucosa remains obscure. OBJECTIVES This study aimed to investigate effect of aging and tooth loss in sensory function on the alveolar mucosa for deep understanding of the characteristics of pain sensitivity in edentulous individuals. METHODS Eighteen edentulous participants(ED), as well as 18 age-matched dentate participants(EC) and 18 young dentate participants(YC), participated in this study. Tactile detection threshold(TDT) and pain threshold(PT) were measured with von Frey filaments (0.125-512 mN). Mechanical pain sensitivity(MPS) after a 2-sec application of 1 kg palpation was assessed with a 0-50-100 Numerical Rating Scale(NRS) (0: no pain, 50: slight pain, and 100: the worst pain imaginable). Furthermore, entropy scores of TDT, PT, and NRS on MPS were calculated. RESULTS In both maxilla and mandible, EC showed significantly higher TDT and PT, compared to YC, whereas ED showed significantly lower TDT and PT, compared to EC. NRS on MPS in ED was significantly higher than that in EC. The entropy scores of all the outcome parameters showed no significant difference between groups. CONCLUSION Both aging and tooth loss can alter tactile and pain perception in the oral mucosa. This suggest that it might be beneficial to assess sensory function of the alveolar mucosa in edentulous patients clinically in prior to denture fabrication.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Geriatric Dentistry, Osaka Dental University
| | - Akiko Shimada
- Department of Geriatric Dentistry, Osaka Dental University.,Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Nagasaki University
| | | | - Taro Inoue
- Department of Geriatric Dentistry, Osaka Dental University
| | - Akiyo Kawamoto
- Department of Geriatric Dentistry, Osaka Dental University
| | | |
Collapse
|
28
|
Treichel AJ, Finholm I, Knutson KR, Alcaino C, Whiteman ST, Brown MR, Matveyenko A, Wegner A, Kacmaz H, Mercado-Perez A, Bedekovicsne Gajdos G, Ordog T, Grover M, Szurzewski J, Linden DR, Farrugia G, Beyder A. Specialized Mechanosensory Epithelial Cells in Mouse Gut Intrinsic Tactile Sensitivity. Gastroenterology 2022; 162:535-547.e13. [PMID: 34688712 PMCID: PMC8792331 DOI: 10.1053/j.gastro.2021.10.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS The gastrointestinal (GI) tract extracts nutrients from ingested meals while protecting the organism from infectious agents frequently present in meals. Consequently, most animals conduct the entire digestive process within the GI tract while keeping the luminal contents entirely outside the body, separated by the tightly sealed GI epithelium. Therefore, like the skin and oral cavity, the GI tract must sense the chemical and physical properties of the its external interface to optimize its function. Specialized sensory enteroendocrine cells (EECs) in GI epithelium interact intimately with luminal contents. A subpopulation of EECs express the mechanically gated ion channel Piezo2 and are developmentally and functionally like the skin's touch sensor- the Merkel cell. We hypothesized that Piezo2+ EECs endow the gut with intrinsic tactile sensitivity. METHODS We generated transgenic mouse models with optogenetic activators in EECs and Piezo2 conditional knockouts. We used a range of reference standard and novel techniques from single cells to living animals, including single-cell RNA sequencing and opto-electrophysiology, opto-organ baths with luminal shear forces, and in vivo studies that assayed GI transit while manipulating the physical properties of luminal contents. RESULTS Piezo2+ EECs have transcriptomic features of synaptically connected, mechanosensory epithelial cells. EEC activation by optogenetics and forces led to Piezo2-dependent alterations in colonic propagating contractions driven by intrinsic circuitry, with Piezo2+ EECs detecting the small luminal forces and physical properties of the luminal contents to regulate transit times in the small and large bowel. CONCLUSIONS The GI tract has intrinsic tactile sensitivity that depends on Piezo2+ EECs and allows it to detect luminal forces and physical properties of luminal contents to modulate physiology.
Collapse
Affiliation(s)
- Anthony J. Treichel
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Isabelle Finholm
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kaitlyn R. Knutson
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Constanza Alcaino
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sara T. Whiteman
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Matthew R. Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Andrew Wegner
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Halil Kacmaz
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Arnaldo Mercado-Perez
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota
| | - Gabriella Bedekovicsne Gajdos
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Tamas Ordog
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Madhusudan Grover
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Joseph Szurzewski
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - David R. Linden
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
29
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
30
|
Ebihara S, Naito T. A Systematic Review of Reported Methods of Stimulating Swallowing Function and their Classification. TOHOKU J EXP MED 2022; 256:1-17. [DOI: 10.1620/tjem.256.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Satoru Ebihara
- Department of Rehabilitation Medicine, Toho University Graduate School of Medicine
| | - Toru Naito
- Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College
| |
Collapse
|
31
|
Colbert SE, Triplett CS, Maier JX. The role of viscosity in flavor preference: plasticity and interactions with taste. Chem Senses 2022; 47:bjac018. [PMID: 35972847 PMCID: PMC9380780 DOI: 10.1093/chemse/bjac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The brain combines gustatory, olfactory, and somatosensory information to create our perception of flavor. Within the somatosensory modality, texture attributes such as viscosity appear to play an important role in flavor preference. However, research into the role of texture in flavor perception is relatively sparse, and the contribution of texture cues to hedonic evaluation of flavor remains largely unknown. Here, we used a rat model to investigate whether viscosity preferences can be manipulated through association with nutrient value, and how viscosity interacts with taste to inform preferences for taste + viscosity mixtures. To address these questions, we measured preferences for moderately viscous solutions prepared with xanthan gum using 2-bottle consumption tests. By experimentally exposing animals to viscous solutions with and without nutrient value, we demonstrate that viscosity preferences are susceptible to appetitive conditioning. By independently varying viscosity and taste content of solutions, we further show that taste and viscosity cues both contribute to preferences for taste + viscosity mixtures. How these 2 modalities are combined depended on relative palatability, with mixture preferences falling in between component preferences, suggesting that hedonic aspects of taste and texture inputs are centrally integrated. Together, these findings provide new insight into how texture aspects of flavor inform hedonic perception and impact food choice behavior.
