1
|
Guo HW, Ye ZM, Chen SQ, McElwee KJ. Innovative strategies for the discovery of new drugs against alopecia areata: taking aim at the immune system. Expert Opin Drug Discov 2024:1-18. [PMID: 39360759 DOI: 10.1080/17460441.2024.2409660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION The autoimmune hair loss condition alopecia areata (AA) exacts a substantial psychological and socioeconomic toll on patients. Biotechnology companies, dermatology clinics, and research institutions are dedicated to understanding AA pathogenesis and developing new therapeutic approaches. Despite recent efforts, many knowledge gaps persist, and multiple treatment development avenues remain unexplored. AREAS COVERED This review summarizes key AA disease mechanisms, current therapeutic methods, and emerging treatments, including Janus Kinase (JAK) inhibitors. The authors determine that innovative drug discovery strategies for AA are still needed due to continued unmet medical needs and the limited efficacy of current and emerging therapeutics. For prospective AA treatment developers, the authors identify the pre-clinical disease models available, their advantages, and limitations. Further, they outline treatment development opportunities that remain largely unmapped. EXPERT OPINION While recent advancements in AA therapeutics are promising, challenges remain, including the lack of consistent treatment efficacy, long-term use and safety issues, drug costs, and patient compliance. Future drug development research should focus on patient stratification utilizing robust biomarkers of AA disease activity and improved quantification of treatment response. Investigating superior modes of drug application and developing combination therapies may further improve outcomes. Spirited innovation will be needed to advance more effective treatments for AA.
Collapse
Affiliation(s)
- Hong-Wei Guo
- Department of Dermatology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi-Ming Ye
- Guangdong Medical University, Zhanjiang, China
| | - Si-Qi Chen
- Guangdong Medical University, Zhanjiang, China
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
2
|
Zong X, Yang S, Tang Z, Li X, Long D, Wang D. 1,25-(OH) 2D 3 promotes hair growth by inhibiting NLRP3/IL-1β and HIF-1α/IL-1β signaling pathways. J Nutr Biochem 2024; 132:109695. [PMID: 38936782 DOI: 10.1016/j.jnutbio.2024.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Vitamin D is a crucial vitamin that participates in various biological processes through the Vitamin D Receptor (VDR). While there are studies suggesting that VDR might regulate hair growth through ligand-independent mechanisms, the efficacy of Vitamin D in treating hair loss disorders has also been reported. Here, through in vivo experiments in mice, in vitro organ culture of hair follicles, and cellular-level investigations, we demonstrate that 1,25-(OH)2D3 promotes mouse hair regeneration, prolongs the hair follicle anagen, and enhances the proliferation and migration capabilities of dermal papilla cells and outer root sheath keratinocytes in a VDR-dependent manner. Transcriptome analysis of VDR-knockout mouse skin reveals the involvement of HIF-1α, NLRP3, and IL-1β in these processes. Finally, we confirm that 1,25-(OH)2D3 can counteract the inhibitory effects of DHT on hair growth. These findings suggest that 1,25-(OH)2D3 has a positive impact on hair growth and may serve as a potential therapeutic agent for androgenetic alopecia (AGA).
Collapse
Affiliation(s)
- Xiule Zong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shengbo Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziting Tang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuemei Li
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Daijing Long
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Younis N, Puigmal N, Kurdi AE, Badaoui A, Zhang D, Morales-Garay C, Saad A, Cruz D, Rahy NA, Daccache A, Huerta T, Deban C, Halawi A, Choi J, Dosta P, Guo Lian C, Artzi N, Azzi JR. Microneedle-Mediated Delivery of Immunomodulators Restores Immune Privilege in Hair Follicles and Reverses Immune-Mediated Alopecia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312088. [PMID: 38638030 DOI: 10.1002/adma.202312088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Disorders in the regulatory arm of the adaptive immune system result in autoimmune-mediated diseases. While systemic immunosuppression is the prevailing approach to manage them, it fails to achieve long-lasting remission due to concomitant suppression of the regulatory arm and carries the risk of heightened susceptibility to infections and malignancies. Alopecia areata is a condition characterized by localized hair loss due to autoimmunity. The accessibility of the skin allows local rather than systemic intervention to avoid broad immunosuppression. It is hypothesized that the expansion of endogenous regulatory T cells (Tregs) at the site of antigen encounter can restore the immune balance and generate a long-lasting tolerogenic response. A hydrogel microneedle (MN) patch is therefore utilized for delivery of CCL22, a Treg-chemoattractant, and IL-2, a Treg survival factor to amplify them. In an immune-mediated murine model of alopecia, local bolstering of Treg numbers is shown, leading to sustained hair regrowth and attenuation of inflammatory pathways. In a humanized skin transplant mouse model, expansion of Tregs within human skin is confirmed without engendering peripheral immunosuppression. The patch offers high-loading capacity and shelf-life stability for prospective clinical translation. By harmonizing immune responses locally, the aim is to reshape the landscape of autoimmune skin disease management.
