1
|
Goli RC, Chishi KG, Mahar K, Ganguly I, Singh S, Dixit SP, Sruthi OS, Choudhary S, Diwakar V, Rathi P, Chinnareddyvari CS, Dige M, Metta M, Kumar A, Aderao GN, Sukhija N, Kanaka KK. Genome wide locus-specific ancestry analysis revealed adaptive admixtures in crossbred cattle of India. Sci Rep 2025; 15:17069. [PMID: 40379730 PMCID: PMC12084602 DOI: 10.1038/s41598-025-01971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 05/09/2025] [Indexed: 05/19/2025] Open
Abstract
Crossbreeding in India has been widely adopted to address low sustainability and poor productivity in non-descript cattle. This study analyzed Vrindavani (VRI) crossbred cattle and their parental populations (Holstein Friesian (HOL), Jersey (JER), Brown Swiss (BSW), Hariana (HAR) using SNP data to characterize locus-specific ancestry in VRI's genome along with admixture proportions and population stratification. Admixture analysis showed VRI have 67.3% HOL, 20.1% HAR, 8.5% JER, and 4% BSW ancestry. Locus-specific ancestry estimation identified regions with adaptive admixtures, which can be defined as admixed genomic regions favored by evolutionary forces and increased their frequencies, revealed 79.7% Bos taurus and 20.3% Bos indicus ancestry. Notably, regions on chromosome (chr) 2, 3, 4, 5, 7, 10, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, and 24 were associated with disease resistance contributed by indicine ancestry and chr 1, 6, 9, 11, 15, 18, 27, and 28 related to production which were contributed by taurine ancestry. The study concluded that increased taurine ancestry contributes to higher milk yield in VRI crosses, while indicine ancestry confers disease resistance and adaptability to tropical climates. This comprehensive genomic analysis suggests that while taurine inheritance enhances milk yield, a balance with indicine traits is essential for resilience. Understanding locus-specific ancestry patterns can aid in refining breeding strategies by selectively promoting beneficial alleles. Future advancements in genomic tools may enable controlled inheritance of desirable traits, maximizing heterosis in structured breeding programs for sustainable cattle production.
Collapse
Affiliation(s)
- Rangasai Chandra Goli
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Kiyevi G Chishi
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Karan Mahar
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Indrajit Ganguly
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sanjeev Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - S P Dixit
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Oguru Sai Sruthi
- Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India
| | - Sonu Choudhary
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Vikas Diwakar
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Pallavi Rathi
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Chandana Sree Chinnareddyvari
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Mahesh Dige
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Muralidhar Metta
- Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh, India
| | - Amit Kumar
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Ganesh N Aderao
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Nidhi Sukhija
- CSB-Central Tasar Research and Training Institute, Ranchi, Jharkhand, India.
| | - K K Kanaka
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Goli RC, Chishi KG, Mahar K, Gunturu T, Metta M, Diwakar V, Purohit P, Kumar A, Channabasappa NK, Aderao GN, Sukhija N, Kareningappa KK. Rethinking River Buffalo Domestication Through the Lens of Population Genetics Tools: Mehsana Buffalo Is a Unique Population. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:206-220. [PMID: 40233143 DOI: 10.1089/omi.2024.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Riverine buffalo domestication likely occurred around 6300 years ago in Northwestern India. Murrah and Surti are important buffalo breeds that originated in this region and the gene flow from these buffaloes to Mehsana buffalo has long been proposed. However, the extent to which Murrah and Surti ancestry diffused across Mehsana has not been investigated thoroughly. Therefore, we investigated the global and local ancestry of Indian Mehsana buffalo using double digest restriction-site associated DNA sequencing data. Principal component analysis, global ancestry analysis, admixture dating, and three population tests revealed with statistical significance that Mehsana is a unique population. Hence, the hypothesis that Mehsana is a crossbreed between Murrah and Surti is not supported by these findings. However, we noticed that some individuals of Mehsana, 6 out 15, were admixed having 41% Murrah-specific ancestry and 11% Surti-specific ancestry. Local ancestry and post-admixture selection signatures (PASS) in admixed Mehsana individuals revealed PASS in the Mehsana genome, that is, on Bubalus bubalis autosomes (BBA), 1-23 linked from Surti and on BBA, 24 linked from Murrah. Interestingly, upon functional enrichment of these signatures, several adaptation-related genes and pathways were ascertained to Surti, while Murrah-derived regions featured genes involved in fatty acid synthesis (Acyl-CoA Synthetase Short-Chain Family Member 2 (ACSS2)) and milk production. Based on local ancestry analysis, we infer that the introgression of the Murrah genome into Mehsana happened in recent times and that of the Surti genome happened in ancient generations. The finding that Mehsana is an independent population highlights the importance of recognizing distinct genetic lineages in domesticated species. This has global implications for reevaluating the origins and uniqueness of other livestock breeds often assumed to be hybrids. Practically, these findings open up new avenues for selective breeding to preserve traits such as disease resistance, adaptability, and production efficiency. Further studies in larger samples are called for.
Collapse
Affiliation(s)
- Rangasai Chandra Goli
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Kiyevi G Chishi
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Karan Mahar
- ICAR-National Dairy Research Institute, Karnal, India
| | - Tanuj Gunturu
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Vikas Diwakar
- ICAR-National Dairy Research Institute, Karnal, India
| | - Pravin Purohit
- ICAR-National Dairy Research Institute, Karnal, India
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Amit Kumar
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | | | - Ganesh N Aderao
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Nidhi Sukhija
- CSB-Central Taser Research and Training Institute, Ranchi, India
| | | |
Collapse
|
3
|
Laporta J, Dado-Senn B, Guadagnin AR, Liu L, Peñagaricano F. Preweaning heat stress alters liver transcriptome and DNA methylation in dairy calves. J Dairy Sci 2025; 108:4390-4402. [PMID: 39892602 DOI: 10.3168/jds.2024-25975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025]
Abstract
Prenatal hyperthermia has long-lasting effects on dairy calf metabolism, immunity, and productivity. Yet, the effects of postnatal heat stress on neonatal calves remain unclear. As such, this study aimed to investigate the impact of heat stress on the preweaning dairy calf liver gene expression and DNA methylation profiles. Holstein dairy calves were exposed to summer heat stress (daily average temperature-humidity index >78) for 42 d postnatally (i.e., birth to weaning) with access to active fan heat abatement (postnatal cooling, post-CL; calf-height air speed 2.05 m/s, n = 12) or not (postnatal heat stress, post-HS; calf-height air speed 0.15 m/s, n = 12). All thermoregulatory responses were lower in post-CL relative to post-HS calves throughout the experimental period (-12 bpm, -2.5°C, and -0.11°C for respiratory frequency, rectal temperature, and ear skin temperature, respectively). Liver tissue was harvested via biopsy (n = 6 male calves per treatment) at 42 d of age for RNA sequencing and reduced representation bisulfite sequencing. There were 73 differentially expressed genes (DEG), of which 31 were downregulated and 42 were upregulated in post-HS relative to post-CL treatments (false discovery rate cut-off, 20%). Ingenuity pathways analysis revealed that post-HS significantly affected 24 pathways and 60 transcription regulators, including pathway PI3K/AKT, and transcription regulators PPARGC1A, STAT5B, CREB, and XBP1. A total of 14,639 differentially methylated cytosines (DMC) were found across the entire bovine genome; these DMC mapped to 3,197 differentially methylated genes (DMG), with about 300 DMG with DMC located close to the transcription start site. These DMG, such as PKA, AMPK, MAPK, and STAT3, are closely related to metabolic signaling pathways. Overall, preweaning exposure of dairy calves to heat stress changes hepatic methylation profiles, which in turn may affect the expression of genes with critical roles in intracellular signaling and development, metabolic, and immune-related pathways. Providing mechanical cooling via fans to dairy calves in summer seems beneficial to promoting thermoregulation and liver cellular hemostasis.
Collapse
Affiliation(s)
- Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | - Bethany Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Anne R Guadagnin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Lihe Liu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
4
|
de Carvalho FE, Ferraz JBS, Pedrosa VB, Matos EC, Eler JP, Silva MR, Guimarães JD, Bussiman F, Silva BCA, Mulim HA, Rocha AO, Araujo AC, Wen H, Campos GS, Brito LF. Genetic parameters and genome-wide association studies including the X chromosome for various reproduction and semen quality traits in Nellore cattle. BMC Genomics 2025; 26:26. [PMID: 39794685 PMCID: PMC11720523 DOI: 10.1186/s12864-024-11193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The profitability of the beef industry is directly influenced by the fertility rate and reproductive performance of both males and females, which can be improved through selective breeding. When performing genomic analyses, genetic markers located on the X chromosome have been commonly ignored despite the X chromosome being one of the largest chromosomes in the cattle genome. Therefore, the primary objectives of this study were to: (1) estimate variance components and genetic parameters for eighteen male and five female fertility and reproductive traits in Nellore cattle including X chromosome markers in the analyses; and (2) perform genome-wide association studies and functional genomic analyses to better understand the genetic background of male and female fertility and reproductive performance traits in Nellore cattle. RESULTS The percentage of the total direct heritability (h2total) explained by the X chromosome markers (h2x) ranged from 3 to 32% (average: 16.4%) and from 9 to 67% (average: 25.61%) for female reproductive performance and male fertility traits, respectively. Among the traits related to breeding soundness evaluation, the overall bull and semen evaluation and semen quality traits accounted for the highest proportion of h2x relative to h2total with an average of 39.5% and 38.75%, respectively. The total number of significant genomic markers per trait ranged from 7 (seminal vesicle width) to 43 (total major defects). The number of significant markers located on the X chromosome ranged from zero to five. A total of 683, 252, 694, 382, 61, and 77 genes overlapped with the genomic regions identified for traits related to female reproductive performance, semen quality, semen morphology, semen defects, overall bulls' fertility evaluation, and overall semen evaluation traits, respectively. The key candidate genes located on the X chromosome are PRR32, STK26, TMSB4X, TLR7, PRPS2, SMS, SMARCA1, UTP14A, and BCORL1. The main gene ontology terms identified are "Oocyte Meiosis", "Progesterone Mediated Oocyte Maturation", "Thermogenesis", "Sperm Flagellum", and "Innate Immune Response". CONCLUSIONS Our findings indicate the key role of genes located on the X chromosome on the phenotypic variability of male and female reproduction and fertility traits in Nellore cattle. Breeding programs aiming to improve these traits should consider adding the information from X chromosome markers in their genomic analyses.
Collapse
Affiliation(s)
- Felipe E de Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil.
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| | - José Bento S Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Elisangela C Matos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Joanir P Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Marcio R Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - José D Guimarães
- Department of Veterinary Medicine, Federal University of Vicosa, Vicosa, MG, Brazil
| | - Fernando Bussiman
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Barbara C A Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Artur Oliveira Rocha
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Hui Wen
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Gabriel S Campos
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Kutchy NA, Morenikeji OB, Memili A, Ugur MR. Deciphering sperm functions using biological networks. Biotechnol Genet Eng Rev 2024; 40:3743-3767. [PMID: 36722689 DOI: 10.1080/02648725.2023.2168912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 02/02/2023]
Abstract
The global human population is exponentially increasing, which requires the production of quality food through efficient reproduction as well as sustainable production of livestock. Lack of knowledge and technology for assessing semen quality and predicting bull fertility is hindering advances in animal science and food animal production and causing millions of dollars of economic losses annually. The intent of this systemic review is to summarize methods from computational biology for analysis of gene, metabolite, and protein networks to identify potential markers that can be applied to improve livestock reproduction, with a focus on bull fertility. We provide examples of available gene, metabolic, and protein networks and computational biology methods to show how the interactions between genes, proteins, and metabolites together drive the complex process of spermatogenesis and regulate fertility in animals. We demonstrate the use of the National Center for Biotechnology Information (NCBI) and Ensembl for finding gene sequences, and then use them to create and understand gene, protein and metabolite networks for sperm associated factors to elucidate global cellular processes in sperm. This study highlights the value of mapping complex biological pathways among livestock and potential for conducting studies on promoting livestock improvement for global food security.