Collapse
Affiliation(s)
- Sarah E Colbert
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cody S Triplett
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joost X Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
32
|
Donnelly CR, Kumari A, Li L, Vesela I, Bradley RM, Mistretta CM, Pierchala BA. Probing the multimodal fungiform papilla: complex peripheral nerve endings of chorda tympani taste and mechanosensitive fibers before and after Hedgehog pathway inhibition. Cell Tissue Res 2021; 387:225-247. [PMID: 34859291 PMCID: PMC8821500 DOI: 10.1007/s00441-021-03561-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The fungiform papilla (FP) is a gustatory and somatosensory structure incorporating chorda tympani (CT) nerve fibers that innervate taste buds (TB) and also contain somatosensory endings for touch and temperature. Hedgehog (HH) pathway inhibition eliminates TB, but CT innervation remains in the FP. Importantly, after HH inhibition, CT neurophysiological responses to taste stimuli are eliminated, but tactile responses remain. To examine CT fibers that respond to tactile stimuli in the absence of TB, we used Phox2b-Cre; Rosa26LSL−TdTomato reporter mice to selectively label CT fibers with TdTomato. Normally CT fibers project in a compact bundle directly into TB, but after HH pathway inhibition, CT fibers reorganize and expand just under the FP epithelium where TB were. This widened expanse of CT fibers coexpresses Synapsin-1, β-tubulin, S100, and neurofilaments. Further, GAP43 expression in these fibers suggests they are actively remodeling. Interestingly, CT fibers have complex terminals within the apical FP epithelium and in perigemmal locations in the FP apex. These extragemmal fibers remain after HH pathway inhibition. To identify tactile end organs in FP, we used a K20 antibody to label Merkel cells. In control mice, K20 was expressed in TB cells and at the base of epithelial ridges outside of FP. After HH pathway inhibition, K20 + cells remained in epithelial ridges but were eliminated in the apical FP without TB. These data suggest that the complex, extragemmal nerve endings within and disbursed under the apical FP are the mechanosensitive nerve endings of the CT that remain after HH pathway inhibition.
Collapse
Affiliation(s)
- Christopher R Donnelly
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Archana Kumari
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Libo Li
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Iva Vesela
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Robert M Bradley
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Charlotte M Mistretta
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA. .,Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, IN, Indianapolis, USA.
| |
Collapse
|
33
|
Handler A, Ginty DD. The mechanosensory neurons of touch and their mechanisms of activation. Nat Rev Neurosci 2021; 22:521-537. [PMID: 34312536 PMCID: PMC8485761 DOI: 10.1038/s41583-021-00489-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Our sense of touch emerges from an array of mechanosensory structures residing within the fabric of our skin. These tactile end organ structures convert innocuous forces acting on the skin into electrical signals that propagate to the CNS via the axons of low-threshold mechanoreceptors (LTMRs). Our rich capacity for tactile discrimination arises from the dissimilar intrinsic properties of the LTMR subtypes that innervate different regions of the skin and the structurally distinct end organ complexes with which they associate. These end organ structures comprise a range of non-neuronal cell types, which may themselves actively contribute to the transformation of tactile forces into neural impulses within the LTMR afferents. Although the mechanism and the site of transduction across end organs remain unclear, PIEZO2 has emerged as the principal mechanosensitive channel involved in light touch of the skin. Here we review the physiological properties of LTMR subtypes and discuss how features of their cutaneous end organ complexes shape subtype-specific tuning.