Collapse
Affiliation(s)
- Nour Younis
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Núria Puigmal
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, 11-0236, Lebanon
| | - Andrew Badaoui
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Dongliang Zhang
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Claudia Morales-Garay
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Anis Saad
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Diane Cruz
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadim Al Rahy
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea Daccache
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Triana Huerta
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Christa Deban
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Ahmad Halawi
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - John Choi
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Pere Dosta
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Christine Guo Lian
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Natalie Artzi
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Jamil R Azzi
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Shin JM, Son S, Jung KE, Kim CD, Lee Y. Possible role of β-hydroxybutyrate in inducing inflammation in alopecia areata. Exp Dermatol 2024; 33:e15117. [PMID: 38884504 DOI: 10.1111/exd.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Alopecia areata (AA) is an autoimmune inflammatory disease characterized by non-scarring hair loss due to an immune response that targets hair follicles. The current treatment approach for AA involves the use of immunosuppressants and immunomodulators to reduce cytokine levels around affected hair follicles. Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as potential anti-inflammatory agents with diverse beneficial effects in various medical conditions. This study investigates the role of beta-hydroxybutyrate (BHB), a ketone body produced during SGLT2 inhibition, in the pathogenesis of AA. Serum BHB levels were found to be significantly elevated in patients with AA compared with healthy controls, with higher levels correlating with severity of hair loss. BHB treatment increased inflammatory cytokine production in outer root sheath (ORS) cells, mimicking the inflammatory conditions seen in AA. The results suggest that elevated BHB levels may exacerbate the inflammatory immune response in AA patients and may be associated with chronic hair loss and resistance to treatment. Serum BHB levels may serve as a potential marker of poor prognosis in patients with severe AA. Further research is needed to elucidate the precise role of BHB in the pathogenesis of AA and its implications for disease management.
Collapse
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seungjin Son
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Shin JM, Sung Y, Hong D, Jung KE, Seo YJ, Kim CD, Lee Y. Differences in activation of β-catenin in outer root sheath cells between the type of JAK inhibitor: An alternative mechanism promoting hair growth by JAK inhibitors in alopecia areata. J Dermatol Sci 2024; 114:148-150. [PMID: 38734548 DOI: 10.1016/j.jdermsci.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yeounkuk Sung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Xiong L, Zhevlakova I, West XZ, Gao D, Murtazina R, Horak A, Brown JM, Molokotina I, Podrez EA, Byzova TV. TLR2 regulates hair follicle cycle and regeneration via BMP signaling. eLife 2024; 12:RP89335. [PMID: 38483447 PMCID: PMC10939499 DOI: 10.7554/elife.89335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
The etiology of hair loss remains enigmatic, and current remedies remain inadequate. Transcriptome analysis of aging hair follicles uncovered changes in immune pathways, including Toll-like receptors (TLRs). Our findings demonstrate that the maintenance of hair follicle homeostasis and the regeneration capacity after damage depend on TLR2 in hair follicle stem cells (HFSCs). In healthy hair follicles, TLR2 is expressed in a cycle-dependent manner and governs HFSCs activation by countering inhibitory BMP signaling. Hair follicles in aging and obesity exhibit a decrease in both TLR2 and its endogenous ligand carboxyethylpyrrole (CEP), a metabolite of polyunsaturated fatty acids. Administration of CEP stimulates hair regeneration through a TLR2-dependent mechanism. These results establish a novel connection between TLR2-mediated innate immunity and HFSC activation, which is pivotal to hair follicle health and the prevention of hair loss and provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Luyang Xiong
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Irina Zhevlakova
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Xiaoxia Z West
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Detao Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Rakhilya Murtazina
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anthony Horak
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Iuliia Molokotina
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Eugene A Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
7
|
Reider IE, Lin E, Krouse TE, Parekh NJ, Nelson AM, Norbury CC. γδ T Cells Mediate a Requisite Portion of a Wound Healing Response Triggered by Cutaneous Poxvirus Infection. Viruses 2024; 16:425. [PMID: 38543790 PMCID: PMC10975054 DOI: 10.3390/v16030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Infection at barrier sites, e.g., skin, activates local immune defenses that limit pathogen spread, while preserving tissue integrity. Phenotypically distinct γδ T cell populations reside in skin, where they shape immunity to cutaneous infection prior to onset of an adaptive immune response by conventional αβ CD4+ (TCD4+) and CD8+ (TCD8+) T cells. To examine the mechanisms used by γδ T cells to control cutaneous virus replication and tissue pathology, we examined γδ T cells after infection with vaccinia virus (VACV). Resident γδ T cells expanded and combined with recruited γδ T cells to control pathology after VACV infection. However, γδ T cells did not play a role in control of local virus replication or blockade of systemic virus spread. We identified a unique wound healing signature that has features common to, but also features that antagonize, the sterile cutaneous wound healing response. Tissue repair generally occurs after clearance of a pathogen, but viral wound healing started prior to the peak of virus replication in the skin. γδ T cells contributed to wound healing through induction of multiple cytokines/growth factors required for efficient wound closure. Therefore, γδ T cells modulate the wound healing response following cutaneous virus infection, maintaining skin barrier function to prevent secondary bacterial infection.
