1
|
Farrim MI, Gomes A, Menezes R, Milenkovic D. (Poly)phenols and diabetes: From effects to mechanisms by systematic multigenomic analysis. Ageing Res Rev 2024; 102:102557. [PMID: 39490618 DOI: 10.1016/j.arr.2024.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Diabetes is a chronic and multifactorial metabolic disease with increasing numbers of patients worldwide, characterized by loss of pancreatic β-cell mass and function with subsequent insulin deficiency. Thus, restoring functional β-cells could significantly impact disease management. The beneficial effects of natural compounds, namely (poly)phenols, in diabetes have gained increasing interest, due to their pleiotropic actions in several cellular processes, including in glucose homeostasis. These compounds are able to modulate nutri(epi)genomic mechanisms by interacting with cell signaling proteins and transcription factors (TFs). However, the underlying mechanisms of action, particularly of (poly)phenol metabolites resulting from digestion and colonic microbiota action, are yet to be elucidated. This study explored the multigenomic effects of (poly)phenols and their metabolites to uncover modulatory networks and mechanisms linked to diabetes. Published studies on gene expression alterations modulated by (poly)phenolic compounds or (poly)phenol-rich extracts were integrated, encompassing studies conducted on individuals with diabetes, animal models mimicking diabetes, and pancreatic β-cell lines. Bioinformatic analysis identified differentially expressed genes and potential regulatory factors, with roles in cell signaling pathways (FoxO, AMPK, p53), endocrine resistance, immune system pathways, apoptosis, and cellular senescence. Interestingly, in silico 3D docking analyses revealed potential interactions between key TFs (FOXO1, PPARG, SIRT1, and MAFA) and some metabolites. Apigenin, luteolin, and naringenin glucuronide forms showed the best binding capacity to SIRT1. The integrative analysis of (poly)phenol metabolites data highlights the potential of these molecules for nutraceutical/pharmaceutical development aimed at managing diabetes whose incidence increases with age.
Collapse
Affiliation(s)
- Maria Inês Farrim
- Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal; Universidad de Alcalá, Escuela de Doctorado, Madrid, Spain; Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Andreia Gomes
- Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Regina Menezes
- Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal.
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Villalva M, Martínez-García JJ, Jaime L, Santoyo S, Pelegrín P, Pérez-Jiménez J. Polyphenols as NLRP3 inflammasome modulators in cardiometabolic diseases: a review of in vivo studies. Food Funct 2023; 14:9534-9553. [PMID: 37855750 DOI: 10.1039/d3fo03015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are components of the innate immune system, important in coordinating the inflammatory response. Among them, NLRP3 can form inflammasomes, multiprotein complexes activating the inflammatory caspase-1 and leading, through a cell death-mediated signaling cascade, to the release of several proinflammatory cytokines. Dietary polyphenols, plant secondary metabolites, have been reported to exhibit anti-inflammatory properties, although studies have focused most on their effect on the expression of the final circulating cytokines rather than on the upstream signals activating the NLRP3 inflammasome. The present review explores current knowledge on the potential of dietary polyphenols to regulate the whole NLRP3 inflammasome pathway, in the context of cardiometabolic pathologies (obesity, cardiovascular diseases, type 2 diabetes and non-alcoholic fatty liver disease), based on in vivo studies. A clear tendency towards a decrease in the expression of the whole NLRP3 inflammasome signaling pathway when several animal models were supplemented with polyphenols was observed, commonly showing a dose-response effect; these modifications were concomitant with clinical improvements in the pathologies. Nevertheless, the diversity of doses used, the disparity in polyphenol structures tested and, particularly, the scarce clinical trials and exploration of mechanisms of action show the need to develop further research on the topic.
Collapse
Affiliation(s)
- Marisol Villalva
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.
- Institute of Food Science Research (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - Juan José Martínez-García
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science Research (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Saavedra D, Añé-Kourí AL, Barzilai N, Caruso C, Cho KH, Fontana L, Franceschi C, Frasca D, Ledón N, Niedernhofer LJ, Pereira K, Robbins PD, Silva A, Suarez GM, Berghe WV, von Zglinicki T, Pawelec G, Lage A. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immun Ageing 2023; 20:25. [PMID: 37291596 PMCID: PMC10248980 DOI: 10.1186/s12979-023-00352-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Aging is a gradual, continuous series of natural changes in biological, physiological, immunological, environmental, psychological, behavioral, and social processes. Aging entails changes in the immune system characterized by a decrease in thymic output of naïve lymphocytes, an accumulated chronic antigenic stress notably caused by chronic infections such as cytomegalovirus (CMV), and immune cell senescence with acquisition of an inflammatory senescence-associated secretory phenotype (SASP). For this reason, and due to the SASP originating from other tissues, aging is commonly accompanied by low-grade chronic inflammation, termed "inflammaging". After decades of accumulating evidence regarding age-related processes and chronic inflammation, the domain now appears mature enough to allow an integrative reinterpretation of old data. Here, we provide an overview of the topics discussed in a recent workshop "Aging and Chronic Inflammation" to which many of the major players in the field contributed. We highlight advances in systematic measurement and interpretation of biological markers of aging, as well as their implications for human health and longevity and the interventions that can be envisaged to maintain or improve immune function in older people.
Collapse
Affiliation(s)
- Danay Saavedra
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba.
| | - Ana Laura Añé-Kourí
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Nir Barzilai
- Albert Einstein College of Medicine, Bronx, United States
| | - Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Kyung-Hyun Cho
- LipoLab, Yeungnam University, Gyeongsan, Republic of Korea
- Raydel Research Institute, Medical Innovation Complex, Seoul, Republic of Korea
| | - Luigi Fontana
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nuris Ledón
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | | | - Karla Pereira
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Paul D Robbins
- University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexa Silva
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Gisela M Suarez
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), University of Antwerp, Wilrijk, 2610, Belgium
- Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, 2610, Belgium
| | - Thomas von Zglinicki
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Agustín Lage
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| |
Collapse
|
4
|
Sousa-Filho CPB, Silva V, Bolin AP, Rocha ALS, Otton R. Green tea actions on miRNAs expression – An update. Chem Biol Interact 2023; 378:110465. [PMID: 37004950 DOI: 10.1016/j.cbi.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
Compounds derived from plants have been widely studied in the context of metabolic diseases and associated clinical conditions. In this regard, although the effects of Camellia sinensis plant, from which various types of teas, such as green tea, originate, have been vastly reported in the literature, the mechanisms underlying these effects remain elusive. A deep search of the literature showed that green tea's action in different cells, tissues, and diseases is an open field in the research of microRNAs (miRNAs). miRNAs are important communicator molecules between cells in different tissues implicated in diverse cellular pathways. They have emerged as an important linkage between physiology and pathophysiology, raising the issue of polyphenols can act also by changing miRNA expression. miRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. Therefore, the aim of this review is to present the studies that show the main compounds of green tea modulating the expression of miRNAs in inflammation, adipose tissue, skeletal muscle, and liver. We provide an overview of a few studies that have tried to demonstrate the role of miRNAs associated with the beneficial effects of compounds from green tea. We have emphasized that there is still a considerable gap in the literature investigating the role and likely involvement of miRNAs in the extensive beneficial health effects of green tea compounds already described, indicating miRNAs as potential polyphenols' mediators with a promising field to be investigated.