Collapse
Affiliation(s)
- Naseer A Kutchy
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, St. George's, Grenada
- Department of Animal Sciences, School of Environmental and Biological Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA, USA
| | - Aylin Memili
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
6
|
Zhang J, Yang G, Zha X, Ma X, La Y, Wu X, Guo X, Chu M, Bao P, Yan P, Liang C. Polymorphisms Within the IQGAP2 and CRTAC1 Genes of Gannan Yaks and Their Association with Milk Quality Characteristics. Foods 2024; 13:3720. [PMID: 39682792 DOI: 10.3390/foods13233720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The IQ motif containing GTPase activating protein 2 (IQGAP2) gene functions as a tumor suppressor, reducing the malignant properties of breast cancer cells. The circulating cartilage acidic protein 1 (CRTAC1) gene, present in the whey protein fraction of dairy cows throughout lactation, is significantly correlated with fatty acids in milk. In this study, we investigated the correlation between single nucleotide polymorphisms (SNPs) in the IQGAP2 and CRTAC1 genes and milk quality traits in Gannan yaks, aiming to identify potential molecular marker loci for enhancing milk quality. Using the Illumina Yak cGPS 7K liquid chip, we genotyped 162 yaks and identified five SNPs in the IQGAP2 (g.232,769C>G, g.232,922G>C) and CRTAC1 (g.4,203T>C, g.5,348T>G, g.122,451T>C) genes. Genetic polymorphism analysis revealed that these five SNPs were moderately polymorphic and in Hardy-Weinberg equilibrium. An association analysis results showed that, at the g.232,769C>G locus of the IQGAP2 gene, the heterozygous CG genotype had significantly higher lactose content than the CC and GG homozygous genotypes (p < 0.05). Similarly, at the g.232,922G>C locus, the heterozygous GC and mutant CC genotypes significantly increased the contents of milk fat, lactose, and total solids (TS) (p < 0.05). In the CRTAC1 gene (g.4,203T>C, g.5,348T>G, g.122,451T>C), the mutant CC genotype significantly increased milk fat content, while the heterozygous TG genotype significantly increased lactose content (p < 0.05). In summary, mutations at the loci of g.232,769C>G, g.232,922G>C, g.4,203T>C, g.5,348T>G, and g.122,451T>C significantly elevated the lactose, milk fat, and TS content in Gannan yak milk, providing potential molecular marker candidates for improving Gannan yak milk quality.
Collapse
Affiliation(s)
- Juanxiang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Guowu Yang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xita Zha
- Qinghai Qilian County Animal Husbandry and Veterinary Workstation, Qilian 810400, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
7
|
Shashank CG, Sejian V, Silpa MV, Devaraj C, Madhusoodan AP, Rebez EB, Kalaignazhal G, Sahoo A, Dunshea FR. Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. BIOTECH 2024; 13:49. [PMID: 39584906 PMCID: PMC11586948 DOI: 10.3390/biotech13040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
The livestock sector, essential for maintaining food supply and security, encounters numerous obstacles as a result of climate change. Rising global populations exacerbate competition for natural resources, affecting feed quality and availability, heightening livestock disease risks, increasing heat stress, and contributing to biodiversity loss. Although various management and dietary interventions exist to alleviate these impacts, they often offer only short-lived solutions. We must take a more comprehensive approach to understanding how animals adapt to and endure their environments. One such approach is quantifying transcriptomes under different environments, which can uncover underlying pathways essential for livestock adaptation. This review explores the progress and techniques in studies that apply gene expression analysis to livestock production systems, focusing on their adaptation to climate change. We also attempt to identify various biomarkers and transcriptomic differences between species and pure/crossbred animals. Looking ahead, integrating emerging technologies such as spatialomics could further accelerate genetic improvements, enabling more thermoresilient and productive livestock in response to future climate fluctuations. Ultimately, insights from these studies will help optimize livestock production systems by identifying thermoresilient/desired animals for use in precise breeding programs to counter climate change.
Collapse
Affiliation(s)
- Chikamagalore Gopalakrishna Shashank
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | - Veerasamy Sejian
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, India;
| | | | - Chinnasamy Devaraj
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | | | - Ebenezer Binuni Rebez
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet 605009, India;
| | - Gajendirane Kalaignazhal
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneshwar 751003, India;
| | - Artabandhu Sahoo
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, India; (C.G.S.); (C.D.); (E.B.R.); (A.S.)
| | - Frank Rowland Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Faculty of Biological Science, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Koch F, Albrecht D, Albrecht E, Hansen C, Kuhla B. Novel Perspective on Molecular and Cellular Adaptations of the Mammary Gland-Regulating Milk Constituents and Immunity of Heat-Stressed Dairy Cows. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20286-20298. [PMID: 39226405 PMCID: PMC11421017 DOI: 10.1021/acs.jafc.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate change with increasing ambient temperatures negatively influences the biology of dairy cows and their milk production in the mammary gland (MG). This study aimed to elucidate the MG proteome, differences in milk composition, and ruminal short-chain fatty acid concentrations of dairy cows experiencing 7 days of heat stress [HS, 28 °C, temperature humidity index (THI) = 76], pair-feeding (PF), or ad libitum feeding (CON) at thermoneutrality (16 °C, THI = 60). Ruminal acetate, acetate/propionate ratio, and milk urea concentrations were greater, whereas milk protein and lactose were lower in HS than in control cows. Proteome analysis revealed an induced bacterial invasion of epithelial cells, leukocyte transendothelial migration, reduction of the pyruvate and carbon metabolism, and platelet activation in the MG of HS compared to CON or PF cows. These results highlight adaptive metabolic and immune responses to mitigate the negative effects of ambient heat in the MG.
Collapse
Affiliation(s)
- Franziska Koch
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Dirk Albrecht
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
| | - Elke Albrecht
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Christiane Hansen
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Institute of Livestock Farming, Dummerstorf 18196, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| |
Collapse
|
9
|
Liu E, Liu L, Zhang Z, Qu M, Xue F. An Automated Sprinkler Cooling System Effectively Alleviates Heat Stress in Dairy Cows. Animals (Basel) 2024; 14:2586. [PMID: 39272371 PMCID: PMC11394125 DOI: 10.3390/ani14172586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
(1) Background: Heat stress detrimentally restricted economic growth in dairy production. In particular, the cooling mechanism of the spraying system effectively reduced both environmental and shell temperatures. This study was designed to investigate the underlying modulatory mechanism of an automatic cooling system in alleviating heat-stressed dairy cows. (2) Methods: A total of 1208 multiparous dairy cows was randomly allocated into six barns, three of which were equipped with automatic sprinklers (SPs), while the other three were considered the controls (CONs). Each barn was considered a replicate. (3) Results: Body temperatures and milk somatic cell counts significantly decreased, while DMI, milk yield, and milk fat content significantly increased under SP treatment. Rumen fermentability was enhanced, embodied by the increased levels of total VFA, acetate, propionate, and butyrate after SP treatment. The rumen microbiota results showed the relative abundances of fiber-degrading bacteria, including the Fibrobacters, Saccharofermentans, Lachnospira, Pseudobutyrivibrio, Selenomonas, and Succinivibrio, which significantly increased after receiving the SP treatment. (4) Conclusions: This study demonstrated that SP effectively alleviated heat stress and improved production performances and milk quality through modulating the rumen microbiota composition and fermentation function of dairy cows.
Collapse
Affiliation(s)
- En Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| | - Liping Liu
- School of Food Engineering, Anhui College of Science and Technology, Chuzhou 233100, China
| | - Zhili Zhang
- Modern Farming (Wuhe) Co., Ltd., Bengbu 233311, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| | - Fuguang Xue
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330029, China
| |
Collapse
|
10
|
Wang A, Pokhrel B, Hernandez GP, Jiang H. Regulation of the expression of casein alpha S1 and S2 genes in the bovine mammary epithelial cells by STAT5A. J Dairy Sci 2024:S0022-0302(24)01046-4. [PMID: 39098489 DOI: 10.3168/jds.2024-24905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Cow milk is rich in protein. Major cow milk proteins include casein α S1 (CSN1S1), casein α S2 (CSN1S2), casein β (CSN2), casein kappa (CSN3), lactalbumin α (LALBA), and β-lactoglobulin (LGB). These milk proteins are produced through gene expression in the mammary epithelial cells. Little is known about the molecular mechanism that mediates the expression of milk protein genes in cows. In this study, we tested the hypothesis that the expression of milk protein genes in cows is mediated by STAT5A, a transcription factor that is induced to bind and activate the transcription of target genes by extracellular signals such as prolactin. To circumvent the need of prolactin-responsive bovine mammary epithelial cells, we generated a plasmid that expresses a constitutively active bovine STAT5A variant, bSTAT5ACA. Transfection of the bovine mammary epithelial cell line MAC-T cells with the bSTAT5ACA expression plasmid caused a more than 100,000-fold and 600-fold increase in the expression of CSN1S1 and CSN1S2 mRNAs, respectively, compared with transfection of the wild-type bovine STAT5A (bSTAT5A) expression plasmid. Transfection of bSTAT5ACA, however, had no significant effect on the expression of CSN2, CSN3, LALBA, or LGB mRNA in MAC-T cells. Transfection of bSTAT5ACA caused a more than 260-fold and 120-fold increase in the expression of a luciferase reporter gene linked to the bovine CSN1S1 and CSN1S2 promoters in MAC-T cells, respectively, compared with that of bSTAT5A. The bovine CSN1S1 and CSN1S2 promoters each contain a putative STAT5 binding site, and gel-shift and super-shift assays confirmed bSTAT5ACA binding to both sites. These results together suggest that STAT5A plays a major role in regulating the expression of CSN1S1 and CSN1S2 genes in the bovine mammary epithelial cells and that STAT5A regulates the expression of these genes at least in part by binding to the STAT5 binding sites in their promoter regions. These results also suggest that STAT5A does not play a major role in regulating the expression of other major milk protein genes.
Collapse
Affiliation(s)
- A Wang
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - B Pokhrel
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - G Perez Hernandez
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - H Jiang
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
11
|
Perez-Hernandez G, Ellett MD, Banda LJ, Dougherty D, Parsons CLM, Lengi AJ, Daniels KM, Corl BA. Cyclical heat stress during lactation influences the microstructure of the bovine mammary gland. J Dairy Sci 2024:S0022-0302(24)00866-X. [PMID: 38825136 DOI: 10.3168/jds.2024-24809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
This study aimed to evaluate the impact of heat stress on mammary epithelial cell (MEC) losses into milk, secretory mammary tissue structure, and mammary epithelial cell activity. Sixteen multiparous Holstein cows (632 ± 12 kg BW) approximately 100 d in milk housed in climate-controlled rooms were paired by body weight and randomly allocated to one of 2 treatments, heat stress (HS) or pair feeding thermoneutral (PFTN) using 2 cohorts. Each cohort was subjected to 2 periods of 4 d each. In period 1, both treatments had ad libitum access to a common total mixed ration and were exposed to a controlled daily temperature-humidity index (THI) of 64. In period 2, HS cows were exposed to controlled cyclical heat stress (THI: 74 to 80), while PFTN cows remained at 64 THI and daily dry matter intake was matched to HS. Cows were milked twice daily, and milk yield was recorded at each milking. Individual milk samples on the last day of each period were used to quantify MEC losses by flow cytometry using butyrophilin as a cell surface marker. On the final day of period 2, individual bovine mammary tissue samples were obtained for histomorphology analysis, assessment of protein abundance, and evaluation of gene expression of targets associated with cellular capacity for milk and milk component synthesis, heat response, cellular proliferation, and autophagy. Statistical analysis was performed using the GLIMMIX procedure of SAS. Milk yield was reduced by 4.3 kg by HS (n = 7) compared with PFTN (n = 8). Independent of treatment, MEC in milk averaged 174 cells/mL (2.9% of total cells). There was no difference between HS vs. PFTN cows for MEC shed or concentration in milk. Alveolar area was reduced 25% by HS, and HS had 4.1 more alveoli than PFTN. Total number of nucleated MEC per area were greater in HS (389 ± 1.05) compared with PFTN (321 ± 1.05); however, cell number per alveolus was similar between groups (25 ± 1.5 vs. 26 ± 1.4). There were no differences in relative fold expression for GLUT1, GLUT8, CSN2, CSN3, LALBA, FASN, HSPA5, and HSPA8 in HS compared with PFTN. Immunoblotting analyses showed a decrease abundance for phosphorylated STAT5 and S6K1, and an increase in LC3 II in HS compared with PFTN. These results suggest that even if milk yield differences and histological changes occur in the bovine mammary gland after 4 d of heat exposure, MEC loss into milk, nucleated MEC number per alveolus, and gene expression of nutrient transport, milk component synthesis, and heat stress related targets are unaffected. In contrast, the abundance of proteins related to protein synthesis and cell survival decreased significantly, while an upregulation of proteins associated with autophagy in HS compared with PFTN.