Collapse
Affiliation(s)
- Irene E. Reider
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eugene Lin
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tracy E. Krouse
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nikhil J. Parekh
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Amanda M. Nelson
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher C. Norbury
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
8
|
Choi N, Hwang J, Kim DY, Kim J, Song SY, Sung J. Involvement of DKK1 secreted from adipose-derived stem cells in alopecia areata. Cell Prolif 2024; 57:e13562. [PMID: 37991164 PMCID: PMC10905327 DOI: 10.1111/cpr.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023] Open
Abstract
Adipose-derived stem cells (ASCs) have shown efficacy in promoting hair growth, while DKK1 inhibits the WNT pathway, which is associated with hair loss. Our study focused on investigating the expression of DKK1 in alopecia areata (AA), a condition characterised by significant increases in the DKK1 levels in human and mouse ASCs. Treatment of interferon-γ increased the expression of DKK1 via STAT3 phosphorylation in ASCs. Treatment with recombinant DKK1 resulted in a decrease of cell growth in outer root sheath cells, whereas the use of a DKK1 neutralising antibody promoted hair growth. These results indicate that ASCs secrete DKK1, playing a crucial role in the progression and development of AA. Consequently, we generated DKK1 knockout (KO) ASCs using the Crispr/Cas9 system and evaluated their hair growth-promoting effects in an AA model. The DKK1 KO in ASCs led to enhanced cell motility and reduced cellular senescence by activating the WNT signalling pathway, while it reduced the expression of inflammatory cytokines by inactivating the NF-kB pathway. As expected, the intravenous injection of DKK1-KO-ASCs in AA mice, and the treatment with a conditioned medium derived from DKK1-KO-ASCs in hair organ culture proved to be more effective compared with the use of naïve ASCs and their conditioned medium. Overall, these findings suggest that DKK1 represents a novel therapeutic target for treating AA, and cell therapy using DKK1-KO-ASCs demonstrates greater efficiency.
Collapse
Affiliation(s)
| | | | - Doo Yeong Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonSouth Korea
| | - Jino Kim
- New Hair Plastic Surgery ClinicSeoulSouth Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive SurgeryYonsei University College of MedicineSeoulSouth Korea
| | - Jong‐Hyuk Sung
- Epi Biotech Co., Ltd.IncheonSouth Korea
- College of Pharmacy, Yonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonSouth Korea
| |
Collapse
|
9
|
Shin JM, Kim KM, Choi MS, Park S, Hong D, Jung KE, Seo YJ, Kim CD, Yang H, Lee Y. The crosstalk between PTEN-induced kinase 1-mediated mitophagy and the inflammasome in the pathogenesis of alopecia areata. Exp Dermatol 2024; 33:e14844. [PMID: 37264692 DOI: 10.1111/exd.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Alopecia areata (AA) is a T-cell-mediated autoimmune disease that causes chronic, relapsing hair loss; however, its precise pathogenesis remains to be elucidated. Recent studies have provided compelling evidence of crosstalk between inflammasomes and mitophagy-a process that contributes to the removal of damaged mitochondria. Our previous studies showed that the NLR family pyrin domain containing 3 (NLRP3) inflammasome is important for eliciting and progressing inflammation in AA. In this study, we detected mitochondrial DNA damage in AA-affected scalp tissues and IFNγ and poly(I:C) treated outer root sheath (ORS) cells. In addition, IFNγ and poly(I:C) treatment increased mitochondrial reactive oxygen species (ROS) levels in ORS cells. Moreover, we showed that mitophagy induction alleviates IFNγ and poly(I:C)-induced NLRP3 inflammasome activation in ORS cells. Lastly, PTEN-induced kinase 1 (PINK1) knockdown increased NLRP3 inflammasome activation, indicating that PINK1-mediated mitophagy plays a critical role in NLRP3 inflammasome activation in ORS cells. This study supports previous studies showing that oxidative stress disrupts immune privilege status and promotes autoimmunity in AA. The results emphasize the significance of crosstalk between mitophagy and inflammasomes in the pathogenesis of AA. Finally, mitophagy factors regulating mitochondrial dysfunction and inhibiting inflammasome activation could be novel therapeutic targets for AA.
Collapse
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung Min Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Mi Soo Choi
- Department of Dermatology, Dankook University Hospital, Cheonan, Korea
| | - Sanghyun Park
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung-Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
10
|
Dainichi T, Iwata M, Kaku Y. Alopecia areata: What's new in the epidemiology, comorbidities, and pathogenesis? J Dermatol Sci 2023; 112:120-127. [PMID: 37833164 DOI: 10.1016/j.jdermsci.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Alopecia areata (AA) is a common, acquired, and nonscarring type of hair loss that affects people of every generation and is intractable in severe and relapsing cases. Patients with AA, especially those with greater scalp involvement, have poor health-related quality-of-life scores. PURPOSE Following our previous review article in the April 2017 issue of the Journal of Dermatological Science, we aim to provide a pair of review articles on recent progress in multidisciplinary approaches to AA. MAIN FINDINGS We found more than 1800 publications on AA from July 2016 to December 2022. CONCLUSIONS In this review, we focused on the latest information on the epidemiology, comorbidities, and pathogenesis of AA.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kagawa University Faculty of Medicine, Kagawa, Japan.
