1
|
Christensen C, Kok CR, Harris CL, Moore N, Wampler JL, Zhuang W, Wu SS, Hutkins R, Izard J, Auchtung JM. Microbiota, metabolic profiles and immune biomarkers in infants receiving formula with added bovine milk fat globule membrane: a randomized, controlled trial. Front Nutr 2024; 11:1465174. [PMID: 39444571 PMCID: PMC11497130 DOI: 10.3389/fnut.2024.1465174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Few studies have evaluated the effects of milk fat globule membrane (MFGM) on microbiota and immune markers in early infant nutrition. Methods In this double-blind randomized study, infants (7-18 days of age) received either bovine milk-based infant formula (Control) or similar formula with an added source (5 g/L) of bovine MFGM (INV-MFGM) for 60 days. A reference group received mother's own human milk over the same period (HM). Oral and stool samples were collected (Baseline and Day 60) to evaluate microbiota, immune markers, and metabolites. Results At Day 60, stool bacterial diversity and richness were higher in formula groups vs HM, as were Bifidobacterium bifidum and B. catenulatum abundance. Compared to HM, stool pH was higher in Control, while acetate, propionate, isovalerate, and total short- and branched-chain fatty acids were higher in INV-MFGM. Butyrate and lactate increased for INV-MFGM from baseline to Day 60. No group differences in oral microbiota or immune markers (α- and β-defensin, calprotectin, or sIgA) were detected, although sIgA increased over time in all study groups. Added bovine MFGM in infant formula modulated stool microbiota and short- and branched-chain fatty acids compared to human milk; changes were modest relative to control formula. Discussion Overall, distinct patterns of stool metabolites and microbiota development were observed based on early nutrition. Clinical trial registration ClinicalTrials.gov, identifier NCT04059666.
Collapse
Affiliation(s)
- Chloe Christensen
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
| | - Car Reen Kok
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
- Complex Biosystems, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Cheryl L. Harris
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Nancy Moore
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Jennifer L. Wampler
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Weihong Zhuang
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Steven S. Wu
- Medical Sciences, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
| | - Jacques Izard
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Frederick F. Paustian Inflammatory Bowel Disease Center, University of Nebraska Medical Center, Omaha, NE, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennifer M. Auchtung
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
2
|
Demmelmair H, Uhl O, Zhou SJ, Makrides M, Gibson RA, Prosser C, Gallier S, Koletzko B. Plasma Sphingomyelins and Carnitine Esters of Infants Consuming Whole Goat or Cow Milk-Based Infant Formulas or Human Milk. J Nutr 2024; 154:1781-1789. [PMID: 38615734 PMCID: PMC11217027 DOI: 10.1016/j.tjnut.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Infant formulas are typically manufactured using skimmed milk, whey proteins, and vegetable oils, which excludes milk fat globule membranes (MFGM). MFGM contains polar lipids, including sphingomyelin (SM). OBJECTIVE The objective of this study was comparison of infant plasma SM and acylcarnitine species between infants who are breastfed or receiving infant formulas with different fat sources. METHODS In this explorative study, we focused on SM and acylcarnitine species concentrations measured in plasma samples from the TIGGA study (ACTRN12608000047392), where infants were randomly assigned to receive either a cow milk-based infant formula (CIF) with vegetable oils only or a goat milk-based infant formula (GIF) with a goat milk fat (including MFGM) and vegetable oil mixture to the age ≥4 mo. Breastfed infants were followed as a reference group. Using tandem mass spectrometry, SM species in the study formulas and SM and acylcarnitine species in plasma samples collected at the age of 4 mo were analyzed. RESULTS Total SM concentrations (∼42 μmol/L) and patterns of SM species were similar in both formulas. The total plasma SM concentrations were not different between the formula groups but were 15 % (CIF) and 21% (GIF) lower in the formula groups than in the breastfed group. Between the formula groups, differences in SM species were statistically significant but small. Total carnitine and major (acyl) carnitine species were not different between the groups. CONCLUSIONS The higher total SM concentration in breastfed than in formula-fed infants might be related to a higher SM content in human milk, differences in cholesterol metabolism, dietary fatty acid intake, or other factors not yet identified. SM and acylcarnitine species composition in plasma is not closely related to the formula fatty acid composition. This trial was registered at Australian New Zealand Clinical Trials Registry as ACTRN12608000047392.