Collapse
Affiliation(s)
| | - Victoria Silva
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Rosemari Otton
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.
| |
Collapse
|
5
|
Mechanistic insights into dietary (poly)phenols and vascular dysfunction-related diseases using multi-omics and integrative approaches: Machine learning as a next challenge in nutrition research. Mol Aspects Med 2023; 89:101101. [PMID: 35728999 DOI: 10.1016/j.mam.2022.101101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023]
Abstract
Dietary (poly)phenols have been extensively studied for their vasculoprotective effects and consequently their role in preventing or delaying onsets of cardiovascular and metabolic diseases. Even though early studies have ascribed the vasculoprotective properties of (poly)phenols primarily on their putative free radical scavenging properties, recent data indicate that in biological systems, (poly)phenols act primarily through genomic and epigenomic mechanisms. The molecular mechanisms underlying their health properties are still not well identified, mainly due to the use of physiologically non-relevant conditions (native molecules or extracts at high concentrations, rather than circulating metabolites), but also due to the use of targeted genomic approaches aiming to evaluate the effect only on few specific genes, thus preventing to decipher detailed molecular mechanisms involved. The use of state-of-the-art untargeted analytical methods represents a significant breakthrough in nutrigenomics, as these methods enable detailed insights into the effects at each specific omics level. Moreover, the implementation of multi-omics approaches allows integration of different levels of regulation of cellular functions, to obtain a comprehensive picture of the molecular mechanisms of action of (poly)phenols. In combination with bioinformatics and the methods of machine learning, multi-omics has potential to make a huge contribution to the nutrition science. The aim of this review is to provide an overview of the use of the omics, multi-omics, and integrative approaches in studying the vasculoprotective properties of dietary (poly)phenols and address the potentials for use of the machine learning in nutrigenomics.
Collapse
|
6
|
Milenkovic D, Rodriguez‐Mateos A, Lucosz M, Istas G, Declerck K, Sansone R, Deenen R, Köhrer K, Corral‐Jara KF, Altschmied J, Haendeler J, Kelm M, Berghe WV, Heiss C. Flavanol Consumption in Healthy Men Preserves Integrity of Immunological-Endothelial Barrier Cell Functions: Nutri(epi)genomic Analysis. Mol Nutr Food Res 2022; 66:e2100991. [PMID: 35094491 PMCID: PMC9787825 DOI: 10.1002/mnfr.202100991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/16/2022] [Indexed: 12/30/2022]
Abstract
SCOPE While cocoa flavanol (CF) consumption improves cardiovascular risk biomarkers, molecular mechanisms underlying their protective effects are not understood. OBJECTIVE To investigate nutri(epi)genomic effects of CF and identify regulatory networks potential mediating vascular health benefits. METHODS AND RESULTS Twenty healthy middle-aged men consume CF (bi-daily 450 mg) or control drinks for 1 month. Microarray analysis identifies 2235 differentially expressed genes (DEG) involved in processes regulating immune response, cell adhesion, or cytoskeleton organization. Distinct patterns of DEG correlate with CF-related changes in endothelial function, arterial stiffness, and blood pressure. DEG profile negatively correlates with expression profiles of cardiovascular disease patients. CF modulated DNA methylation profile of genes implicates in cell adhesion, actin cytoskeleton organization, or cell signaling. In silico docking analyses indicate that CF metabolites have the potential of binding to cell signaling proteins and transcription factors. Incubation of plasma obtained after CF consumption decrease monocyte to endothelial adhesion and dose-dependently increase nitric oxide-dependent chemotaxis of circulating angiogenic cells further validating the biological functions of CF metabolites. CONCLUSION In healthy humans, CF consumption may mediate vascular protective effects by modulating gene expression and DNA methylation towards a cardiovascular protective effect, in agreement with clinical results, by preserving integrity of immunological-endothelial barrier functions.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Department of NutritionUniversity of California DavisDavisCA95616USA
- INRAEUNHUniversité Clermont AuvergneClermont‐FerrandF‐63000France
| | - Ana Rodriguez‐Mateos
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Department of Nutritional SciencesSchool of Life Course and Population SciencesFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Margarete Lucosz
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Geoffrey Istas
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Department of Nutritional SciencesSchool of Life Course and Population SciencesFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Ken Declerck
- PPESDepartment of Biomedical SciencesUniversity of Antwerp (UA)WilrijkBelgium
| | - Roberto Sansone
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - René Deenen
- Biological and Medical Research Center (BMFZ)Heinrich Heine UniversityDüsseldorfGermany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ)Heinrich Heine UniversityDüsseldorfGermany
| | | | - Joachim Altschmied
- Environmentally‐induced Cardiovascular DegenerationClinical Chemistry and Laboratory DiagnosticsMedical FacultyUniversity Hospital and Heinrich‐Heine UniversityDüsseldorfGermany
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | - Judith Haendeler
- Environmentally‐induced Cardiovascular DegenerationClinical Chemistry and Laboratory DiagnosticsMedical FacultyUniversity Hospital and Heinrich‐Heine UniversityDüsseldorfGermany
| | - Malte Kelm
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Wim Vanden Berghe
- PPESDepartment of Biomedical SciencesUniversity of Antwerp (UA)WilrijkBelgium
| | - Christian Heiss
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Clinical Medicine SectionDepartment of Clinical and Experimental MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- Department of Vascular MedicineSurrey and Sussex NHS Healthcare TrustEast Surrey HospitalRedhillUK
| |
Collapse
|
7
|
Systematic analysis of nutrigenomic effects of polyphenols related to cardiometabolic health in humans - Evidence from untargeted mRNA and miRNA studies. Ageing Res Rev 2022; 79:101649. [PMID: 35595185 DOI: 10.1016/j.arr.2022.101649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular and metabolic disorders present major causes of mortality in the ageing population. Polyphenols present in human diets possess cardiometabolic protective properties, however their underlying molecular mechanisms in humans are still not well identified. Even though preclinical and in vitro studies advocate that these bioactives can modulate gene expression, most studies were performed using targeted approaches. With the objective to decipher the molecular mechanisms underlying polyphenols cardiometabolic preventive properties in humans, we performed integrative multi-omic bioinformatic analyses of published studies which reported improvements of cardiometabolic risk factors following polyphenol intake, together with genomic analyses performed using untargeted approach. We identified 5 studies within our criteria and nearly 5000 differentially expressed genes, both mRNAs and miRNAs, in peripheral blood cells. Integrative bioinformatic analyses (e.g. pathway and gene network analyses, identification of transcription factors, correlation of gene expression profiles with those associated with diseases and drug intake) revealed that these genes are involved in the processes such as cell adhesion and mobility, immune system, metabolism, or cell signaling. We also identified 27 miRNAs known to regulate processes such as cell cytoskeleton, chemotaxis, cell signaling, or cell metabolism. Gene expression profiles negatively correlated with expression profiles of cardiovascular disease patients, while a positive correlation was observed with gene expression profiles following intake of drugs against cardiometabolic disorders. These analyses further advocate for health protective effects of these bioactives against age-associated diseases. In conclusion, polyphenols can exert multi-genomic modifications in humans and use of untargeted methods coupled with bioinformatic analyses represent the best approach to decipher molecular mechanisms underlying healthy-ageing effects of these bioactives.
