1
|
Carey T, Maughan J, Doolan L, Caffrey E, Garcia J, Liu S, Kaur H, Ilhan C, Seyedin S, Coleman JN. Knot Architecture for Biocompatible and Semiconducting 2D Electronic Fiber Transistors. SMALL METHODS 2024; 8:e2301654. [PMID: 38602193 DOI: 10.1002/smtd.202301654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Wearable devices have generally been rigid due to their reliance on silicon-based technologies, while future wearables will utilize flexible components for example transistors within microprocessors to manage data. Two-dimensional (2D) semiconducting flakes have yet to be investigated in fiber transistors but can offer a route toward high-mobility, biocompatible, and flexible fiber-based devices. Here, the electrochemical exfoliation of semiconducting 2D flakes of tungsten diselenide (WSe2) and molybdenum disulfide (MoS2) is shown to achieve homogeneous coatings onto the surface of polyester fibers. The high aspect ratio (>100) of the flake yields aligned and conformal flake-to-flake junctions on polyester fibers enabling transistors with mobilities μ ≈1 cm2 V-1 s-1 and a current on/off ratio, Ion/Ioff ≈102-104. Furthermore, the cytotoxic effects of the MoS2 and WSe2 flakes with human keratinocyte cells are investigated and found to be biocompatible. As an additional step, a unique transistor 'knot' architecture is created by leveraging the fiber diameter to establish the length of the transistor channel, facilitating a route to scale down transistor channel dimensions (≈100 µm) and utilize it to make a MoS2 fiber transistor with a human hair that achieves mobilities as high as μ ≈15 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Tian Carey
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Jack Maughan
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Luke Doolan
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Eoin Caffrey
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - James Garcia
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Shixin Liu
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Harneet Kaur
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Cansu Ilhan
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Shayan Seyedin
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jonathan N Coleman
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Silva EP, Rechotnek F, Lima AMO, da Silva ACP, Sequinel T, Freitas CF, Martins AF, Muniz EC. Design and fabrication strategies of molybdenum disulfide-based nanomaterials for combating SARS-CoV-2 and other respiratory diseases: A review. BIOMATERIALS ADVANCES 2024; 163:213949. [PMID: 39002189 DOI: 10.1016/j.bioadv.2024.213949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Affiliation(s)
- Elisangela P Silva
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Fernanda Rechotnek
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Antônia M O Lima
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | | | - Thiago Sequinel
- Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Camila F Freitas
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Alessandro F Martins
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Paraná (UTFPR), Apucarana, PR, Brazil; Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS, USA.
| | - Edvani C Muniz
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| |
Collapse
|
3
|
Zha Z, Luo S, Wei L, Li F, Li Y, Cao Y. Investigation of oral toxicity of WS 2 nanosheets to mouse intestine: Pathological injury, trace element balance, lipid profile changes, and autophagy. J Appl Toxicol 2024. [PMID: 39344173 DOI: 10.1002/jat.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
The success of graphene oxides has gained extensive research interests in developing novel 2D nanomaterials (NMs). WS2 nanosheets (NSs) are novel transition metal-based 2D NMs, but their toxicity is unclear. In this study, we investigated the oral toxicity of WS2 NSs to mouse intestines. Male mice were administrated with vehicles, 1, 10, or 100 mg/kg NSs via intragastric route, once a day, for 5 days. The results indicate that the NSs did not induce pathological or ultrastructural changes in intestines. There were minimal changes of trace elements that the exposure did not induce W accumulation, and only Co levels were dose-dependently increased. Lipid droplets were observed in all groups of mice, but lipidomics data indicate that WS2 NSs only significantly decreased four lipid species, all belonging to phosphatidylcholine (PC). The levels of proteins regulating autophagic lipolysis, namely, LC3, lysosomal associated membrane protein 2 (LAMP2) and perilipin 2 (PLIN2), were increased, but it was only statistically significantly different for LC3. The results of this study suggest that repeated intragastric exposure to WS2 NSs only induced minimal influences on pathological injury, trace element balance, autophagy, and lipid profiles in mouse intestines, indicating relatively high biocompatibility of WS2 NSs to mouse intestine via oral route.
Collapse
Affiliation(s)
- Zhenghao Zha
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Sihuan Luo
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Lianghuan Wei
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Feixing Li
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Youwen Li
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Singh M, Bianco D, Adam J, Capaccio A, Clemente S, Del Sorbo MR, Feoli C, Kaur J, Nappi C, Panico M, Rusciano G, Rossi M, Sasso A, Valadan M, Cuocolo A, Battista E, Netti PA, Altucci C. Gamma rays impact on 2D-MoS 2 in water solution. Sci Rep 2024; 14:22130. [PMID: 39333585 PMCID: PMC11437032 DOI: 10.1038/s41598-024-69410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/29/2024] Open
Abstract
Two-dimensional transition metal dichalcogenides, particularly MoS2, are interesting materials for many applications in aerospace research, radiation therapy and bioscience more in general. Since in many of these applications MoS2-based nanomaterials can be placed in an aqueous environment while exposed to ionizing radiation, both experimental and theoretical studies of their behaviour under these conditions is particularly interesting. Here, we study the effects of tiny imparted doses of 511 keV photons to MoS2 nanoflakes in water solution. To the best of our knowledge, this is the first study in which ionizing radiation on 2D-MoS2 occurs in water. Interestingly, we find that, in addition to the direct interaction between high-energy photons and nanoflakes, reactive chemical species, generated by γ-photons induced radiolysis of water, come into play a relevant role. A radiation transport Monte Carlo simulation allowed determining the elements driving the morphological and spectroscopical changes of 2D-MoS2, experimentally monitored by SEM microscopy, DLS, Raman and UV-vis spectroscopy, AFM, and X-ray photoelectron techniques. Our study demonstrates that radiolysis products affect the Molybdenum oxidation state, which is massively changed from the stable + 4 and + 6 states into the rarer and more unstable + 5. These findings will be relevant for radiation-based therapies and diagnostics in patients that are assuming drugs or contrast agents containing 2D-MoS2 and for aerospace biomedical applications of 2DMs investigating their actions into living organisms on space station or satellites.
Collapse
Affiliation(s)
- Manjot Singh
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
- National Institute of Nuclear Physics, Section of Naples, Naples, Italy
| | - Davide Bianco
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
- National Institute of Nuclear Physics, Section of Naples, Naples, Italy
- Italian Aerospace Research Centre (CIRA), Capua, Italy
| | - Jaber Adam
- Department of Physics "Ettore Pancini", University of Naples, Federico II, Naples, Italy
| | - Angela Capaccio
- Department of Physics "Ettore Pancini", University of Naples, Federico II, Naples, Italy
- Institute of Biosciences and Bio Resources (IBBR), National Research Council of Italy, Naples, Italy
| | | | | | - Chiara Feoli
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
| | - Jasneet Kaur
- Department of Physics "Ettore Pancini", University of Naples, Federico II, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
| | | | - Giulia Rusciano
- Department of Physics "Ettore Pancini", University of Naples, Federico II, Naples, Italy
| | - Manuela Rossi
- Department of Earth Science, Environment and Resources, University of Naples, Federico II, Naples, Italy
| | - Antonio Sasso
- Department of Physics "Ettore Pancini", University of Naples, Federico II, Naples, Italy
| | - Mohammadhassan Valadan
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
- National Institute of Nuclear Physics, Section of Naples, Naples, Italy
- Superconducting and Other Innovative Materials and Devices Institute, SPIN-CNR, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy.
| | - Edmondo Battista
- Center for Advanced Biomaterials for HealthCare (CABHC), Italian Institute of Technology, Naples, Italy.
- Department of Innovative Technologies in Medicine & Dentistry (DTIMO), University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare (CABHC), Italian Institute of Technology, Naples, Italy.
- Interdisciplinary Research Centre on Biomaterials (CRIB, University of Naples, Federico II, Naples, Italy.
- Department of Chemical, Materials and Industrial Engineering, University of Naples, Federico II, Naples, Italy.
| | - Carlo Altucci
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy.
- National Institute of Nuclear Physics, Section of Naples, Naples, Italy.
- Institute of Applied Sciences and Intelligent Systems, ISASI-CNR, Naples, Italy.
| |
Collapse
|
5
|
Barsola B, Saklani S, Pathania D, Kumari P, Sonu S, Rustagi S, Singh P, Raizada P, Moon TS, Kaushik A, Chaudhary V. Exploring bio-nanomaterials as antibiotic allies to combat antimicrobial resistance. Biofabrication 2024; 16:042007. [PMID: 39102846 DOI: 10.1088/1758-5090/ad6b45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Antimicrobial resistance (AMR) poses an emergent threat to global health due to antibiotic abuse, overuse and misuse, necessitating urgent innovative and sustainable solutions. The utilization of bio-nanomaterials as antibiotic allies is a green, economic, sustainable and renewable strategy to combat this pressing issue. These biomaterials involve green precursors (e.g. biowaste, plant extracts, essential oil, microbes, and agricultural residue) and techniques for their fabrication, which reduce their cyto/environmental toxicity and exhibit economic manufacturing, enabling a waste-to-wealth circular economy module. Their nanoscale dimensions with augmented biocompatibility characterize bio-nanomaterials and offer distinctive advantages in addressing AMR. Their ability to target pathogens, such as bacteria and viruses, at the molecular level, coupled with their diverse functionalities and bio-functionality doping from natural precursors, allows for a multifaceted approach to combat resistance. Furthermore, bio-nanomaterials can be tailored to enhance the efficacy of existing antimicrobial agents or deliver novel therapies, presenting a versatile platform for innovation. Their use in combination with traditional antibiotics can mitigate resistance mechanisms, prolong the effectiveness of existing treatments, and reduce side effects. This review aims to shed light on the potential of bio-nanomaterials in countering AMR, related mechanisms, and their applications in various domains. These roles encompass co-therapy, nanoencapsulation, and antimicrobial stewardship, each offering a distinct avenue for overcoming AMR. Besides, it addresses the challenges associated with bio-nanomaterials, emphasizing the importance of regulatory considerations. These green biomaterials are the near future of One Health Care, which will have economic, non-polluting, non-toxic, anti-resistant, biocompatible, degradable, and repurposable avenues, contributing to sustainable development goals.