Collapse
Affiliation(s)
- Hans Demmelmair
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany.
| | - Olaf Uhl
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Shao J Zhou
- Food and Wine, School of Agriculture, University of Adelaide, Adelaide, Australia
| | - Maria Makrides
- Woman's and Children's Health Research Institute, University of Adelaide, Adelaide, Australia
| | - Robert A Gibson
- Food and Wine, School of Agriculture, University of Adelaide, Adelaide, Australia
| | - Colin Prosser
- Science Department, Dairy Goat Co-operative (NZ) Ltd, Hamilton, New Zealand
| | - Sophie Gallier
- Science Department, Dairy Goat Co-operative (NZ) Ltd, Hamilton, New Zealand
| | - Berthold Koletzko
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| |
Collapse
|
3
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
4
|
Kosmerl E, Miller C, Jiménez-Flores R. Preventative Effects of Milk Fat Globule Membrane Ingredients on DSS-Induced Mucosal Injury in Intestinal Epithelial Cells. Nutrients 2024; 16:954. [PMID: 38612988 PMCID: PMC11013169 DOI: 10.3390/nu16070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
The goblet cells of the gastrointestinal tract (GIT) produce glycoproteins called mucins that form a protective barrier from digestive contents and external stimuli. Recent evidence suggests that the milk fat globule membrane (MFGM) and its milk phospholipid component (MPL) can benefit the GIT through improving barrier function. Our objective was to compare the effects of two digested MFGM ingredients with or without dextran sodium sulfate (DSS)-induced barrier stress on mucin proteins. Co-cultured Caco-2/HT29-MTX intestinal cells were treated with in vitro digests of 2%, 5%, and 10% (w/v) MFGM or MPL alone for 6 h or followed by challenge with 2.5% DSS (6 h). Transepithelial electrical resistance and fluorescein isothiocyanate (FITC)-dextran (FD4) permeability measurements were used to measure changes in barrier integrity. Mucin characterization was performed using a combination of slot blotting techniques for secreted (MUC5AC, MUC2) and transmembrane (MUC3A, MUC1) mucins, scanning electron microscopy (SEM), and periodic acid Schiff (PAS)/Alcian blue staining. Digested MFGM and MPL prevented a DSS-induced reduction in secreted mucins, which corresponded to the prevention of DSS-induced increases in FD4 permeability. SEM and PAS/Alcian blue staining showed similar visual trends for secreted mucin production. A predictive bioinformatic approach was also used to identify potential KEGG pathways involved in MFGM-mediated mucosal maintenance under colitis conditions. This preliminary in silico evidence, combined with our in vitro findings, suggests the role of MFGM in inducing repair and maintenance of the mucosal barrier.
Collapse
Affiliation(s)
| | | | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (E.K.); (C.M.)
| |
Collapse
|
5
|
Chen B, Jia Q, Chen Z, You Y, Liu Y, Zhao J, Chen L, Ma D, Xing Y. Comparative evaluation of enriched formula milk powder with OPO and MFGM vs. breastfeeding and regular formula milk powder in full-term infants: a comprehensive study on gut microbiota, neurodevelopment, and growth. Food Funct 2024; 15:1417-1430. [PMID: 38224157 DOI: 10.1039/d3fo03392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This study investigated the non-inferiority of feeding term healthy infants with enriched formula milk powder containing 1,3-dioleoyl-2-palmitoylglycerol (OPO) and milk fat globular membrane (MFGM), compared to breast milk, in terms of the formation of gut microbiota, neurodevelopment and growth. Infants were divided into three groups: breast milk group (BMG, N = 50), fortified formula group (FFG, N = 17), and regular formula group (RFG, N = 12), based on the feeding pattern. Growth and development information was collected from the infants at one month, four months, and six months after the intervention. Fecal samples were collected from infants and analyzed for gut microbiota using 16S ribosomal DNA identification. The study found that at the three time points, the predominant bacterial phyla in FFG and BMG were Proteobacteria, Firmicutes, and Bacteroidetes, which differed from RFG. The abundance of Bifidobacterium in the RFG was lower than the FFG (one month, p = 0.019) and BMG (four months, p = 0.007). The abundance of Methanoprebacteria and so on (genus level) are positively correlated with bone mineral density (BMD) of term infants, and have the potential to be biomarkers for predicting BMD. The abundance of beta-galactosidase, a protein that regulates lactose metabolism and sphingoid metabolism, was higher in FFG (six months, p = 0.0033) and BMG (one month, p = 0.0089; four months, p = 0.0005; six months, p = 0.0005) than in the RFG group, which may be related to the superior bone mineral density and neurodevelopment of infants in the FFG and BMG groups than in the RFG group. Our findings suggest that formula milk powder supplemented with OPO and MFGM is a viable alternative to breastfeeding, providing a practical alternative for infants who cannot be breastfed for various reasons.