| | - Masashi Iwata
- Department of Dermatology, Kagawa University Faculty of Medicine, Kagawa, Japan
| | - Yo Kaku
- Department of Dermatology, Kagawa University Faculty of Medicine, Kagawa, Japan; Department of Dermatology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
11
|
Xiong L, Zhevlakova I, West XZ, Gao D, Murtazina R, Horak A, Brown JM, Molokotina I, Podrez EA, Byzova TV. TLR2 Regulates Hair Follicle Cycle and Regeneration via BMP Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553236. [PMID: 37645905 PMCID: PMC10462054 DOI: 10.1101/2023.08.14.553236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The etiology of hair loss remains enigmatic, and current remedies remain inadequate. Transcriptome analysis of aging hair follicles uncovered changes in immune pathways, including Toll-like receptors (TLRs). Our findings demonstrate that the maintenance of hair follicle homeostasis and the regeneration capacity after damage depends on TLR2 in hair follicle stem cells (HFSCs). In healthy hair follicles, TLR2 is expressed in a cycle-dependent manner and governs HFSCs activation by countering inhibitory BMP signaling. Hair follicles in aging and obesity exhibit a decrease in both TLR2 and its endogenous ligand carboxyethylpyrrole (CEP), a metabolite of polyunsaturated fatty acids. Administration of CEP stimulates hair regeneration through a TLR2-dependent mechanism. These results establish a novel connection between TLR2-mediated innate immunity and HFSC activation, which is pivotal to hair follicle health and the prevention of hair loss and provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Luyang Xiong
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Irina Zhevlakova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Xiaoxia Z. West
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Detao Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Rakhylia Murtazina
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
- Current address: Department of Biochemistry and Molecular Genetics, University of Illinois; Chicago, IL 60607, USA
| | - Anthony Horak
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - J. Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Iuliia Molokotina
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Eugene A. Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| | - Tatiana V. Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic; Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Hao L, Nam KH, Lee GJ, Kim D, Shin JM, Lee Y, Kim CD, Kim SJ, Yun SK, Park BH, Park J. SIRT1 downregulation provokes immune-inflammatory responses in hair follicle outer root sheath cells and may contribute to development of alopecia areata. J Dermatol Sci 2023:S0923-1811(23)00126-3. [PMID: 37268558 DOI: 10.1016/j.jdermsci.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Silent information regulator 1 (SIRT1), a type III histone deacetylase, is involved in various cutaneous and systemic autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and psoriasis. However, little is known about the role of SIRT1 in the development of alopecia areata (AA). OBJECTIVES This study investigated whether SIRT1 regulates the hair follicle immune system and is involved in AA pathogenesis. METHODS SIRT1 expression in human scalp tissue was analyzed using immunohistochemical staining, qPCR, and western blotting. The regulatory effect of SIRT1 was evaluated after stimulation with the double-stranded RNA mimic polyinosinic:polycytidylic acid (poly I:C) in hair follicle outer root sheath (ORS) cells and C3H/HeJ mice. RESULTS SIRT1 expression was significantly reduced in the AA scalp compared to the normal scalp. SIRT1 inhibition upregulated MHC class I polypeptide-related sequence A and UL16 binding protein 3 in hair follicle ORS cells. SIRT1 inhibition also promoted the production of Th1 cytokines (IFN-γ and TNF-α), IFN-inducible chemokines (CXCL9 and CXCL10), and T cell migration in ORS cells. Conversely, SIRT1 activation suppressed the autoreactive inflammatory responses. The counteractive effect of the immune response by SIRT1 was mediated through the deacetylation of NF-κB and phosphorylation of STAT3. CONCLUSION SIRT1 downregulation induces immune-inflammatory responses in hair follicle ORS cells and may contribute to AA development.
Collapse
Affiliation(s)
- Lihua Hao
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kyung-Hwa Nam
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, the Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, the Republic of Korea
| | - Geon-Jong Lee
- Department of Dermatology, Chungnam National University Medical School, Daejeon, the Republic of Korea
| | - Doyeon Kim
- Department of Dermatology, Chungnam National University Medical School, Daejeon, the Republic of Korea
| | - Jung-Min Shin
- Department of Dermatology, Chungnam National University Medical School, Daejeon, the Republic of Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University Medical School, Daejeon, the Republic of Korea
| | - Chang-Deok Kim
- Department of Dermatology, Chungnam National University Medical School, Daejeon, the Republic of Korea
| | - Seong-Jin Kim
- Department of Dermatology, Chonnam National University Medical School, Kwangju, the Republic of Korea
| | - Seok-Kweon Yun
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, the Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, the Republic of Korea
| | - Byung-Hyun Park
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, the Republic of Korea; Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, the Republic of Korea
| | - Jin Park
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, the Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, the Republic of Korea.