Collapse
Affiliation(s)
- Bindiya Barsola
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shivani Saklani
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Diksha Pathania
- Department of Biosciences and technology (MMEC), Maharishi Markandeshwar University, Mullana (Ambala), Haryana 133203, India
| | - Priyanka Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Sonu Sonu
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttranchal University, Dehradun, Uttrakhand, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, United States of America
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
- Centre for Research Impact & Outcome, Chitkara University, Punjab 140401, India
| |
Collapse
|
6
|
Szydlowska B, Ding Y, Moore C, Cai Z, Torres-Castanedo CG, Collins CP, Jones E, Hersam MC, Sun C, Ameer GA. Polydiolcitrate-MoS 2 Composite for 3D Printing Radio-Opaque, Bioresorbable Vascular Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45422-45432. [PMID: 39102678 PMCID: PMC11368090 DOI: 10.1021/acsami.4c07364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Implantable polymeric biodegradable devices, such as biodegradable vascular scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe a new radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2) consisting of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and molybdenum disulfide (MoS2) nanosheets. The composite was used as an ink with microcontinuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, with X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in phosphate-buffered saline solution, suggesting the potential for producing radiopaque, fully bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, such as vascular scaffolds, that require noninvasive X-ray-based monitoring techniques for implantation and evaluation. This innovative biomaterial composite system holds significant promise for the development of biocompatible, fluoroscopically visible medical implants, potentially enhancing patient outcomes and reducing medical complications.
Collapse
Affiliation(s)
- Beata
M. Szydlowska
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
| | - Yonghui Ding
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Connor Moore
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
| | - Zizhen Cai
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Carlos G. Torres-Castanedo
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Caralyn P. Collins
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Evan Jones
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Mark C. Hersam
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cheng Sun
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Guillermo A. Ameer
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Simpson
Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
for Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Shariati B, Goodarzi MT, Jalali A, Salehi N, Mozaffari M. Improvement photothermal property of MoS 2/Fe 3O 4/GNR nanocomposite in cancer treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:48. [PMID: 39136805 PMCID: PMC11322282 DOI: 10.1007/s10856-024-06819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
The objective of the present study was to develop a novel molybdenum disulfide/iron oxide/gold nanorods (MoS2/Fe3O4/GNR) nanocomposite (MFG) with different concentrations of AgNO3 solution (MFG1, MFG2, and MFG3) for topical doxorubicin (DOX) drug delivery. Then, these nanocomposites were synthesized and characterized by Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), Dynamic light scattering (DLS), and Ultraviolet-visible (UV-Vis) spectroscopies to confirm their structural and optical properties. Cytotoxicity of samples on Hela cell was determined using MTT assay. Results indicated that nanocomposites possess little cytotoxicity without NIR laser irradiation. Also, the relative viabilities of Hela cells decreased when the concentration of AgNO3 solution increased in this nanocomposite. Using NIR irradiation, the relative viabilities of Hela cells decreased when the concentration of samples increased. Acridine orange/propidium iodide (PI) staining, flow cytometry were recruited to evaluate the effect of these nanocomposites on apoptosis of Hela cells. Finally, results revealed when DOX loading increased in nanocomposite, then cell viability was decreased in it. Therefore, these properties make MFG3 nanocomposite a good candidate for photothermal therapy and drug loading.
Collapse
Affiliation(s)
- Behdad Shariati
- Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Alireza Jalali
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Nasrin Salehi
- Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Majid Mozaffari
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
8
|
He Y, Andrade AF, Ménard-Moyon C, Bianco A. Biocompatible 2D Materials via Liquid Phase Exfoliation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310999. [PMID: 38457626 DOI: 10.1002/adma.202310999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/17/2024] [Indexed: 03/10/2024]
Abstract
2D materials (2DMs), such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have been proposed for different types of bioapplications, owing to their unique physicochemical, electrical, optical, and mechanical properties. Liquid phase exfoliation (LPE), as one of the most effective up-scalable and size-controllable methods, is becoming the standard process to produce high quantities of various 2DM types as it can benefit from the use of green and biocompatible conditions. The resulting exfoliated layered materials have garnered significant attention because of their biocompatibility and their potential use in biomedicine as new multimodal therapeutics, antimicrobials, and biosensors. This review focuses on the production of LPE-assisted 2DMs in aqueous solutions with or without the aid of surfactants, bioactive, or non-natural molecules, providing insights into the possibilities of applications of such materials in the biological and biomedical fields.
Collapse
Affiliation(s)
- Yilin He
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Andrés Felipe Andrade
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
9
|
Aggarwal R, Saini D, Mitra R, Sonkar SK, Sonker AK, Westman G. From Bulk Molybdenum Disulfide (MoS 2) to Suspensions of Exfoliated MoS 2 in an Aqueous Medium and Their Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9855-9872. [PMID: 38687994 DOI: 10.1021/acs.langmuir.3c03116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Two-dimensional (2D) layered materials like graphene, transition-metal dichalcogenides (TMDs), boron nitrides, etc., exhibit unique and fascinating properties, such as high surface-to-volume ratio, inherent mechanical flexibility and robustness, tunable bandgap, and high carrier mobility, which makes them an apt candidate for flexible electronics with low consumption of power. Because of these properties, they are in tremendous demand for advancement in energy, environmental, and biomedical sectors developed through various technologies. The production and scalability of these materials must be sustainable and ecofriendly to utilize these unique properties in the real world. Here, in this current review, we review molybdenum disulfide (MoS2 nanosheets) in detail, focusing on exfoliated MoS2 in water and the applicability of aqueous MoS2 suspensions in various fields. The exfoliation of MoS2 results in the formation of single or few-layered MoS2. Therefore, this Review focuses on the few layers of exfoliated MoS2 that have the additional properties of 2D layered materials and higher excellent compatibility for integration than existing conventional Si tools. Hence, a few layers of exfoliated MoS2 are widely explored in biosensing, gas sensing, catalysis, photodetectors, energy storage devices, a light-emitting diode (LED), adsorption, etc. This review covers the numerous methodologies to exfoliate MoS2, focusing on the various published methodologies to obtain nanosheets of MoS2 from water solutions and their use.
Collapse
Affiliation(s)
- Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Richa Mitra
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, Espoo 02150, Finland
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Amit Kumar Sonker
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
- Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, Gothenburg, 41296, Sweden
- BA5409 cellulose films and coatings, VTT Technical Research Center of Finland, Tietotie 4E, Espoo 02150, Finland
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
- Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, Gothenburg, 41296, Sweden
| |
Collapse
|
10
|
Khan MF, Sadaqat S, Khan MA, Rehman S, Subhani WS, Ouladsmane M, Rehman MA, Ali F, Lipsanen H, Sun Z, Eom J, Ahmed F. Broadening spectral responses and achieving environmental stability in SnS 2/Ag-NPs/HfO 2 flexible phototransistors. NANOSCALE 2024; 16:3622-3630. [PMID: 38273810 DOI: 10.1039/d3nr04626e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Layered two-dimensional (2D) materials have gained popularity thanks to their atomically thin physique and strong coupling with light. Here, we investigated a wide band gap (≥ 2 eV) 2D material, i.e., tin disulfide (SnS2), and decorated it with silver nanoparticles, Ag-NPs, for broadband photodetection. Our results show that the SnS2/Ag-NPs devices exhibit broadband photodetection ranging from the ultraviolet to near-infrared (250-1050 nm) spectrum with decreased rise/decay times from 8/20 s to 7/16 s under 250 nm wavelength light compared to the bare SnS2 device. This is attributed to the localized surface plasmon resonance effect and the wide band gap of SnS2 crystal. Furthermore, the HfO2-passivated SnS2/Ag-NPs devices exhibited high photodetection performance in terms of photoresponsivity (∼12 500 A W-1), and external quantum efficiency (∼6 × 106%), which are significantly higher compared to those of bare SnS2. Importantly, after HfO2 passivation, the SnS2/Ag-NPs photodetector maintained the stable performance for several weeks with merely ∼5.7% reduction in photoresponsivity. Lastly, we fabricated a flexible SnS2/Ag-NPs photodetector, which shows excellent and stable performance under various bending curvatures (0, 20, and 10 mm), as it retains ∼80% of its photoresponsivity up to 500 bending cycles. Thus, our study provides a simple route to realize broadband and stable photoactivity in flexible 2D material-based devices.
Collapse
Affiliation(s)
- Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Sana Sadaqat
- Department of Physics, Riphah International University, Faisalabad Campus, 44000, Pakistan
| | - Muhammad Asghar Khan
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea.
| | - Shania Rehman
- Department of Semiconductor System Engineering, Sejong University, Seoul 05006, Republic of Korea
| | | | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Malik Abdul Rehman
- Department of Chemical Engineering, New Uzbekistan University, Tashkent, 100007, Uzbekistan
| | - Fida Ali
- Department of Electronics and Nano Engineering, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland.
| | - Harri Lipsanen
- Department of Electronics and Nano Engineering, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland.
| | - Zhipei Sun
- Department of Electronics and Nano Engineering, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland.
| | - Jonghwa Eom
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea.
| | - Faisal Ahmed
- Department of Electronics and Nano Engineering, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland.
| |
Collapse
|
11
|
Bharti S, Tripathi SK, Singh K. Recent progress in MoS 2 nanostructures for biomedical applications: Experimental and computational approach. Anal Biochem 2024; 685:115404. [PMID: 37993043 DOI: 10.1016/j.ab.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In the category of 2D materials, MoS2 a transition metal dichalcogenide, is a novel and intriguing class of materials with interesting physicochemical properties, explored in applications ranging from cutting-edge optoelectronic to the frontiers of biomedical and biotechnology. MoS2 nanostructures an alternative to heavy toxic metals exhibit biocompatibility, low toxicity and high stability, and high binding affinity to biomolecules. MoS2 nanostructures provide a lot of opportunities for the advancement of novel biosensing, nanodrug delivery system, electrochemical detection, bioimaging, and photothermal therapy. Much efforts have been made in recent years to improve their physiochemical properties by developing a better synthesis approach, surface functionalization, and biocompatibility for their safe use in the advancement of biomedical applications. The understanding of parameters involved during the development of nanostructures for their safe utilization in biomedical applications has been discussed. Computational studies are included in this article to understand better the properties of MoS2 and the mechanism involved in their interaction with biomolecules. As a result, we anticipate that this combined experimental and computational studies of MoS2 will inspire the development of nanostructures with smart drug delivery systems, and add value to the understanding of two-dimensional smart nano-carriers.