Collapse
|
8
|
Corral-Jara KF, Nuthikattu S, Rutledge J, Villablanca A, Fong R, Heiss C, Ottaviani JI, Milenkovic D. Structurally related (-)-epicatechin metabolites and gut microbiota derived metabolites exert genomic modifications via VEGF signaling pathways in brain microvascular endothelial cells under lipotoxic conditions: Integrated multi-omic study. J Proteomics 2022; 263:104603. [PMID: 35568144 DOI: 10.1016/j.jprot.2022.104603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Dysfunction of blood-brain barrier formed by endothelial cells of cerebral blood vessels, plays a key role in development of neurodegenerative disorders. Epicatechin exerts vasculo-protective effects through genomic modifications, however molecular mechanisms of action, particularly on brain endothelial cells, are largely unknow. This study aimed to use a multi-omic approach (transcriptomics of mRNA, miRNAs and lncRNAs, and proteomics), to provide novel in-depth insights into molecular mechanisms of how metabolites affect brain endothelial cells under lipid-stressed (as a model of BBB dysfunction) at physiological concentrations. We showed that metabolites can simultaneously modulate expression of protein-coding, non-coding genes and proteins. Integrative analysis revealed interactions between different types of RNAs and form functional groups of genes involved in regulation of processing like VEGF-related functions, cell signaling, cell adhesion and permeability. Molecular modeling of genomics data predicted that metabolites decrease endothelial cell permeability, increased by lipotoxic stress. Correlation analysis between genomic modifications observed and genomic signature of patients with vascular dementia and Alzheimer's diseases showed opposite gene expression changes. Taken together, this study describes for the first time a multi-omic mechanism of action by which (-)-epicatechin metabolites could preserve brain vascular endothelial cell integrity and reduce the risk of neurodegenerative diseases. SIGNIFICANCE: Dysfunction of the blood-brain barrier (BBB), characterized by dysfunction of endothelial cells of cerebral blood vessels, result in an increase in permeability and neuroinflammation which constitute a key factor in the development neurodegenerative disorders. Even though it is suggested that polyphenols can prevent or delay the development of these disorders, their impact on brain endothelial cells and underlying mechanisms of actions are unknow. This study aimed to use a multi-omic approach including analysis of expression of mRNA, microRNA, long non-coding RNAs, and proteins to provide novel global in-depth insights into molecular mechanisms of how (-)-epicatechin metabolites affect brain microvascular endothelial cells under lipid-stressed (as a model of BBB dysfunction) at physiological relevant conditions. The results provide basis of knowledge on the capacity of polyphenols to prevent brain endothelial dysfunction and consequently neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, University of California Davis, 95616 Davis, CA, USA
| | - John Rutledge
- Division of Cardiovascular Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Amparo Villablanca
- Division of Cardiovascular Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Reedmond Fong
- Department of Nutrition, University of California Davis, 95616 Davis, CA, USA
| | - Christian Heiss
- Clinical Medicine Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom; Vascular Department, Surrey and Sussex NHS Healthcare Trust, East Surrey Hospital, Redhill, United Kingdom
| | | | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, 95616 Davis, CA, USA; Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
9
|
Yuste S, Ludwig IA, Romero MP, Motilva MJ, Rubió L. New red-fleshed apple cultivars: a comprehensive review of processing effects, (poly)phenol bioavailability and biological effects. Food Funct 2022; 13:4861-4874. [PMID: 35419577 DOI: 10.1039/d2fo00130f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Red-fleshed apple cultivars with an enhanced content of anthocyanins have recently attracted the interest of apple producers and consumers due to their attractive color and promising added health benefits. In this paper, we provide the first comprehensive overview of new hybrid red-fleshed apples, mainly focusing on their (poly)phenolic composition, the effect of processing, the (poly)phenolic bioavailability and the biological effects. Evidence so far from in vitro and in vivo studies supports their added beneficial effects compared to common apples on health outcomes such as cancer, cardiovascular disease, inflammation and immune function, which are mainly related to their specific (poly)phenol composition.
Collapse
Affiliation(s)
- Silvia Yuste
- Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - Iziar A Ludwig
- Departamento de Ciencias de la Alimentación y Fisiología, Facultad de Farmacia y Nutrición, Universidad de Navarra, 31008 Pamplona, Spain.
| | - María-Paz Romero
- Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - María-José Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Gobierno de La Rioja, Universidad de La Rioja), Finca "La Grajera", Carretera de Burgos km 6, 26007 Logroño, La Rioja, Spain
| | - Laura Rubió
- Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| |
Collapse
|
10
|
Lorenzo PM, Izquierdo AG, Rodriguez-Carnero G, Fernández-Pombo A, Iglesias A, Carreira MC, Tejera C, Bellido D, Martinez-Olmos MA, Leis R, Casanueva FF, Crujeiras AB. Epigenetic Effects of Healthy Foods and Lifestyle Habits from the Southern European Atlantic Diet Pattern: A Narrative Review. Adv Nutr 2022; 13:1725-1747. [PMID: 35421213 PMCID: PMC9526853 DOI: 10.1093/advances/nmac038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Indexed: 01/28/2023] Open
Abstract
Recent scientific evidence has shown the importance of diet and lifestyle habits for the proper functioning of the human body. A balanced and healthy diet, physical activity, and psychological well-being have a direct beneficial effect on health and can have a crucial role in the development and prognosis of certain diseases. The Southern European Atlantic diet, also named the Atlantic diet, is a unique dietary pattern that occurs in regions that present higher life expectancy, suggesting that this specific dietary pattern is associated with positive health effects. In fact, it is enriched with nutrients of high biological value, which, together with its cooking methods, physical activity promotion, reduction in carbon footprint, and promoting of family meals, promote these positive effects on health. The latest scientific advances in the field of nutri-epigenetics have revealed that epigenetic markers associated with food or nutrients and environmental factors modulate gene expression and, therefore, are involved with both health and disease. Thus, in this review, we evaluated the main aspects that define the Southern European Atlantic diet and the potential epigenetic changes associated with them based on recent studies regarding the main components of these dietary patterns. In conclusion, based on the information existing in the literature, we postulate that the Southern European Atlantic diet could promote healthy aging by means of epigenetic mechanisms. This review highlights the necessity of performing longitudinal studies to demonstrate this proposal.
Collapse
Affiliation(s)
- Paula M Lorenzo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Gemma Rodriguez-Carnero
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Alba Iglesias
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Marcos C Carreira
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Cristina Tejera
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Diego Bellido
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rosaura Leis
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Department of Pediatrics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS); Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | | |
Collapse
|
11
|
Ruskovska T, Morand C, Bonetti CI, Gebara KS, Cardozo Junior EL, Milenkovic D. Multigenomic modifications in human circulating immune cells in response to consumption of polyphenol rich extract of yerba mate ( Ilex paraguariensis A. St.-Hil.) are suggestive of cardiometabolic protective effects. Br J Nutr 2022; 129:1-60. [PMID: 35373729 DOI: 10.1017/s0007114522001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mate is a traditional drink obtained from the leaves of yerba mate and rich in a diversity of plant bioactive compounds including polyphenols, particularly chlorogenic acids. Studies, even though limited, suggest that consumption of mate is associated with health effects, including prevention of cardiometabolic disorders. Molecular mechanisms underlying the potential health properties are still largely unknown, especially in humans. The aim of this study was to investigate nutrigenomic effects of mate consumption and identify regulatory networks potentially mediating cardiometabolic health benefits. Healthy middle-aged men at risk for cardiovascular disease consumed a standardized mate extract or placebo for 4 weeks. Global gene expression, including protein coding and non-coding RNAs profiles were determined using microarrays. Biological function analyses were performed using integrated bioinformatic tools. Comparison of global gene expression profiles showed significant change following mate consumption with 2635 significantly differentially expressed genes, among which 6 are miRNAs and 244 are lncRNAs. Functional analyses showed that these genes are involved in regulation of cell interactions and motility, inflammation or cell signaling. Transcription factors, such as MEF2A, MYB or HNF1A, could have their activity modulated by mate consumption either by direct interaction with polyphenol metabolites or by interactions of metabolites with cell signaling proteins, like p38 or ERK1/2, that could modulate transcription factor activity and regulate expression of genes observed. Correlation analysis suggests that expression profile is inversely associated with gene expression profiles of patients with cardiometabolic disorders. Therefore, mate consumption may exert cardiometabolic protective effects by modulating gene expression towards a protective profile.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia
| | - Christine Morand
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, F-63003 Clermont-Ferrand, France
| | - Carla Indianara Bonetti
- Institute of Biological, Medical and Health Sciences, Universidade Paranaense, Av. Parigot de Souza, 3636 J. Prada, Toledo 85903-170, PR, Brazil
| | - Karimi Sater Gebara
- Grande Dourados University Center, UNIGRAN, R. Balbina de Matos, 2121 - J. Universitario, Dourados 79824-900, MS, Brazil
| | - Euclides Lara Cardozo Junior
- Institute of Biological, Medical and Health Sciences, Universidade Paranaense, Av. Parigot de Souza, 3636 J. Prada, Toledo 85903-170, PR, Brazil
| | - Dragan Milenkovic
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, F-63003 Clermont-Ferrand, France
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| |
Collapse
|
12
|
Fernández-Sarmiento J, Schlapbach LJ, Acevedo L, Santana CR, Acosta Y, Diana A, Monsalve M, Carcillo JA. Endothelial Damage in Sepsis: The Importance of Systems Biology. Front Pediatr 2022; 10:828968. [PMID: 35356443 PMCID: PMC8959536 DOI: 10.3389/fped.2022.828968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
The early diagnosis and appropriate stratification of sepsis continues to be one of the most important challenges in modern medicine. Single isolated biomarkers have not been enough to improve diagnostic and prognostic strategies and to progress toward therapeutic goals. The information generated by the human genome project has allowed a more holistic approach to the problem. The integration of genomics, transcriptomics, proteomics and metabolomics in sepsis has allowed us to progress in the knowledge of new pathways which are pathophysiologically involved in this disease. Thus, we have understood the importance of and complex interaction between the inflammatory response and the endothelium. Understanding the role of important parts of the microcirculation, such as the endothelial glycocalyx and its interaction with the inflammatory response, has provided early recognition elements for clinical practice that allow the rational use of traditional medical interventions in sepsis. This comprehensive approach, which differs from the classical mechanistic approach, uses systems biology to increase the diagnostic and prognostic spectrum of endothelial damage biomarkers in sepsis, and to provide information on new pathways involved in the pathophysiology of the disease. This, in turn, provides tools for perfecting traditional medical interventions, using them at the appropriate times according to the disease's pathophysiological context, while at the same time discovering new and improved therapeutic alternatives. We have the challenge of transferring this ideal scenario to our daily clinical practice to improve our patients' care. The purpose of this article is to provide a general description of the importance of systems biology in integrating the complex interaction between the endothelium and the inflammatory response in sepsis.