Collapse
Affiliation(s)
- Botian Chen
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| | - Qiong Jia
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| | - Zekun Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yanxia You
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| | - Defu Ma
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing 100191, China.
| |
Collapse
|
6
|
Chalifour B, Holzhausen EA, Lim JJ, Yeo EN, Shen N, Jones DP, Peterson BS, Goran MI, Liang D, Alderete TL. The potential role of early life feeding patterns in shaping the infant fecal metabolome: implications for neurodevelopmental outcomes. NPJ METABOLIC HEALTH AND DISEASE 2023; 1:2. [PMID: 38299034 PMCID: PMC10828959 DOI: 10.1038/s44324-023-00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 02/02/2024]
Abstract
Infant fecal metabolomics can provide valuable insights into the associations of nutrition, dietary patterns, and health outcomes in early life. Breastmilk is typically classified as the best source of nutrition for nearly all infants. However, exclusive breastfeeding may not always be possible for all infants. This study aimed to characterize associations between levels of mixed breastfeeding and formula feeding, along with solid food consumption and the infant fecal metabolome at 1- and 6-months of age. As a secondary aim, we examined how feeding-associated metabolites may be associated with early life neurodevelopmental outcomes. Fecal samples were collected at 1- and 6-months, and metabolic features were assessed via untargeted liquid chromatography/high-resolution mass spectrometry. Feeding groups were defined at 1-month as 1) exclusively breastfed, 2) breastfed >50% of feedings, or 3) formula fed ≥50% of feedings. Six-month groups were defined as majority breastmilk (>50%) or majority formula fed (≥50%) complemented by solid foods. Neurodevelopmental outcomes were assessed using the Bayley Scales of Infant Development at 2 years. Changes in the infant fecal metabolome were associated with feeding patterns at 1- and 6-months. Feeding patterns were associated with the intensities of a total of 57 fecal metabolites at 1-month and 25 metabolites at 6-months, which were either associated with increased breastmilk or increased formula feeding. Most breastmilk-associated metabolites, which are involved in lipid metabolism and cellular processes like cell signaling, were associated with higher neurodevelopmental scores, while formula-associated metabolites were associated with lower neurodevelopmental scores. These findings offer preliminary evidence that feeding patterns are associated with altered infant fecal metabolomes, which may be associated with cognitive development later in life.