Collapse
Affiliation(s)
- Shivani Bharti
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh, 160014, India
| | - Kedar Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Szydlowska BM, Ding Y, Moore C, Cai Z, Torres-Castanedo CG, Jones E, Hersam MC, Sun C, Ameer GA. A polydiolcitrate-MoS 2 composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564364. [PMID: 37961681 PMCID: PMC10634906 DOI: 10.1101/2023.10.27.564364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS2 nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2). The composite was used as an ink with micro continuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications.
Collapse
Affiliation(s)
- Beata M. Szydlowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yonghui Ding
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Connor Moore
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
| | - Zizhen Cai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | - Evan Jones
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cheng Sun
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Guillermo A. Ameer
- Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA
- Chemistry for Life Processes Institute, Northwestern University, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, IL, 60208, USA
| |
Collapse
|
13
|
Krajewska AM, Paiva AE, Morris M, McDonald AR. Synthesis, Characterisation, and Functionalisation of Charged Two-Dimensional MoS 2. Chemistry 2023; 29:e202302039. [PMID: 37534612 DOI: 10.1002/chem.202302039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The applications of exfoliated MoS2 are limited by its inert surface and poor interface. We have activated the surface of exfoliated 2H-MoS2 by reacting it with NaBH4 , forming an n-doped material as demonstrated by a negative zeta-potential value ζ=-25 mV and a 20 nm (0.05 eV) red-shift in its photoluminescence spectrum. The novel material's spectral properties were consistent with pristine 2H-MoS2 (as determined by HR-TEM, XPS, pXRD, DRIFT, TGA, and Raman spectroscopy). Importantly, it was readily dispersed in H2 O unlike 2H-MoS2 . Its dispersibility properties were explored for a variety of solvents and could be directly correlated with the relative permittivity of the respective solvents. The charged 2H-MoS2 reacted readily with an organo-iodide to deliver functionalized 2H-MoS2 . Our approach delivers aqueous dispersions of semiconducting 2H-MoS2 , without additives or chemical functionalities, and allows for controlled and facile functionalization of 2H-MoS2 opening multiple new avenues of semi-conducting MoS2 application.
Collapse
Affiliation(s)
- Aleksandra M Krajewska
- CRANN/AMBER Nanoscience Institute and School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Aislan Esmeraldo Paiva
- CRANN/AMBER Nanoscience Institute and School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Michael Morris
- CRANN/AMBER Nanoscience Institute and School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Aidan R McDonald
- CRANN/AMBER Nanoscience Institute and School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
14
|
Dar MS, Tabish TA, Thorat ND, Swati G, Sahu NK. Photothermal therapy using graphene quantum dots. APL Bioeng 2023; 7:031502. [PMID: 37614868 PMCID: PMC10444203 DOI: 10.1063/5.0160324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
The rapid development of powerful anti-oncology medicines have been possible because of advances in nanomedicine. Photothermal therapy (PTT) is a type of treatment wherein nanomaterials absorb the laser energy and convert it into localized heat, thereby causing apoptosis and tumor eradication. PTT is more precise, less hazardous, and easy-to-control in comparison to other interventions such as chemotherapy, photodynamic therapy, and radiation therapy. Over the past decade, various nanomaterials for PTT applications have been reviewed; however, a comprehensive study of graphene quantum dots (GQDs) has been scantly reported. GQDs have received huge attention in healthcare technologies owing to their various excellent properties, such as high water solubility, chemical stability, good biocompatibility, and low toxicity. Motivated by the fascinating scientific discoveries and promising contributions of GQDs to the field of biomedicine, we present a comprehensive overview of recent progress in GQDs for PTT. This review summarizes the properties and synthesis strategies of GQDs including top-down and bottom-up approaches followed by their applications in PTT (alone and in combination with other treatment modalities such as chemotherapy, photodynamic therapy, immunotherapy, and radiotherapy). Furthermore, we also focus on the systematic study of in vitro and in vivo toxicities of GQDs triggered by PTT. Moreover, an overview of PTT along with the synergetic application used with GQDs for tumor eradication are discussed in detail. Finally, directions, possibilities, and limitations are described to encourage more research, which will lead to new treatments and better health care and bring people closer to the peak of human well-being.
Collapse
Affiliation(s)
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Nuffield Department of Women's and Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - G. Swati
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
15
|
Qin Z, Zhang J, Li S. Molybdenum Disulfide as Tunable Electrochemical and Optical Biosensing Platforms for Cancer Biomarker Detection: A Review. BIOSENSORS 2023; 13:848. [PMID: 37754082 PMCID: PMC10527254 DOI: 10.3390/bios13090848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Cancer is a common illness with a high mortality. Compared with traditional technologies, biomarker detection, with its low cost and simple operation, has a higher sensitivity and faster speed in the early screening and prognosis of cancer. Therefore, extensive research has focused on the development of biosensors and the construction of sensing interfaces. Molybdenum disulfide (MoS2) is a promising two-dimensional (2D) nanomaterial, whose unique adjustable bandgap shows excellent electronic and optical properties in the construction of biosensor interfaces. It not only has the advantages of a high catalytic activity and low manufacturing costs, but it can also further expand the application of hybrid structures through different functionalization, and it is widely used in various biosensors fields. Herein, we provide a detailed introduction to the structure and synthesis methods of MoS2, and explore the unique properties and advantages/disadvantages exhibited by different structures. Specifically, we focus on the excellent properties and application performance of MoS2 and its composite structures, and discuss the widespread application of MoS2 in cancer biomarkers detection from both electrochemical and optical dimensions. Additionally, with the cross development of emerging technologies, we have also expanded the application of other emerging sensors based on MoS2 for early cancer diagnosis. Finally, we summarized the challenges and prospects of MoS2 in the synthesis, functionalization of composite groups, and applications, and provided some insights into the potential applications of these emerging nanomaterials in a wider range of fields.
Collapse
Affiliation(s)
- Ziyue Qin
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jiawei Zhang
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Li
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Adam J, Singh M, Abduvakhidov A, Del Sorbo MR, Feoli C, Hussain F, Kaur J, Mirabella A, Rossi M, Sasso A, Valadan M, Varra M, Rusciano G, Altucci C. The Effectiveness of Cyrene as a Solvent in Exfoliating 2D TMDs Nanosheets. Int J Mol Sci 2023; 24:10450. [PMID: 37445624 DOI: 10.3390/ijms241310450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The pursuit of environmentally friendly solvents has become an essential research topic in sustainable chemistry and nanomaterial science. With the need to substitute toxic solvents in nanofabrication processes becoming more pressing, the search for alternative solvents has taken on a crucial role in this field. Additionally, the use of toxic, non-economical organic solvents, such as N-methyl-2 pyrrolidone and dimethylformamide, is not suitable for all biomedical applications, even though these solvents are often considered as the best exfoliating agents for nanomaterial fabrication. In this context, the success of producing two-dimensional transition metal dichalcogenides (2D TMDs), such as MoS2 and WS2, with excellent captivating properties is due to the ease of synthesis based on environment-friendly, benign methods with fewer toxic chemicals involved. Herein, we report for the first time on the use of cyrene as an exfoliating agent to fabricate monolayer and few-layered 2D TMDs with a versatile, less time-consuming liquid-phase exfoliation technique. This bio-derived, aprotic, green and eco-friendly solvent produced a stable, surfactant-free, concentrated 2D TMD dispersion with very interesting features, as characterized by UV-visible and Raman spectroscopies. The surface charge and morphology of the fabricated nanoflakes were analyzed using ς-potential and scanning electron microscopy. The study demonstrates that cyrene is a promising green solvent for the exfoliation of 2D TMD nanosheets with potential advantages over traditional organic solvents. The ability to produce smaller-sized-especially in the case of WS2 as compared to MoS2-and mono/few-layered nanostructures with higher negative surface charge values makes cyrene a promising candidate for various biomedical and electronic applications. Overall, the study contributes to the development of sustainable and environmentally friendly methods for the production of 2D nanomaterials for various applications.
Collapse
Affiliation(s)
- Jaber Adam
- Department of Physics "Ettore Pancini", University of Naples "Federico II", 80131 Naples, Italy
| | - Manjot Singh
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
- Italy National Institute of Nuclear Physics, Naples Section, 80126 Naples, Italy
| | | | - Maria Rosaria Del Sorbo
- Department of Precision Medicine, Università degli Studi della Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Chiara Feoli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Fida Hussain
- Department of Physics "Ettore Pancini", University of Naples "Federico II", 80131 Naples, Italy
| | - Jasneet Kaur
- Department of Physics "Ettore Pancini", University of Naples "Federico II", 80131 Naples, Italy
| | - Antonia Mirabella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
- Department of Agricultural Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Manuela Rossi
- Department of Earth Science, Environment and Resources, University of Naples "Federico II", 80131 Naples, Italy
- Istituto di Cristallografia-CNR, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Antonio Sasso
- Department of Physics "Ettore Pancini", University of Naples "Federico II", 80131 Naples, Italy
| | - Mohammadhassan Valadan
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
- Italy National Institute of Nuclear Physics, Naples Section, 80126 Naples, Italy
| | - Michela Varra
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Giulia Rusciano
- Department of Physics "Ettore Pancini", University of Naples "Federico II", 80131 Naples, Italy
| | - Carlo Altucci
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy
- Italy National Institute of Nuclear Physics, Naples Section, 80126 Naples, Italy
- ISASI-CNR, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", 80078 Naples, Italy
| |
Collapse
|
17
|
Kumar P, Kumar U, Huang YC, Tsai PY, Liu CH, Wu CH, Huang WM, Chen KL. Photocatalytic activity of a hydrothermally synthesized γ-Fe2O3@Au/MoS2 heterostructure for organic dye degradation under green light. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Valimukhametova AR, Zub OS, Lee BH, Fannon O, Nguyen S, Gonzalez-Rodriguez R, Akkaraju GR, Naumov AV. Dual-Mode Fluorescence/Ultrasound Imaging with Biocompatible Metal-Doped Graphene Quantum Dots. ACS Biomater Sci Eng 2022; 8:4965-4975. [PMID: 36179254 PMCID: PMC11338274 DOI: 10.1021/acsbiomaterials.2c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sonography offers many advantages over standard methods of diagnostic imaging due to its non-invasiveness, substantial tissue penetration depth, and low cost. The benefits of ultrasound imaging call for the development of ultrasound-trackable drug delivery vehicles that can address a variety of therapeutic targets. One disadvantage of the technique is the lack of high-precision imaging, which can be circumvented by complementing ultrasound contrast agents with visible and, especially, near-infrared (NIR) fluorophores. In this work, we, for the first time, develop a variety of lightly metal-doped (iron oxide, silver, thulium, neodymium, cerium oxide, cerium chloride, and molybdenum disulfide) nitrogen-containing graphene quantum dots (NGQDs) that demonstrate high-contrast properties in the ultrasound brightness mode and exhibit visible and/or near-infrared fluorescence imaging capabilities. NGQDs synthesized from glucosamine precursors with only a few percent metal doping do not introduce additional toxicity in vitro, yielding over 80% cell viability up to 2 mg/mL doses. Their small (<50 nm) sizes warrant effective cell internalization, while oxygen-containing surface functional groups decorating their surfaces render NGQDs water soluble and allow for the attachment of therapeutics and targeting agents. Utilizing visible and/or NIR fluorescence, we demonstrate that metal-doped NGQDs experience maximum accumulation within the HEK-293 cells 6-12 h after treatment. The successful 10-fold ultrasound signal enhancement is observed at 0.5-1.6 mg/mL for most metal-doped NGQDs in the vascular phantom, agarose gel, and animal tissue. A combination of non-invasive ultrasound imaging with capabilities of high-precision fluorescence tracking makes these metal-doped NGQDs a viable agent for a variety of theragnostic applications.