| |
Collapse
|
13
|
Shin JM, Lee YY, Hong D, Jung KE, Seo YJ, Kim CD, Yang H, Lee Y. Baricitinib Attenuates IFN-γ and Polyinosinic:polycytidylic Acid‒Induced Mitochondrial Damage and Inflammasome Activation in Human Keratinocytes. J Invest Dermatol 2023; 143:513-517.e2. [PMID: 36037928 DOI: 10.1016/j.jid.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Yoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Tsai J, Gori S, Alt J, Tiwari S, Iyer J, Talwar R, Hinsu D, Ahirwar K, Mohanty S, Khunt C, Sutariya B, Jani K, Venkatasubbaiah V, Patel A, Meghapara J, Joshi K, Sahu R, Rana V, Nigade P, Talluri RS, Murty KVSN, Joshi K, Ramanathan V, Li A, Islam N, Snajdr I, Majer P, Rais R, Slusher BS, Garza LA. Topical SCD-153, a 4-methyl itaconate prodrug, for the treatment of alopecia areata. PNAS NEXUS 2023; 2:pgac297. [PMID: 36712931 PMCID: PMC9832969 DOI: 10.1093/pnasnexus/pgac297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Alopecia areata is a chronic hair loss disorder that involves autoimmune disruption of hair follicles by CD8+ T cells. Most patients present with patchy hair loss on the scalp that improves spontaneously or with topical and intralesional steroids, topical minoxidil, or topical immunotherapy. However, recurrence of hair loss is common, and patients with extensive disease may require treatment with oral corticosteroids or oral Janus kinase (JAK) inhibitors, both of which may cause systemic toxicities with long-term use. Itaconate is an endogenous molecule synthesized in macrophages that exerts anti-inflammatory effects. To investigate the use of itaconate derivatives for treating alopecia areata, we designed a prodrug of 4-methyl itaconate (4-MI), termed SCD-153, with increased lipophilicity compared to 4-MI (CLogP 1.159 vs. 0.1442) to enhance skin and cell penetration. Topical SCD-153 formed 4-MI upon penetrating the stratum corneum in C57BL/6 mice and showed low systemic absorption. When added to human epidermal keratinocytes stimulated with polyinosinic-polycytidylic acid (poly I:C) or interferon (IFN)γ, SCD-153 significantly attenuated poly I:C-induced interleukin (IL)-6, Toll-like receptor 3, IL-1β, and IFNβ expression, as well as IFNγ-induced IL-6 expression. Topical application of SCD-153 to C57BL/6 mice in the resting (telogen) phase of the hair cycle induced significant hair growth that was statistically superior to vehicle (dimethyl sulfoxide), the less cell-permeable itaconate analogues 4-MI and dimethyl itaconate, and the JAK inhibitor tofacitinib. Our results suggest that SCD-153 is a promising topical candidate for treating alopecia areata.
Collapse
Affiliation(s)
- Jerry Tsai
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sadakatali Gori
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sandhya Tiwari
- In Vitro Biology, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Jitesh Iyer
- In Vitro Biology, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Rashmi Talwar
- In Vitro Biology, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Denish Hinsu
- Preclinical Pharmacology, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Ahmedabad, Gandhinagar 382355, India
| | - Swayam Mohanty
- Preclinical Pharmacology, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Chintan Khunt
- Preclinical Pharmacology, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Brijesh Sutariya
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Kaushal Jani
- Preclinical Pharmacology, Sun Pharma Advanced Research Company, Savli, 391770, India
| | | | - Ashok Patel
- Drug Metabolism and Pharmacokinetics, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Jasmin Meghapara
- Drug Metabolism and Pharmacokinetics, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Kaushal Joshi
- Drug Metabolism and Pharmacokinetics, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Rajanikanta Sahu
- Drug Metabolism and Pharmacokinetics, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Vijay Rana
- Drug Metabolism and Pharmacokinetics, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Prashant Nigade
- Drug Metabolism and Pharmacokinetics, Sun Pharma Advanced Research Company, Savli, 391770, India
| | - Ravi S Talluri
- Clinical Pharmacology, Sun Pharma Advanced Research Company, Mahakali, Mumbai 400093, India
| | | | - Kiritkumar Joshi
- Medicinal Chemistry, Sun Pharma Advanced Research Company, Savli 391770, India
| | - Vikram Ramanathan
- Translational Development, Sun Pharma Advanced Research Company, Savli 391770, India
| | - Ang Li
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nasif Islam
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ivan Snajdr
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague 166 10, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague 166 10, Czech Republic
| | - Rana Rais
- To whom correspondence should be addressed:
| | | | | |
Collapse
|
15
|
Alhanshali L, Buontempo MG, Lo Sicco KI, Shapiro J. Alopecia Areata: Burden of Disease, Approach to Treatment, and Current Unmet Needs. Clin Cosmet Investig Dermatol 2023; 16:803-820. [PMID: 37025396 PMCID: PMC10072216 DOI: 10.2147/ccid.s376096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/11/2023] [Indexed: 04/08/2023]
Abstract
Alopecia areata is an autoimmune hair loss disorder with variations in distribution, duration, and severity. The disease is chronic and often follows an unpredictable course, frequently leading to stress and anxiety for those who suffer from it. Throughout the years more knowledge has been gained regarding pathogenesis, diagnostic tools, impact on quality of life, as well as treatment strategies for alopecia areata. However, challenges in treating and alleviating the burden of disease remain. In this article, we discuss updates regarding the pathogenesis and treatment of alopecia areata and highlight unmet needs of the condition, including a review of limitations of current treatments, accessibility to management strategies, and the need for disease awareness and advocacy.