Collapse
Affiliation(s)
- Jaime Fernández-Sarmiento
- Department of Pediatrics and Intensive Care, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Escuela de Graduados CES, Bogotá, Colombia
| | - Luregn J Schlapbach
- Department of Paediatric Critical Care Research Group, The University of Queensland and Queensland Children's Hospital, Brisbane, QLD, Australia.,Department of Paediatric Critical Care, Queensland Children's Hospital, Brisbane, QLD, Australia.,Department of Paediatric Critical Care, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Lorena Acevedo
- Department of Pediatrics and Intensive Care, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Escuela de Graduados CES, Bogotá, Colombia
| | - Carolina Ramírez Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ampudia Diana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Joseph A Carcillo
- Department of Critical Care Medicine and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Milenkovic D, Ruskovska T, Rodriguez-Mateos A, Heiss C. Polyphenols Could Prevent SARS-CoV-2 Infection by Modulating the Expression of miRNAs in the Host Cells. Aging Dis 2021; 12:1169-1182. [PMID: 34341700 PMCID: PMC8279534 DOI: 10.14336/ad.2021.0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoVs) are single-stranded RNA viruses which following virus attachment and entry into the host cell, particularly type 2 pneumocytes but also endothelial cells, release RNA into cytosol where it serves as a matrix for the host translation machinery to produce viral proteins. The viral RNA in cytoplasm can interact with host cell microRNAs which can degrade viral RNA and/or prevent viral replication. As such host cellular miRNAs represent key cellular mediators of antiviral defense. Polyphenols, plant food bioactives, exert antiviral properties, which is partially due to their capacity to modulate the expression of miRNAs. The objective of this work was to assess if polyphenols can play a role in prevention of SARS-CoV-2 associated complications by modulating the expression of host miRNAs. To test this hypothesis, we performed literature search to identify miRNAs that could bind SARS-CoV-2 RNA as well as miRNAs which expression can be modulated by polyphenols in lung, type 2 pneumocytes or endothelial cells. We identified over 600 miRNAs that have capacity to bind viral RNA and 125 miRNAs which expression can be modulated by polyphenols in the cells of interest. We identified that there are 17 miRNAs with both the capacity to bind viral RNA and which expression can be modulated by polyphenols. Some of these miRNAs have been identified as having antiviral properties or can target genes involved in regulation of processes of viral replication, apoptosis or viral infection. Taken together this analysis suggests that polyphenols could modulate expression of miRNAs in alveolar and endothelial cells and exert antiviral capacity.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia.
| | | | - Christian Heiss
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK.
| |
Collapse
|
14
|
Ruskovska T, Budić-Leto I, Corral-Jara KF, Ajdžanović V, Arola-Arnal A, Bravo FI, Deligiannidou GE, Havlik J, Janeva M, Kistanova E, Kontogiorgis C, Krga I, Massaro M, Miler M, Milosevic V, Morand C, Scoditti E, Suárez M, Vauzour D, Milenkovic D. Systematic Bioinformatic Analyses of Nutrigenomic Modifications by Polyphenols Associated with Cardiometabolic Health in Humans-Evidence from Targeted Nutrigenomic Studies. Nutrients 2021; 13:2326. [PMID: 34371836 PMCID: PMC8308901 DOI: 10.3390/nu13072326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiometabolic disorders are among the leading causes of mortality in the human population. Dietary polyphenols exert beneficial effects on cardiometabolic health in humans. Molecular mechanisms, however, are not completely understood. Aiming to conduct in-depth integrative bioinformatic analyses to elucidate molecular mechanisms underlying the protective effects of polyphenols on cardiometabolic health, we first conducted a systematic literature search to identify human intervention studies with polyphenols that demonstrate improvement of cardiometabolic risk factors in parallel with significant nutrigenomic effects. Applying the predefined inclusion criteria, we identified 58 differentially expressed genes at mRNA level and 5 miRNAs, analyzed in peripheral blood cells with RT-PCR methods. Subsequent integrative bioinformatic analyses demonstrated that polyphenols modulate genes that are mainly involved in the processes such as inflammation, lipid metabolism, and endothelial function. We also identified 37 transcription factors that are involved in the regulation of polyphenol modulated genes, including RELA/NFKB1, STAT1, JUN, or SIRT1. Integrative bioinformatic analysis of mRNA and miRNA-target pathways demonstrated several common enriched pathways that include MAPK signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, focal adhesion, or PPAR signaling pathway. These bioinformatic analyses represent a valuable source of information for the identification of molecular mechanisms underlying the beneficial health effects of polyphenols and potential target genes for future nutrigenetic studies.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia; (T.R.); (M.J.)
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| | - Karla Fabiola Corral-Jara
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
| | - Vladimir Ajdžanović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - Georgia-Eirini Deligiannidou
- Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.-E.D.); (C.K.)
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences, 16521 Prague, Czech Republic;
| | - Milkica Janeva
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia; (T.R.); (M.J.)
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Christos Kontogiorgis
- Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.-E.D.); (C.K.)
| | - Irena Krga
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (M.M.); (E.S.)
| | - Marko Miler
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Verica Milosevic
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Christine Morand
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (M.M.); (E.S.)
| | - Manuel Suárez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK;
| | - Dragan Milenkovic
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
15
|
Monfoulet LE, Ruskovska T, Ajdžanović V, Havlik J, Vauzour D, Bayram B, Krga I, Corral-Jara KF, Kistanova E, Abadjieva D, Massaro M, Scoditti E, Deligiannidou E, Kontogiorgis C, Arola-Arnal A, van Schothorst EM, Morand C, Milenkovic D. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol Nutr Food Res 2021; 65:e2100227. [PMID: 34048642 DOI: 10.1002/mnfr.202100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.