Collapse
Affiliation(s)
- Alina R Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Olga S Zub
- Alfa Radiology Management, Inc, Plano, Texas 75023, United States
| | - Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Olivia Fannon
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Steven Nguyen
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Roberto Gonzalez-Rodriguez
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Giridhar R Akkaraju
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
19
|
Naikoo GA, Arshad F, Almas M, Hassan IU, Pedram MZ, Aljabali AA, Mishra V, Serrano-Aroca Á, Birkett M, Charbe NB, Goyal R, Negi P, El-Tanani M, Tambuwala MM. 2D materials, synthesis, characterization and toxicity: A critical review. Chem Biol Interact 2022; 365:110081. [PMID: 35948135 DOI: 10.1016/j.cbi.2022.110081] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
|
20
|
Ali SR, De M. Superparamagnetic Nickel Nanocluster-Embedded MoS 2 Nanosheets for Gram-Selective Bacterial Adhesion and Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:2932-2942. [PMID: 35666676 DOI: 10.1021/acsbiomaterials.2c00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ever increasing infectious diseases caused by pathogenic bacteria are creating one of the greatest health problems. The extensive use of numerous antibiotics and antimicrobial agents has prompted the growth of multidrug-resistant bacterial strains. The ancient biomedical application of metals and the recent advancement in the field of nanotechnology have encouraged us to explore the antimicrobial activity of nanomaterials. Herein, we have synthesized a magnetically separable superparamagnetic nickel nanocluster-loaded two-dimensional molybdenum disulfide nanocomposite (Ni@2D-MoS2). It can selectively bind with Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis over Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa. After the functionalization of Ni@2D-MoS2 with a positively charged ligand, it showed an excellent Gram-selective antibacterial activity toward MRSA and E. faecalis. Furthermore, the superparamagnetic property of the synthesized material can be used for the simultaneous removal and killing of the microbes and recycled for further use. This study demonstrates strategies to develop hybrid antimicrobial nanomaterial systems for selective antibacterial activity with recyclability.
Collapse
Affiliation(s)
- Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, CV Raman Road, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, CV Raman Road, Bangalore 560012, India
| |
Collapse
|
21
|
Yu CC, Seki T, Wang Y, Bonn M, Nagata Y. Polarization-Dependent Sum-Frequency Generation Spectroscopy for Ångstrom-Scale Depth Profiling of Molecules at Interfaces. PHYSICAL REVIEW LETTERS 2022; 128:226001. [PMID: 35714258 DOI: 10.1103/physrevlett.128.226001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The three-dimensional spatial distribution of molecules at soft matter interfaces is crucial for processes ranging from membrane biophysics to atmospheric chemistry. While several techniques can access surface composition, obtaining information on the depth distribution is challenging. We develop a noninvasive, polarization-resolved, surface-specific sum-frequency generation spectroscopy providing quantitative depth information. We demonstrate the technique on formic acid molecules at the air-water interface. With increasing molar fraction from 2.5% to 10%, the formic acid molecules shift, on average, ∼0.9 Å into the bulk. The consistency with the simulation data manifests that the technique allows for probing the Ångstrom-scale depth profile.
Collapse
Affiliation(s)
- Chun-Chieh Yu
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Takakazu Seki
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yongkang Wang
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
22
|
Devassy AM, Kamalakshan A, Jamuna NA, Ansilda R, Mandal S. Enhanced Catalytic Activity of a New Nanobiocatalytic System Formed by the Adsorption of Cytochrome c on Pluronic Triblock Copolymer Stabilized MoS 2 Nanosheets. ACS OMEGA 2022; 7:16593-16604. [PMID: 35601299 PMCID: PMC9118411 DOI: 10.1021/acsomega.2c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
The formation of nanobiohybrids through the immobilization of enzymes on functional nanomaterials has opened up exciting research opportunities at the nanobiointerfaces. These systems hold great promise for a wide range of applications in biosensing, biocatalytic, and biomedical fields. Here, we report the formation of a hybrid nanobiocatalytic system through the adsorption of cytochrome c (Cyt c) on pluronic triblock copolymer, P123 (PEO-b-PPO-b-PEO), stabilized MoS2 nanosheets. The use of pluronic polymer has helped not only to greatly stabilize the exfoliated MoS2 nanosheets but also to allow easy adsorption of Cyt c on the nanosheets without major structural changes due to its excellent biocompatibility and soft protein-binding property. By comparing the catalytic activity of the Cyt c-MoS2 nanobiohybrid with that of the free Cyt c and as-prepared MoS2 nanosheets, we have demonstrated the active role of the nanobiointeractions in enhancing the catalytic activity of the hybrid. Slight structural perturbation at the active site of the Cyt c upon adsorption on MoS2 has primarily facilitated the peroxidase activity of the Cyt c. As the MoS2 nanosheets and the native Cyt c individually exhibit weaker intrinsic peroxidase activities, their mutual modulation at the nanobiointerface has made the Cyt c-MoS2 a novel nanobiocatalyst with superior activity.
Collapse
Affiliation(s)
| | - Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Nidhi Anilkumar Jamuna
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Roselin Ansilda
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|
23
|
Spontaneous formation of gold nanoparticles on MoS2 nanosheets and its impact on solution-processed optoelectronic devices. iScience 2022; 25:104120. [PMID: 35391825 PMCID: PMC8980758 DOI: 10.1016/j.isci.2022.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding size-dependent properties of 2D materials is crucial for their optimized performance when incorporated through solution routes. In this work, the chemical nature of MoS2 as a function of nanosheet size is investigated through the spontaneous reduction of chloroauric acid. Microscopy studies suggest higher gold nanoparticle decoration density in smaller nanosheet sizes, resulting from higher extent of reduction. Further corroboration through surface-enhanced Raman scattering using the gold-decorated MoS2 nanosheets as substrates exhibited an enhancement factor of 1.55 × 106 for smaller nanosheets which is 7-fold higher as compared to larger nanosheets. These plasmonic-semiconductor hybrids are utilized for photodetection, where decoration is found to impact the photoresponse of smaller nanosheets the most, and is optimized to achieve responsivity of 367.5 mAW-1 and response times of ∼17 ms. The simplistic modification via solution routes and its impact on optoelectronic properties provides an enabling platform for 2D materials-based applications. Reducing agent-free Au nanoparticle decoration on aqueously dispersed 2H-MoS2. Control on Au nanoparticle decoration density through nanosheet size-selection. SERS as a probe for determining the decoration density along with microscopy. Enhanced photodetection by spontaneous modification with Au on MoS2 films.
Collapse
|
24
|
Rusciano G, Capaccio A, Sasso A, Singh M, Valadan M, Dell’Aversana C, Altucci L, Altucci C. Single-Cell Photothermal Analysis Induced by MoS2 Nanoparticles by Raman Spectroscopy. Front Bioeng Biotechnol 2022; 10:844011. [PMID: 35360403 PMCID: PMC8960122 DOI: 10.3389/fbioe.2022.844011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Two-dimensional nanomaterials, such as MoS2 nanosheets, have been attracting increasing attention in cancer diagnosis and treatment, thanks to their peculiar physical and chemical properties. Although the mechanisms which regulate the interaction between these nanomaterials and cells are not yet completely understood, many studies have proved their efficient use in the photothermal treatment of cancer, and the response to MoS2 nanosheets at the single-cell level is less investigated. Clearly, this information can help in shedding light on the subtle cellular mechanisms ruling the interaction of this 2D material with cells and, eventually, to its cytotoxicity. In this study, we use confocal micro-Raman spectroscopy to reconstruct the thermal map of single cells targeted with MoS2 under continuous laser irradiation. The experiment is performed by analyzing the water O-H stretching band around 3,400 cm−1 whose tetrahedral structure is sensitive to the molecular environment and temperature. Compared to fluorescence-based approaches, this Raman-based strategy for temperature measurement does not suffer fluorophore instability, which can be significant under continuous laser irradiation. We demonstrate that irradiation of human breast cancer MCF7 cells targeted with MoS2 nanosheets causes a relevant photothermal effect, which is particularly high in the presence of MoS2 nanosheet aggregates. Laser-induced heating is strongly localized near such particles which, in turn, tend to accumulate near the cytoplasmic membrane. Globally, our experimental outcomes are expected to be important for tuning the nanosheet fabrication process.