Collapse
Affiliation(s)
- Lina Alhanshali
- Department of Dermatology, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Michael G Buontempo
- Department of Dermatology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Kristen I Lo Sicco
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jerry Shapiro
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Correspondence: Jerry Shapiro, The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, 240 East 38th Street, 12th Floor, New York, NY, 10016, USA, Email
| |
Collapse
|
16
|
Ex Vivo Treatment with Allogenic Mesenchymal Stem Cells of a Healthy Donor on Peripheral Blood Mononuclear Cells of Patients with Severe Alopecia Areata: Targeting Dysregulated T Cells and the Acquisition of Immunotolerance. Int J Mol Sci 2022; 23:ijms232113228. [PMID: 36362015 PMCID: PMC9655710 DOI: 10.3390/ijms232113228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Alopecia areata (AA) is an autoimmune condition related to the collapse of the immune privilege of hair follicles. Certain AA populations present severe clinical manifestations, such as total scalp hair or body hair loss and a treatment refractory property. The aim of this study was to assess the effects of allogenic human mesenchymal stem cells (hMSCs) from healthy donors on the peripheral blood mononuclear cells (PBMCs) of severe AA patients, with a focus on the change in the cell fraction of Th1, Th17, and Treg cells and immunomodulatory functions. PBMCs of 10 AA patients and eight healthy controls were collected. Levels of Th17, Th1, and Treg subsets were determined via flow cytometry at baseline, activation status, and after co-culturing with hMSCs. All participants were severe AA patients with SALT > 50 and with a long disease duration. While the baseline Th1 and Treg levels of AA patients were comparable to those of healthy controls, their Th17 levels were significantly lower than those of the controls. When stimulated, the levels of CD4+IFN-γ+ T cells of the AA patients rose sharply compared to the baseline, which was not the case in those of healthy controls. The cell fraction of CD4+Foxp3+ regulatory T cells also abruptly increased in AA patients only. Co-culturing with allogenic hMSCs in activated AA PBMCs slightly suppressed the activation levels of CD4+INF-γ+ T cells, whereas it significantly induced the differentiation of CD4+Foxp3+ regulatory T cells. However, these changes were not prominent in the PBMCs of health controls. To examine the pathomechanisms, PBMCs of healthy donors were treated with IFN-γ to induce AA-like environment and then treated with allogenic grants and compared with ruxolitinib as a positive treatment control. hMSC treatment was shown to significantly inhibit the mRNA levels of proinflammatory cytokines, such as IFN-γ, TNF-α, IL-1α, IL-2R, IL-15, and IL-18, and chemokines, such as CCR7 and CCR10, in IFN-treated PBMCs. Interestingly, hMSCs suppressed the activation of JAK/STAT signaling by IFN in PBMCs with an effect that was comparable to that of ruxolitinib. Furthermore, the hMSC treatment showed stronger efficacy in inducing Foxp3, IL-10, and TGF-β mRNA transcription than ruxolitinib in IFN-treated PBMCs. This study suggests that allogenic hMSC treatments have therapeutic potential to induce immune tolerance and anti-inflammatory effects in severe AA patients.
Collapse
|
17
|
Lensing M, Jabbari A. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Front Immunol 2022; 13:955035. [PMID: 36110853 PMCID: PMC9470217 DOI: 10.3389/fimmu.2022.955035] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Alopecia Areata (AA) is a common autoimmune disease characterized by non-scarring hair loss ranging from patches on the scalp to complete hair loss involving the entire body. Disease onset is hypothesized to follow the collapse of immune privilege of the hair follicle, which results in an increase in self-peptide/MHC expression along the follicular epithelium. Hair loss is associated with infiltration of the hair follicle with putatively self-reactive T cells. This process is thought to skew the hair follicle microenvironment away from a typically homeostatic immune state towards one of active inflammation. This imbalance is mediated in part by the dominating presence of specific cytokines. While interferon-γ (IFNγ) has been identified as the key player in AA pathogenesis, many other cytokines have also been shown to play pivotal roles. Mechanistic studies in animal models have highlighted the contribution of common gamma chain (γc) cytokines such as IL-2, IL-7, and IL-15 in augmenting disease. IFNγ and γc cytokines signal through pathways involving receptor activation of Janus kinases (JAKs) and signal transducers and activators of transcription (STATs). Based on these findings, JAK/STAT pathways have been targeted for the purposes of therapeutic intervention in the clinical setting. Case reports and series have described use of small molecule JAK inhibitors leading to hair regrowth among AA patients. Furthermore, emerging clinical trial results show great promise and position JAK inhibitors as a treatment strategy for patients with severe or recalcitrant disease. Demonstrated efficacy from large-scale clinical trials of the JAK inhibitor baricitinib led to the first-in-disease FDA-approved treatment for AA in June of 2022. This review aims to highlight the JAK/STAT signaling pathways of various cytokines involved in AA and how targeting those pathways may impact disease outcomes in both laboratory and clinical settings.
Collapse
Affiliation(s)
- Maddison Lensing
- Department of Dermatology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
- Iowa City Veterans Affairs (VA) Medical Center, Iowa City, IA, United States
- *Correspondence: Ali Jabbari,
| |
Collapse
|
18
|
Wu M, Xu C, Jiang J, Xu S, Xiong J, Fan X, Ji K, Zhao Y, Ni H, Wang Y, Liu H, Xia Z. JAM-A facilitates hair follicle regeneration in Alopecia Areata through functioning as ceRNA to protect VCAN expression in dermal papilla cells. PRECISION CLINICAL MEDICINE 2022; 5:pbac020. [PMID: 36132055 PMCID: PMC9486988 DOI: 10.1093/pcmedi/pbac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The dermal papilla cells in hair follicles function as critical regulators of hair growth. In particular, alopecia areata (AA) is closely related to the malfunctioning of the human dermal papilla cells (hDPCs). Thus, identifying the regulatory mechanism of hDPCs is important in inducing hair follicle (HF) regeneration in AA patients. Recently, growing evidence has indicated that 3′ untranslated regions (3′ UTR) of key genes may participate in the regulatory circuitry underlying cell differentiation and diseases through a so-called competing endogenous mechanism, but none have been reported in HF regeneration. Here, we demonstrate that the 3′ UTR of junctional adhesion molecule A (JAM-A) could act as an essential competing endogenous RNA to maintain hDPCs function and promote HF regeneration in AA. We showed that the 3′ UTR of JAM-A shares many microRNA (miRNA) response elements, especially miR-221–3p, with versican (VCAN) mRNA, and JAM-A 3′ UTR could directly modulate the miRNA-mediated suppression of VCAN in self-renewing hDPCs. Furthermore, upregulated VCAN can in turn promote the expression level of JAM-A. Overall, we propose that JAM-A 3′ UTR forms a feedback loop with VCAN and miR-221–3p to regulate hDPC maintenance, proliferation, and differentiation, which may lead to developing new therapies for hair loss.