Collapse
Affiliation(s)
| | - M D Ellett
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - L J Banda
- Animal Science Department, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - D Dougherty
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - C L M Parsons
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - A J Lengi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - K M Daniels
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - B A Corl
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061.
| |
Collapse
|
12
|
Kothalawala SD, Günther S, Schuppe H, Pilatz A, Wagenlehner F, Kliesch S, O'Donnell L, Fietz D. Identification of differentially expressed genes in human testis biopsies with defective spermatogenesis. Reprod Med Biol 2024; 23:e12616. [PMID: 39677330 PMCID: PMC11646353 DOI: 10.1002/rmb2.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose Sperm morphology and motility are major contributors to male-factor infertility, with many genes predicted to be involved. This study aimed to elucidate differentially expressed transcripts in human testis tissues of normal and abnormal spermatogenesis that could reveal new genes that may regulate sperm morphology and function. Methods Human testis biopsies were collected from men with well-characterized phenotypes of normal spermatogenesis, spermatid arrest, and Sertoli cell-only phenotype, and transcriptional differences were quantified by RNA-sequencing (RNA-Seq). Differentially expressed genes (DEGs) were filtered based on predominant expression in spermatids and gene functional annotations relevant to sperm morphology and motility. Selected 10 DEGs were validated by qRT-PCR and the localization of two proteins was determined in testis biopsies. Results The analysis revealed 6 genes (SPATA31E1, TEKT3, SLC9C1, PDE4A, CFAP47, and TNC) that are excellent candidates for novel genes enriched in developing human sperm. The immunohistochemical localization of two proteins, ORAI1 and SPATA31E1, in testis biopsies, verified that both are expressed in developing human germ cells, with SPATA31E1 enriched in late spermatocytes and spermatids. Conclusion This study identified human germ cell-enriched genes that could play functional roles in spermiogenesis and could thus be important in the development of morphologically normal, motile sperm.
Collapse
Affiliation(s)
- Shashika D. Kothalawala
- Institute for Veterinary Anatomy, Histology and EmbryologyJustus‐Liebig University of GiessenGiessenGermany
- Centre for Reproductive HealthHudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Stefan Günther
- Max‐Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Hans‐Christian Schuppe
- Clinic of Urology, Pediatric Urology and AndrologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and AndrologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| | - Florian Wagenlehner
- Clinic of Urology, Pediatric Urology and AndrologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and AndrologyUniversity of MuensterMuensterGermany
| | - Liza O'Donnell
- Centre for Reproductive HealthHudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and EmbryologyJustus‐Liebig University of GiessenGiessenGermany
- Hessian Centre of Reproductive MedicineJustus‐Liebig University of GiessenGiessenGermany
| |
Collapse
|
13
|
Yuan C, Tang L, Lopdell T, Petrov VA, Oget-Ebrad C, Moreira GCM, Gualdrón Duarte JL, Sartelet A, Cheng Z, Salavati M, Wathes DC, Crowe MA, Coppieters W, Littlejohn M, Charlier C, Druet T, Georges M, Takeda H. An organism-wide ATAC-seq peak catalog for the bovine and its use to identify regulatory variants. Genome Res 2023; 33:1848-1864. [PMID: 37751945 PMCID: PMC10691486 DOI: 10.1101/gr.277947.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
We report the generation of an organism-wide catalog of 976,813 cis-acting regulatory elements for the bovine detected by the assay for transposase accessible chromatin using sequencing (ATAC-seq). We regroup these regulatory elements in 16 components by nonnegative matrix factorization. Correlation between the genome-wide density of peaks and transcription start sites, correlation between peak accessibility and expression of neighboring genes, and enrichment in transcription factor binding motifs support their regulatory potential. Using a previously established catalog of 12,736,643 variants, we show that the proportion of single-nucleotide polymorphisms mapping to ATAC-seq peaks is higher than expected and that this is owing to an approximately 1.3-fold higher mutation rate within peaks. Their site frequency spectrum indicates that variants in ATAC-seq peaks are subject to purifying selection. We generate eQTL data sets for liver and blood and show that variants that drive eQTL fall into liver- and blood-specific ATAC-seq peaks more often than expected by chance. We combine ATAC-seq and eQTL data to estimate that the proportion of regulatory variants mapping to ATAC-seq peaks is approximately one in three and that the proportion of variants mapping to ATAC-seq peaks that are regulatory is approximately one in 25. We discuss the implication of these findings on the utility of ATAC-seq information to improve the accuracy of genomic selection.
Collapse
Affiliation(s)
- Can Yuan
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Lijing Tang
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Thomas Lopdell
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - Vyacheslav A Petrov
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Claire Oget-Ebrad
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | | | - José Luis Gualdrón Duarte
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Arnaud Sartelet
- Clinical Department of Ruminant, University of Liège, 4000 Liège, Belgium
| | - Zhangrui Cheng
- Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom
| | - Mazdak Salavati
- Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom
| | - D Claire Wathes
- Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom
| | - Mark A Crowe
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Wouter Coppieters
- GIGA Genomics platform, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Mathew Littlejohn
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
14
|
Marquez-Acevedo AS, Hood WR, Collier RJ, Skibiel AL. Graduate Student Literature Review: Mitochondrial response to heat stress and its implications on dairy cattle bioenergetics, metabolism, and production. J Dairy Sci 2023; 106:7295-7309. [PMID: 37210354 DOI: 10.3168/jds.2023-23340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/03/2023] [Indexed: 05/22/2023]
Abstract
The dairy industry depends upon the cow's successful lactation for economic profitability. Heat stress compromises the economic sustainability of the dairy industry by reducing milk production and increasing the risk of metabolic and pathogenic disease. Heat stress alters metabolic adaptations, such as nutrient mobilization and partitioning, that support the energetic demands of lactation. Metabolically inflexible cows are unable to enlist the necessary homeorhetic shifts that provide the needed nutrients and energy for milk synthesis, thereby impairing lactation performance. Mitochondria provide the energetic foundation that enable a myriad of metabolically demanding processes, such as lactation. Changes in an animal's energy requirements are met at the cellular level through alterations in mitochondrial density and bioenergetic capacity. Mitochondria also act as central stress modulators and coordinate tissues' energetic responses to stress by integrating endocrine signals, through mito-nuclear communication, into the cellular stress response. In vitro heat insults affect mitochondria through a compromise in mitochondrial integrity, which is linked to a decrease in mitochondrial function. However, limited evidence exists linking the in vivo metabolic effects of heat stress with parameters of mitochondrial behavior and function in lactating animals. This review summarizes the literature describing the cellular and subcellular effects of heat stress, with a focus on the effect of heat stress on mitochondrial bioenergetics and cellular dysfunction in livestock. Implications for lactation performance and metabolic health are also discussed.
Collapse
Affiliation(s)
- A S Marquez-Acevedo
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844.
| | - W R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849
| | - R J Collier
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844
| | - A L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844
| |
Collapse
|
15
|
Marceau A, Wang J, Iqbal V, Jiang J, Liu GE, Ma L. Investigation of lncRNA in Bos taurus Mammary Tissue during Dry and Lactation Periods. Genes (Basel) 2023; 14:1789. [PMID: 37761929 PMCID: PMC10531232 DOI: 10.3390/genes14091789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This study aims to collect RNA-Seq data from Bos taurus samples representing dry and lactating mammary tissue, identify lncRNA transcripts, and analyze findings for their features and functional annotation. This allows for connections to be drawn between lncRNA and the lactation process. RNA-Seq data from 103 samples of Bos taurus mammary tissue were gathered from publicly available databases (60 dry, 43 lactating). The samples were filtered to reveal 214 dry mammary lncRNA transcripts and 517 lactating mammary lncRNA transcripts. The lncRNAs met common lncRNA characteristics such as shorter length, fewer exons, lower expression levels, and less sequence conservation when compared to the genome. Interestingly, several lncRNAs showed sequence similarity to genes associated with strong hair keratin intermediate filaments. Human breast cancer research has associated strong hair keratin filaments with mammary tissue cellular resilience. The lncRNAs were also associated with several genes/proteins that linked to pregnancy using expression correlation and gene ontology. Such findings indicate that there are crucial relationships between the lncRNAs found in mammary tissue and the development of the tissue, to meet both the animal's needs and our own production needs; these relationships should be further investigated to ensure that we continue to breed the most resilient, efficient dairy cattle.
Collapse
Affiliation(s)
- Alexis Marceau
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.M.); (V.I.)
| | - Junjian Wang
- Department of Animal Science, North Carlonina State University, Raleigh, NC 27695, USA; (J.W.); (J.J.)
| | - Victoria Iqbal
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.M.); (V.I.)
| | - Jicai Jiang
- Department of Animal Science, North Carlonina State University, Raleigh, NC 27695, USA; (J.W.); (J.J.)
| | - George E. Liu
- Animal Genomics and Improvemennt Laboratory, BARC, USDA-ARS, Beltsville, MD 20705, USA;
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.M.); (V.I.)
| |
Collapse
|
16
|
Li G, Yu X, Portela Fontoura AB, Javaid A, de la Maza-Escolà VS, Salandy NS, Fubini SL, Grilli E, McFadden JW, Duan JE. Transcriptomic regulations of heat stress response in the liver of lactating dairy cows. BMC Genomics 2023; 24:410. [PMID: 37474909 PMCID: PMC10360291 DOI: 10.1186/s12864-023-09484-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/24/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The global dairy industry is currently facing the challenge of heat stress (HS). Despite the implementation of various measures to mitigate the negative impact of HS on milk production, the cellular response of dairy cows to HS is still not well understood. Our study aims to analyze transcriptomic dynamics and functional changes in the liver of cows subjected to heat stress (HS). To achieve this, a total of 9 Holstein dairy cows were randomly selected from three environmental conditions - heat stress (HS), pair-fed (PF), and thermoneutral (TN) groups - and liver biopsies were obtained for transcriptome analysis. RESULTS Both the dry matter intake (DMI) and milk yield of cows in the HS group exhibited significant reduction compared to the TN group. Through liver transcriptomic analysis, 483 differentially expressed genes (DEGs) were identified among three experimental groups. Especially, we found all the protein coding genes in mitochondria were significantly downregulated under HS and 6 heat shock proteins were significant upregulated after HS exposure, indicating HS may affect mitochondria integrity and jeopardize the metabolic homeostasis in liver. Furthermore, Gene ontology (GO) enrichment of DEGs revealed that the protein folding pathway was upregulated while oxidative phosphorylation was downregulated in the HS group, corresponding to impaired energy production caused by mitochondria dysfunction. CONCLUSIONS The liver transcriptome analysis generated a comprehensive gene expression regulation network upon HS in lactating dairy cows. Overall, this study provides novel insights into molecular and metabolic changes of cows conditioned under HS. The key genes and pathways identified in this study provided further understanding of transcriptome regulation of HS response and could serve as vital references to mitigate the HS effects on dairy cow health and productivity.
Collapse
Affiliation(s)
- Guangsheng Li
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
| | - Xingtan Yu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
| | - Ananda B Portela Fontoura
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
| | - Awais Javaid
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
| | - Víctor Sáinz de la Maza-Escolà
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
- Dipartamento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, 40064, Italy
| | - Nia S Salandy
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
- Department of Agriculture and Environmental Sciences, Tuskegee University, Tuskegee, 36088, USA
| | - Susan L Fubini
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, 14853, USA
| | - Ester Grilli
- Dipartamento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, 40064, Italy
- VetAgro S.p.A, Reggio Emilia, 42124, Italy
| | - Joseph W McFadden
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA.
| | - Jingyue Ellie Duan
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA.
| |
Collapse
|
17
|
Xia W, Liu Y, Loor JJ, Bionaz M, Jiang M. Dynamic Profile of the Yak Mammary Transcriptome during the Lactation Cycle. Animals (Basel) 2023; 13:ani13101710. [PMID: 37238139 DOI: 10.3390/ani13101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to assess the transcriptome of the mammary tissue of four yaks during the whole lactation cycle. For this purpose, biopsies of the mammary gland were performed at -30, -15, 1, 15, 30, 60, 120, 180, and 240 days relative to parturition (d). The transcriptome analysis was performed using a commercial bovine microarray platform and the results were analyzed using several bioinformatic tools. The statistical analysis using an overall false discovery rate ≤ 0.05 for the effect of whole lactation and p < 0.05 for each comparison identified >6000 differentially expressed genes (DEGs) throughout lactation, with a large number of DEGs observed at the onset (1 d vs. -15 d) and at the end of lactation (240 d vs. 180 d). Bioinformatics analysis revealed a major role of genes associated with BTA3, BTA4, BTA6, BTA9, BTA14, and BTA28 in lactation. Functional analysis of DEG underlined an overall induction of lipid metabolism, suggesting an increase in triglycerides synthesis, likely regulated by PPAR signaling. The same analysis revealed an induction of amino acid metabolism and secretion of protein, with a concomitant decrease in proteasome, indicating a major role of amino acid handling and reduced protein degradation in the synthesis and secretion of milk proteins. Glycan biosynthesis was induced for both N-glycan and O-glycan, suggesting increased glycan content in the milk. The cell cycle and immune response, especially antigen processing and presentation, were strongly inhibited during lactation, suggesting that morphological changes are minimized during lactation, while the mammary gland prevents immune hyper-response. Transcripts associated with response to radiation and low oxygen were enriched in the down-regulated DEG affected by the stage of lactation. Except for this last finding, the functions affected by the transcriptomic adaptation to lactation in mammary tissue of yak are very similar to those observed in dairy cows.