Collapse
Affiliation(s)
- Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Bogdanov V, Reinhard J, McGlone F, Haehner A, Simons CT, Hummel T. Oral Somatosensory Sensitivity in Patients With Taste Disturbance. Laryngoscope 2021; 131:2572-2577. [PMID: 34435674 DOI: 10.1002/lary.29843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The significance of the human sense of taste is typically underestimated until it is altered or even lost. Hypogeusia, a diminished capacity to taste, has an adverse influence on a patient's quality of life. Similar to interactions between the oral senses and between olfaction and intranasal trigeminal sensitivity, taste disturbance may also affect the mechanosensitivity of the tongue. In this study, we investigated the lingual tactile sensitivity of patients with subjective taste disturbance and people with normogeusia. STUDY DESIGN Prospective case-control study. METHODS Forty-six patients with subjective taste disturbance (mean age 60 years) and 43 participants with normogeusia (mean age 55 years) were enrolled and underwent a stereognostic test of edge and point sensitivity based on 3D-printed letters sized from 2 to 8 mm. Gustatory function and salivary production were also tested. RESULTS Patients with dysgeusia needed significantly bigger letters to recognize them compared with controls (P = .01). Apart from this, patients with dysgeusia had no significant association between gustatory function and salivary production. Duration of dysgeusia and age were not associated with the presently obtained measures of gustatory or oral mechanosensory function. CONCLUSIONS The results of this study indicate that taste dysfunction has a negative impact on oral mechanosensitivity and hence possibly on oral texture perception. LEVEL OF EVIDENCE 3 Laryngoscope, 131:2572-2577, 2021.
Collapse
Affiliation(s)
- Vasyl Bogdanov
- Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Carl-Thiem-Klinikum Cottbus gGmbH, Cottbus, Germany
| | - Jule Reinhard
- Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | - Francis McGlone
- Faculty of Health, School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Antje Haehner
- Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | - Chris T Simons
- CFAES Department of Food Science & Technology, Columbus, Ohio, U.S.A
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
35
|
Moayedi Y, Michlig S, Park M, Koch A, Lumpkin EA. Somatosensory innervation of healthy human oral tissues. J Comp Neurol 2021; 529:3046-3061. [PMID: 33786834 PMCID: PMC10052750 DOI: 10.1002/cne.25148] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The oral somatosensory system relays essential information about mechanical stimuli to enable oral functions such as feeding and speech. The neurochemical and anatomical diversity of sensory neurons across oral cavity sites have not been systematically compared. To address this gap, we analyzed healthy human tongue and hard-palate innervation. Biopsies were collected from 12 volunteers and underwent fluorescent immunohistochemistry (≥2 specimens per marker/structure). Afferents were analyzed for markers of neurons (βIII tubulin), myelinated afferents (neurofilament heavy, NFH), and Merkel cells and taste cells (keratin 20, K20). Hard-palate innervation included Meissner corpuscles, glomerular endings, Merkel cell-neurite complexes, and free nerve endings. The organization of these somatosensory endings is reminiscent of fingertips, suggesting that the hard palate is equipped with a rich repertoire of sensory neurons for pressure sensing and spatial localization of mechanical inputs, which are essential for speech production and feeding. Likewise, the tongue is innervated by afferents that impart it with exquisite acuity and detection of moving stimuli that support flavor construction and speech. Filiform papillae contained end bulbs of Krause, as well as endings that have not been previously reported, including subepithelial neuronal densities, and NFH+ neurons innervating basal epithelia. Fungiform papillae had Meissner corpuscles and densities of NFH+ intraepithelial neurons surrounding taste buds. The differing compositions of sensory endings within filiform and fungiform papillae suggest that these structures have distinct roles in mechanosensation. Collectively, this study has identified previously undescribed neuronal endings in human oral tissues and provides an anatomical framework for understanding oral mechanosensory functions.
Collapse
Affiliation(s)
- Yalda Moayedi
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA.,Department of Neurology, Columbia University, New York, New York, USA.,Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, New York, USA
| | | | - Mark Park
- Oral and Maxillofacial Surgery, New York Presbyterian, Columbia University, New York, New York, USA
| | - Alia Koch
- Oral and Maxillofacial Surgery, New York Presbyterian, Columbia University, New York, New York, USA
| | - Ellen A Lumpkin
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA.,Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
36
|
A bending fluctuation-based mechanism for particle detection by ciliated structures. Proc Natl Acad Sci U S A 2021; 118:2020402118. [PMID: 34326246 DOI: 10.1073/pnas.2020402118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To mimic the mechanical response of passive biological cilia in complex fluids, we study the bending dynamics of an anchored elastic fiber submitted to a dilute granular suspension under shear. We show that the bending fluctuations of the fiber accurately encode minute variations of the granular suspension concentration. Indeed, besides the stationary bending induced by the continuous phase flow, the passage of each single particle induces an additional deflection. We demonstrate that the dominant particle/fiber interaction arises from contacts of the particles with the fiber, and we propose a simple elastohydrodynamics model to predict their amplitude. Our results provide a mechanistic and statistical framework to describe particle detection by biological ciliated systems.
Collapse
|
37
|
Abstract
Mechanosensation is the ability to detect dynamic mechanical stimuli (e.g., pressure, stretch, and shear stress) and is essential for a wide variety of processes, including our sense of touch on the skin. How touch is detected and transduced at the molecular level has proved to be one of the great mysteries of sensory biology. A major breakthrough occurred in 2010 with the discovery of a family of mechanically gated ion channels that were coined PIEZOs. The last 10 years of investigation have provided a wealth of information about the functional roles and mechanisms of these molecules. Here we focus on PIEZO2, one of the two PIEZO proteins found in humans and other mammals. We review how work at the molecular, cellular, and systems levels over the past decade has transformed our understanding of touch and led to unexpected insights into other types of mechanosensation beyond the skin.