Collapse
Affiliation(s)
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković,", National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Serbia
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague 6, Suchdol, Czech Republic
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul, Turkey
| | - Irena Krga
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | | | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
16
|
Ruskovska T, Massaro M, Carluccio MA, Arola-Arnal A, Muguerza B, Vanden Berghe W, Declerck K, Bravo FI, Calabriso N, Combet E, Gibney ER, Gomes A, Gonthier MP, Kistanova E, Krga I, Mena P, Morand C, Nunes Dos Santos C, de Pascual-Teresa S, Rodriguez-Mateos A, Scoditti E, Suárez M, Milenkovic D. Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food Funct 2021; 11:5040-5064. [PMID: 32537624 DOI: 10.1039/d0fo00701c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavanol intake positively influences several cardiometabolic risk factors in humans. However, the specific molecular mechanisms of action of flavanols, in terms of gene regulation, in the cell types relevant to cardiometabolic disease have never been systematically addressed. On this basis, we conducted a systematic literature review and a comprehensive bioinformatic analysis of genes whose expression is affected by flavanols in cells defining cardiometabolic health: hepatocytes, adipocytes, endothelial cells, smooth muscle cells and immune cells. A systematic literature search was performed using the following pre-defined criteria: treatment with pure compounds and metabolites (no extracts) at low concentrations that are close to their plasma concentrations. Differentially expressed genes were analyzed using bioinformatics tools to identify gene ontologies, networks, cellular pathways and interactions, as well as transcriptional and post-transcriptional regulators. The systematic literature search identified 54 differentially expressed genes at the mRNA level in in vitro models of cardiometabolic disease exposed to flavanols and their metabolites. Global bioinformatic analysis revealed that these genes are predominantly involved in inflammation, leukocyte adhesion and transendothelial migration, and lipid metabolism. We observed that, although the investigated cells responded differentially to flavanol exposure, the involvement of anti-inflammatory responses is a common mechanism of flavanol action. We also identified potential transcriptional regulators of gene expression: transcriptional factors, such as GATA2, NFKB1, FOXC1 or PPARG, and post-transcriptional regulators: miRNAs, such as mir-335-5p, let-7b-5p, mir-26b-5p or mir-16-5p. In parallel, we analyzed the nutrigenomic effects of flavanols in intestinal cells and demonstrated their predominant involvement in the metabolism of circulating lipoproteins. In conclusion, the results of this systematic analysis of the nutrigenomic effects of flavanols provide a more comprehensive picture of their molecular mechanisms of action and will support the future setup of genetic studies to pave the way for individualized dietary recommendations.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Emilie Combet
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Ireland
| | - Andreia Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia and Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food and Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Christine Morand
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Claudia Nunes Dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal and CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France. and Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
17
|
Declerck K, Novo CP, Grielens L, Van Camp G, Suter A, Vanden Berghe W. Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling, increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous retroviral sequences. BMC Complement Med Ther 2021; 21:141. [PMID: 33980308 PMCID: PMC8114977 DOI: 10.1186/s12906-021-03310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Herbal remedies of Echinacea purpurea tinctures are widely used today to reduce common cold respiratory tract infections. Methods Transcriptome, epigenome and kinome profiling allowed a systems biology level characterisation of genomewide immunomodulatory effects of a standardized Echinacea purpurea (L.) Moench extract in THP1 monocytes. Results Gene expression and DNA methylation analysis revealed that Echinaforce® treatment triggers antiviral innate immunity pathways, involving tonic IFN signaling, activation of pattern recognition receptors, chemotaxis and immunometabolism. Furthermore, phosphopeptide based kinome activity profiling and pharmacological inhibitor experiments with filgotinib confirm a key role for Janus Kinase (JAK)-1 dependent gene expression changes in innate immune signaling. Finally, Echinaforce® treatment induces DNA hypermethylation at intergenic CpG, long/short interspersed nuclear DNA repeat elements (LINE, SINE) or long termininal DNA repeats (LTR). This changes transcription of flanking endogenous retroviral sequences (HERVs), involved in an evolutionary conserved (epi) genomic protective response against viral infections. Conclusions Altogether, our results suggest that Echinaforce® phytochemicals strengthen antiviral innate immunity through tonic IFN regulation of pattern recognition and chemokine gene expression and DNA repeat hypermethylated silencing of HERVs in monocytes. These results suggest that immunomodulation by Echinaforce® treatment holds promise to reduce symptoms and duration of infection episodes of common cold corona viruses (CoV), Severe Acute Respiratory Syndrome (SARS)-CoV, and new occurring strains such as SARS-CoV-2, with strongly impaired interferon (IFN) response and weak innate antiviral defense. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03310-5.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Claudina Perez Novo
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Lisa Grielens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp (UA) and University Hospital Antwerp (UZA), Antwerp, Belgium
| | | | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium.
| |
Collapse
|
18
|
Kopylov AT, Malsagova KA, Stepanov AA, Kaysheva AL. Diversity of Plant Sterols Metabolism: The Impact on Human Health, Sport, and Accumulation of Contaminating Sterols. Nutrients 2021; 13:nu13051623. [PMID: 34066075 PMCID: PMC8150896 DOI: 10.3390/nu13051623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
The way of plant sterols transformation and their benefits for humans is still a question under the massive continuing revision. In fact, there are no receptors for binding with sterols in mammalians. However, possible biotransformation to steroids that can be catalyzed by gastro-intestinal microflora, microbial cells in prebiotics or cytochromes system were repeatedly reported. Some products of sterols metabolization are capable to imitate resident human steroids and compete with them for the binding with corresponding receptors, thus affecting endocrine balance and entire physiology condition. There are also tremendous reports about the natural origination of mammalian steroid hormones in plants and corresponding receptors for their binding. Some investigations and reports warn about anabolic effect of sterols, however, there are many researchers who are reluctant to believe in and have strong opposing arguments. We encounter plant sterols everywhere: in food, in pharmacy, in cosmetics, but still know little about their diverse properties and, hence, their exact impact on our life. Most of our knowledge is limited to their cholesterol-lowering influence and protective effect against cardiovascular disease. However, the world of plant sterols is significantly wider if we consider the thousands of publications released over the past 10 years.
Collapse
|
19
|
Corral-Jara KF, Nuthikattu S, Rutledge J, Villablanca A, Morand C, Schroeter H, Milenkovic D. Integrated Multi-Omic Analyses of the Genomic Modifications by Gut Microbiome-Derived Metabolites of Epicatechin, 5-(4'-Hydroxyphenyl)-γ-Valerolactone, in TNFalpha-Stimulated Primary Human Brain Microvascular Endothelial Cells. Front Neurosci 2021; 15:622640. [PMID: 33841078 PMCID: PMC8033932 DOI: 10.3389/fnins.2021.622640] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebral blood vessels are lined with endothelial cells and form the blood-brain barrier. Their dysfunction constitutes a crucial event in the physiopathology of neurodegenerative disorders and cognitive impairment. Epicatechin can improve cognitive functions and lower the risk for Alzheimer’s disease or stroke. However, molecular mechanisms of epicatechin on brain vascular endothelium are still unexplored. The objective of this study was to investigate the biological effects of gut microbiome-derived metabolites of epicatechin, 5-(4′-Hydroxyphenyl)-γ-valerolactone-3′-sulfate and 5-(4′-Hydroxyphenyl)-γ-valerolactone-3′-O-glucuronide, in TNF-α-stimulated human brain microvascular endothelial cells at low (nM) concentrations by evaluating their multi-omic modification (expression of mRNA, microRNA, long non-coding RNAs, and proteins). We observed that metabolites are biologically active and can simultaneously modulate the expression of protein-coding and non-coding genes as well as proteins. Integrative bioinformatics analysis of obtained data revealed complex networks of genomics modifications by acting at different levels of regulation. Metabolites modulate cellular pathways including cell adhesion, cytoskeleton organization, focal adhesion, signaling pathways, pathways regulating endothelial permeability, and interaction with immune cells. This study demonstrates multimodal mechanisms of action by which epicatechin metabolites could preserve brain vascular endothelial cell integrity, presenting mechanisms of action underlying epicatechin neuroprotective properties.
Collapse
Affiliation(s)
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA, United States
| | - John Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA, United States
| | - Amparo Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA, United States
| | - Christine Morand
- INRAE, UNH, Université Clermont Auvergne, St Genes Champanelle, France
| | | | - Dragan Milenkovic
- INRAE, UNH, Université Clermont Auvergne, St Genes Champanelle, France.,Division of Cardiovascular Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
20
|
Dietary Anti-Aging Polyphenols and Potential Mechanisms. Antioxidants (Basel) 2021; 10:antiox10020283. [PMID: 33668479 PMCID: PMC7918214 DOI: 10.3390/antiox10020283] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
For years, the consumption of a diet rich in fruits and vegetables has been considered healthy, increasing longevity, and decreasing morbidities. With the assistance of basic research investigating the potential mechanisms, it has become clear that the beneficial effects of plant-based foods are mainly due to the large amount of bioactive phenolic compounds contained. Indeed, substantial dietary intervention studies in humans have supported that the supplementation of polyphenols have various health-promoting effects, especially in the elderly population. In vitro examinations on the anti-aging mechanisms of polyphenols have been widely performed, using different types of natural and synthetic phenolic compounds. The aim of this review is to critically evaluate the experimental evidence demonstrating the beneficial effects of polyphenols on aging-related diseases. We highlight the potential anti-aging mechanisms of polyphenols, including antioxidant signaling, preventing cellular senescence, targeting microRNA, influencing NO bioavailability, and promoting mitochondrial function. While the trends on utilizing polyphenols in preventing aging-related disorders are getting growing attention, we suggest the exploration of the beneficial effects of the combination of multiple polyphenols or polyphenol-rich foods, as this would be more physiologically relevant to daily life.