Collapse
Affiliation(s)
- Wei Xia
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yili Liu
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, 112 Withycombe Hall, Corvallis, OR 97331, USA
| | - Mingfeng Jiang
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
18
|
Li R, Ahmad MJ, Hou M, Wang X, Liu S, Li J, Jiang Q, Huang J, Yang L. Identification of target genes and pathways related to heat tolerance in Chinese Holstein cows. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
19
|
Molinari PCC, Davidson BD, Laporta J, Dahl GE, Sheldon IM, Bromfield JJ. Prepartum heat stress in dairy cows increases postpartum inflammatory responses in blood of lactating dairy cows. J Dairy Sci 2023; 106:1464-1474. [PMID: 36460497 DOI: 10.3168/jds.2022-22405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Uterine diseases and heat stress (HS) are major challenges for the dairy cow. Heat stress alters host immune resilience, making cows more susceptible to the development of uterine disease. Although HS increases the incidence of uterine disease, the mechanisms by which this occurs are unclear. We hypothesize that evaporative cooling (CL) to alleviate HS in prepartum cows has carry-over effects on postpartum innate immunity. Nulliparous pregnant Holstein heifers were assigned to receive either forced CL that resulted in cool conditions (shade with water soakers and fans; n = 14) or to remain under HS conditions (barn shade only; n = 16) for 60 d prepartum. Postpartum, all cows were housed in a freestall barn equipped with shade, water soakers, and fans. Respiratory rate and rectal temperature during the prepartum period were greater in HS heifers compared with CL heifers, indicative of HS. Although milk production was decreased in HS cows compared with CL cows, the incidence of uterine disease and content of total or pathogenic bacteria in vaginal mucus on d 7 or d 21 postpartum was not affected by treatment. Whole blood was collected on d 21 and subjected to in vitro stimulation with lipopolysaccharide. Lipopolysaccharide-induced accumulation of IL-1β, IL-10, and MIP-1α was greater in blood collected from HS cows compared with CL cows. Our results imply that prepartum HS during late pregnancy has carry-over effects on postpartum innate immunity, which may contribute to the increased incidence of uterine disease observed in cows exposed to prepartum HS.
Collapse
Affiliation(s)
| | | | - Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - I Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville 32608.
| |
Collapse
|
20
|
Falchi L, Cesarani A, Mastrangelo S, Senczuk G, Portolano B, Pilla F, Macciotta NPP. Analysis of runs of homozygosity of cattle living in different climate zones. J Anim Sci 2023; 101:skad061. [PMID: 36802370 PMCID: PMC10066727 DOI: 10.1093/jas/skad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Aim of this study was to analyze the distribution and characteristics of runs of homozygosity in Bos taurus taurus and Bos taurus indicus breeds, as well as their crosses, farmed all around the world. With this aim in view, we used single-nucleotide polymorphisms (SNP) genotypes for 3,263 cattle belonging to 204 different breeds. After quality control, 23,311 SNPs were retained for the analysis. Animals were divided into seven different groups: 1) continental taurus, 2) temperate taurus, 3) temperate indicus, 4) temperate composite, 5) tropical taurus, 6) tropical indicus, and 7) tropical composite. The climatic zones were created according to the latitude of the breeds' country of origin: i) continental, latitude ≥ 45°; ii) temperate, 45°< Latitude >23.26°; iii) tropics, latitude ≤ 23.26°. Runs of homozygosity were computed as 15 SNPs spanning in at least 2 Mb; number of ROH per animal (nROH), average ROH length (meanMb), and ROH-based inbreeding coefficients (FROH) were also computed. Temperate indicus showed the largest nROH, whereas Temperate taurus the lowest value. Moreover, the largest meanMb was observed for Temperate taurus, whereas the lowest value for Tropics indicus. Temperate indicus breeds showed the largest FROH values. Genes mapped in the identified ROH were reported to be associated with the environmental adaptation, disease resistance, coat color determinism, and production traits. Results of the present study confirmed that runs of homozygosity could be used to identify genomic signatures due to both artificial and natural selection.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
- Department of Animal and Dairy Science, University of Georgia, 30602 Athens, USA
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | - Baldassare Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | | |
Collapse
|
21
|
Shao D, Yang Y, Shi S, Tong H. Three-Dimensional Organization of Chicken Genome Provides Insights into Genetic Adaptation to Extreme Environments. Genes (Basel) 2022; 13:genes13122317. [PMID: 36553584 PMCID: PMC9778438 DOI: 10.3390/genes13122317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The high-throughput chromosome conformation capture (Hi-C) technique is widely used to study the functional roles of the three-dimensional (3D) architecture of genomes. However, the knowledge of the 3D genome structure and its dynamics during extreme environmental adaptations remains poor. Here, we characterized 3D genome architectures using the Hi-C technique for chicken liver cells. Upon comparing Lindian chicken (LDC) liver cells with Wenchang chicken (WCC) liver cells, we discovered that environmental adaptation contributed to the switching of A/B compartments, the reorganization of topologically associated domains (TADs), and TAD boundaries in both liver cells. In addition, the analysis of the switching of A/B compartments revealed that the switched compartmental genes (SCGs) were strongly associated with extreme environment adaption-related pathways, including tight junction, notch signaling pathway, vascular smooth muscle contraction, and the RIG-I-like receptor signaling pathway. The findings of this study advanced our understanding of the evolutionary role of chicken 3D genome architecture and its significance in genome activity and transcriptional regulation.
Collapse
Affiliation(s)
- Dan Shao
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Yu Yang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (Y.Y.); (S.S.)
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
- Correspondence: (Y.Y.); (S.S.)
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| |
Collapse
|
22
|
Eom JS, Park DS, Lee SJ, Gu BH, Lee SJ, Lee SS, Kim SH, Kim BW, Lee SS, Kim M. Metabolomic and transcriptomic study to understand changes in metabolic and immune responses in steers under heat stress. ANIMAL NUTRITION 2022; 11:87-101. [PMID: 36189376 PMCID: PMC9483736 DOI: 10.1016/j.aninu.2022.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
Heat stress (HS) damages livestock by adversely affecting physiological and immunological functions. However, fundamental understanding of the metabolic and immunological mechanisms in animals under HS remains elusive, particularly in steers. To understand the changes on metabolic and immune responses in steers under HS condition, we performed RNA-sequencing and proton nuclear magnetic resonance spectroscopy-based metabolomics on HS-free (THI value: 64.92 ± 0.56) and HS-exposed (THI value: 79.13 ± 0.56) Jersey steer (n = 8, body weight: 559.67 ± 32.72 kg). This study clarifies the metabolic changes in 3 biofluids (rumen fluid, serum, and urine) and the immune responses observed in the peripheral blood mononuclear cells of HS-exposed steers. This integrated approach allowed the discovery of HS-sensitive metabolic and immunological pathways. The metabolomic analysis indicated that HS-exposed steers showed potential HS biomarkers such as isocitrate, formate, creatine, and riboflavin (P < 0.05). Among them, there were several integrative metabolic pathways between rumen fluid and serum. Furthermore, HS altered mRNA expression and immune-related signaling pathways. A meta-analysis revealed that HS decreased riboflavin metabolism and the expression of glyoxylate and dicarboxylate metabolism-related genes. Moreover, metabolic pathways, such as the hypoxia-inducible factor-1 signaling pathway, were downregulated in immune cells by HS (P < 0.05). These findings, along with the datasets of pathways and phenotypic differences as potential biomarkers in steers, can support more in-depth research to elucidate the inter-related metabolic and immunological pathways. This would help suggest new strategies to ameliorate the effects of HS, including disease susceptibility and metabolic disorders, in Jersey steers.
Collapse
Affiliation(s)
- Jun Sik Eom
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Da Som Park
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sang Jin Lee
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Byeong-Woo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sung Sill Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Corresponding authors.
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, 50463, Republic of Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
- Corresponding authors.
| |
Collapse
|
23
|
Cattaneo L, Laporta J, Dahl GE. Programming effects of late gestation heat stress in dairy cattle. Reprod Fertil Dev 2022; 35:106-117. [PMID: 36592976 DOI: 10.1071/rd22209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The final weeks of gestation represent a critical period for dairy cows that can determine the success of the subsequent lactation. Many physiological changes take place and additional exogenous stressors can alter the success of the transition into lactation. Moreover, this phase is pivotal for the final stage of intrauterine development of the fetus, which can have negative long-lasting postnatal effects. Heat stress is widely recognised as a threat to dairy cattle welfare, health, and productivity. Specifically, late gestation heat stress impairs the dam's productivity by undermining mammary gland remodelling during the dry period and altering metabolic and immune responses in early lactation. Heat stress also affects placental development and function, with relevant consequences on fetal development and programming. In utero heat stressed newborns have reduced birth weight, growth, and compromised passive immune transfer. Moreover, the liver and mammary DNA of in utero heat stressed calves show a clear divergence in the pattern of methylation relative to that of in utero cooled calves. These alterations in gene regulation might result in depressed immune function, as well as altered thermoregulation, hepatic metabolism, and mammary development jeopardising their survival in the herd and productivity. Furthermore, late gestation heat stress appears to exert multigenerational effects, influencing milk yield and survival up to the third generation.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - J Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
24
|
Masroor S, Aalam MT, Khan O, Tanuj GN, Gandham RK, Dhara SK, Gupta PK, Mishra BP, Dutt T, Singh G, Sajjanar BK. Effect of acute heat shock on stress gene expression and DNA methylation in zebu (Bos indicus) and crossbred (Bos indicus × Bos taurus) dairy cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1797-1809. [PMID: 35796826 DOI: 10.1007/s00484-022-02320-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 05/19/2023]
Abstract
Environmental temperature is one of the major factors to affect health and productivity of dairy cattle. Gene expression networks within the cells and tissues coordinate stress response, metabolism, and milk production in dairy cattle. Epigenetic DNA methylations were found to mediate the effect of environment by regulating gene expression patterns. In the present study, we compared three Indian native zebu cattle, Bos indicus (Sahiwal, Tharparkar, and Hariana) and one crossbred Bos indicus × Bos taurus (Vrindavani) for stress gene expression and differences in the DNA methylation patterns. The results indicated acute heat shock to cultured PBMC affected their proliferation, stress gene expression, and DNA methylation. Interestingly, expressions of HSP70, HSP90, and STIP1 were found more pronounced in zebu cattle than the crossbred cattle. However, no significant changes were observed in global DNA methylation due to acute heat shock, even though variations were observed in the expression patterns of DNA methyltransferases (DNMT1, DNMT3a) and demethylases (TET1, TET2, and TET3) genes. The treatment 5-AzaC (5-azacitidine) that inhibit DNA methylation in proliferating PBMC caused significant increase in heat shock-induced HSP70 and STIP1 expression indicating that hypomethylation facilitated stress gene expression. Further targeted analysis DNA methylation in the promoter regions revealed no significant differences for HSP70, HSP90, and STIP1. However, there was a significant hypomethylation for BDNF in both zebu and crossbred cattle. Similarly, NR3C1 promoter region showed hypomethylation alone in crossbred cattle. Overall, the results indicated that tropically adapted zebu cattle had comparatively higher expression of stress genes than the crossbred cattle. Furthermore, DNA methylation may play a role in regulating expression of certain genes involved in stress response pathways.
Collapse
Affiliation(s)
- Sana Masroor
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Mohd Tanzeel Aalam
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Owais Khan
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Gunturu Narasimha Tanuj
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Ravi Kumar Gandham
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Sujoy K Dhara
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Praveen K Gupta
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Bishnu Prasad Mishra
- ICAR-National Bureau of Animal Genetic Resources, Haryana, Karnal, 132001, India
| | - Triveni Dutt
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Gynendra Singh
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, Uttar Pradesh, India
| | - Basavaraj K Sajjanar
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India.
| |
Collapse
|
25
|
Cheruiyot EK, Haile-Mariam M, Cocks BG, Pryce JE. Improving Genomic Selection for Heat Tolerance in Dairy Cattle: Current Opportunities and Future Directions. Front Genet 2022; 13:894067. [PMID: 35769985 PMCID: PMC9234448 DOI: 10.3389/fgene.2022.894067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Heat tolerance is the ability of an animal to maintain production and reproduction levels under hot and humid conditions and is now a trait of economic relevance in dairy systems worldwide because of an escalating warming climate. The Australian dairy population is one of the excellent study models for enhancing our understanding of the biology of heat tolerance because they are predominantly kept outdoors on pastures where they experience direct effects of weather elements (e.g., solar radiation). In this article, we focus on evidence from recent studies in Australia that leveraged large a dataset [∼40,000 animals with phenotypes and 15 million whole-genome sequence variants] to elucidate the genetic basis of thermal stress as a critical part of the strategy to breed cattle adapted to warmer environments. Genotype-by-environment interaction (i.e., G × E) due to temperature and humidity variation is increasing, meaning animals are becoming less adapted (i.e., more sensitive) to changing environments. There are opportunities to reverse this trend and accelerate adaptation to warming climate by 1) selecting robust or heat-resilient animals and 2) including resilience indicators in breeding goals. Candidate causal variants related to the nervous system and metabolic functions are relevant for heat tolerance and, therefore, key for improving this trait. This could include adding these variants in the custom SNP panels used for routine genomic evaluations or as the basis to design specific agonist or antagonist compounds for lowering core body temperature under heat stress conditions. Indeed, it was encouraging to see that adding prioritized functionally relevant variants into the 50k SNP panel (i.e., the industry panel used for genomic evaluation in Australia) increased the prediction accuracy of heat tolerance by up to 10% units. This gain in accuracy is critical because genetic improvement has a linear relationship with prediction accuracy. Overall, while this article used data mainly from Australia, this could benefit other countries that aim to develop breeding values for heat tolerance, considering that the warming climate is becoming a topical issue worldwide.