Collapse
Affiliation(s)
- Marcin Szczot
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, 583 30 Linköping, Sweden
| | - Alec R Nickolls
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ruby M Lam
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,NIH-Brown University Graduate Program in Neuroscience, Providence, Rhode Island 02912, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
38
|
Acute and Chronic Pain from Facial Skin and Oral Mucosa: Unique Neurobiology and Challenging Treatment. Int J Mol Sci 2021; 22:ijms22115810. [PMID: 34071720 PMCID: PMC8198570 DOI: 10.3390/ijms22115810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The oral cavity is a portal into the digestive system, which exhibits unique sensory properties. Like facial skin, the oral mucosa needs to be exquisitely sensitive and selective, in order to detect harmful toxins versus edible food. Chemosensation and somatosensation by multiple receptors, including transient receptor potential channels, are well-developed to meet these needs. In contrast to facial skin, however, the oral mucosa rarely exhibits itch responses. Like the gut, the oral cavity performs mechanical and chemical digestion. Therefore, the oral mucosa needs to be insensitive, to some degree, in order to endure noxious irritation. Persistent pain from the oral mucosa is often due to ulcers, involving both tissue injury and infection. Trigeminal nerve injury and trigeminal neuralgia produce intractable pain in the orofacial skin and the oral mucosa, through mechanisms distinct from those seen in the spinal area, which is particularly difficult to predict or treat. The diagnosis and treatment of idiopathic chronic pain, such as atypical odontalgia (idiopathic painful trigeminal neuropathy or post-traumatic trigeminal neuropathy) and burning mouth syndrome, remain especially challenging. The central integration of gustatory inputs might modulate chronic oral and facial pain. A lack of pain in chronic inflammation inside the oral cavity, such as chronic periodontitis, involves the specialized functioning of oral bacteria. A more detailed understanding of the unique neurobiology of pain from the orofacial skin and the oral mucosa should help us develop novel methods for better treating persistent orofacial pain.
Collapse
|
39
|
Mistretta CM, Bradley RM. The Fungiform Papilla Is a Complex, Multimodal, Oral Sensory Organ. CURRENT OPINION IN PHYSIOLOGY 2021; 20:165-173. [PMID: 33681545 PMCID: PMC7928430 DOI: 10.1016/j.cophys.2021.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
When solid or liquid stimuli contact the tongue tip during eating, the sensations of taste, touch and temperature are immediately evoked, and tongue function relies on these simultaneous multimodal responses. We focus on the fungiform papilla of the anterior tongue as a complex organ for taste, tactile and thermal modalities, all via chorda tympani nerve innervation from the geniculate ganglion. Rather than a review, our aim is to revise the classic archetype of the fungiform as predominantly a taste bud residence only and instead emphasize an amended concept of the papilla as a multimodal organ. Neurophysiological maps of fungiform papillae in functional receptive fields demonstrate responses to chemical, stroking and cold lingual stimuli. Roles are predicted for elaborate extragemmal nerve endings in tactile and temperature sensations, and potential functions for keratinocytes in noncanonical sensory signaling. The fungiform papilla is presented as a polymodal lingual organ, not solely a gustatory papilla.
Collapse
Affiliation(s)
- Charlotte M. Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - Robert M. Bradley
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109 United States
| |
Collapse
|
40
|
Tomsen N, Ortega O, Nascimento W, Carrión S, Clavé P. Oropharyngeal Dysphagia in Older People is Associated with Reduced Pharyngeal Sensitivity and Low Substance P and CGRP Concentration in Saliva. Dysphagia 2021; 37:48-57. [PMID: 33710390 DOI: 10.1007/s00455-021-10248-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
Substance P (SP) and Calcitonine gene-related peptide (CGRP) are released by sensory nerve fibers in the oropharynx. Patients with oropharyngeal dysphagia (OD) present reduced oropharyngeal sensitivity and low SP concentration in saliva. We aimed to assess the concentration of salivary SP and CGRP in healthy volunteers, and older people without and with OD, and the relationship with pharyngeal sensory threshold. We included 15 healthy volunteers, 14 healthy elderly and 14 elderly with OD. Swallow function was assessed by videofluoroscopy (VFS). Pharyngeal sensory threshold was assessed by intrapharyngeal electrical stimulation. Hydration and phase angle were assessed by bioimpedance. Saliva samples were collected with a Salivette® to determine SP and CGRP concentration by ELISA. Elderly patients with OD presented impaired safety of swallow (PAS 4.38 ± 0.77 p < 0.0001 vs. healthy volunteers = 1 and healthy elderly = 1.43 ± 0.51). Healthy elderly and elderly with OD presented a reduction in intracellular water and saliva volume (healthy elderly, 592.86 ± 327.79 μl, p = 0.0004; elderly with OD, 422.00 ± 343.01 μl, p = 0.0001 vs healthy volunteers, 1333.33 ± 615.91 μl, r = 0.6621, p < 0.0001). Elderly patients with OD presented an impairment in pharyngeal sensory threshold (10.80 ± 3.92 mA vs. healthy volunteers, 5.74 ± 2.57 mA; p = 0.007) and a reduction in salivary SP (129.34 pg/ml vs. healthy volunteers: 173.89 pg/ml; p = 0.2346) and CGRP levels (24.17 pg/ml vs. healthy volunteers: 508.18 pg/ml; p = 0.0058). There was a negative correlation between both SP and CGRP concentrations and pharyngeal sensory threshold (r = - 0.450, p = 0.024; r = - 0.4597, p = 0.036, respectively), but only SP identified elderly patients with OD with higher pharyngeal sensory threshold. Elderly patients with OD presented hydropenia and sarcopenia, reduced salivary SP and CGRP and impaired pharyngeal sensitivity. Our study suggests SP levels in saliva as a potential biomarker to monitor pharyngeal sensitivity in elderly patients with OD.