Collapse
|
21
|
Taïlé J, Patché J, Veeren B, Gonthier MP. Hyperglycemic Condition Causes Pro-Inflammatory and Permeability Alterations Associated with Monocyte Recruitment and Deregulated NFκB/PPARγ Pathways on Cerebral Endothelial Cells: Evidence for Polyphenols Uptake and Protective Effect. Int J Mol Sci 2021; 22:ijms22031385. [PMID: 33573189 PMCID: PMC7866545 DOI: 10.3390/ijms22031385] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia alters the function of cerebral endothelial cells from the blood-brain barrier, increasing the risk of cerebrovascular complications during diabetes. This study evaluated the protective effect of polyphenols on inflammatory and permeability markers on bEnd3 cerebral endothelial cells exposed to high glucose concentration. Results show that hyperglycemic condition increased nuclear factor kappa B (NFκB) activity, deregulated the expression of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10) and endothelial-leukocyte adhesion molecule (E-selectin) genes, raised MCP-1 secretion and elevated monocyte adhesion and transendothelial migration. High glucose decreased occludin, claudin-5, zona occludens-1 (ZO-1) and zona occludens-2 (ZO-2) tight junctions production and altered the endothelial permeability. Characterized polyphenolic extracts from the French medicinal plants Antirhea borbonica, Ayapana triplinervis, Dodonaea viscosa and Terminalia bentzoe, and their major polyphenols quercetin, caffeic, chlorogenic and gallic acids limited the pro-inflammatory and permeability alterations caused by high glucose. Peroxisome proliferator-activated receptor gamma (PPARγ) agonist also attenuated these damages while PPARγ antagonist aggravated them, suggesting PPARγ protective action. Interestingly, polyphenols improved PPARγ gene expression lowered by high glucose. Moreover, polyphenols were detected at the intracellular level or membrane-bound to cells, with evidence for breast cancer resistance protein (BCRP) efflux transporter role. Altogether, these findings emphasize the ability of polyphenols to protect cerebral endothelial cells in hyperglycemic condition and their relevance for pharmacological strategies aiming to limit cerebrovascular disorders in diabetes.
Collapse
|
22
|
Dias IHK, Milic I, Heiss C, Ademowo OS, Polidori MC, Devitt A, Griffiths HR. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid Redox Signal 2020; 33:166-190. [PMID: 31989835 DOI: 10.1089/ars.2020.8022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Inflammation increases during the aging process. It is linked to mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Mitochondrial macromolecules are critical targets of oxidative damage; they contribute to respiratory uncoupling with increased ROS production, redox stress, and a cycle of senescence, cytokine production, and impaired oxidative phosphorylation. Targeting the formation or accumulation of oxidized biomolecules, particularly oxidized lipids, in immune cells and mitochondria could be beneficial for age-related inflammation and comorbidities. Recent Advances: Inflammation is central to age-related decline in health and exhibits a complex relationship with mitochondrial redox state and metabolic function. Improvements in mass spectrometric methods have led to the identification of families of oxidized phospholipids (OxPLs), cholesterols, and fatty acids that increase during inflammation and which modulate nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), activator protein 1 (AP1), and NF-κB redox-sensitive transcription factor activity. Critical Issues: The kinetic and spatial resolution of the modified lipidome has profound and sometimes opposing effects on inflammation, promoting initiation at high concentration and resolution at low concentration of OxPLs. Future Directions: There is an emerging opportunity to prevent or delay age-related inflammation and vascular comorbidity through a resolving (oxy)lipidome that is dependent on improving mitochondrial quality control and restoring redox homeostasis.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Ivana Milic
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Christian Heiss
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Opeyemi S Ademowo
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Cologne Center for Molecular Medicine Cologne, and CECAD, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andrew Devitt
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
23
|
Duarte IDAE, Milenkovic D, Borges TKDS, Rosa AJDM, Morand C, de Oliveira LDL, Costa AM. Acute Effects of the Consumption of Passiflora setacea Juice on Metabolic Risk Factors and Gene Expression Profile in Humans. Nutrients 2020; 12:nu12041104. [PMID: 32316129 PMCID: PMC7231153 DOI: 10.3390/nu12041104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Passiflora setacea (PS) is a passionfruit variety of the Brazilian savannah and is a rich source of plant food bioactives with potential anti-inflammatory activity. This study aimed to investigate the effect of an acute intake of PS juice upon inflammation, metabolic parameters, and gene expression on circulating immune cells in humans. Methods: Overweight male volunteers (n = 12) were enrolled in two double-blind placebo-controlled studies. Blood samples were collected from fasting volunteers 3 h after the consumption of 250 mL of PS juice or placebo (PB). Metabolic parameters (insulin, glucose, total cholesterol, high-density lipoprotein (LDL), high-density lipoprotein (HDL), and total triglycerides) and circulating cytokines were evaluated (study 1). Peripheral blood mononuclear cell (PBMC) from the same subjects were isolated and RNA was extracted for transcriptomic analyses using microarrays (study 2). Results: Insulin and homeostatic model assessment for insulin resistance (HOMA-IR) levels decreased statistically after the PS juice intake, whereas HDL level increased significantly. Interleukin (IL)-17A level increased after placebo consumption, whereas its level remained unchanged after PS juice consumption. Nutrigenomic analyses revealed 1327 differentially expressed genes after PS consumption, with modulated genes involved in processes such as inflammation, cell adhesion, or cytokine–cytokine receptor. Conclusion: Taken together, these clinical results support the hypothesis that PS consumption may help the prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- Isabella de Araújo Esteves Duarte
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília DF 70.910-900, Brazil;
- Correspondence: ; Tel.: +55-61-99996-8004
| | - Dragan Milenkovic
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France; (D.M.); (C.M.)
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | | | | | - Christine Morand
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France; (D.M.); (C.M.)
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília DF 70.910-900, Brazil;
| | - Ana Maria Costa
- Laboratory of Food Science, Embrapa Cerrados, Planaltina DF 73.310-970, Brazil; (A.J.d.M.R.); (A.M.C.)
| |
Collapse
|
24
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
25
|
Monfoulet LE, Buffière C, Istas G, Dufour C, Le Bourvellec C, Mercier S, Bayle D, Boby C, Remond D, Borel P, Rodriguez-Mateos A, Milenkovic D, Morand C. Effects of the apple matrix on the postprandial bioavailability of flavan-3-ols and nutrigenomic response of apple polyphenols in minipigs challenged with a high fat meal. Food Funct 2020; 11:5077-5090. [DOI: 10.1039/d0fo00346h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Food matrix interactions with polyphenols can affect their bioavailability and as a consequence may modulate their biological effects.