Collapse
Affiliation(s)
- Giulia Rusciano
- Department of Physics “E. Pancini”, University of Naples Federico II, Naples, Italy
- CNR-INO, National Research Council—National Institute of Optics, Pozzuoli, Italy
- *Correspondence: Giulia Rusciano, ; Carlo Altucci,
| | - Angela Capaccio
- Department of Physics “E. Pancini”, University of Naples Federico II, Naples, Italy
| | - Antonio Sasso
- Department of Physics “E. Pancini”, University of Naples Federico II, Naples, Italy
- CNR-INO, National Research Council—National Institute of Optics, Pozzuoli, Italy
| | - Manjot Singh
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Mohammadhassan Valadan
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmela Dell’Aversana
- CNR-IEOS, National Research Council—Institute of Experimental Endocrinology and Oncology—IEOS, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- CNR-IEOS, National Research Council—Institute of Experimental Endocrinology and Oncology—IEOS, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- BIOGEM, Biologia e Genetica Molecolare, Ariano Irpino, Italy
| | - Carlo Altucci
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- INFN Sezione di Napoli, Compl. Univ. di Monte S. Angelo, Napoli, Italy
- *Correspondence: Giulia Rusciano, ; Carlo Altucci,
| |
Collapse
|
25
|
Murugan C, Sundararajan V, Mohideen SS, Sundaramurthy A. Controlled decoration of nanoceria on the surface of MoS 2nanoflowers to improve the biodegradability and biocompatibility in Drosophila melanogastermodel. NANOTECHNOLOGY 2022; 33:205703. [PMID: 35090149 DOI: 10.1088/1361-6528/ac4fe4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In recent years, nanozymes based on two-dimensional (2D) nanomaterials have been receiving great interest for cancer photothermal therapy. 2D materials decorated with nanoparticles (NPs) on their surface are advantageous over conventional NPs and 2D material based systems because of their ability to synergistically improve the unique properties of both NPs and 2D materials. In this work, we report a nanozyme based on flower-like MoS2nanoflakes (NFs) by decorating their flower petals with NCeO2using polyethylenimine (PEI) as a linker molecule. A detailed investigation on toxicity, biocompatibility and degradation behavior of fabricated nanozymes in wild-typeDrosophila melanogastermodel revealed that there were no significant effects on the larval size, morphology, larval length, breadth and no time delay in changing larvae to the third instar stage at 7-10 d for MoS2NFs before and after NCeO2decoration. The muscle contraction and locomotion behavior of third instar larvae exhibited high distance coverage for NCeO2decorated MoS2NFs when compared to bare MoS2NFs and control groups. Notably, the MoS2and NCeO2-PEI-MoS2NFs treated groups at 100μg ml-1covered a distance of 38.2 mm (19.4% increase when compared with control) and 49.88 mm (no change when compared with control), respectively. High-resolution transmission electron microscopy investigations on the new born fly gut showed that the NCeO2decoration improved the degradation rate of MoS2NFs. Hence, nanozymes reported here have huge potential in various fields ranging from biosensing, cancer therapy and theranostics to tissue engineering and the treatment of Alzheimer's disease and retinal therapy.
Collapse
Affiliation(s)
- Chandran Murugan
- Biomaterials Research Laboratory, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Vignesh Sundararajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Sahabudeen Sheik Mohideen
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| |
Collapse
|
26
|
Kandhasamy DM, Muthu Mareeswaran P, Chellappan S, Namasivayam D, Aldahish A, Chidambaram K. Synthesis and Photoluminescence Properties of MoS 2/Graphene Heterostructure by Liquid-Phase Exfoliation. ACS OMEGA 2022; 7:629-637. [PMID: 35036729 PMCID: PMC8757342 DOI: 10.1021/acsomega.1c05250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Here, we report the synthesis of MoS2/graphene heterostructure in single-stage, liquid-phase exfoliation using a 7:3 isopropyl alcohol/water mixture. Further, the synthesized heterostructure was characterized using UV-visible and micro-Raman spectroscopies, transmission electron microscopy (TEM), and dynamic light scattering (DLS) analysis. UV-visible and micro-Raman analyses confirmed that the synthesized heterostructure had mostly few-layered (two-to-four sheets) MoS2. The photophysical properties of the heterostructure were analyzed using steady-state and time-resolved luminescence techniques. Enhanced photoluminescence was observed in the case of the heterostructure probably due to an increase in the defect sites or reduction in the rate of nonradiative decay upon formation of the sandwiched heterostructure. Applications of this heterostructure for fluorescence live-cell imaging were carried out, and the heterostructure demonstrated a better luminescence contrast compared to its individual counterpart MoS2 in phosphate-buffered saline (PBS).
Collapse
Affiliation(s)
- Durai Murugan Kandhasamy
- Department
of Bioelectronics and Biosensors, Alagappa
University, Karaikudi 630003, Tamil Nadu, India
| | | | - Selvaraju Chellappan
- National
Centre for Ultrafast Processes, University
of Madras, Taramani Campus, Chennai 600113, India
| | - Dhenadhayalan Namasivayam
- Department
of Chemistry, National Taiwan University and Institute of Atomic and
Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Afaf Aldahish
- Department
of Pharmacology, School of Pharmacy, King
Khalid University, Abha 62529, Saudi Arabia
| | - Kumarappan Chidambaram
- Department
of Pharmacology, School of Pharmacy, King
Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
27
|
Xie M, Huang C, Liang Y, Li S, Sheng L, Cao Y. MoS2 nanosheets and bulk materials altered lipid profiles in 3D Caco-2 spheroids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Kasinathan K, Marimuthu K, Murugesan B, Sathaiah M, Subramanian P, Sivakumar P, Swaminathan U, Subbiah R. Fabrication of eco-friendly chitosan functionalized few-layered WS 2 nanocomposite implanted with ruthenium nanoparticles for in vitro antibacterial and anticancer activity: Synthesis, characterization, and pharmaceutical applications. Int J Biol Macromol 2021; 190:520-532. [PMID: 34480908 DOI: 10.1016/j.ijbiomac.2021.08.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The abundance of two-dimensional (2D) components has provided them with a broad material platform for building nano and atomic-level applications. So, 2D nanomaterials are unique because of their physicochemical properties. Over many years, graphene is a conventional 2D layered element that has significant attention in the scientific community. In recent years numerous new 2D nanomaterials other than graphene have been reported. The study of 2D nanomaterials is also in its infant stages, with the majority of research focusing on the explanation of special material properties, but very few articles are focusing on the biological applications of 2D nanomaterials. As a result, we focused on the transition metal dichalcogenides (TMDCs) such as MoS2 and WS2, which were emerging and exciting groups of elements with display great opportunities in several fields, such as cancer nanomedicine. Herein, we synthesized biologically active CS/WS2/Ru composite by liquid exfoliation approach. The CS/WS2/Ru composites exhibit significant antibacterial action towards (S. aureus, and E. coli) bacteria. Also, the composite suggests synergetic anticancer action against MCF-7 cancer cells. These reports are possible to explore the innovative aspects of biological outcomes in carcinological applications.
Collapse
Affiliation(s)
- Kasirajan Kasinathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Karunakaran Marimuthu
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India.
| | - Balaji Murugesan
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Maheswari Sathaiah
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Palanisamy Subramanian
- East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Prabakaran Sivakumar
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Usha Swaminathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Rajalakshmi Subbiah
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| |
Collapse
|
29
|
Ghim D, Chou PI, Chae SH, Jun YS. Effects of MoS 2 Layer Thickness on Its Photochemically Driven Oxidative Dissolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13759-13769. [PMID: 34581181 DOI: 10.1021/acs.est.1c02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The distinctive optical and electronic properties of two-dimensional (2D) molybdenum disulfide (MoS2) make it a promising photocatalyst and photothermal agent in aqueous applications. In terms of environmental stability, MoS2 has been considered insoluble, but 2D MoS2 nanosheets can be susceptible to dissolution, owing to their large surface areas and highly accessible reactive sites, including defects at the basal plane and edge sites. Under light illumination, the dissolution of 2D MoS2 nanosheets can be further accelerated by their photochemical reactivity. To elucidate MoS2 reactivity in the environment, here we investigated the thickness-dependent dissolution of MoS2 under illumination. To synthesize nanoscale thicknesses of MoS2, we exfoliated bulk MoS2 by ultrasonication and controlled the layer thickness by iterative cascade centrifugation, producing MoS2 nanosheets averaging either ∼18 nm or ∼46 nm thick, depending on the centrifugation rate. Under simulated sunlight, MoS2 dissolution was accelerated, the Mo6+ composition increased, and the solution pH decreased compared to those in the dark. These results suggest that light exposure promotes the oxidation of MoS2, causing faster dissolution. Importantly, 18 nm thick MoS2 exhibited faster dissolution than either 46 nm or bulk MoS2, driven by the superoxide radical (O2•-) generation promoted by its relative thinness. These findings highlight the important role of the thickness-dependent photochemistry of MoS2 nanosheets in their dissolution, which is directly linked to their environmental behavior and stability.
Collapse
Affiliation(s)
- Deoukchen Ghim
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Ping-I Chou
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Seung Hee Chae
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
30
|
|
31
|
Mulu M, RamaDevi D, Belachew N, Basavaiah K. Hydrothermal green synthesis of MoS 2 nanosheets for pollution abatement and antifungal applications. RSC Adv 2021; 11:24536-24542. [PMID: 35481050 PMCID: PMC9036892 DOI: 10.1039/d1ra03815j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, we report a green synthesis of MoS2 nanosheets (NSs) using a facile hydrothermal technique in the presence of l-cysteine. l-Cysteine can serve as a greener source of sulfur as well as a capping agent to help the growth of MoS2 nanosheets. The prepared materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), electron transmission microscopy (TEM), X-ray photoelectron microscopy (XPS), and Brunauer, Emmett, and Teller (BET) analysis. The results showed that MoS2 NSs are of high crystallinity with a lattice spacing of 0.61 nm. The optical bandgap of MoS2 NSs nanosheets prepared using l-cysteine as a source of sulfur was found to be 1.79 eV. The photocatalytic degradation of MoS2 NSs towards methylene orange (MO) and rhodamine blue (RB) dyes under sunlight was found to be promising for practical applications. The fast kinetics of degradation of MO and RhB was observed over a wide range of pH range. Moreover, MoS2 NSs showed excellent antifungal activities against Trichophyton mentagrophytes and Penicillium chrysogenum fungus.