Collapse
Affiliation(s)
- Noemí Tomsen
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (Ciberehd), Instituto de Salud Carlos III, Barcelona, Spain
- Gastrointestinal Motility Laboratory, Department of Surgery, Hospital de Mataró, Consorci Sanitari del Maresme, Universitat Autònoma de Barcelona, Carretera de Cirera s/n 08304, Mataró, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Omar Ortega
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (Ciberehd), Instituto de Salud Carlos III, Barcelona, Spain
- Gastrointestinal Motility Laboratory, Department of Surgery, Hospital de Mataró, Consorci Sanitari del Maresme, Universitat Autònoma de Barcelona, Carretera de Cirera s/n 08304, Mataró, Spain
| | - Weslania Nascimento
- Gastrointestinal Motility Laboratory, Department of Surgery, Hospital de Mataró, Consorci Sanitari del Maresme, Universitat Autònoma de Barcelona, Carretera de Cirera s/n 08304, Mataró, Spain
| | - Silvia Carrión
- Gastrointestinal Motility Laboratory, Department of Surgery, Hospital de Mataró, Consorci Sanitari del Maresme, Universitat Autònoma de Barcelona, Carretera de Cirera s/n 08304, Mataró, Spain
| | - Pere Clavé
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (Ciberehd), Instituto de Salud Carlos III, Barcelona, Spain.
- Gastrointestinal Motility Laboratory, Department of Surgery, Hospital de Mataró, Consorci Sanitari del Maresme, Universitat Autònoma de Barcelona, Carretera de Cirera s/n 08304, Mataró, Spain.
| |
Collapse
|
41
|
Effect of Aging, Gender and Sensory Stimulation of TRPV1 Receptors with Capsaicin on Spontaneous Swallowing Frequency in Patients with Oropharyngeal Dysphagia: A Proof-of-Concept Study. Diagnostics (Basel) 2021; 11:diagnostics11030461. [PMID: 33799960 PMCID: PMC7999082 DOI: 10.3390/diagnostics11030461] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Spontaneous swallowing contributes to airway protection and depends on the activation of brainstem reflex circuits in the central pattern generator (CPG). We studied the effect of age and gender on spontaneous swallowing frequency (SSF) in healthy volunteers and assessed basal SSF and TRPV1 stimulation effect on SSF in patients with post-stroke oropharyngeal dysphagia (OD). The effect of age and gender on SSF was examined on 141 healthy adult volunteers (HV) divided into three groups: GI-18-39 yr, GII-40-59 yr, and GIII->60 yr. OD was assessed by the Volume-Viscosity Swallowing Test (VVST). The effect of sensory stimulation with capsaicin 10-5 M (TRPV1 agonist) was evaluated in 17 patients with post-stroke OD, using the SSF. SSF was recorded in all participants during 10 min using surface electromyography (sEMG) of the suprahyoid muscles and an omnidirectional accelerometer placed over the cricothyroid cartilage. SSF was significantly reduced in GII (0.73 ± 0.50 swallows/min; p = 0.0385) and GIII (0.50 ± 0.31 swallows/min; p < 0.0001) compared to GI (1.03 ± 0.62 swallows/min), and there was a moderate significant correlation between age and SFF (r = -0.3810; p < 0.0001). No effect of gender on SSF was observed. Capsaicin caused a strong and significant increase in SSF after the TRPV1 stimulation when comparing to basal condition (pre-capsaicin: 0.41 ± 0.32 swallows/min vs post-capsaicin: 0.81 ± 0.51 swallow/min; p = 0.0003). OD in patients with post-stroke OD and acute stimulation with TRPV1 agonists caused a significant increase in SSF, further suggesting the potential role of pharmacological stimulation of sensory pathways as a therapeutic strategy for CPG activation in patients with OD.
Collapse
|
42
|
Deshpande S, Peterson DG. Identification of Somatosensory Compounds Contributing to Slipperiness and Thickness Perceptions in Canned Prunes ( Prunus domestica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13160-13167. [PMID: 32202115 DOI: 10.1021/acs.jafc.0c00544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The role of small molecules on the somatosensory properties of prunes (Prunus domestica) was investigated. Sensory descriptive analysis defined two main somatosensations, "thickness" and "slippery". On the basis of these two attributes, sensory-guided multidimensional fractionation techniques allowed for the isolation of four main compounds, which were identified by mass spectrometry and comparison to authentic standards. Three compounds were identified as monosubstituted isomers of chlorogenic acid, namely, 1-O-caffeoylquinic acid (1-CQA), 3-O-caffeoylquinic acid (3-CQA), and 4-O-caffeoylquinic acid (4-CQA), in addition to a fourth, vanillic acid glucoside (VG). Sensory recombination model analysis of each compound at endogenous concentrations of the prunes indicated that all compounds significantly contributed to slippery sensations, whereas 3-CQA, 4-CQA, and VG contributed to thickness sensations (α = 0.05).