Collapse
Affiliation(s)
| | | | - Geoffrey Istas
- Department of Nutritional Sciences
- School of Life Course Sciences
- Faculty of Life Sciences and Medicine
- King's College
- London
| | - Claire Dufour
- INRAE
- Université d′Avignon
- UMR408
- Sécurité et Qualité des Produits d′Origine Végétale (SQPOV)
- Avignon
| | - Carine Le Bourvellec
- INRAE
- Université d′Avignon
- UMR408
- Sécurité et Qualité des Produits d′Origine Végétale (SQPOV)
- Avignon
| | - Sylvie Mercier
- Université Clermont Auvergne
- INRAE
- UNH
- Clermont-Ferrand
- France
| | | | - Céline Boby
- INRAE
- Unité Mixte de Recherches sur les Herbivores
- Clermont-Ferrand
- France
| | - Didier Remond
- Université Clermont Auvergne
- INRAE
- UNH
- Clermont-Ferrand
- France
| | | | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences
- School of Life Course Sciences
- Faculty of Life Sciences and Medicine
- King's College
- London
| | | | | |
Collapse
|
26
|
(-)-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochem Pharmacol 2019; 173:113699. [PMID: 31756325 DOI: 10.1016/j.bcp.2019.113699] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Ingestion of (-)-epicatechin flavanols reverses endothelial dysfunction by increasing flow mediated dilation and by reducing vascular inflammation and oxidative stress, monocyte-endothelial cell adhesion and transendothelial monocyte migration in vitro and in vivo. This involves multiple changes in gene expression and epigenetic DNA methylation by poorly understood mechanisms. By in silico docking and molecular modeling we demonstrate favorable binding of different glucuronidated, sulfated or methylated (-)-epicatechin metabolites to different DNA methyltransferases (DNMT1/DNMT3A). In favor of this model, genome-wide DNA methylation profiling of endothelial cells treated with TNF and different (-)-epicatechin metabolites revealed specific DNA methylation changes in gene networks controlling cell adhesion-extravasation endothelial hyperpermeability as well as gamma-aminobutyric acid, renin-angiotensin and nitric oxide hypertension pathways. Remarkably, blood epigenetic profiles of an 8 weeks intervention with monomeric and oligomeric flavanols (MOF) including (-)-epicatechin in male smokers revealed individual epigenetic gene changes targeting similar pathways as the in vitro exposure experiments in endothelial cells. Furthermore, epigenetic changes following MOF diet intervention oppose atherosclerosis associated epigenetic changes. In line with biological data, the individual epigenetic response to a MOF diet is associated with different vascular health parameters (glutathione peroxidase 1 and endothelin-1 expression, acetylcholine-mediated microvascular response), in part involving systemic shifts in blood immune cell types which reduce the neutrophil-lymphocyte ratio (NLR). Altogether, our study suggests that different (-)-epicatechin metabolites promote vascular health in part via epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation.
Collapse
|
27
|
Raman G, Avendano EE, Chen S, Wang J, Matson J, Gayer B, Novotny JA, Cassidy A. Dietary intakes of flavan-3-ols and cardiometabolic health: systematic review and meta-analysis of randomized trials and prospective cohort studies. Am J Clin Nutr 2019; 110:1067-1078. [PMID: 31504087 PMCID: PMC6821550 DOI: 10.1093/ajcn/nqz178] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although available data suggest that some dietary flavan-3-ol sources reduce cardiometabolic risk, to our knowledge no review has systematically synthesized their specific contribution. OBJECTIVE We aimed to examine, for the first time, if there is consistent evidence that higher flavan-3-ol intake, irrespective of dietary source, reduces cardiometabolic risk. METHODS MEDLINE, Cochrane Central, and Commonwealth Agricultural Bureau abstracts were searched for prospective cohorts and randomized controlled trials (RCTs) published from 1946 to March 2019 on flavan-3-ol intake and cardiovascular disease (CVD) risk. Random-effects models meta-analysis was used. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach assessed the strength of evidence. RESULTS Of 15 prospective cohorts (23 publications), 4 found highest compared with lowest habitual intakes of flavan-3-ols were associated with a 13% reduction in risk of CVD mortality and 2 found a 19% reduction in risk of chronic heart disease (CHD) incidence. Highest compared with lowest habitual intakes of monomers were associated with a reduction in risk of type 2 diabetes mellitus (T2DM) (n = 5) and stroke (n = 4) (10% and 18%, respectively). No association was found for hypertension. Of 156 RCTs, flavan-3-ol intervention resulted in significant improvements in acute/chronic flow-mediated dilation (FMD), systolic (SBP) and diastolic blood pressure (DBP), total cholesterol (TC), LDL and HDL cholesterol, triglycerides (TGs), hemoglobin A1c (HbA1c), and homeostasis model assessment of insulin resistance (HOMA-IR). All analyses, except HbA1c, were associated with moderate/high heterogeneity. When analyses were limited to good methodological quality studies, improvements in TC, HDL cholesterol, SBP, DBP, HOMA-IR, and acute/chronic FMD remained significant. In GRADE evaluations, there was moderate evidence in cohort studies that flavan-3-ol and monomer intakes were associated with reduced risk of CVD mortality, CHD, stroke, and T2DM, whereas RCTs reported improved TC, HDL cholesterol, SBP, and HOMA-IR. CONCLUSIONS Available evidence supports a beneficial effect of flavan-3-ol intake on cardiometabolic outcomes, but there was considerable heterogeneity in the meta-analysis. Future research should focus on an integrated intake/biomarker approach in cohorts and high-quality dose-response RCTs. This review was registered at www.crd.york.ac.uk/PROSPERO/ as CRD42018035782.
Collapse
Affiliation(s)
- Gowri Raman
- Tufts Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA,Address correspondence to GR (e-mail: )
| | - Esther E Avendano
- Tufts Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
| | - Siyu Chen
- Tufts Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA,Tufts University Friedman School of Nutrition Science and Policy, Boston, MA, USA
| | - Jiaqi Wang
- Tufts Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA,Tufts University Friedman School of Nutrition Science and Policy, Boston, MA, USA
| | - Julia Matson
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Bridget Gayer
- Tufts Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA,Tufts University Friedman School of Nutrition Science and Policy, Boston, MA, USA
| | - Janet A Novotny
- Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
28
|
Polyphenols in human nutrition: from the in vitro antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability - an overview and perspective. Br J Nutr 2019; 123:241-254. [PMID: 31658907 DOI: 10.1017/s0007114519002733] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Oxidative damage of cells and tissues is broadly implicated in human pathophysiology, including cardiometabolic diseases. Polyphenols, as important constituents of the human diet and potent in vitro free radical scavengers, have been extensively studied for their beneficial effects on cardiometabolic health. However, it has been demonstrated that the in vivo antioxidant activity of polyphenols is distinct from their in vitro free radical-scavenging capacity. Indeed, bioavailability of nutritional polyphenols is low and conditioned by complex mechanisms of absorption, distribution, metabolism and excretion. Nowadays, it is commonly accepted that the cellular antioxidant activity of polyphenols is mainly carried out via modification of transcription of genes involved in antioxidant defence. Importantly, polyphenols also contribute to cardiometabolic health by modulation of a plethora of cellular processes that are not directly associated with antioxidant enzymes, through nutri(epi)genomic mechanisms. Numerous human intervention studies have demonstrated beneficial effects of polyphenols on the key cardiometabolic risk factors. However, inconsistency of the results of some studies led to identification of the inter-individual variability in response to consumption of polyphenols. In perspective, a detailed investigation of the determinants of this inter-individual variability will potentially lead us towards personalised dietary recommendations. The phenomenon of inter-individual variability is also of relevance for supplementation with antioxidant (pro)vitamins.
Collapse
|
29
|
Contribution of plant food bioactives in promoting health effects of plant foods: why look at interindividual variability? Eur J Nutr 2019; 58:13-19. [PMID: 31637469 PMCID: PMC6851219 DOI: 10.1007/s00394-019-02096-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Purpose Research has identified plant-based diets as the most protective for our health; it is now essential to focus on good food associations and the beneficial constituents in plant foods. From a growing body of evidence, some categories of food phytochemicals are increasingly considered to play a crucial role in the cardiometabolic health effects associated with plant food consumption. However, the heterogeneity in responsiveness to plant food bioactive intake that is frequently observed in clinical trials can hinder the identification of the effects of these compounds in specific subpopulations and likely lead to underestimating their actual contribution to the health effects of their food sources. Results The magnitude and the main factors responsible for this between-subject variation in response to the consumption of the major families of food phytochemicals have been poorly documented so far. Thus, research efforts in this area must be developed. More importantly, capturing the interindividual variability in response to plant food bioactive intake, together with identifying the main determinants involved, is a crucial step that will enable the development and production of plant food products, thereby satisfying the nutritional needs and conferring benefits to different categories of populations. Conclusion The development of a science-based personalised nutrition approach focusing on plant foods rich in specific bioactive compounds could contribute to alleviating the dramatic burden of metabolic and cardiovascular diseases. Plant food bioactives represent a tremendous potential for innovation in the field of food, nutrition, and health. The role of phytochemicals in the health benefits of plant-based foods has been underestimated so far. A full consideration of plant food bioactives in future preventive strategies implies research that tackles the factors responsible for interindividual variability. A better understanding of interindividual variability in response to plant food bioactives is needed to:Refine dietary recommendations towards foods that are particularly rich in specific bioactives. Broaden perspectives for the food industry to develop strategies for future personalised food products targeted to specific consumer groups.