Collapse
Affiliation(s)
- Mengistu Mulu
- Department of Inorganic and Analytical Chemistry, Andhra University Visakhapatnam-530003 India
| | - Dharmasoth RamaDevi
- A.U. College of Pharmaceutical Sciences, Andhra University Visakhapatnam-530003 India
| | - Neway Belachew
- Department of Chemistry, Debre Birhan University Debre Berhan Ethiopia
| | - K Basavaiah
- Department of Inorganic and Analytical Chemistry, Andhra University Visakhapatnam-530003 India
| |
Collapse
|
32
|
Shaw ZL, Kuriakose S, Cheeseman S, Dickey MD, Genzer J, Christofferson AJ, Crawford RJ, McConville CF, Chapman J, Truong VK, Elbourne A, Walia S. Antipathogenic properties and applications of low-dimensional materials. Nat Commun 2021; 12:3897. [PMID: 34162835 PMCID: PMC8222221 DOI: 10.1038/s41467-021-23278-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/14/2021] [Indexed: 01/31/2023] Open
Abstract
A major health concern of the 21st century is the rise of multi-drug resistant pathogenic microbial species. Recent technological advancements have led to considerable opportunities for low-dimensional materials (LDMs) as potential next-generation antimicrobials. LDMs have demonstrated antimicrobial behaviour towards a variety of pathogenic bacterial and fungal cells, due to their unique physicochemical properties. This review provides a critical assessment of current LDMs that have exhibited antimicrobial behaviour and their mechanism of action. Future design considerations and constraints in deploying LDMs for antimicrobial applications are discussed. It is envisioned that this review will guide future design parameters for LDM-based antimicrobial applications.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, RMIT University, Melbourne, Australia
| | - Sruthi Kuriakose
- School of Engineering, RMIT University, Melbourne, Australia
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia
| | | | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia
| | - James Chapman
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Australia.
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia.
| |
Collapse
|
33
|
Bae M, Oh JK, Liu S, Nagabandi N, Yegin Y, DeFlorio W, Cisneros-Zevallos L, Scholar EMA. Nanotoxicity of 2D Molybdenum Disulfide, MoS 2, Nanosheets on Beneficial Soil Bacteria, Bacillus cereus and Pseudomonas aeruginosa. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1453. [PMID: 34072663 PMCID: PMC8229097 DOI: 10.3390/nano11061453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Concerns arising from accidental and occasional releases of novel industrial nanomaterials to the environment and waterbodies are rapidly increasing as the production and utilization levels of nanomaterials increase every day. In particular, two-dimensional nanosheets are one of the most significant emerging classes of nanomaterials used or considered for use in numerous applications and devices. This study deals with the interactions between 2D molybdenum disulfide (MoS2) nanosheets and beneficial soil bacteria. It was found that the log-reduction in the survival of Gram-positive Bacillus cereus was 2.8 (99.83%) and 4.9 (99.9988%) upon exposure to 16.0 mg/mL bulk MoS2 (macroscale) and 2D MoS2 nanosheets (nanoscale), respectively. For the case of Gram-negative Pseudomonas aeruginosa, the log-reduction values in bacterial survival were 1.9 (98.60%) and 5.4 (99.9996%) for the same concentration of bulk MoS2 and MoS2 nanosheets, respectively. Based on these findings, it is important to consider the potential toxicity of MoS2 nanosheets on beneficial soil bacteria responsible for nitrate reduction and nitrogen fixation, soil formation, decomposition of dead and decayed natural materials, and transformation of toxic compounds into nontoxic compounds to adequately assess the environmental impact of 2D nanosheets and nanomaterials.
Collapse
Affiliation(s)
- Michael Bae
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Korea;
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Nirup Nagabandi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Yagmur Yegin
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
- Department of Horticultural Science, Texas A&M University, College Station, TX 77843, USA
| | - Ethan M. A. Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
34
|
Abstract
Molybdenum disulfide (MoS2) is one of the compounds discussed nowadays due to its outstanding properties that allowed its usage in different applications. Its band gap and its distinctive structure make it a promising material to substitute graphene and other semiconductor devices. It has different applications in electronics especially sensors like optical sensors, biosensors, electrochemical biosensors that play an important role in the detection of various diseases’ like cancer and Alzheimer. It has a wide range of energy applications in batteries, solar cells, microwave, and Terahertz applications. It is a promising material on a nanoscale level, with favorable characteristics in spintronics and magnetoresistance. In this review, we will discuss MoS2 properties, structure and synthesis techniques with a focus on its applications and future challenges.
Collapse
|
35
|
Kouloumpis A, Chatzikonstantinou AV, Chalmpes N, Giousis T, Potsi G, Katapodis P, Stamatis H, Gournis D, Rudolf P. Germanane Monolayer Films as Antibacterial Coatings. ACS APPLIED NANO MATERIALS 2021; 4:2333-2338. [PMID: 33842855 PMCID: PMC8025679 DOI: 10.1021/acsanm.0c03149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/29/2021] [Indexed: 05/31/2023]
Abstract
Germanane (GeH), a graphane analogue, has attracted significant interest because of its optoelectronic properties; however, the environmental and biological effects of GeH have scarcely been investigated so far. Here we report a facile approach based on the Langmuir-Schaefer deposition to produce homogeneous and dense GeH monolayer films on various substrates. In view of possible applications and to extend the use of GeH to unexplored fields, we investigated its antibacterial activity for the first time and found that this promising 2D structure exhibits remarkable antibacterial activity against both Gram-negative and Gram-positive bacterial strains.
Collapse
Affiliation(s)
- Antonios Kouloumpis
- Department
of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Alexandra V. Chatzikonstantinou
- Biotechnology
Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos Chalmpes
- Department
of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Theodosis Giousis
- Department
of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Georgia Potsi
- Department
of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petros Katapodis
- Biotechnology
Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Haralambos Stamatis
- Biotechnology
Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Gournis
- Department
of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Petra Rudolf
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
36
|
Lobo K, Sahoo P, Kurapati R, Krishna K. V, Patil V, Pandit A, Matte HSSR. Additive‐free Aqueous Dispersions of Two‐Dimensional Materials with Glial Cell Compatibility and Enzymatic Degradability. Chemistry 2021; 27:7434-7443. [DOI: 10.1002/chem.202005491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Kenneth Lobo
- Energy Materials Laboratory Centre for Nano and Soft Matter Sciences Prof. U. R. Rao Road, Jalahalli Bengaluru 560013 India
- Manipal Academy of Higher Education Manipal 576 104 India
| | - Priyabrata Sahoo
- Energy Materials Laboratory Centre for Nano and Soft Matter Sciences Prof. U. R. Rao Road, Jalahalli Bengaluru 560013 India
- Manipal Academy of Higher Education Manipal 576 104 India
| | - Rajendra Kurapati
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - Vijaya Krishna K.
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - Vaibhav Patil
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - H. S. S. Ramakrishna Matte
- Energy Materials Laboratory Centre for Nano and Soft Matter Sciences Prof. U. R. Rao Road, Jalahalli Bengaluru 560013 India
| |
Collapse
|
37
|
Kaur J, Malekkhouyan A, Selopal GS, Wang ZM, Rosei F, Zarrin H. Bidirectional Superionic Conduction in Surface-Engineered 2D Hexagonal Boron Nitrides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6532-6544. [PMID: 33499606 DOI: 10.1021/acsami.0c21234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We designed functionalized hexagonal boron nitride (FhBN) nanoflakes with high proton conductivity in both in- and through-plane directions as next generation polymer electrolyte membranes (PEMs) for energy storage and conversion systems. The synthesis and functionalization of hBN nanoflakes with sulfonic acid (SA) groups are obtained by one-step and in situ liquid-phase exfoliation with excellent dispersibility and stability over a period of three months. The physico/chemical properties of FhBN nanoflakes were investigated by different spectroscopic and microscopic characterization, confirming chemical interactions between hBN lattice and SA groups. High concentrations (65 and 75 wt %) of FhBN nanoflakes composed with Nafion solution formed stable FhBN-Nafion nanocomposite PEMs, offering extra proton conduction sites, doubling ion-exchange capacity, and reducing the swelling ratio compared to those of Nafion. Our results demonstrate that both the in-plane and through-plane proton conductivities of FhBN-Nafion PEMs significantly improve under various conditions comparative to that of Nafion. The maximum values of both in- and through-plane conductivities for FhBN75%-Nafion PEM at 80% of humidity and 80 °C are 0.41 and 0.1 S·cm-1, respectively, which are 7 and 14 times higher than those of Nafion. The bidirectional superionic transport in highly concentrated FhBN PEMs is responsible for outstanding properties, useful for electrochemical energy devices.
Collapse
Affiliation(s)
- Jasneet Kaur
- Nano-Engineering Laboratory of Energy & Environmental Technologies, Department of Chemical Engineering, Faculty of Engineering & Architectural Science, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Adel Malekkhouyan
- Nano-Engineering Laboratory of Energy & Environmental Technologies, Department of Chemical Engineering, Faculty of Engineering & Architectural Science, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Gurpreet S Selopal
- Centre for Energy, Materials and Telecommunications, Institut National de La Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 0610054, P.R. China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 0610054, P.R. China
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de La Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 0610054, P.R. China
| | - Hadis Zarrin
- Nano-Engineering Laboratory of Energy & Environmental Technologies, Department of Chemical Engineering, Faculty of Engineering & Architectural Science, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
38
|
Cyclodextrin functionalized multi-layered MoS2 nanosheets and its biocidal activity against pathogenic bacteria and MCF-7 breast cancer cells: Synthesis, characterization and in-vitro biomedical evaluation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Domi B, Bhorkar K, Rumbo C, Sygellou L, Yannopoulos SN, Quesada R, Tamayo-Ramos JA. Fate assessment of commercial 2D MoS 2 aqueous dispersions at physicochemical and toxicological level. NANOTECHNOLOGY 2020; 31:445101. [PMID: 32674094 DOI: 10.1088/1361-6528/aba6b3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The physicochemical properties and the toxicological potential of commercially available MoS2 nanoparticles with different lateral size and degradation stage were studied in the present research work. To achieve this, the structure and stoichiometry of fresh and old aqueous suspensions of micro-MoS2 and nano-MoS2 was analyzed by Raman, while x-ray photoelectron spectroscopy allowed to identify more quantitatively the nature of the formed oxidized species. A, the toxicological impact of the nanomaterials under analysis was studied using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus S. cerevisiae as biological models. Cell viability assays and reactive oxygen species (ROS) determinations demonstrated different toxicity levels depending on the cellular model used and in function of the degradation state of the selected commercial nanoproducts. Both MoS2 nanoparticle types induced sublethal damage on the A549 cells though the increase of intracellular ROS levels, while comparable concentrations reduced the viability of yeast cells. In addition, the old MoS2 nanoparticles suspensions exhibited a higher toxicity for both human and yeast cells than the fresh ones. Our findings demonstrate that the fate assessment of nanomaterials is a critical aspect to increase the understanding on their characteristics and on their potential impact on biological systems along their life cycle.