Collapse
Affiliation(s)
- Sagar Deshpande
- Department of Food Science and Technology, The Ohio State University, 317 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, Ohio 43210, United States
| | - Devin G Peterson
- Department of Food Science and Technology, The Ohio State University, 317 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, Ohio 43210, United States
| |
Collapse
|
43
|
Niu K, Luo X, Da Y, Liu S, Wang K, Wang W, Qin L, Jia J. Effect of estradiol and Remifemin on the dorsal lingual epithelium of ovariectomized rats. Exp Gerontol 2020; 143:111142. [PMID: 33130112 DOI: 10.1016/j.exger.2020.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND In this study, the ovariectomized rat model was used to explore the impact of menopause on rats' dorsal lingual epithelium; at the same time, the curative effects of Remifemin and estradiol were also observed. METHODS 28 adult female Sprague-Dawley rats were divided into four groups randomly, including sham-operated group (SHAM), an ovariectomized group (OVX), an ovariectomized treated with estradiol (OVX + E), an ovariectomized treated with Remifemin (OVX + iCR). Variation and possible mechanisms were studied via morphology, immunohistochemistry and electron microscope. RESULTS The results showed that the dorsal lingual epithelium became thinner significantly in the apex part in OVX group, as well as the levels of proliferating cell nuclear antigen (PCNA) and the epidermal growth factor (EGF) were lower than that in other three groups. However, they could reverse close to normal after estradiol and Remifemin treatment respectively. CONCLUSION The thinning in the apex of dorsal lingual epithelium might be due to the reduced proliferation in the germinal layer led by the abating of estrogen level, instead of apoptosis. This might play an important role in the pathogenesis of the menopause female tongue burning sensation. Remifemin had certain curative effect on the dorsal lingual mucosa, but a little more inferior than estrogen.
Collapse
Affiliation(s)
- Kaiyu Niu
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Xiaofeng Luo
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Yunmeng Da
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China; Department of Stomatology, Hebei Provincial Eye Hospital, Xingtai, Hebei 054001, China
| | - Shuya Liu
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Ke Wang
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Wenjuan Wang
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Lihua Qin
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University, Beijing 100191, China.
| | - Jing Jia
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
44
|
Andrews JW, Adams MJ, Montenegro-Johnson TD. A universal scaling law of mammalian touch. SCIENCE ADVANCES 2020; 6:6/41/eabb6912. [PMID: 33036967 PMCID: PMC7546702 DOI: 10.1126/sciadv.abb6912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
For most mammals, touch is the first sense to develop. They must feel vibrations on the surface of their skin to enable them to respond to various stimuli in their environment, a process called vibrotaction. But how do mammals perceive these vibrations? Through mathematical modeling of the skin and touch receptors, we show that vibrotaction is dominated by "surface" Rayleigh waves traveling cooperatively through all layers of the skin and bone. Applying our model to experimental data, we identify a universal scaling law for the depth of touch receptors across multiple species, indicating an evolutionarily conserved constant in the sensation of vibrations.
Collapse
Affiliation(s)
- J W Andrews
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - M J Adams
- School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
45
|
Byrd KM, Piehl NC, Patel JH, Huh WJ, Sequeira I, Lough KJ, Wagner BL, Marangoni P, Watt FM, Klein OD, Coffey RJ, Williams SE. Heterogeneity within Stratified Epithelial Stem Cell Populations Maintains the Oral Mucosa in Response to Physiological Stress. Cell Stem Cell 2020; 25:814-829.e6. [PMID: 31809739 DOI: 10.1016/j.stem.2019.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/12/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
Stem cells in stratified epithelia are generally believed to adhere to a non-hierarchical single-progenitor model. Using lineage tracing and genetic label-retention assays, we show that the hard palatal epithelium of the oral cavity is unique in displaying marked proliferative heterogeneity. We identify a previously uncharacterized, infrequently-dividing stem cell population that resides within a candidate niche, the junctional zone (JZ). JZ stem cells tend to self-renew by planar symmetric divisions, respond to masticatory stresses, and promote wound healing, whereas frequently-dividing cells reside outside the JZ, preferentially renew through perpendicular asymmetric divisions, and are less responsive to injury. LRIG1 is enriched in the infrequently-dividing population in homeostasis, dynamically changes expression in response to tissue stresses, and promotes quiescence, whereas Igfbp5 preferentially labels a rapidly-growing, differentiation-prone population. These studies establish the oral mucosa as an important model system to study epithelial stem cell populations and how they respond to tissue stresses.