Collapse
Affiliation(s)
- Bridget Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | | | - Joseph J. Lim
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Emily N. Yeo
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Natalie Shen
- Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Dean P. Jones
- School of Medicine, Emory University, Atlanta, GA USA
| | | | | | - Donghai Liang
- Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
7
|
Larke JA, Heiss BE, Ehrlich AM, Taft DH, Raybould HE, Mills DA, Slupsky CM. Milk oligosaccharide-driven persistence of Bifidobacterium pseudocatenulatum modulates local and systemic microbial metabolites upon synbiotic treatment in conventionally colonized mice. MICROBIOME 2023; 11:194. [PMID: 37635250 PMCID: PMC10463478 DOI: 10.1186/s40168-023-01624-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Bifidobacteria represent an important gut commensal in humans, particularly during initial microbiome assembly in the first year of life. Enrichment of Bifidobacterium is mediated though the utilization of human milk oligosaccharides (HMOs), as several human-adapted species have dedicated genomic loci for transport and metabolism of these glycans. This results in the release of fermentation products into the gut lumen which may offer physiological benefits to the host. Synbiotic pairing of probiotic species with a cognate prebiotic delivers a competitive advantage, as the prebiotic provides a nutrient niche. METHODS To determine the fitness advantage and metabolic characteristics of an HMO-catabolizing Bifidobacterium strain in the presence or absence of 2'-fucosyllactose (2'-FL), conventionally colonized mice were gavaged with either Bifidobacterium pseudocatenulatum MP80 (B.p. MP80) (as the probiotic) or saline during the first 3 days of the experiment and received water or water containing 2'-FL (as the prebiotic) throughout the study. RESULTS 16S rRNA gene sequencing revealed that mice provided only B.p. MP80 were observed to have a similar microbiota composition as control mice throughout the experiment with a consistently low proportion of Bifidobacteriaceae present. Using 1H NMR spectroscopy, similar metabolic profiles of gut luminal contents and serum were observed between the control and B.p. MP80 group. Conversely, synbiotic supplemented mice exhibited dramatic shifts in their community structure across time with an overall increased, yet variable, proportion of Bifidobacteriaceae following oral inoculation. Parsing the synbiotic group into high and moderate bifidobacterial persistence based on the median proportion of Bifidobacteriaceae, significant differences in gut microbial diversity and metabolite profiles were observed. Notably, metabolites associated with the fermentation of 2'-FL by bifidobacteria were significantly greater in mice with a high proportion of Bifidobacteriaceae in the gut suggesting metabolite production scales with population density. Moreover, 1,2-propanediol, a fucose fermentation product, was only observed in the liver and brain of mice harboring high proportions of Bifidobacteriaceae. CONCLUSIONS This study reinforces that the colonization of the gut with a commensal microorganism does not guarantee a specific functional output. Video Abstract.
Collapse
Affiliation(s)
- Jules A Larke
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Britta E Heiss
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Amy M Ehrlich
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, , Davis, CA, USA
| | - Diana H Taft
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, , Davis, CA, USA
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Holst AQ, Myers P, Rodríguez-García P, Hermes GDA, Melsaether C, Baker A, Jensen SR, Parschat K. Infant Formula Supplemented with Five Human Milk Oligosaccharides Shifts the Fecal Microbiome of Formula-Fed Infants Closer to That of Breastfed Infants. Nutrients 2023; 15:3087. [PMID: 37513505 PMCID: PMC10383262 DOI: 10.3390/nu15143087] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Breastmilk is the optimal source of infant nutrition, with short-term and long-term health benefits. Some of these benefits are mediated by human milk oligosaccharides (HMOs), a unique group of carbohydrates representing the third most abundant solid component of human milk. We performed the first clinical study on infant formula supplemented with five different HMOs (5HMO-mix), comprising 2'-fucosyllactose, 3-fucosyllactose, lacto-N-tetraose, 3'-sialyllactose and 6'-sialyllactose at a natural total concentration of 5.75 g/L, and here report the analysis of the infant fecal microbiome. We found an increase in the relative abundance of bifidobacteria in the 5HMO-mix cohort compared with the formula-fed control, specifically affecting bifidobacteria that can produce aromatic lactic acids. 5HMO-mix influenced the microbial composition as early as Week 1, and the observed changes persisted to at least Week 16, including a relative decrease in species with opportunistic pathogenic strains down to the level observed in breastfed infants during the first 4 weeks. We further analyzed the functional potential of the microbiome and observed features shared between 5HMO-mix-supplemented and breastfed infants, such as a relative enrichment in mucus and tyrosine degradation, with the latter possibly being linked to the aromatic lactic acids. The 5HMO-mix supplement, therefore, shifts the infant fecal microbiome closer to that of breastfed infants.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Baker