Collapse
Affiliation(s)
- Evans K. Cheruiyot
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Centre for AgriBiosciences, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Mekonnen Haile-Mariam
- Centre for AgriBiosciences, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
- *Correspondence: Mekonnen Haile-Mariam,
| | - Benjamin G. Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Centre for AgriBiosciences, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Jennie E. Pryce
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Centre for AgriBiosciences, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| |
Collapse
|
26
|
Skibiel AL, Koh J, Zhu N, Zhu F, Yoo MJ, Laporta J. Carry-over effects of dry period heat stress on the mammary gland proteome and phosphoproteome in the subsequent lactation of dairy cows. Sci Rep 2022; 12:6637. [PMID: 35459770 PMCID: PMC9033811 DOI: 10.1038/s41598-022-10461-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
Abstract
Exposure to heat stress during a cow's dry period disrupts mammary gland remodeling, impairing mammary function and milk production during the subsequent lactation. Yet, proteomic changes in the mammary gland underlying these effects are not yet known. We investigated alterations in the mammary proteome and phosphoproteome during lactation as a result of dry period heat stress using an isobaric tag for relative and absolute quantitation (iTRAQ)-based approach. Cows were cooled (CL; n = 12) with fans and water soakers in a free stall setting or were heat stressed through lack of access to cooling devices (HT; n = 12) during the entire dry period (approximately 46 days). All cows were cooled postpartum. Mammary biopsies were harvested from a subset of cows (n = 4 per treatment) at 14, 42, and 84 days in milk. Overall, 251 proteins and 224 phosphorylated proteins were differentially abundant in the lactating mammary gland of HT compared to CL cows. Top functions of differentially abundant proteins and phosphoproteins affected were related to immune function and inflammation, amino acid metabolism, reactive oxygen species production and metabolism, tissue remodeling, and cell stress response. Patterns of protein expression and phosphorylation are indicative of increased oxidative stress, mammary gland restructuring, and immune dysregulation due to prior exposure to dry period heat stress. This study provides insights into the molecular underpinnings of disrupted mammary function and health during lactation arising from prior exposure to dry period heat stress, which might have led to lower milk yields.
Collapse
Affiliation(s)
- Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Ning Zhu
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Fanchao Zhu
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| |
Collapse
|
27
|
Field SL, Ouellet V, Sheftel CM, Hernandez LL, Laporta J. In vitro effects of 5-Hydroxy-L-tryptophan supplementation on primary bovine mammary epithelial cell gene expression under thermoneutral or heat shock conditions. Sci Rep 2022; 12:3820. [PMID: 35264606 PMCID: PMC8907223 DOI: 10.1038/s41598-022-07682-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT) is an autocrine-paracrine molecule within the mammary gland regulating homeostasis during lactation and triggering involution after milk stasis. Exposure of dairy cows to hyperthermia during the dry period alters mammary gland involution processes leading to reduced subsequent yields. Herein, primary bovine mammary epithelial cells (pBMEC) under thermoneutral (TN, 37 °C) or heat shock (HS, 41.5 °C) conditions were cultured with either 0, 50, 200, or 500 μM 5-Hydroxy-L-tryptophan (5-HTP; 5-HT precursor) for 8-, 12- or 24-h. Expression of 95 genes involved in 5-HT signaling, involution and tight junction regulation were evaluated using a Multiplex RT-qPCR BioMark Dynamic Array Circuit. Different sets of genes were impacted by 5-HTP or temperature, or by their interaction. All 5-HT signaling genes were downregulated after 8-h of HS and then upregulated after 12-h, relative to TN. After 24-h, apoptosis related gene, FASLG, was upregulated by all doses except TN-200 μM 5-HTP, and cell survival gene, FOXO3, was upregulated by HS-50, 200 and 500 μM 5-HTP, suggesting 5-HTP involvement in cell turnover under HS. Supplementing 5-HTP at various concentrations in vitro to pBMEC modulates the expression of genes that might aid in promoting epithelial cell turn-over during involution in dairy cattle under hyperthermia.
Collapse
Affiliation(s)
- Sena L Field
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Véronique Ouellet
- Department of Animal Sciences, Université Laval, Québec City, QC, Canada
| | - Celeste M Sheftel
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
28
|
Xuan R, Chao T, Zhao X, Wang A, Chu Y, Li Q, Zhao Y, Ji Z, Wang J. Transcriptome profiling of the nonlactating mammary glands of dairy goats reveals the molecular genetic mechanism of mammary cell remodeling. J Dairy Sci 2022; 105:5238-5260. [DOI: 10.3168/jds.2021-21039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
|
29
|
Huang S, Dou J, Li Z, Hu L, Yu Y, Wang Y. Analysis of Genomic Alternative Splicing Patterns in Rat under Heat Stress Based on RNA-Seq Data. Genes (Basel) 2022; 13:genes13020358. [PMID: 35205403 PMCID: PMC8871965 DOI: 10.3390/genes13020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most severe challenges faced in livestock production in summer. Alternative splicing as an important post-transcriptional regulation is rarely studied in heat-stressed animals. Here, we performed and analyzed RNA-sequencing assays on the liver of Sprague-Dawley rats in control (22 °C, n = 5) and heat stress (4 °C for 120 min, H120; n = 5) groups, resulting in the identification of 636 differentially expressed genes. Identification analysis of the alternative splicing events revealed that heat stress-induced alternative splicing events increased by 20.18%. Compared with other types of alternative splicing events, the alternative start increased the most (43.40%) after heat stress. Twenty-eight genes were differentially alternatively spliced (DAS) between the control and H120 groups, among which Acly, Hnrnpd and mir3064 were also differentially expressed. For DAS genes, Srebf1, Shc1, Srsf5 and Ensa were associated with insulin, while Cast, Srebf1, Tmem33, Tor1aip2, Slc39a7 and Sqstm1 were enriched in the composition of the endoplasmic reticulum. In summary, our study conducts a comprehensive profile of alternative splicing in heat-stressed rats, indicating that alternative splicing is one of the molecular mechanisms of heat stress response in mammals and providing reference data for research on heat tolerance in mammalian livestock.
Collapse
Affiliation(s)
- Shangzhen Huang
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Jinhuan Dou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
- Correspondence: (J.D.); (Y.W.)
| | - Zhongshu Li
- Agricultural College, Yanbian University, Yanji 133002, China;
| | - Lirong Hu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Ying Yu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
| | - Yachun Wang
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.H.); (L.H.); (Y.Y.)
- Correspondence: (J.D.); (Y.W.)
| |
Collapse
|
30
|
Castillo P, Aisagbonhi O, Saenz CC, ElShamy WM. Novel insights linking BRCA1-IRIS role in mammary gland development to formation of aggressive PABCs: the case for longer breastfeeding. Am J Cancer Res 2022; 12:396-426. [PMID: 35141026 PMCID: PMC8822284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023] Open
Abstract
Pregnancy-associated breast cancer (PABC) is diagnosed during or shortly after pregnancy. Although rare, PABC is a serious occurrence often of the triple negative (TNBC) subtype. Here we show progesterone, prolactin, and RANKL upregulate BRCA1-IRIS (IRIS) in separate and overlapping subpopulations of human mammary epithelial cell lines, which exacerbates the proliferation, survival, and the TNBC-like phenotype in them. Conversely, vitamin D3 reduces IRIS expression in TNBC cell lines, which attenuates growth, survival, and the TNBC-like phenotype in them. In the mouse, Brca1-Iris (Iris, mouse IRIS homolog) is expressed at low-level in nulliparous mice, increases ~10-fold in pregnant/lactating mice, to completely disappear in involuting mice, and reappears at low-level in regressed glands. Mice underwent 3 constitutive pregnancies followed by a forced involution (after 5 days of lactation) contained ~10-fold higher Iris in their mammary glands compared to those underwent physiological involution (after 21 days of lactation). While protein extracts from lactating glands promote proliferation in IRISlow and IRIS overexpressing (IRISOE) cells, extracts from involuting glands promote apoptosis in IRISlow, and aneuploidy in IRISOE cells. In a cohort of breast cancer patients, lack of breastfeeding was associated with formation of chemotherapy resistant, metastatic IRISOE breast cancers. We propose that terminal differentiation triggered by long-term breastfeeding reduces IRIS expression in mammary cells allowing their elimination by the inflammatory microenvironment during physiological involution. No/short-term breastfeeding retains in the mammary gland IRISOE cells that thrive in the inflammatory microenvironment during forced involution to become precursors for aggressive breast cancers shortly after pregnancy.
Collapse
Affiliation(s)
- Patricia Castillo
- Breast Cancer Program, San Diego Biomedical Research Institute, Gynecology and Reproductive Sciences, UC San Diego Health SystemSan Diego, CA 92121, USA
| | - Omonigho Aisagbonhi
- Department of Pathology, Gynecology and Reproductive Sciences, UC San Diego Health SystemSan Diego, CA 92121, USA
| | - Cheryl C Saenz
- Department of Obstetrics, Gynecology and Reproductive Sciences, UC San Diego Health SystemSan Diego, CA 92121, USA
| | - Wael M ElShamy
- Breast Cancer Program, San Diego Biomedical Research Institute, Gynecology and Reproductive Sciences, UC San Diego Health SystemSan Diego, CA 92121, USA
| |
Collapse
|
31
|
Laporta J, Dado-Senn B, Skibiel AL. Late gestation hyperthermia: epigenetic programming of daughter's mammary development and function. Domest Anim Endocrinol 2022; 78:106681. [PMID: 34600221 DOI: 10.1016/j.domaniend.2021.106681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022]
Abstract
Exposure to stressors during early developmental windows, such as prenatally (i.e., in utero), can have life-long implications for an animal's health and productivity. The mammary gland starts developing in utero and, like other developing tissues and organs, may undergo fetal programming. Previous research has implicated factors, such as prenatal exposure to endocrine disruptors or alterations in maternal diet (e.g., maternal over or undernutrition), that can influence the developmental trajectory of the offspring mammary gland in postnatal life. However, the direct links between prenatal insults and future productive outcomes are less documented in livestock species. Research on in utero hyperthermia effects on early-life mammary development is scarce. This review will provide an overview of key developmental milestones taking place in the bovine mammary gland during the pre- and postnatal stages. We will showcase how intrauterine hyperthermia, experienced by the developing fetus during the last trimester of gestation, derails postnatal mammary gland development and impairs its synthetic capacity later in life. We will provide insights into the underlying histological, cellular, and molecular mechanisms taking place at key postnatal developmental life stages, including birth, weaning and the first lactation, that might explain permanent detriments in productivity long after the initial exposure to hyperthermia. Collectively, our studies indicate that prenatal hyperthermia jeopardizes the normal developmental trajectory of the mammary gland from fetal development to lactation. Further, in utero hyperthermia epigenetically programs the udder, and possibly other organs critical to lactation, yielding a less resilient and less productive cow for multiple lactations.
Collapse
Affiliation(s)
- J Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, USA.
| | - B Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, USA
| | - A L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Idaho, USA
| |
Collapse
|
32
|
Loor JJ. Nutrigenomics in livestock: potential role in physiological regulation and practical applications. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Noncoding RNA 2021; 7:ncrna7040078. [PMID: 34940759 PMCID: PMC8708473 DOI: 10.3390/ncrna7040078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Milk is an integral and therefore complex structural element of mammalian nutrition. Therefore, it is simple to conclude that lactation, the process of producing milk, is as complex as the mammary gland, the organ responsible for this biochemical activity. Nutrition, genetics, epigenetics, disease pathogens, climatic conditions, and other environmental variables all impact breast productivity. In the last decade, the number of studies devoted to epigenetics has increased dramatically. Reports are increasingly describing the direct participation of microRNAs (miRNAs), small noncoding RNAs that regulate gene expression post-transcriptionally, in the regulation of mammary gland development and function. This paper presents a summary of the current state of knowledge about the roles of miRNAs in mammary gland development, health, and functions, particularly during lactation. The significance of miRNAs in signaling pathways, cellular proliferation, and the lipid metabolism in agricultural ruminants, which are crucial in light of their role in the nutrition of humans as consumers of dairy products, is discussed.