Collapse
Affiliation(s)
- Brixhilda Domi
- International Research Centre in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Singh M, Zannella C, Folliero V, Di Girolamo R, Bajardi F, Chianese A, Altucci L, Damasco A, Del Sorbo MR, Imperatore C, Rossi M, Valadan M, Varra M, Vergara A, Franci G, Galdiero M, Altucci C. Combating Actions of Green 2D-Materials on Gram Positive and Negative Bacteria and Enveloped Viruses. Front Bioeng Biotechnol 2020; 8:569967. [PMID: 33117781 PMCID: PMC7549698 DOI: 10.3389/fbioe.2020.569967] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023] Open
Abstract
Interactions of novel bi-dimensional nanomaterials and live matter such as bacteria and viruses represent an extremely hot topic due to the unique properties of the innovative nanomaterials, capable in some cases to exhibit bactericide and antiviral actions. The interactions between bacteria and viruses and two dimensional nanosheets are here investigated. We extensively studied the interaction between a gram-negative bacterium, Escherichia coli, and a gram-positive bacterium, Staphylococcus aureus, with two different types of 2D nanoflakes such as MoS2, belonging to the Transition Metal Dichalcogenides family, and Graphene Oxide. The same two types of nanomaterials were employed to study their antiviral action toward the Herpes simplex virus type-1, (HSV-1). The experimental results showed different bactericide impacts as well as different antiviral power between the two nanomaterials. The experimental findings were interpreted in bacteria on the base of the Derjaguin–Landau–Verwey–Overbeek theory. A simple kinetic model of bacterial growth in the presence of the interacting nanosheets is also elaborated, to explain the observed results. The experimental results in viruses are really novel and somewhat surprising, evidencing a stronger antiviral action of Graphene Oxide as compared to MoS2. Results in viruses are complicated to quantitatively interpret due to the complexity of the system under study, constituted by virus/host cell and nanoflake, and due to the lack of a well assessed theoretical context to refer to. Thus, these results are interpreted in terms of qualitative arguments based on the chemical properties of the interactors in the given solvent medium.
Collapse
Affiliation(s)
- Manjot Singh
- Laboratory of Bio-Nano-Photonics, Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Veronica Folliero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Bajardi
- Laboratory of Bio-Nano-Photonics, Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, Italy.,Istituto Nazionale di Fisica Nucleare, Naples, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Achille Damasco
- Laboratory of Bio-Nano-Photonics, Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, Italy
| | | | | | - Manuela Rossi
- Department of Earth Science, Environment and Resources, University of Naples "Federico II", Naples, Italy
| | - Mohammadhassan Valadan
- Laboratory of Bio-Nano-Photonics, Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, Italy
| | - Michela Varra
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Guanluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Altucci
- Laboratory of Bio-Nano-Photonics, Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, Italy.,Istituto Nazionale di Fisica Nucleare, Naples, Italy
| |
Collapse
|
41
|
Imperatore C, Varriale A, Rivieccio E, Pennacchio A, Staiano M, D’Auria S, Casertano M, Altucci C, Valadan M, Singh M, Menna M, Varra M. Spectroscopic Properties of Two 5'-(4-Dimethylamino)Azobenzene Conjugated G-Quadruplex Forming Oligonucleotides. Int J Mol Sci 2020; 21:E7103. [PMID: 32993097 PMCID: PMC7582650 DOI: 10.3390/ijms21197103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
The synthesis of two 5'-end (4-dimethylamino)azobenzene conjugated G-quadruplex forming aptamers, the thrombin binding aptamer (TBA) and the HIV-1 integrase aptamer (T30695), was performed. Their structural behavior was investigated by means of UV, CD, fluorescence spectroscopy, and gel electrophoresis techniques in K+-containing buffers and water-ethanol blends. Particularly, we observed that the presence of the 5'-(4-dimethylamino)azobenzene moiety leads TBA to form multimers instead of the typical monomolecular chair-like G-quadruplex and almost hampers T30695 G-quadruplex monomers to dimerize. Fluorescence studies evidenced that both the conjugated G-quadruplexes possess unique fluorescence features when excited at wavelengths corresponding to the UV absorption of the conjugated moiety. Furthermore, a preliminary investigation of the trans-cis conversion of the dye incorporated at the 5'-end of TBA and T30695 showed that, unlike the free dye, in K+-containing water-ethanol-triethylamine blend the trans-to-cis conversion was almost undetectable by means of a standard UV spectrophotometer.
Collapse
Affiliation(s)
- Concetta Imperatore
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Antonio Varriale
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Elisa Rivieccio
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Angela Pennacchio
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Maria Staiano
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Sabato D’Auria
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Marcello Casertano
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Carlo Altucci
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Mohammadhassan Valadan
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Manjot Singh
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Marialuisa Menna
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Michela Varra
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| |
Collapse
|
42
|
Nurrohman DT, Wang YH, Chiu NF. Exploring Graphene and MoS 2 Chips Based Surface Plasmon Resonance Biosensors for Diagnostic Applications. Front Chem 2020; 8:728. [PMID: 33005604 PMCID: PMC7479841 DOI: 10.3389/fchem.2020.00728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023] Open
Abstract
Until now, two-dimensional (2D) nanomaterials have been widely studied and applied in the biosensor field. Some of the advantages offered by these 2D materials include large specific surface area, high conductivity, and easy surface modification. This review discusses the use of 2D material in surface plasmon resonance (SPR) biosensor for diagnostic applications. Two-dimensional material reviewed includes graphene and molybdenum disulfide (MoS2). The discussion begins with a brief introduction to the general principles of the SPR biosensor. The discussion continues by explaining the properties and characteristics of each material and its effect on the performance of the SPR biosensor, in particular its sensitivity. This review concludes with some recent applications of graphene- and MoS2-based SPR biosensor in diagnostic applications.
Collapse
Affiliation(s)
- Devi Taufiq Nurrohman
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
- Department of Electronics Engineering, State Polytechnic of Cilacap, Cilacap, Indonesia
| | - Ying-Hao Wang
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
| | - Nan-Fu Chiu
- Laboratory of Nano-photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
43
|
2D materials in electrochemical sensors for in vitro or in vivo use. Anal Bioanal Chem 2020; 413:701-725. [PMID: 32776222 DOI: 10.1007/s00216-020-02831-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
Abstract
Individual cells and cell populations are at the present time investigated with a myriad of analytical tools. While most of them are commercially available, some of these analytical tools are just emerging from research laboratories and are in the developmental phase. Electrochemical sensors which allow the monitoring of low molecular weight compounds released (and / or uptaken) by cells are among these emerging tools. Such sensors are increasingly built using 2D materials (e.g. graphene-based materials, transition metal dichalcogenides, etc.) with the aim of conferring better analytical performances to these devices. The present work critically reviews studies published during the last 10 years describing electrochemical sensors made with 2D materials and exploited to monitor small compounds (e.g. H2O2, ·NO, glucose, etc.) in living biological systems. It also discusses the very few 2D material-based electrochemical sensors which are wearable or usable in vivo. Finally, the present work includes a specific section about 2D material biocompatibility, a fundamental requirement for 2D material-based sensor applications in vitro and in vivo. As such, the review provides a critical view on the state of the art of electrochemical sensors made with 2D materials and used at cellular level and it evaluates the possibility that such sensors will be used on / in the human body on a wider scale.
Collapse
|
44
|
Park CH, Kim T, Lee GH, Ku KH, Kim SH, Kim BJ. Fluorescent Polymer-MoS 2-Embedded Microgels for Photothermal Heating and Colorimetric Monitoring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35415-35423. [PMID: 32662977 DOI: 10.1021/acsami.0c08125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photothermal heating with accurate monitoring of local temperature in complex biological fluids is crucial for therapeutic accuracy. Herein, photothermal microgels are developed to heat microscopic volumes through photothermal conversion and report the local temperature with a colorimetric response. The microgels consist of poly(ethylene glycol)-based hydrogels, which integrate temperature-responsive block-copolymer-grafted MoS2 nanosheets (BCP-grafted MoS2 NSs). The MoS2 NSs are used as a fluorescence quencher as well as an efficient photothermal agent, with their surface decorated with three distinct temperature-responsive BCPs containing blue-, green-, and red-fluorescent dyes. Upon irradiation of near-infrared light, MoS2 NSs convert the radiation into heat, and the BCPs change their conformation depending on the local temperature, selectively activating Förster resonance energy transfer of the three dyes. The use of three distinct BCPs and dyes enables the measurement of temperature in a wide range (i.e., from 25 to 50 °C). Importantly, the hydrogel matrix excludes molecules larger than the limiting mesh size so that BCP-grafted MoS2 NSs remain free from contamination against large adhesive proteins such as albumin, thus maintaining their sensitivity even in complex fluids.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taewan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gun Ho Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kang Hee Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
45
|
Liu S, Lv R, Wang Y, Wang J, Wang Y, Wang H. Passively Mode-Locked Fiber Laser with WS 2/SiO 2 Saturable Absorber Fabricated by Sol-Gel Technique. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29625-29630. [PMID: 32558539 DOI: 10.1021/acsami.0c05318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-performance ultrafast fiber lasers require saturable absorbers (SAs) of high optical damage threshold and high operation stability. Here, the optical properties and application of the WS2/SiO2 SA prepared by the sol-gel method are reported. SiO2 prepared by sol-gel technique has similar properties to fiber in ultrafast fiber lasers, such as mechanical strength, refractive index, optical transmission, and absorption. For the SA device by the sol-gel method combined with WS2 material, not only will the additional scattering loss not be introduced, but also, the damage threshold of the SA device can be effectively increased. Furthermore, SA material is wrapped by SiO2, which insulates the influence of the external environment. Based on the first preparation of the WS2/SiO2 glass SA, stable soliton pulses are obtained in ytterbium-doped fiber lasers (YDFLs) with a pulse width of 58 ps, an average output power of 56.8 mW, and a repetition rate of 19.03 MHz. In addition, a stable mode-locked operation with a pulse width of 325 fs and an output power of 39.6 mW is also achieved in an erbium-doped fiber laser (EDFL). These results demonstrate that the WS2/SiO2 glass prepared by the sol-gel method can significantly increase laser output power and shorten pulse width in the fiber laser, which provides a new opportunity for the traditional preparation method of the SA device.