- Chr. Hansen A/S, 2970 Hoersholm, Denmark
| | | | | |
Collapse
|
9
|
Sotelo-Orozco J, Schmidt RJ, Slupsky CM, Hertz-Picciotto I. Investigating the Urinary Metabolome in the First Year of Life and Its Association with Later Diagnosis of Autism Spectrum Disorder or Non-Typical Neurodevelopment in the MARBLES Study. Int J Mol Sci 2023; 24:9454. [PMID: 37298406 PMCID: PMC10254021 DOI: 10.3390/ijms24119454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Developmental disabilities are often associated with alterations in metabolism. However, it remains unknown how early these metabolic issues may arise. This study included a subset of children from the Markers of Autism Risks in Babies-Learning Early Signs (MARBLES) prospective cohort study. In this analysis, 109 urine samples collected at 3, 6, and/or 12 months of age from 70 children with a family history of ASD who went on to develop autism spectrum disorder (ASD n = 17), non-typical development (Non-TD n = 11), or typical development (TD n = 42) were investigated by nuclear magnetic resonance (NMR) spectroscopy to measure urinary metabolites. Multivariate principal component analysis and a generalized estimating equation were performed with the objective of exploring the associations between urinary metabolite levels in the first year of life and later adverse neurodevelopment. We found that children who were later diagnosed with ASD tended to have decreased urinary dimethylamine, guanidoacetate, hippurate, and serine, while children who were later diagnosed with Non-TD tended to have elevated urinary ethanolamine and hypoxanthine but lower methionine and homovanillate. Children later diagnosed with ASD or Non-TD both tended to have decreased urinary 3-aminoisobutyrate. Our results suggest subtle alterations in one-carbon metabolism, gut-microbial co-metabolism, and neurotransmitter precursors observed in the first year of life may be associated with later adverse neurodevelopment.
Collapse
Affiliation(s)
- Jennie Sotelo-Orozco
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA 95616, USA; (R.J.S.); (I.H.-P.)
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA 95616, USA; (R.J.S.); (I.H.-P.)
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California, Davis, CA 95616, USA;
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA 95616, USA; (R.J.S.); (I.H.-P.)
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Hill DR, Buck RH. Infants Fed Breastmilk or 2'-FL Supplemented Formula Have Similar Systemic Levels of Microbiota-Derived Secondary Bile Acids. Nutrients 2023; 15:nu15102339. [PMID: 37242222 DOI: 10.3390/nu15102339] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Human milk represents an optimal source of nutrition during infancy. Milk also serves as a vehicle for the transfer of growth factors, commensal microbes, and prebiotic compounds to the immature gastrointestinal tract. These immunomodulatory and prebiotic functions of milk are increasingly appreciated as critical factors in the development of the infant gut and its associated microbial community. Advances in infant formula composition have sought to recapitulate some of the prebiotic and immunomodulatory functions of milk through human milk oligosaccharide (HMO) fortification, with the aim of promoting healthy development both within the gastrointestinal tract and systemically. Our objective was to investigate the effects of feeding formulas supplemented with the HMO 2'-fucosyllactose (2'-FL) on serum metabolite levels relative to breastfed infants. A prospective, randomized, double-blinded, controlled study of infant formulas (64.3 kcal/dL) fortified with varying levels of 2'-FL and galactooligosaccharides (GOS) was conducted [0.2 g/L 2'-FL + 2.2 g/L GOS; 1.0 g/L 2'-FL + 1.4 g/L GOS]. Healthy singleton infants age 0-5 days and with birth weight > 2490 g were enrolled (n = 201). Mothers chose to either exclusively formula-feed or breastfeed their infant from birth to 4 months of age. Blood samples were drawn from a subset of infants at 6 weeks of age (n = 35-40 per group). Plasma was evaluated by global metabolic profiling and compared to a breastfed reference group (HM) and a control formula (2.4 g/L GOS). Fortification of control infant formula with the HMO 2'-FL resulted in significant increases in serum metabolites derived from microbial activity in the gastrointestinal tract. Most notably, secondary bile acid production was broadly increased in a dose-dependent manner among infants receiving 2'-FL supplemented formula relative to the control formula. 2'-FL supplementation increased secondary bile acid production to levels associated with breastfeeding. Our data indicate that supplementation of infant formula with 2'-FL supports the production of secondary microbial metabolites at levels comparable to breastfed infants. Thus, dietary supplementation of HMO may have broad implications for the function of the gut microbiome in systemic metabolism. This trial was registered at with the U.S. National library of Medicine as NCT01808105.