Collapse
|
34
|
Cattaneo L, Mezzetti M, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Gene network expression of whole blood leukocytes in dairy cows with different milk yield at dry-off. PLoS One 2021; 16:e0260745. [PMID: 34882732 PMCID: PMC8659302 DOI: 10.1371/journal.pone.0260745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Dairy cows at dry-off undergo several management and physiological changes, resulting in alterations in plasma biomarkers of inflammation, oxidative stress, and immune system. High milk yield at the end of lactation exacerbates these responses. The underlying mechanism of these changes has yet to be elucidated. We hypothesized altered leukocyte gene expression after dry-off and different responses in cows with different milk yield. Thirteen Holstein dairy cows were sampled at the turn of dry-off to investigated whole blood leukocyte gene expression and were grouped according to the average milk yield during the last week of lactation: low (< 15 kg/d) and high milk yield (> 15 kg/d). Blood samples were collected in PAXgene tubes (Preanalytix, Hombrechtikon, Switzerland) at -7, 7, and 34 days from dry-off (DFD) to measure mRNA abundance of 37 genes. Normalized gene abundance data were subjected to MIXED model ANOVA (SAS Institute Inc., Cary, NC). Compared with -7 DFD, at 7 DFD RNA abundance of lipoxygenase genes (ALOX5, ALOX15) and myeloperoxidase (MPO) increased, and that of the antioxidant gene (SOD2) decreased. Meanwhile, genes related to recognition and immune mediation (CD16, MYD88, TLR2), migration and cell adhesion (CX3CR1, ITGAL, ITGB2, TLN1), and the antimicrobial gene MMP9 were downregulated at 7 or 34 DFD, whereas the antimicrobial IDO1 gene was upregulated. Compared with low-producing cows, cows with high milk yield at dry-off cows had upregulated expression of the pro-inflammatory cytokines IL8 and IL18 and a greater reduction in transcript abundance of the toll-like receptor (TLR) recognition-related gene TLR2. Overall, the dry-off confirmed to be a phase of intense changes, triggering an inflammatory response and somewhat suppressing leukocyte immune function. In cows with high milk yield during the week before dry-off, the inflammatory response was exacerbated.
Collapse
Affiliation(s)
- Luca Cattaneo
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
- * E-mail:
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
35
|
Zhou J, Yue S, Xue B, Wang Z, Wang L, Peng Q, Xue B. Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1126-1141. [PMID: 34796352 PMCID: PMC8564303 DOI: 10.5187/jast.2021.e93] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023]
Abstract
Recent evidence has shown that methionine (Met) supplementation can improve milk
protein synthesis under hyperthermia (which reduces milk production). To explore
the mechanism by which milk protein synthesis is affected by Met supplementation
under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a
hyperthermic temperature of 42°C for 6 h in media with different
concentrations of Met. While the control group (CON) contained a normal amino
acid concentration profile (60 μg/mL of Met), the three treatment groups
were supplemented with Met at concentrations of 10 μg/mL (MET70, 70
μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30
μg/mL (MET90,90 μg/mL of Met). Our results show that additional
Met supplementation increases the mRNA and protein levels of BCL2 (B-cell
lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels
of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an
additional supplementary concentration of 20 μg/mL (group Met80).
Supplementation with higher concentrations of Met decreased the mRNA levels of
Caspase-3 and
Caspase-9, and increased protein levels of
heat shock protein (HSP70). The total protein levels of the mechanistic target
of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT,
ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6),
increased with increasing Met supplementation, and peaked at 80 μg/mL Met
(group Met80). In addition, we also found that additional Met supplementation
upregulated the gene expression of αS1-casein (CSN1S1),
β-casein (CSN2), and the amino acid transporter genes
SLC38A2, SLC38A3 which are known to be
mTOR targets. Additional Met supplementation, however, had no effect on the gene
expression of κ-casein (CSN3) and solute carrier family
34 member 2 (SLC34A2). Our results suggest that additional Met
supplementation with 20 μg/mL may promote the synthesis of milk proteins
in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis,
activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of
amino acids into these cells.
Collapse
Affiliation(s)
- Jia Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuangming Yue
- Department of Bioengineering, Sichuan Water Conservancy Vocation College, Chengdu 611845, China
| | - Benchu Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanhui Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bai Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
36
|
Dado-Senn B, Skibiel AL, Dahl GE, Arriola Apelo SI, Laporta J. Dry Period Heat Stress Impacts Mammary Protein Metabolism in the Subsequent Lactation. Animals (Basel) 2021; 11:ani11092676. [PMID: 34573642 PMCID: PMC8466034 DOI: 10.3390/ani11092676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Heat stress during the dry period of dairy cows reduces milk yield in the following lactation. Factors such as altered mammary metabolism could impact yields and alter milk composition, including milk protein. We sought to determine if exposure to dry period heat stress would influence mammary milk protein metabolism during the subsequent lactation. Objectives were to first determine the impact of dry period heat stress on milk protein yields and secondly characterize the amino acid and protein profiles in the mammary tissue, milk, and blood to elucidate potential carry-over impact of dry period heat stress on systems that participate directly in milk protein metabolism (i.e., mTOR). We found that heat stress during the dry period reduces milk yield, protein content, and protein yield in the subsequent lactation. The plasma amino acid profile and mammary amino acid transporters are altered in dry period heat-stressed cows, and mammary mTOR signaling proteins are differentially expressed as well. It appears that dry period heat stress impacts mammary metabolism with consequences on milk yield and protein content. The continuous production of high-quality and -quantity milk is vital as a sustainable source of protein in the face of rising global temperatures. Abstract Dry period heat stress impairs subsequent milk production, but its impact on milk protein content and yield is inconsistent. We hypothesize that dairy cow exposure to dry period heat stress will reduce milk protein synthesis in the next lactation, potentially through modified amino acid (AA) transport and compromised mTOR signaling in the mammary gland. Cows were enrolled into heat-stressed (dry-HT, n = 12) or cooled (dry-CL, n = 12) treatments for a 46-day dry period then cooled after calving. Milk yield and composition and dry matter intake were recorded, and milk, blood, and mammary tissue samples were collected at 14, 42, and 84 days in milk (DIM) to determine free AA concentrations, milk protein fractions, and mammary AA transporter and mTOR pathway gene and protein expression. Dry matter intake did not significantly differ between treatments pre- or postpartum. Compared with dry-CL cows, milk yield was decreased (32.3 vs. 37.7 ± 1.6 kg/day) and milk protein yield and content were reduced in dry-HT cows by 0.18 kg/day and 0.1%. Further, dry-HT cows had higher plasma concentrations of glutamic acid, phenylalanine, and taurine. Gene expression of key AA transporters was upregulated at 14 and 42 DIM in dry-HT cows. Despite minor changes in mTOR pathway gene expression, the protein 4E-BP1 was upregulated in dry-HT cows at 42 DIM whereas Akt and p70 S6K1 were downregulated. These results indicate major mammary metabolic adaptations during lactation after prior exposure to dry period heat stress.
Collapse
Affiliation(s)
- Bethany Dado-Senn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.D.-S.); (S.I.A.A.)
| | - Amy L. Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Geoffrey E. Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA;
| | - Sebastian I. Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.D.-S.); (S.I.A.A.)
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.D.-S.); (S.I.A.A.)
- Correspondence: ; Tel.: +1-608-262-9705
| |
Collapse
|
37
|
Cheruiyot EK, Haile-Mariam M, Cocks BG, MacLeod IM, Xiang R, Pryce JE. New loci and neuronal pathways for resilience to heat stress in cattle. Sci Rep 2021; 11:16619. [PMID: 34404823 PMCID: PMC8371109 DOI: 10.1038/s41598-021-95816-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
While understanding the genetic basis of heat tolerance is crucial in the context of global warming's effect on humans, livestock, and wildlife, the specific genetic variants and biological features that confer thermotolerance in animals are still not well characterized. We used dairy cows as a model to study heat tolerance because they are lactating, and therefore often prone to thermal stress. The data comprised almost 0.5 million milk records (milk, fat, and proteins) of 29,107 Australian Holsteins, each having around 15 million imputed sequence variants. Dairy animals often reduce their milk production when temperature and humidity rise; thus, the phenotypes used to measure an individual's heat tolerance were defined as the rate of milk production decline (slope traits) with a rising temperature-humidity index. With these slope traits, we performed a genome-wide association study (GWAS) using different approaches, including conditional analyses, to correct for the relationship between heat tolerance and level of milk production. The results revealed multiple novel loci for heat tolerance, including 61 potential functional variants at sites highly conserved across 100 vertebrate species. Moreover, it was interesting that specific candidate variants and genes are related to the neuronal system (ITPR1, ITPR2, and GRIA4) and neuroactive ligand-receptor interaction functions for heat tolerance (NPFFR2, CALCR, and GHR), providing a novel insight that can help to develop genetic and management approaches to combat heat stress.
Collapse
Affiliation(s)
- Evans K. Cheruiyot
- grid.1018.80000 0001 2342 0938School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia ,grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia
| | - Mekonnen Haile-Mariam
- grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia
| | - Benjamin G. Cocks
- grid.1018.80000 0001 2342 0938School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia ,grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia
| | - Iona M. MacLeod
- grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia
| | - Ruidong Xiang
- grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia ,grid.1008.90000 0001 2179 088XFaculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3052 Australia
| | - Jennie E. Pryce
- grid.1018.80000 0001 2342 0938School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia ,grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia
| |
Collapse
|
38
|
Chauhan SS, Rashamol VP, Bagath M, Sejian V, Dunshea FR. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1231-1244. [PMID: 33496873 DOI: 10.1007/s00484-021-02083-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/15/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Heat stress is one of the greatest challenges for the global livestock industries as increased environmental temperature and humidity compromises animal production during summer leading to devastating economic consequences. Over the last 30 years, significant developments have been achieved in cooling and provision of shade and shelter to mitigate heat stress reducing some of the losses associated with heat stress in farm animals. However, the recent increase in the incidence of heat waves which are also becoming more severe and lasting longer, due to climate change, further accentuates the problem of heat stress. Economic losses associated with heat stress are both direct due to loss in production and animal life, and indirect due to poorer quality products as a result of poor animal health and welfare. Animal health is affected due to impaired immune responses and increased reactive oxygen species production and/or deficiency of antioxidants during heat stress leading to an imbalance between oxidant and antioxidants and resultant oxidative stress. Research over the last 20 years has achieved partial success in understanding the intricacies of heat stress impacts on oxidative stress and immune responses and developing interventions to ameliorate impacts of heat stress, improving immune responses and farm animal health. This paper reviews the body of knowledge on heat stress impacts on immune response in farm animals. The impacts of heat stress on both cell-mediated and humoral immune responses have been discussed identifying the shift in immune response from cell-mediated towards humoral response, thereby weakening the immune status of the animal. Both species and breed differences have been identified as influencing how heat stress impacts the immune status of farm animals. In addition, crosstalk signaling between the immune system and oxidative stress has been considered and the role of antioxidants as potential nutritional strategies to mitigate heat stress has been discussed.
Collapse
Affiliation(s)
- Surinder S Chauhan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - V P Rashamol
- ICAR National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - M Bagath
- ICAR National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Veerasamy Sejian
- ICAR National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
39
|
Kaufman JD, Seidler Y, Bailey HR, Whitacre L, Bargo F, Lüersen K, Rimbach G, Pighetti GM, Ipharraguerre IR, Ríus AG. A postbiotic from Aspergillus oryzae attenuates the impact of heat stress in ectothermic and endothermic organisms. Sci Rep 2021; 11:6407. [PMID: 33742039 PMCID: PMC7979835 DOI: 10.1038/s41598-021-85707-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/28/2021] [Indexed: 01/17/2023] Open
Abstract
Heat stress is detrimental to food-producing animals and animal productivity remains suboptimal despite the use of heat abatement strategies during summer. Global warming and the increase of frequency and intensity of heatwaves are likely to continue and, thus, exacerbate the problem of heat stress. Heat stress leads to the impairment of physiological and cellular functions of ectothermic and endothermic animals. Therefore, it is critical to conceive ways of protecting animals against the pathological effects of heat stress. In experiments with endothermic animals highly sensitive to heat (Bos taurus), we have previously reported that heat-induced systemic inflammation can be ameliorated in part by nutritional interventions. The experiments conducted in this report described molecular and physiological adaptations to heat stress using Drosophila melanogaster and dairy cow models. In this report, we expand previous work by first demonstrating that the addition of a postbiotic from Aspergillus oryzae (AO) into the culture medium of ectothermic animals (Drosophila melanogaster) improved survival to heat stress from 30 to 58%. This response was associated with downregulation of genes involved in the modulation of oxidative stress and immunity, most notably metallothionein B, C, and D. In line with these results, we subsequently showed that the supplementation with the AO postbiotic to lactating dairy cows experiencing heat stress decreased plasma concentrations of serum amyloid A and lipopolysaccharide-binding protein, and the expression of interleukin-6 in white blood cells. These alterations were paralleled by increased synthesis of energy-corrected milk and milk components, suggesting enhanced nutrient partitioning to lactogenesis and increased metabolic efficiency. In summary, this work provides evidence that a postbiotic from AO enhances thermal tolerance likely through a mechanism that entails reduced inflammation.