Collapse
Affiliation(s)
- Kevin M Byrd
- Department of Pathology & Laboratory Medicine, the University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Division of Oral & Craniofacial Health Sciences, the University of North Carolina Adams School of Dentistry, Chapel Hill, NC 27599, USA
| | - Natalie C Piehl
- Department of Pathology & Laboratory Medicine, the University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jeet H Patel
- Department of Pathology & Laboratory Medicine, the University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Won Jae Huh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Inês Sequeira
- Centre for Stem Cells & Regenerative Medicine, King's College London, London E1 9RT, UK
| | - Kendall J Lough
- Department of Pathology & Laboratory Medicine, the University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Bethany L Wagner
- Department of Pathology & Laboratory Medicine, the University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Pauline Marangoni
- Department of Pediatrics and Institute for Human Genetics, Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, London E1 9RT, UK
| | - Ophir D Klein
- Department of Pediatrics and Institute for Human Genetics, Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert J Coffey
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Veterans Affairs Medical Center, Nashville, Vanderbilt University, TN 37212, USA
| | - Scott E Williams
- Department of Pathology & Laboratory Medicine, the University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
46
|
Allison TS, Moritz J, Turk P, Stone-Roy LM. Lingual electrotactile discrimination ability is associated with the presence of specific connective tissue structures (papillae) on the tongue surface. PLoS One 2020; 15:e0237142. [PMID: 32764778 PMCID: PMC7413419 DOI: 10.1371/journal.pone.0237142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation of nerve endings in the tongue can be used to communicate information to users and has been shown to be highly effective in sensory substitution applications. The anterior tip of the tongue has very small somatosensory receptive fields, comparable to those of the finger tips, allowing for precise two-point discrimination and high tactile sensitivity. However, perception of electrotactile stimuli varies significantly between users, and across the tongue surface. Despite this, previous studies all used uniform electrode grids to stimulate a region of the dorsal-medial tongue surface. In an effort to customize electrode layouts for individual users, and thus improve efficacy for sensory substitution applications, we investigated whether specific neuroanatomical and physiological features of the tongue are associated with enhanced ability to perceive active electrodes. Specifically, the study described here was designed to test whether fungiform papillae density and/or propylthiouracil sensitivity are positively or negatively associated with perceived intensity and/or discrimination ability for lingual electrotactile stimuli. Fungiform papillae number and distribution were determined for 15 participants and they were exposed to patterns of electrotactile stimulation (ETS) and asked to report perceived intensity and perceived number of stimuli. Fungiform papillae number and distribution were then compared to ETS characteristics using comprehensive and rigorous statistical analyses. Our results indicate that fungiform papillae density is correlated with enhanced discrimination ability for electrical stimuli. In contrast, papillae density, on average, is not correlated with perceived intensity of active electrodes. However, results for at least one participant suggest that further research is warranted. Our data indicate that propylthiouracil taster status is not related to ETS perceived intensity or discrimination ability. These data indicate that individuals with higher fungiform papillae number and density in the anterior medial tongue region may be better able to use lingual ETS for sensory substitution.
Collapse
Affiliation(s)
- Tyler S. Allison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Joel Moritz
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- Sapien LLC, Fort Collins, Colorado, United States of America
| | - Philip Turk
- Department of Statistics, Colorado State University, Fort Collins, Colorado, United States of America
| | - Leslie M. Stone-Roy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
47
|
Chong JA, Mohamed AMFS, Pau A. Morphological patterns of the palatal rugae: A review. J Oral Biosci 2020; 62:249-259. [PMID: 32619633 DOI: 10.1016/j.job.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Palatal rugae are asymmetric ridges of connective tissue located behind the incisive papilla over the anterior hard palate. They serve as stable superimposition landmarks to assess tooth movement in orthodontics and as identification aids in forensic odontology. However, the stability of palatal rugae remains controversial. This review aimed to describe the genetic, growth, and environmental factors that may influence the palatal rugae patterns. A broad search of PubMed and ScienceDirect databases was conducted. A total of 193 articles were identified, of which 73 met the selection criteria. Data were extracted into a table that presented the details of the study, sample description, and changes in the palatal rugae patterns. HIGHLIGHT There were conflicting results regarding sexual dimorphism and population characterization of the palatal rugae patterns. All rugae showed positional changes, increased lengths, and lower numbers, but no significant shape changes with growth. The lengths, numbers, and positions of the rugae were affected by orthodontic treatment, especially their lateral points, but their individual characteristics did not change. CONCLUSION The diversity in rugae patterns and their potential for sex discrimination among different populations showed differing results due to individual variations and the complex influence of genetic, growth, and environmental factors on their morphology.