Collapse
Affiliation(s)
- David R Hill
- Abbott, Nutrition Division, Columbus, OH 43219, USA
| | | |
Collapse
|
11
|
Ferry JM, Galera-Martínez R, Campoy C, Sáenz de Pipaón M, Jarocka-Cyrta E, Walkowiak J, Romańczuk B, Escribano J, Gispert M, Grattarola P, Gruszfeld D, Iglesia I, Grote V, Demmelmair H, Handel U, Gallier S, Koletzko B. Effects of infant feeding with goat milk formula or cow milk formula on atopic dermatitis: protocol of the randomised controlled Goat Infant Formula Feeding and Eczema (GIraFFE) trial. BMJ Open 2023; 13:e070533. [PMID: 37055203 PMCID: PMC10106058 DOI: 10.1136/bmjopen-2022-070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic, inflammatory skin condition significantly affecting quality of life. A small randomised trial showed an approximately one-third lower incidence of AD in goat milk formula-fed compared with cow milk formula-fed infants. However, due to limited statistical power, AD incidence difference was not found to be significant. This study aims to explore a potential risk reduction of AD by feeding a formula based on whole goat milk (as a source of protein and fat) compared with a formula based on cow milk proteins and vegetable oils. METHODS AND ANALYSIS This two-arm (1:1 allocation), parallel, randomised, double-blind, controlled nutritional trial shall enrol up to 2296 healthy term-born infants until 3 months of age, if parents choose to start formula feeding. Ten study centres in Spain and Poland are participating. Randomised infants receive investigational infant and follow-on formulas either based on whole goat milk or on cow milk until the age of 12 months. The goat milk formula has a whey:casein ratio of 20:80 and about 50% of the lipids are milk fat from whole goat milk, whereas the cow milk formula, used as control, has a whey:casein ratio of 60:40 and 100% of the lipids are from vegetable oils. The energy and nutrient levels in both goat and cow milk formulas are the same. The primary endpoint is the cumulative incidence of AD until the age of 12 months diagnosed by study personnel based on the UK Working Party Diagnostic Criteria. The secondary endpoints include reported AD diagnosis, measures of AD, blood and stool markers, child growth, sleep, nutrition and quality of life. Participating children are followed until the age of 5 years. ETHICS AND DISSEMINATION Ethical approval was obtained from the ethical committees of all participating institutions. TRIAL REGISTRATION NUMBER NCT04599946.
Collapse
Affiliation(s)
- Jill Marie Ferry
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Rafael Galera-Martínez
- Unit of Pediatric Gastroenterology and Nutrition, Torrecárdenas University Hospital, Almería, Spain
| | - Cristina Campoy
- Department of Paediatrics, EURISTIKOS Excellence Centre for Paediatric Research, School of Medicine, University of Granada, Granada, Spain
- Instituto Biosanitario de Granada (Ibs-Granada), Fundación Parque Tecnológico de Ciencias de la Salud de Granada, Granada, Spain
| | | | - Elzbieta Jarocka-Cyrta
- Department of Pediatrics, Gastroenterology, and Nutrition, Regional Specialized Children's Hospital in Olsztyn, Medical Faculty Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartosz Romańczuk
- Department of Pediatrics, Medical College, University of Rzeszów, Rzeszów, Poland
| | - Joaquin Escribano
- IISPV, Pediatric Nutrition and Human Development Research Unit, Universitat Rovira i Virgili, Tarragona, Spain
- Department of Paediatric, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Mariona Gispert
- IISPV, Pediatric Nutrition and Human Development Research Unit, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Dariusz Gruszfeld
- Department of Paediatric, Children's Memorial Health Institute in Warsaw, Warsaw, Poland
| | - Iris Iglesia
- Agrifood Institute of Aragon (IA2), Growth, Exercise, Nutrition and Development (GENUD) Research Group, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS-Aragón), Zaragoza, Spain
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Uschi Handel
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| |
Collapse
|
12
|
Donovan SM, Aghaeepour N, Andres A, Azad MB, Becker M, Carlson SE, Järvinen KM, Lin W, Lönnerdal B, Slupsky CM, Steiber AL, Raiten DJ. Evidence for human milk as a biological system and recommendations for study design-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 4. Am J Clin Nutr 2023; 117 Suppl 1:S61-S86. [PMID: 37173061 PMCID: PMC10356565 DOI: 10.1016/j.ajcnut.2022.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk contains all of the essential nutrients required by the infant within a complex matrix that enhances the bioavailability of many of those nutrients. In addition, human milk is a source of bioactive components, living cells and microbes that facilitate the transition to life outside the womb. Our ability to fully appreciate the importance of this matrix relies on the recognition of short- and long-term health benefits and, as highlighted in previous sections of this supplement, its ecology (i.e., interactions among the lactating parent and breastfed infant as well as within the context of the human milk matrix itself). Designing and interpreting studies to address this complexity depends on the availability of new tools and technologies that account for such complexity. Past efforts have often compared human milk to infant formula, which has provided some insight into the bioactivity of human milk, as a whole, or of individual milk components supplemented with formula. However, this experimental approach cannot capture the contributions of the individual components to the human milk ecology, the interaction between these components within the human milk matrix, or the significance of the matrix itself to enhance human milk bioactivity on outcomes of interest. This paper presents approaches to explore human milk as a biological system and the functional implications of that system and its components. Specifically, we discuss study design and data collection considerations and how emerging analytical technologies, bioinformatics, and systems biology approaches could be applied to advance our understanding of this critical aspect of human biology.