Collapse
Affiliation(s)
- J D Kaufman
- Department of Animal Science, University of Tennessee, 2506 River Drive, 235 Brehm Animal Science Building, Knoxville, TN, 37996, USA
| | - Y Seidler
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - H R Bailey
- Department of Animal Science, University of Tennessee, 2506 River Drive, 235 Brehm Animal Science Building, Knoxville, TN, 37996, USA
| | - L Whitacre
- BioZyme, Inc., St. Joseph, MO, 64504, USA
| | - F Bargo
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- BioZyme, Inc., St. Joseph, MO, 64504, USA
| | - K Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - G Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - G M Pighetti
- Department of Animal Science, University of Tennessee, 2506 River Drive, 235 Brehm Animal Science Building, Knoxville, TN, 37996, USA
| | - I R Ipharraguerre
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - A G Ríus
- Department of Animal Science, University of Tennessee, 2506 River Drive, 235 Brehm Animal Science Building, Knoxville, TN, 37996, USA.
| |
Collapse
|
40
|
Endocrine Signals Altered by Heat Stress Impact Dairy Cow Mammary Cellular Processes at Different Stages of the Dry Period. Animals (Basel) 2021; 11:ani11020563. [PMID: 33669991 PMCID: PMC7930950 DOI: 10.3390/ani11020563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Late-gestation heat stress increases blood prolactin and decreases oestrogen concentrations in dry cows. These hormonal alterations may disturb mammary gland remodelling during the dry period, thereby being potentially responsible for the observed production impairments during the subsequent lactation. This project aimed to better understand the molecular mechanisms underlying subsequent impairments in mammary performance after dry period heat stress. For this, we studied the expression of genes encompassing prolactin and oestrogen pathways and key cellular process pathways under different thermal environments and in vitro hormonal milieus. The results of this study revealed that late-gestation heat stress impacted the expression of genes in the mammary gland involved in key cellular processes occurring during the dry period. Furthermore, our results indicated that these modifications are in part modulated by alterations of oestrogen and prolactin signalling. Abstract Hormonal alterations occurring under late gestation heat stress may disturb mammary gland remodelling, resulting in a reduced milk yield during the subsequent lactation. We investigated the effects of an altered endocrine environment on mammary gene expression at different stages of the dry period. Mammary gland biopsies from in vivo-cooled (CL) or heat-stressed (HT) cows were collected at d 3 and 35 relative to dry-off and divided into explants. Explants were incubated in vitro for 24 h in one of three media: Basal: no prolactin or estrogen; CL-mimic: Basal + low prolactin + high 17β-estradiol, or HT-mimic: Basal + high prolactin + low 17β-estradiol. Real time qPCR was used to quantify gene expression. We established that late-gestation heat stress changes the expression of prolactin and oestrogen receptors, downregulates genes involved in apoptosis, autophagy and proliferation at d 3 and upregulates genes related to those cellular processes at d 35. Moreover, compared with in vivo treatments, we showed that the expression of fewer genes was impacted by in vitro treatments which aimed to mimic the hormonal response of cows exposed to a different environment. Further research will continue to uncover the mechanisms behind the production impairments caused by late-gestation heat stress.
Collapse
|
41
|
Qi Y, Zhang L, Guo Y, Wang J, Chu M, Zhang Y, Guo J, Li Q. Genome-wide identification and functional prediction of circular RNAs in response to heat stress in Chinese Holstein cows. Anim Biotechnol 2021; 33:1170-1180. [PMID: 33586615 DOI: 10.1080/10495398.2021.1879825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Heat stress (HS) leads to substantial economic loss of dairy industry each year. The negative effect of HS in dairy cows is becoming one of the more urgent issue due to accelerating side-effects of global warming. Various genes are involved in HS response but the information about the role of noncoding RNAs, especially circular RNAs (circRNAs) is largely unknown. In our study, we aimed to investigate the different expression profile of circRNAs between HS and Non-heat-stressed condition (NC) of Chinese Holstein cow's mammary gland. CircRNAs were identified using RNA sequencing and bioinformatics analysis. In total, 37405 circRNAs were detected and 95 were differentially expressed (DE), including 15 downregulated and 80 upregulated circRNAs in HS group compared to NC. Eight circRNAs were randomly selected to verify the RNA sequencing result. Further, Sanger sequencing validated the backsplicing site of the eight circRNAs. Moreover, results obtained from the Quantitative real time PCR (qRT-PCR) showed consistent expression trend with that of RNA sequencing. GO annotation and KEGG analysis suggested that these DE circRNAs probably involved in the energy metabolic regulation. Furthermore, we constructed ceRNA network and the result indicated that these DE circRNAs could regulate lactation through IGF1 and PRL signaling pathway.
Collapse
Affiliation(s)
- Ying Qi
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Lin Zhang
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Yuemei Guo
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Jing Wang
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Mingxing Chu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yiming Zhang
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| | - Junfei Guo
- Clinical Laboratory Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Qiuling Li
- Hebei Key Laboratory of Animal Diversity, Langfang Key Laboratory of Cell Engineering and Application, College of Life Sciences, Langfang Normal University, Langfang, People's Republic of China
| |
Collapse
|
42
|
Singh A, Mehrotra A, Gondro C, Romero ARDS, Pandey AK, Karthikeyan A, Bashir A, Mishra BP, Dutt T, Kumar A. Signatures of Selection in Composite Vrindavani Cattle of India. Front Genet 2020; 11:589496. [PMID: 33391343 PMCID: PMC7775581 DOI: 10.3389/fgene.2020.589496] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Vrindavani is an Indian composite cattle breed developed by crossbreeding taurine dairy breeds with native indicine cattle. The constituent breeds were selected for higher milk production and adaptation to the tropical climate. However, the selection response for production and adaptation traits in the Vrindavani genome is not explored. In this study, we provide the first overview of the selection signatures in the Vrindavani genome. A total of 96 Vrindavani cattle were genotyped using the BovineSNP50 BeadChip and the SNP genotype data of its constituent breeds were collected from a public database. Within-breed selection signatures in Vrindavani were investigated using the integrated haplotype score (iHS). The Vrindavani breed was also compared to each of its parental breeds to discover between-population signatures of selection using two approaches, cross-population extended haplotype homozygosity (XP-EHH) and fixation index (FST). We identified 11 common regions detected by more than one method harboring genes such as LRP1B, TNNI3K, APOB, CACNA2D1, FAM110B, and SPATA17 associated with production and adaptation. Overall, our results suggested stronger selective pressure on regions responsible for adaptation compared to milk yield.
Collapse
Affiliation(s)
- Akansha Singh
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Arnav Mehrotra
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | | | - Ashwni Kumar Pandey
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - A Karthikeyan
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Aamir Bashir
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - B P Mishra
- Animal Biotechnology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
43
|
Davidson BD, Dado-Senn B, Padilla NR, Fabris TF, Casarotto LT, Ouellet V, Toledo IM, Dahl GE, Laporta J. Late-gestation heat stress abatement in dairy heifers promotes thermoregulation and improves productivity. J Dairy Sci 2020; 104:2357-2368. [PMID: 33246618 DOI: 10.3168/jds.2020-18998] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023]
Abstract
Multiparous, nonlactating pregnant cows are negatively affected by heat stress, but the effect of heat stress on more thermotolerant pregnant heifers has received less attention. Our objective was to characterize the effect of late-gestation heat abatement on thermoregulatory responses and subsequent milk production of nulliparous Holstein heifers. Pregnant heifers, blocked by body condition score (BCS) and predicted transmitting ability (PTA) for milk, were enrolled in either heat stress (HT, shade of freestall barn; n = 16) or cooling (CL, shade of freestall barn, water soakers, and fans; n = 15) environments during the last 60 d of pregnancy (~8 weeks). Rectal temperature (RT; thermometer), respiration rate (RR; breaths/min), sweating rate (SR; VapoMeter, Delfin Technologies, Kuopio, Finland), and skin temperature (ST; infrared thermometer) were measured thrice weekly from enrollment to calving. Vaginal temperature (VT; i-button intravaginal device) was measured every 10 min for 7 consecutive days at wk -8, -6, -4, and -2 relative to calving and averaged hourly. Daily thermoregulatory patterns assessed by SR and ST, were measured every 4 h over a 36-h time interval at wk -6, -4, and -2 relative to calving. Upon calving, milk, protein, and fat yields were recorded twice daily for 15 wk. The average temperature-humidity index (Hobo Pro temperature probe, Onset Computer Corporation, Pocasset, MA) in the barn during the precalving period was 77 (minimum of 72, maximum of 82). Only heifers that gave birth to a female calf (CL = 12, HT = 14) were included in the statistical analysis. In the precalving period, CL heifers had lower RR (44.3 vs. 60.0 ± 1.6 breaths/min), RT (38.7 vs. 38.8 ± 0.04°C), unshaved ST (34.7 vs. 35.3 ± 0.17°C), and unshaved SR (19.0 vs. 35.2 ± 1.9 g/m2h), relative to HT heifers. Additionally, VT was lower in CL heifers during wk -4, and -2, specifically during early morning and early afternoon hours. When measured over a 36-h time interval, ST and SR were lower in CL heifers, when compared with HT heifers for all weeks. Notably, ST was reduced overnight and SR was reduced during the daytime. Cooled heifers had higher milk yield (35.8 vs. 31.9 ± 1.4 kg/d), when compared with HT heifers. Similar to multiparous cows, our data indicate that actively cooling heifers in late pregnancy is effective in promoting thermoregulation and results in elevated milk production postcalving.
Collapse
Affiliation(s)
- B D Davidson
- Department of Animal Sciences, University of Florida, Gainesville, 32608
| | - B Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, 32608
| | - N Rosa Padilla
- Department of Animal Sciences, University of Florida, Gainesville, 32608
| | - T F Fabris
- Department of Animal Sciences, University of Florida, Gainesville, 32608
| | - L T Casarotto
- Department of Animal Sciences, University of Florida, Gainesville, 32608
| | - V Ouellet
- Department of Animal Sciences, University of Florida, Gainesville, 32608
| | - I M Toledo
- IFAS Extension, University of Florida, Gainesville, 32603
| | - G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, 32608
| | - J Laporta
- Department of Animal Sciences, University of Florida, Gainesville, 32608.
| |
Collapse
|
44
|
Effect of Heat Stress on Dairy Cow Performance and on Expression of Protein Metabolism Genes in Mammary Cells. Animals (Basel) 2020; 10:ani10112124. [PMID: 33207608 PMCID: PMC7696625 DOI: 10.3390/ani10112124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Environmental temperatures are increasing, and consequent global warming also has negative effects on dairy cattle farms, which may result in reduced production and poorer milk quality. The protein content of casein, in particular, is important in influencing the coagulation properties of milk and, therefore, the production and quality of cheese. The aim of this study was to assess the effect of heat stress on animal performance and on the expression of selected genes involved in milk protein metabolism. Eight dairy cows were kept under thermoneutral conditions for 8 days. The same animals were then maintained under mild heat stress conditions for an additional 8 days. The results of this study revealed that mild heat stress reduced the feed intake and performance of dairy cows in terms of milk and protein yield, but not the expression of the target genes involved in milk protein metabolism, such as those coding for caseins. Abstract The aim of this study was to assess the effect of heat stress on dairy cow performance and on the expression of selected genes involved in milk protein metabolism. Eight Italian Holstein Friesian cows were kept under thermoneutral conditions (temperature–humidity index (THI) < 72, CON) for 8 days and under mild heat stress conditions (72 < THI < 78, HS) for an additional 8 days. The rectal temperature, feed intake, and milk yield were recorded during the last 3 days of the CON and HS periods. During the same time period, milk samples were collected to assess the composition and expression of selected genes involved in milk protein metabolism. Gene expression analyses were performed on somatic cells from milk, which are representative of mammary tissue. In terms of dairy cow performance, HS resulted in lower milk and protein yields and feed intake but higher rectal temperature than for CON (p < 0.05). Under HS, there were greater abundances of HSPA1A (p < 0.05) and BCL2 (p < 0.05), compared to CON, but similar levels of CSN2 (p > 0.05), CSN3 (p > 0.05), HSPA8 (p > 0.05), and STAT5B (p > 0.05) mRNA. Mild heat stress reduced the performance of dairy cows without affecting the expression of genes coding for caseins.