Collapse
Affiliation(s)
- Sicong Liu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Ruidong Lv
- School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonggang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Jiang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yun Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Huizhong Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
46
|
Wang T, Zhang X, Mei L, Ma D, Liao Y, Zu Y, Xu P, Yin W, Gu Z. A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications. NANOSCALE 2020; 12:8415-8424. [PMID: 32239043 DOI: 10.1039/d0nr00192a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we developed a general two-step gas expansion and exfoliation strategy based on a urea-assisted hydrothermal process combined with sonication exfoliation for the production of nitrogen (N)-doped plus defect-rich transition metal dichalcogenide (TMD) nanosheets (NSs) such as N-MoS2 and N-WS2 NSs. The interlayers of bulk MoS2 (or WS2) were expanded with urea molecules dissolved in distilled water, which were decomposed to NH3 during the hydrothermal process. Simultaneously, sulfur atoms were partly replaced by N atoms to achieve N doping. Subsequently, sonication exfoliation of the urea-treated bulk MoS2 (or WS2) promoted the production of defect-rich NSs. Importantly, the defect-rich N-MoS2 and N-WS2 NSs exhibit enhanced peroxidase-like catalytic activity after being captured by bacteria, and can catalyze hydrogen peroxide (H2O2) to produce more toxic hydroxyl radicals (˙OH) than non-N-doped MoS2 or WS2 NSs. As a result, the N-MoS2 or N-WS2 NSs were capable of effectively killing Gram-negative ampicillin resistant Escherichia coli (AmprE. coli) and Gram-positive endospore-forming Bacillus subtilis (B. subtilis) and promoting bacteria-infected wound healing. This work not only provides a simple, universal exfoliation strategy for producing defect-rich N-doped TMD NSs but also provides a promising catalytic antibacterial option and has potential for many other catalytic applications.
Collapse
Affiliation(s)
- Tao Wang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Linqiang Mei
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China and Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dongqing Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - You Liao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China and Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan Zu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China and Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Ray SK, Dhakal D, Hur J, Lee SW. Visible light driven MoS 2/α-NiMoO 4 ultra-thin nanoneedle composite for efficient Staphylococcus aureus inactivation. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121553. [PMID: 31818659 DOI: 10.1016/j.jhazmat.2019.121553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 05/07/2023]
Abstract
MoS2/α-NiMoO4 ultra-thin nanoneedle composite was synthesized by microwave hydrothermal process in one step. The nanocomposite revealed the complete destruction of multidrug resistant Staphylococcus aureus (S. aureus) within 150 min under visible light irradiation. According to electron spin resonance measurement and radical trapping experiment, it has been established that O2¯ acts as a major active species for bacterial inactivation in visible light. The bacterial inactivation was further proved by membrane deformities in bacterial cell membrane, DNA fragmentation, and protein destruction. TEM- elemental mapping confirms the inactivation of S. aureus by reactive oxygen species (ROS) but not the toxicity of photocatalyst. Transient photocurrent responses, electrochemical impedance spectroscopy, and cyclic voltammetry measurements reveal the efficient separation of electron-hole pairs in the composite photocatalyst. The composite photocatalyst shows greater ROS production, higher degree of DNA fragmentation and protein degradation, detrimental effects on the morphology of the bacterial cell wall, outstanding transient photocurrent responses, reduction of interfacial charge transfer resistance, superb oxidation/reduction potential, strong visible light absorption, and adequate separation of photogenerated electron-hole pairs as compared to host photocatalyst. The photocatalytic inactivation mechanism was explained. So, this promising composite photocatalyst can be applied for inactivation of multidrug resistant bacteria in biological waste water.
Collapse
Affiliation(s)
- Schindra Kumar Ray
- Department of Environment and Energy, Sejong University, Seoul 143-747, Republic of Korea.
| | - Dipesh Dhakal
- Department of Life Science and Bio-chemical Engineering, Sun Moon University, Chungnam 31460, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 143-747, Republic of Korea
| | - Soo Wohn Lee
- Department of Environmental and Bio-chemical Engineering, Sun Moon University, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
48
|
Kim NY, Blake S, De D, Ouyang J, Shi J, Kong N. Two-Dimensional Nanosheet-Based Photonic Nanomedicine for Combined Gene and Photothermal Therapy. Front Pharmacol 2020; 10:1573. [PMID: 32038249 PMCID: PMC6985776 DOI: 10.3389/fphar.2019.01573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
Two-dimensional (2D) nanosheets are characterized by their ultra-thin structure which sets them apart from their bulk materials. Due to this unique 2D structure, they have a high surface-to-volume ratio that can be beneficial for the delivery of various drugs including therapeutic DNAs and RNAs. In addition, various 2D materials exhibit excellent photothermal conversion efficiency when exposed to the near infrared (NIR) light. Therefore, this 2D nanosheet-based photonic nanomedicine has been gaining tremendous attention as both gene delivering vehicles and photothermal agents, which create synergistic effects in the treatment of different diseases. In this review, we briefly provide an overview of the following two parts regarding this type of photonic nanomedicine: (1) mechanism and advantages of nanosheets in gene delivery and photothermal therapy, respectively. (2) mechanism of synergistic effects in nanosheet-mediated combined gene and photothermal therapies and their examples in a few representative nanosheets (e.g., graphene oxide, black phosphorus, and translational metal dichalcogenide). We also expect to provide some deep insights into the possible opportunities associated with the emerging 2D nanosheets for synergistic nanomedicine research.
Collapse
Affiliation(s)
- Na Yoon Kim
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Sara Blake
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Diba De
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Kálosi A, Labudová M, Annušová A, Benkovičová M, Bodík M, Kollár J, Kotlár M, Kasak P, Jergel M, Pastoreková S, Siffalovic P, Majkova E. A bioconjugated MoS2 based nanoplatform with increased binding efficiency to cancer cells. Biomater Sci 2020; 8:1973-1980. [DOI: 10.1039/c9bm01975h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Preparation and study of a MoS2 nanosheet based nanoplatform for a cancer detection and treatment system equipped with an antibody–antigen based recognition element.
Collapse
|
50
|
Benedetti R, Dell’Aversana C, De Marchi T, Rotili D, Liu NQ, Novakovic B, Boccella S, Di Maro S, Cosconati S, Baldi A, Niméus E, Schultz J, Höglund U, Maione S, Papulino C, Chianese U, Iovino F, Federico A, Mai A, Stunnenberg HG, Nebbioso A, Altucci L. Inhibition of Histone Demethylases LSD1 and UTX Regulates ERα Signaling in Breast Cancer. Cancers (Basel) 2019; 11:cancers11122027. [PMID: 31888209 PMCID: PMC6966629 DOI: 10.3390/cancers11122027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
In breast cancer, Lysine-specific demethylase-1 (LSD1) and other lysine demethylases (KDMs), such as Lysine-specific demethylase 6A also known as Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), are co-expressed and co-localize with estrogen receptors (ERs), suggesting the potential use of hybrid (epi)molecules to target histone methylation and therefore regulate/redirect hormone receptor signaling. Here, we report on the biological activity of a dual-KDM inhibitor (MC3324), obtained by coupling the chemical properties of tranylcypromine, a known LSD1 inhibitor, with the 2OG competitive moiety developed for JmjC inhibition. MC3324 displays unique features not exhibited by the single moieties and well-characterized mono-pharmacological inhibitors. Inhibiting LSD1 and UTX, MC3324 induces significant growth arrest and apoptosis in hormone-responsive breast cancer model accompanied by a robust increase in H3K4me2 and H3K27me3. MC3324 down-regulates ERα in breast cancer at both transcriptional and non-transcriptional levels, mimicking the action of a selective endocrine receptor disruptor. MC3324 alters the histone methylation of ERα-regulated promoters, thereby affecting the transcription of genes involved in cell surveillance, hormone response, and death. MC3324 reduces cell proliferation in ex vivo breast cancers, as well as in breast models with acquired resistance to endocrine therapies. Similarly, MC3324 displays tumor-selective potential in vivo, in both xenograft mice and chicken embryo models, with no toxicity and good oral efficacy. This epigenetic multi-target approach is effective and may overcome potential mechanism(s) of resistance in breast cancer.
Collapse
Affiliation(s)
- Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
- Correspondence: (R.B.); (L.A.); Tel.: +39-081-5667564 (R.B.); +39-081-5667569 (L.A.)
| | - Carmela Dell’Aversana
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR) Via Sergio Pansini, 5-80131 Napoli, Italy
| | - Tommaso De Marchi
- Department of Oncology and Pathology, Lund University, SE-221 00 Lund, Sweden; (T.D.M.); (E.N.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Ning Qing Liu
- Department of Molecular Biology, Radboud University, 6500 HB Nijmegen, The Netherlands; (N.Q.L.); (H.G.S.)
| | - Boris Novakovic
- Murdoch Children’s Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Parkville Victoria 3052, Australia;
| | - Serena Boccella
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.B.); (S.M.)
| | - Salvatore Di Maro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania ’Luigi Vanvitelli’, 81100 Caserta, Italy; (S.D.M.); (S.C.); (A.B.)
| | - Sandro Cosconati
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania ’Luigi Vanvitelli’, 81100 Caserta, Italy; (S.D.M.); (S.C.); (A.B.)
| | - Alfonso Baldi
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania ’Luigi Vanvitelli’, 81100 Caserta, Italy; (S.D.M.); (S.C.); (A.B.)
| | - Emma Niméus
- Department of Oncology and Pathology, Lund University, SE-221 00 Lund, Sweden; (T.D.M.); (E.N.)
- Department of Surgery, Skånes University Hospital, 222 29 Lund, Sweden
| | - Johan Schultz
- Kancera AB, Banvaktsvagen 22, SE-17148 Solna, Sweden;
| | - Urban Höglund
- Adlego Biomedical AB, P.O. Box 42, SE-751 03 Uppsala, Sweden;
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.B.); (S.M.)
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
| | - Francesco Iovino
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy;
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Radboud University, 6500 HB Nijmegen, The Netherlands; (N.Q.L.); (H.G.S.)
- Prinses Maxima Centrum, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.); (C.P.); (U.C.); (A.N.)
- Correspondence: (R.B.); (L.A.); Tel.: +39-081-5667564 (R.B.); +39-081-5667569 (L.A.)
| |
Collapse
|