Collapse
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA.
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health and Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Martin Becker
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Allergy and Immunology and Center for Food Allergy, University of Rochester Medical Center, New York, NY, USA
| | - Weili Lin
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, USA; Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Micronutrient, Metabolic, and Inflammatory Biomarkers through 24 Months of Age in Infants Receiving Formula with Added Bovine Milk Fat Globule Membrane through the First Year of Life: A Randomized Controlled Trial. J Nutr 2023; 153:511-522. [PMID: 36894243 DOI: 10.1016/j.tjnut.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bovine milk fat globule membrane (MFGM) added in infant formula supports typical growth and safety through 24 mo of age in term infants. OBJECTIVES To assess micronutrient (zinc, iron, ferritin, transferrin receptor), metabolic [glucose, insulin, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), insulin-like growth factor-1 (IGF-1), triglycerides (TGs), total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C)], and inflammatory (leptin, adiponectin, high sensitivity C-reactive protein) secondary outcomes through 24 mo of age in infants who received standard cow's milk-based infant formula (SF), similar formula with added bovine MFGM (EF), or human milk (HM) through 1 y. METHODS Infants whose parents agreed to a blood draw at baseline (<120 d of age) (SF = 80; EF = 80; HM = 83) were included. Subsequent collections (2-4 h fasting) occurred at D180, D365, and D730. Biomarker concentrations were analyzed and group changes tested using generalized estimating equations models. RESULTS Only serum iron (+22.1 μg/dL) and HDL-C (+2.5 mg/dL) were significantly higher for EF compared with SF at D730. Prevalence of zinc deficiency for EF (-17.4%) and SF (-16.6%) at D180 and depleted iron stores for SF (+21.4%) at D180 and EF (-34.6%) and SF (-28.0%) at D365 were significantly different compared with HM. IGF-1 (ng/mL) for EF and SF was significantly higher at D180 (+8.9) and for EF (+8.8) at D365, and (+14.5) at D730 compared with HM. Insulin (μUI/mL) for EF (+2.5) and SF (+5.8) and HOMA-IR for EF (+0.5) and SF (+0.6) were significantly higher compared with HM at D180. TGs (mg/dL) for SF (+23.9) at D180, for EF (+19.0) and SF (+17.8) at D365, and EF (+17.3) and SF (+14.5) at D730 were significantly higher compared with HM. Zinc, ferritin, glucose, LDL-C and total cholesterol changes were higher in formula groups compared with HM between various time points. CONCLUSIONS Micronutrient, metabolic, and inflammatory biomarkers were generally similar through 2 y in infants who received infant formula with or without added bovine MFGM. Over the 2 y, differences were observed between infant formulas and HM reference group. This trial was registered at clinicaltrials.gov as NTC02626143.