Collapse
Affiliation(s)
- Minjuan Wu
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
- Burns Institute of People's Liberation Army, Changhai Hospital, Naval Medical University , Shanghai, 200433 , China
| | - Chen Xu
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University , 415th Feng Yang Road, Shanghai 200003 , China
| | - Junfeng Jiang
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Sha Xu
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Jun Xiong
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Xiaoming Fan
- Burns Institute of People's Liberation Army, Changhai Hospital, Naval Medical University , Shanghai, 200433 , China
| | - Kaihong Ji
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Yunpeng Zhao
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Haitao Ni
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Yue Wang
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
- Translational Medicine Center, Naval Medical University , 800th Xiangyin Road, Shanghai 200433 , China
| | - Houqi Liu
- Department of Histology and Embryology, Naval Medical University , Shanghai, 200433 , China
| | - Zhaofan Xia
- Burns Institute of People's Liberation Army, Changhai Hospital, Naval Medical University , Shanghai, 200433 , China
| |
Collapse
|
19
|
Connell SJ, Jabbari A. The current state of knowledge of the immune ecosystem in alopecia areata. Autoimmun Rev 2022; 21:103061. [PMID: 35151885 PMCID: PMC9018517 DOI: 10.1016/j.autrev.2022.103061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Alopecia areata (AA) is an autoimmune disease that affects approximately 2% of the general population. Patients with AA most commonly present with one or more patches of hair loss on the scalp in defined circular areas. A fraction of patients progress to more severe forms of the disease, in some cases with involvement of all body surfaces. The healthy anagen stage hair follicle is considered an immune privileged site, described as an environment that suppresses inflammatory immune responses. However, in AA, this immune privileged state collapses and marks the hair follicle as a target for the immune system, resulting in peri- and intrafollicular infiltration by lymphocytes. The complexity of the inflammatory ecosystem of the immune response to the hair follicle, and the relationships between the cellular and soluble participants, in AA remains incompletely understood. Many studies have demonstrated the presence of various immune cells around diseased hair follicles; however, often little is known about their respective contributions to AA pathogenesis. Furthering our understanding of the mechanisms of disease in AA is essential for the novel identification of targeted therapeutics that are efficacious and have few unintended effects.
Collapse
|
20
|
Her Y, Lee TK, Sim H, Lee JC, Kim DW, Choi SY, Hong JK, Lee JW, Kim JD, Won MH, Kim SS. Pinus thunbergii bark extract rich in flavonoids promotes hair growth in dorsal skin by regulating inflammatory cytokines and increasing growth factors in mice. Mol Med Rep 2022; 25:100. [PMID: 35088884 PMCID: PMC8822878 DOI: 10.3892/mmr.2022.12616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Korean maritime pine bark (Pinus thunbergii) has been used as an alternative medicine due to its beneficial properties, including anti-inflammatory effects. To date, the anti-inflammatory and hair growth-promoting effects of Pinus densiflora bark extract have remained elusive. Therefore, in the present study, Pinus thunbergii bark was extracted with pure water (100°C) and the extract was examined to determine its polyphenol and flavonoid content. C57BL/6 mice were used to assess the effects of the extract to promote hair growth. The extract (1, 2 and 4%) was topically applied onto shaved dorsal skin and hair growth was observed for 17 days. A significant increase in hair growth was observed with 2 and 4% extract. Based on this finding, the optimal dose of the extract for effective hair growth promotion was determined to be 2%. The mechanisms of hair growth promotion were investigated via immunohistochemical analysis of changes in inflammatory cytokines and growth factors in the hair follicles following treatment with 2% extract. The treatment reduced the levels of TNF-α and IL-1β, which are pro-inflammatory cytokines, while it enhanced the levels of IL-4 and IL-13, which are anti-inflammatory cytokines, in the hair follicles. In addition, elevated insulin-like growth factor I and vascular epidermal growth factor were detected in hair follicles following treatment. Based on these findings, it was suggested that the extract of Pinus thunbergii bark may be utilized for hair loss prevention and/or hair growth promotion.
Collapse
Affiliation(s)
- Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Gangnung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jun Kee Hong
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Ji-Won Lee
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sung-Su Kim
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| |
Collapse
|
21
|
Hashimoto K, Yamada Y, Sekiguchi K, Mori S, Matsumoto T. NLRP3 inflammasome activation contributes to development of alopecia areata in C3H/HeJ mice. Exp Dermatol 2021; 31:133-142. [PMID: 34270818 PMCID: PMC9291919 DOI: 10.1111/exd.14432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/31/2022]
Abstract
Alopecia areata (AA) is an autoimmune non‐scarring hair loss disease. Recently, several reports have suggested that innate immune systems such as interferon‐α (IFN‐α)‐producing plasmacytoid dendritic cells and NOD‐like receptor family pyrin domain‐containing protein 3 (NLRP3) inflammasomes play a role in the pathogenesis of AA. However, critical studies about their involvement in the initiation of AA have not yet been reported. Therefore, we investigated the expression of innate immune cytokines in serum and skin, and examined the effect of a selective NLRP3 inhibitor, MCC950, on AA in C3H/HeJ mice, induced by transferring cultured skin‐draining lymph node cells. IFN‐α production was upregulated in lesions of AA‐affected mice, and interleukin‐1β in serum and skin was highly expressed before onset as well as postonset. Furthermore, MCC950 treatment prevented AA development and promoted hair growth in AA mouse models by reducing NLRP3 signalling and Th1/Tc1 chemokines and cytokines in the skin. These results suggest that NLRP3 inflammasome contributes to AA onset and chronicity, and NLRP3 inhibitor may be a potential therapeutic agent for AA.