Collapse
Affiliation(s)
- Jun Ai Chong
- Discipline of Orthodontics, Centre of Family Dental Health, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50300, Malaysia.
| | - Alizae Marny Fadzlin Syed Mohamed
- Discipline of Orthodontics, Centre of Family Dental Health, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50300, Malaysia.
| | - Allan Pau
- Dental Public Health, School of Dentistry, International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, Federal Territory of Kuala Lumpur, Kuala Lumpur, 57000, Malaysia.
| |
Collapse
|
48
|
García-Caballero L, Caneiro J, Gándara M, González-Ortega N, Cepeda-Emiliani A, Gude F, Collado M, Beiras A, Gallego R. Merkel cells of human oral mucosa express the pluripotent stem cell transcription factor Sox2. Histol Histopathol 2020; 35:1007-1012. [PMID: 32495847 DOI: 10.14670/hh-18-231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Merkel cells are neuroendocrine cells associated to a neural sensitive ending and localized primarily in the epidermis, although they are also found in oral mucosa. Sox2 or SRY-box2 is a key transcription factor important in the maintenance of embryonic neural crest stem cell pluripotency. Sox2 has been described in Merkel cells of skin and in Merkel cell carcinomas, but not specifically in oral Merkel cells. The aims of the present study were to analyze the density of Merkel cells in human oral mucosa and to study the expression of Sox2 in these cells. For these purposes, immunohistochemical analyses for Sox2 and CK20 (the best marker for Merkel cells) were automatically performed on sections of normal human oral mucosa. Double immunofluorescence for Sox2 and CK20 was also performed. To analyze the density of Merkel cells, CK20 positive cells were counted in each sample and the length of the epithelial apical edge was measured (cells/mm). Merkel cells, demonstrated by CK20 immunoreactivity, were found in 95% of oral mucosa specimens studied (n=21). Mean density of Merkel cells in oral mucosa was 1.71±2.34 cells/mm. Sox2 immunoreactivity was found in the nuclei of scattered cells located at the basal layer. Serial sections immunostained for Sox2 and CK20 showed that Sox2-positive cells of oral mucosa coexpressed CK20, confirming that they were Merkel cells. Immunofluorescence for Sox2 and CK20 showed colocalization of both markers, demonstrating that virtually all oral Merkel cells expressed Sox2. This transcription factor could play a role in Merkel cell maturation and maintenance.
Collapse
Affiliation(s)
- Lucía García-Caballero
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Javier Caneiro
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pathology, University Clinical Hospital, Santiago de Compostela, Spain
| | - Marina Gándara
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pathology, University Clinical Hospital, Santiago de Compostela, Spain
| | | | - Alfonso Cepeda-Emiliani
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Gude
- Epidemiology Unit, University Clinical Hospital, Santiago de Compostela, Spain
| | - Manuel Collado
- Laboratory of Stem Cells in Cancer and Aging, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Andrés Beiras
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
49
|
Thomazo JB, Contreras Pastenes J, Pipe CJ, Le Révérend B, Wandersman E, Prevost AM. Probing in-mouth texture perception with a biomimetic tongue. J R Soc Interface 2019; 16:20190362. [PMID: 31575348 PMCID: PMC6833334 DOI: 10.1098/rsif.2019.0362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/06/2019] [Indexed: 11/12/2022] Open
Abstract
An experimental biomimetic tongue-palate system has been developed to probe human in-mouth texture perception. Model tongues are made from soft elastomers patterned with fibrillar structures analogous to human filiform papillae. The palate is represented by a rigid flat plate parallel to the plane of the tongue. To probe the behaviour under physiological flow conditions, deflections of model papillae are measured using a novel fluorescent imaging technique enabling sub-micrometre resolution of the displacements. Using optically transparent Newtonian liquids under steady shear flow, we show that deformations of the papillae allow their viscosity to be determined from 1 Pa s down to the viscosity of water (1 mPa s), in full quantitative agreement with a previously proposed model (Lauga et al. 2016 Front. Phys.4, 35 (doi:10.3389/fphy.2016.00035)). The technique is further validated for a shear-thinning and optically opaque dairy system.
Collapse
Affiliation(s)
- Jean-Baptiste Thomazo
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire Jean Perrin, LJP, 75005 Paris, France
- Nestlé Dairy Center, Rue d'Orival, 14100 Lisieux, France
| | - Javier Contreras Pastenes
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire Jean Perrin, LJP, 75005 Paris, France
| | | | | | - Elie Wandersman
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire Jean Perrin, LJP, 75005 Paris, France
| | - Alexis M Prevost
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire Jean Perrin, LJP, 75005 Paris, France
| |
Collapse
|
50
|
Moehring F, Halder P, Seal RP, Stucky CL. Uncovering the Cells and Circuits of Touch in Normal and Pathological Settings. Neuron 2019; 100:349-360. [PMID: 30359601 DOI: 10.1016/j.neuron.2018.10.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Abstract
The sense of touch is fundamental as it provides vital, moment-to-moment information about the nature of our physical environment. Primary sensory neurons provide the basis for this sensation in the periphery; however, recent work demonstrates that touch transduction mechanisms also occur upstream of the sensory neurons via non-neuronal cells such as Merkel cells and keratinocytes. Within the spinal cord, deep dorsal horn circuits transmit innocuous touch centrally and also transform touch into pain in the setting of injury. Here non-neuronal cells play a key role in the induction and maintenance of persistent mechanical pain. This review highlights recent advances in our understanding of mechanosensation, including a growing appreciation for the role of non-neuronal cells in both touch and pain.
Collapse
Affiliation(s)
- Francie Moehring
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Priyabrata Halder
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, Pittsburgh, PA 15213, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|