Collapse
|
45
|
Wang J, Hao Z, Hu J, Liu X, Li S, Wang J, Shen J, Song Y, Ke N, Luo Y. Small RNA deep sequencing reveals the expressions of microRNAs in ovine mammary gland development at peak-lactation and during the non-lactating period. Genomics 2020; 113:637-646. [PMID: 33007397 DOI: 10.1016/j.ygeno.2020.09.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in mammary gland development and lactation in livestock. Little is known about the roles of miRNAs in ovine mammary gland development, hence in this study the expression profiles of miRNAs of the mammary gland tissues of ewes at peak-lactation and during the non-lactating period were investigated using RNA sequencing. A total of 147 mature miRNAs were expressed in the two periods. Compared with peak-lactation, eight miRNAs in the non-lactating ewe mammary gland were significantly up-regulated, whereas fifteen miRNAs were down-regulated. A KEGG analysis revealed that the target genes of the up-regulated miRNAs were significantly enriched in lysosome, Wnt and MAPK signaling pathways, while the target genes of down-regulated miRNAs were significantly enriched in the PI3K-Akt signaling pathway, protein processing in endoplasmic reticulum and axon guidance. These results suggest that further study of the differentially expressed miRNAs could provide a better understanding of the molecular mechanisms of mammary development and lactation in sheep.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yize Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Na Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
46
|
Fabris TF, Laporta J, Skibiel AL, Dado-Senn B, Wohlgemuth SE, Dahl GE. Effect of heat stress during the early and late dry period on mammary gland development of Holstein dairy cattle. J Dairy Sci 2020; 103:8576-8586. [PMID: 32684470 DOI: 10.3168/jds.2019-17911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
Dry period heat stress impairs subsequent milk yield. Our objective was to evaluate the effect of heat stress or cooling during the early and late dry period on mammary gland gene expression and microstructure. Cows were dried off ∼45 d before expected parturition and randomly assigned to 1 of 2 treatments: heat stress (HT, n = 39) or cooling (CL, n = 39) during the first 21 d of the dry period. On d 22, cows were switched or remained on HT and CL and this yielded 4 treatments: heat stress during the entire dry period (HTHT, n = 18); cooling during the entire dry period (CLCL, n = 20); HT for the first 21 d dry, then CL until calving (HTCL, n = 21); or CL for the first 21 d dry, then HT until calving (CLHT, n = 19). Data were analyzed in 2 periods: first 21 d dry (early dry period) and from 22 d until calving (late dry period) and analyzed using PROC MIXED or GLM in SAS (SAS Institute Inc., Cary, NC). Mammary biopsies (5-8 cows/treatment) were collected at -3, 3, 7, 14, and 25 d relative to dry-off to evaluate mammary gland gene expression and histology [i.e., cellular apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling) and proliferation (Ki67)]. Mammary alveoli number and connective tissue were visualized by hematoxylin and eosin and Mason's trichrome staining, respectively. During the early dry period, CL upregulated expression of CASP3, IGF1R, HSP90, HSF1, BECN1, ATG3, ATG5, and PRLR-LF relative to HT. However, in the late dry period, CLHT treatment upregulated expression of CASP3, CASP8, HSP70, HSP90, PRLR-LF, STAT5, CSN2, and ATG3 relative to CLCL. During the early dry period, cows exposed to HT had reduced mammary and stroma cell apoptosis and proliferation relative to CL. In addition to these findings, cows exposed to HT had lower connective tissue 3 d after dry-off relative to CL. However, in the late dry period, HTHT cows had higher connective tissue relative to CLCL. Also, in the early dry period, cows exposed to HT had greater alveoli number relative to CL, and HT decreased expression of genes related to autophagy and apoptosis in the early dry period, consistent with a delay in involution with HT. Thus, cows exposed to HT have extended involution with delayed apoptosis and autophagy signaling. Also, HT compromises mammary gland cell proliferation and leads to higher connective tissue later in the dry period. These results provide evidence that heat stress impairs overall mammary gland turnover during the dry period, which then affects secretory activity and productivity in the next lactation.
Collapse
Affiliation(s)
- Thiago F Fabris
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Amy L Skibiel
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - Bethany Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | | | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
47
|
Ouellet V, Laporta J, Dahl GE. Late gestation heat stress in dairy cows: Effects on dam and daughter. Theriogenology 2020; 150:471-479. [PMID: 32278591 DOI: 10.1016/j.theriogenology.2020.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/15/2022]
Abstract
In dairy cattle, the final weeks before parturition are physiologically challenging and an important determinant of subsequent production performance. External stressors should be carefully managed during this period to avoid adding strain on the animals. Late-gestation heat stress impairs productivity in the dam and exerts transgenerational effects on progeny. Physiological responses are complex and detriments to performance are multifaceted. Late-gestation heat stress blunts mammary gland involution in the first half of the dry period and impairs cell proliferation as calving approaches. Moreover, cows that were exposed to prepartum heat-stress exhibit reduced adipose tissue mobilization and a lower degree of insulin resistance during early lactation. Prepartum heat exposure also depresses immune function and evidence links this decrease to altered prolactin signaling under heat stress. Placental functions are also impaired as reflected in a higher cotyledon mass but lower maternal circulating estrone sulfate concentrations, potentially resulting in lower nutrient supply and reduced calf birth weight. In addition, calves born to heat-stressed dams show impaired immune function and therefore higher disease susceptibly. Novel evidence reported that intrauterine heat stress alters the methylation profile of liver and mammary DNA, which may also contribute to the poorer performance during adulthood of calves exposed to heat stress in utero. Understanding the contribution of all altered biological systems during late-gestation heat stress can be used as a basis for improving cow management during the dry period. This article provides a review of the impacts of late-gestation heat stress and of the emerging understanding of the biological mechanisms that underlie the observed impairments of performance.
Collapse
Affiliation(s)
- V Ouellet
- Department of Animal Sciences, University of Florida, Gainesville, 32611, USA
| | - J Laporta
- Department of Animal Sciences, University of Florida, Gainesville, 32611, USA
| | - G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, 32611, USA.
| |
Collapse
|
48
|
Guan D, Landi V, Luigi-Sierra MG, Delgado JV, Such X, Castelló A, Cabrera B, Mármol-Sánchez E, Fernández-Alvarez J, de la Torre Casañas JLR, Martínez A, Jordana J, Amills M. Analyzing the genomic and transcriptomic architecture of milk traits in Murciano-Granadina goats. J Anim Sci Biotechnol 2020; 11:35. [PMID: 32175082 PMCID: PMC7065321 DOI: 10.1186/s40104-020-00435-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background In this study, we aimed to investigate the molecular basis of lactation as well as to identify the genetic factors that influence milk yield and composition in goats. To achieve these two goals, we have analyzed how the mRNA profile of the mammary gland changes in seven Murciano-Granadina goats at each of three different time points, i.e. 78 d (T1, early lactation), 216 d (T2, late lactation) and 285 d (T3, dry period) after parturition. Moreover, we have performed a genome-wide association study (GWAS) for seven dairy traits recorded in the 1st lactation of 822 Murciano-Granadina goats. Results The expression profiles of the mammary gland in the early (T1) and late (T2) lactation were quite similar (42 differentially expressed genes), while strong transcriptomic differences (more than one thousand differentially expressed genes) were observed between the lactating (T1/T2) and non-lactating (T3) mammary glands. A large number of differentially expressed genes were involved in pathways related with the biosynthesis of amino acids, cholesterol, triglycerides and steroids as well as with glycerophospholipid metabolism, adipocytokine signaling, lipid binding, regulation of ion transmembrane transport, calcium ion binding, metalloendopeptidase activity and complement and coagulation cascades. With regard to the second goal of the study, the performance of the GWAS allowed us to detect 24 quantitative trait loci (QTLs), including three genome-wide significant associations: QTL1 (chromosome 2, 130.72-131.01 Mb) for lactose percentage, QTL6 (chromosome 6, 78.90-93.48 Mb) for protein percentage and QTL17 (chromosome 17, 11.20 Mb) for both protein and dry matter percentages. Interestingly, QTL6 shows positional coincidence with the casein genes, which encode 80% of milk proteins. Conclusions The abrogation of lactation involves dramatic changes in the expression of genes participating in a broad array of physiological processes such as protein, lipid and carbohydrate metabolism, calcium homeostasis, cell death and tissue remodeling, as well as immunity. We also conclude that genetic variation at the casein genes has a major impact on the milk protein content of Murciano-Granadina goats.
Collapse
Affiliation(s)
- Dailu Guan
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Vincenzo Landi
- 2Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Gracia Luigi-Sierra
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Xavier Such
- 3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Castelló
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Betlem Cabrera
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Emilio Mármol-Sánchez
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier Fernández-Alvarez
- Asociación Nacional de Criadores de Caprino de Raza Murciano-Granadina (CAPRIGRAN), 18340 Granada, Spain
| | | | - Amparo Martínez
- 2Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Jordi Jordana
- 3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marcel Amills
- 1Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,3Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
49
|
Dado-Senn B, Skibiel AL, Fabris TF, Dahl GE, Laporta J. Dry period heat stress induces microstructural changes in the lactating mammary gland. PLoS One 2019; 14:e0222120. [PMID: 31536517 PMCID: PMC6752841 DOI: 10.1371/journal.pone.0222120] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
The bovine dry period is a non-lactating period between consecutive lactations characterized by mammary gland involution and redevelopment phases to replace senescent mammary epithelial cells with active cells primed for the next lactation. Dairy cows exposed to heat stress during the dry period experience milk yield reductions between 3–7.5 kg/d in the next lactation, partially attributed to processes associated with mammary cell growth and turnover during the dry period. However, the carry-over impact of dry period heat stress on mammary morphology during lactation has yet to be determined. In the current study, we hypothesized that exposure to heat stress during the dry period would alter alveolar microstructure and cellular turnover (i.e. proliferation and apoptosis) during lactation. Cows were either subjected to heat stress (HT, access to shade; n = 12) or cooling (CL, access to shade, fans, and soakers; n = 12) for a 46 d dry period. Upon calving, all cows were treated similarly with access to cooling for their entire lactation. Six cows per treatment were randomly selected for mammary gland biopsies at 14, 42, and 84 days in milk. Tissues were sectioned and stained for histological analysis. During lactation, HT cows produced 4 kg less colostrum and 3.7 kg less milk compared with CL cows. Lactating mammary gland microstructure was impacted after exposure to dry period heat stress; HT cows had fewer alveoli and a higher proportion of connective tissue in the mammary gland relative to CL cows, however alveolar area was similar between treatments. Rates of mammary epithelial cell proliferation and apoptosis were similar between treatment groups. This suggests that heat stress exposure during the dry period leads to reductions in milk yield that could be caused, in part, by a reduction in alveoli number in the lactating mammary gland but not to dynamic alterations in cellular turnover once lactation is established.
Collapse
Affiliation(s)
- Bethany Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Amy L. Skibiel
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Thiago F. Fabris
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Geoffrey E. Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
| | - Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
50
|
Bagath M, Krishnan G, Devaraj C, Rashamol VP, Pragna P, Lees AM, Sejian V. The impact of heat stress on the immune system in dairy cattle: A review. Res Vet Sci 2019; 126:94-102. [PMID: 31445399 DOI: 10.1016/j.rvsc.2019.08.011] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/01/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
Heat stress is well documented to have a negative influence on livestock productivity and these impacts may be exacerbated by climate change. Dairy cattle can be more vulnerable to the negative effects of heat stress as these adverse impacts may be more profound during pregnancy and lactation. New emerging diseases are usually linked to a positive relationship with climate change and the survival of microrganisms and/or their vectors. These diseases may exaggerate the immune suppression associated with the immune suppressive effect of heat stress that is mediated by the hypothalamic-pituitary-adrenal (HPA) and the sympathetic-adrenal-medullary (SAM) axes. It has been established that heat stress has a negative impact on the immune system via cell mediated and humoral immune responses. Heat stress activates the HPA axis and increases peripheral levels of glucocorticoids subsequently suppressing the synthesis and release of cytokines. Heat stress has been reported to induce increased blood cortisol concentrations which have been shown to inhibit the production of cytokines such as interleukin-4 (IL-4), IL-5, IL-6, IL-12, interferon γ (IFNγ), and tumor necrosis factor-α (TNF- α). The impact of heat stress on the immune responses of dairy cows could be mediated by developing appropriate amelioration strategies through nutritional interventions and cooling management. In addition, improving current animal selection methods and the development of climate resilient breeds may support the sustainability of livestock production systems into the future.
Collapse
Affiliation(s)
- M Bagath
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, Karnataka, India
| | - G Krishnan
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, Karnataka, India
| | - C Devaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, Karnataka, India
| | - V P Rashamol
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, Karnataka, India
| | - P Pragna
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences Dookie Campus, Dookie College, The University of Melbourne, Victoria 3647 Australia
| | - A M Lees
- The University of Queensland, School of Agriculture and Food Sciences, Animal Science Group, Gatton, QLD 4343, Australia; University of New England, School of Environmental and Rural Science, Armidale, NSW 2350, Australia
| | - V Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore 560030, Karnataka, India.
| |
Collapse
|