Collapse
|
30
|
Georgia-Eirini D, Athina S, Wim VB, Christos K, Theodoros C. Natural Products from Mediterranean Diet: From Anti-hyperlipidemic Agents to Dietary Epigenetic Modulators. Curr Pharm Biotechnol 2019; 20:825-844. [DOI: 10.2174/1573407215666190628150921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/23/2018] [Accepted: 06/03/2019] [Indexed: 01/05/2023]
Abstract
Background:
Cardiovascular Diseases (CVD) are, currently, the major contributor to global
mortality and will continue to dominate mortality rates in the future. Hyperlipidemia refers to the elevated
levels of lipids and cholesterol in the blood, and is also identified as dyslipidemia, manifesting in
the form of different disorders of lipoprotein metabolism. These abnormalities may lead to the development
of atherosclerosis, which can lead to coronary artery disease and stroke. In recent years, there
is a growing interest in the quest for alternative therapeutic treatments based on natural products, offering
better recovery and the avoidance of side effects. Recent technological advances have further improved
our understanding of the role of epigenetic mechanisms in hyperlipidemic disorders and dietary
prevention strategies.
Objective:
This is a comprehensive overview of the anti-hyperlipidemic effects of plant extracts, vegetables,
fruits and isolated compounds thereof, with a focus on natural products from the Mediterranean
region as well as the possible epigenetic changes in gene expression or cardiometabolic signaling
pathways.
Methods:
For the purpose of this study, we searched the PubMed, Scopus and Google Scholar databases
for eligible articles and publications over the last five years. The keywords included: “hyperlipidemia”,
“plant extract”, “herbs”, “natural products”, “vegetables”, “cholesterol” and others. We initially
included all relevant articles referring to in vitro studies, animal studies, Randomized Controlled
Trials (RCTs) and previous reviews.
Conclusion:
Many natural products found in the Mediterranean diet have been studied for the treatment
of hyperlipidemia. The antihyperlipidemic effect seems to be dose and/or consumption frequency
related, which highlights the fact that a healthy diet can only be effective in reversing disease markers
if it is consistent and within the framework of a healthy lifestyle. Finally, epigenetic biomarkers are increasingly
recognized as new lifestyle management tools to monitor a healthy dietary lifestyle for the
prevention of hyperlipidaemic disorders and comorbidities to promote a healthy life.
Collapse
Affiliation(s)
- Deligiannidou Georgia-Eirini
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Sygkouna Athina
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Vanden Berghe Wim
- Lab of Protein Science, Proteomics & Epigenetic Signaling (PPES), Department of Biomedical sciences, University Antwerp, 2610, Wilrijk, Belgium
| | - Kontogiorgis Christos
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Constantinides Theodoros
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| |
Collapse
|
31
|
Gibney ER, Milenkovic D, Combet E, Ruskovska T, Greyling A, González-Sarrías A, de Roos B, Tomás-Barberán F, Morand C, Rodriguez-Mateos A. Factors influencing the cardiometabolic response to (poly)phenols and phytosterols: a review of the COST Action POSITIVe activities. Eur J Nutr 2019; 58:37-47. [PMID: 31492975 PMCID: PMC6851211 DOI: 10.1007/s00394-019-02066-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Purpose Evidence exists regarding the beneficial effects of diets rich in plant-based foods regarding the prevention of cardiometabolic diseases. These plant-based foods are an exclusive and abundant source of a variety of biologically active phytochemicals, including polyphenols, carotenoids, glucosinolates and phytosterols, with known health-promoting effects through a wide range of biological activities, such as improvements in endothelial function, platelet function, blood pressure, blood lipid profile and insulin sensitivity. We know that an individual’s physical/genetic makeup may influence their response to a dietary intervention, and thereby may influence the benefit/risk associated with consumption of a particular dietary constituent. This inter-individual variation in responsiveness has also been described for dietary plant bioactives but has not been explored in depth. To address this issue, the European scientific experts involved in the COST Action POSITIVe systematically analyzed data from published studies to assess the inter-individual variation in selected clinical biomarkers associated with cardiometabolic risk, in response to the consumption of plant-based bioactives (poly)phenols and phytosterols. The present review summarizes the main findings resulting from the meta-analyses already completed. Results Meta-analyses of randomized controlled trials conducted within POSITIVe suggest that age, sex, ethnicity, pathophysiological status and medication may be responsible for the heterogeneity in the biological responsiveness to (poly)phenol and phytosterol consumption and could lead to inconclusive results in some clinical trials aiming to demonstrate the health effects of specific dietary bioactive compounds. However, the contribution of these factors is not yet demonstrated consistently across all polyphenolic groups and cardiometabolic outcomes, partly due to the heterogeneity in trial designs, low granularity of data reporting, variety of food vectors and target populations, suggesting the need to implement more stringent reporting practices in the future studies. Studies investigating the effects of genetic background or gut microbiome on variability were limited and should be considered in future studies. Conclusion Understanding why some bioactive plant compounds work effectively in some individuals but not, or less, in others is crucial for a full consideration of these compounds in future strategies of personalized nutrition for a better prevention of cardiometabolic disease. However, there is also still a need for the development of a substantial evidence-base to develop health strategies, food products or lifestyle solutions that embrace this variability. A balanced diet, rich in plant-based foods is known for the prevention of obesity, diabetes, and cardiovascular disease risk. (Poly)phenols and phytosterols displayed a range of biological effects of relevance to contribute to the cardiometabolic health benefits of plant foods However, inter-individual variability in response to plant food bioactive consumption exists, and there is a need to understand the causes of this variation. Analysis of published RCTs examining impact of consumption of (poly)phenols and phytosterols on cardiometabolic risk factors demonstrated that a number of factors including age, sex, adiposity and health status could contribute to the effect demonstrated within these studies. Genome and microbiome studies will help identify what may be causing this variation. More studies, specifically designed to investigate individual variation are needed to fully understand the factors responsible for and the impact of this variation Once fully understood, such variation should be used in directing personalised nutrition advice.
Collapse
Affiliation(s)
- Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| | - Dragan Milenkovic
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Emilie Combet
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, University "Goce Delcev"-Stip, Štip, Republic of North Macedonia
| | - Arno Greyling
- Unilever Research and Development Vlaardingen, Vlaardingen, The Netherlands
| | | | - Baujke de Roos
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | - Christine Morand
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
32
|
Lee LYH, Loscalzo J. Network Medicine in Pathobiology. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1311-1326. [PMID: 31014954 DOI: 10.1016/j.ajpath.2019.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
The past decade has witnessed exponential growth in the generation of high-throughput human data across almost all known dimensions of biological systems. The discipline of network medicine has rapidly evolved in parallel, providing an unbiased, comprehensive biological framework through which to interrogate and integrate systematically these large-scale, multi-omic data to enhance our understanding of disease mechanisms and to design drugs that reflect a deep knowledge of molecular pathobiology. In this review, we discuss the key principles of network medicine and the human disease network and explore the latest applications of network medicine in this multi-omic era. We also highlight the current conceptual and technological challenges, which serve as exciting opportunities by which to improve and expand the network-based applications beyond the artificial boundaries of the current state of human pathobiology.
Collapse
Affiliation(s)
| | - Joseph Loscalzo
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|