Collapse
Affiliation(s)
| | | | | | - Sachi Mori
- Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan
| | | |
Collapse
|
22
|
Gilhar A, Laufer Britva R, Keren A, Paus R. Mouse Models of Alopecia Areata: C3H/HeJ Mice Versus the Humanized AA Mouse Model. J Investig Dermatol Symp Proc 2020; 20:S11-S15. [PMID: 33099377 DOI: 10.1016/j.jisp.2020.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The C3H/HeJ model has long dominated basic alopecia areata (AA) in vivo research and has been used as proof-of-principle that Jak inhibitors are suitable agents for AA management in vivo. However, its histologic features are not typical of human AA, and it is questionable whether it is sufficiently clinically predictive for evaluating the therapeutic effects of candidate AA agents. Instead, the humanized mouse model of AA has been used to functionally demonstrate the role of key immune cells in AA pathogenesis and to discover human-specific pharmacologic targets in AA management. Therefore, we advocate the use of both models in future preclinical AA research.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, United Kingdom; Monasterium Laboratory Skin & Hair Research Solutions GmbH, Muenster, Germany
| |
Collapse
|
23
|
Shin JM, Jung KE, Yim SH, Rao B, Hong D, Seo YJ, Kim CD, Lee Y. Putative therapeutic mechanisms of simvastatin in the treatment of alopecia areata. J Am Acad Dermatol 2020; 84:782-784. [PMID: 32278796 DOI: 10.1016/j.jaad.2020.03.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung-Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Su-Hyuk Yim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Babar Rao
- Department of Dermatology, Rutgers Robert Wood Johnson Medical School, Somerset, New Jersey; Department of Dermatology, Weill Cornell Medical Center, Somerset, New Jersey
| | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea; Department of Dermatology, Rutgers Robert Wood Johnson Medical School, Somerset, New Jersey.
| |
Collapse
|
24
|
Gilhar A, Laufer-Britva R, Keren A, Paus R. Frontiers in alopecia areata pathobiology research. J Allergy Clin Immunol 2019; 144:1478-1489. [PMID: 31606262 DOI: 10.1016/j.jaci.2019.08.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
This current review explores selected and as yet insufficiently investigated frontiers in current alopecia areata (AA) pathobiology research, with an emphasis on potential "new" players in AA pathobiology that deserve more systematic exploration and therapeutic targeting. Indeed, new evidence suggests that CD8+ T cells, which have long been thought to be the central players in AA pathobiology, are not the only drivers of disease. Instead, subsets of natural killer (NK) and so-called "unconventional" T cells (invariant NK T cells, γδ T cells, classic NK cells, and type 1 innate lymphoid cells), all of which can produce large amounts of IFN-γ, might also drive AA pathobiology independent of classical, autoantigen-dependent CD8+ T-cell functions. Another important new frontier is the role of regulatory lymphocyte subsets, such as regulatory T cells, γδ regulatory T cells, NKT10 cells, and perifollicular mast cells, in maintaining physiologic hair follicle immune privilege (IP); the extent to which these functions are defective in patients with AA; and how this IP-protective role could be restored therapeutically in patients with established AA. Broadening our AA research horizon along the lines suggested above promises not only to open the door to innovative and even more effective immunotherapy strategies for AA but will also likely be relevant for other autoimmune disorders in which pathobiology, ectopic MHC class I expression, and IP collapse play an important role.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Dr Philipp Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Fla; Dermatology Research Centre, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| |
Collapse
|
25
|
Howell MD, Kuo FI, Smith PA. Targeting the Janus Kinase Family in Autoimmune Skin Diseases. Front Immunol 2019; 10:2342. [PMID: 31649667 PMCID: PMC6794457 DOI: 10.3389/fimmu.2019.02342] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Autoimmune skin diseases are characterized by significant local and systemic inflammation that is largely mediated by the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. Advanced understanding of this pathway has led to the development of targeted inhibitors of Janus kinases (JAKinibs). As a class, JAK inhibitors effectively treat a multitude of hematologic and inflammatory diseases. Growing evidence suggests that JAK inhibitors are efficacious in atopic dermatitis, alopecia areata, psoriasis, and vitiligo. Additional evidence suggests that JAK inhibition might be broadly useful in dermatology, with early reports of efficacy in several other conditions. JAK inhibitors can be administered orally or used topically and represent a promising new class of medications. Here we review the evolving data on the role of the JAK-STAT pathway in inflammatory dermatoses and the potential therapeutic benefit of JAK-STAT antagonism.
Collapse
Affiliation(s)
| | - Fiona I Kuo
- Incyte Corporation, Wilmington, DE, United States
| | - Paul A Smith
- Incyte Corporation, Wilmington, DE, United States
| |
Collapse
|