Collapse
|
14
|
Interaction between whey protein and soy lecithin and its influence on physicochemical properties and in vitro digestibility of emulsion: A consideration for mimicking milk fat globule. Food Res Int 2023; 163:112181. [PMID: 36596120 DOI: 10.1016/j.foodres.2022.112181] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
In this study, from the perspective of simulating the milk fat globule (MFG) emulsion, the interaction between soybean lecithin (SL) and the main protein in milk, whey protein (WP), and its effect on physical characteristics and lipid digestion were investigated through multiple spectroscopic techniques and in vitro digestion. The mechanism of SL and WP was static quenching, indicating that a complex formed between WP and SL through hydrophobic interaction and hydrogen bonding. The addition of SL changed the secondary structure of WP. When the ratio of SL to WP was 1:3, the obtained SL-WP emulsion that simulated milk fat globule exhibited the smallest particle size distribution and the highest absolute value of zeta potential. In addition, the emulsion exhibited high encapsulation efficiency (91.67 ± 1.24 %) and good stability. Compared with commercially available infant formula (IF), the final free fatty acid release of prepared SL-WP emulsion was close to that of human milk (HM). The addition of lecithin increased the digestibility of fat and the release of free fatty acids, and the digestive characteristic and particle size change also were closer to that of HM from results of kinetics of free fatty acid release and microstructure analysis.
Collapse
|
15
|
Cavaletto M, Givonetti A, Cattaneo C. The Immunological Role of Milk Fat Globule Membrane. Nutrients 2022; 14:nu14214574. [PMID: 36364836 PMCID: PMC9655658 DOI: 10.3390/nu14214574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Human milk is the ideal food for newborns until the age of six months. Human milk can be defined as a dynamic living tissue, containing immunological molecules, such as immunoglobulins, supra-molecular structures, such as the milk fat globule membrane (MFGM), and even entire cells, such as the milk microbiota. The milk composition changes throughout lactation to fulfill the infant’s requirements and reflect the healthy/disease status of the lactating mother. Many bioactive milk components are either soluble or bound to the MFGM. In this work, we focus on the peculiar role of the MFGM components, from their structural organization in fat globules to their route into the gastrointestinal tract. Immunometabolic differences between human and bovine MFGM components are reported and the advantages of supplementing infant formula with the MFGM are highlighted.
Collapse
Affiliation(s)
- Maria Cavaletto
- Department of Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy
- Correspondence:
| | - Annalisa Givonetti
- Department of Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy
| | - Chiara Cattaneo
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, 15121 Alessandria, Italy
| |
Collapse
|
16
|
Kwon D, Lee W, Kim SH, Jung YS. Comparison of Hepatic Metabolite Profiles between Infant and Adult Male Mice Using 1H-NMR-Based Untargeted Metabolomics. Metabolites 2022; 12:metabo12100910. [PMID: 36295812 PMCID: PMC9611911 DOI: 10.3390/metabo12100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022] Open
Abstract
Although age-related characteristics of hepatic metabolism are reported, those in infants are not fully understood. In the present study, we performed untargeted metabolomic profiling of the livers of infant (3-week-old) and adult (9-week-old) male ICR mice using 1H-NMR spectroscopy and compared 35 abundant hepatic metabolite concentrations between the two groups. The liver/body weight ratio did not differ between the two groups; however, serum glucose, blood urea nitrogen, total cholesterol, and triglyceride concentrations were lower in infants than in adults. Hepatic carbohydrate metabolites (glucose, maltose, and mannose) were higher, whereas amino acids (glutamine, leucine, methionine, phenylalanine, tyrosine, and valine) were lower in infant mice than in adult mice. The concentrations of ascorbate, betaine, sarcosine, and ethanolamine were higher, whereas those of taurine, inosine, and O-phosphocholine were lower in infant mice than in adult mice. The differences in liver metabolites between the two groups could be due to differences in their developmental stages and dietary sources (breast milk for infants and laboratory chow for adults). The above results provide insights into the hepatic metabolism in infants; however, the exact implications of the findings require further investigation.
Collapse
Affiliation(s)
- Doyoung Kwon
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 690-756, Korea
| | - Wonho Lee
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence: (S.H.K.); (Y.-S.J.); Tel.: +82-51-5102816 (Y.-S.J.)
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence: (S.H.K.); (Y.-S.J.); Tel.: +82-51-5102816 (Y.-S.J.)
| |
Collapse
|
17
|
Calvo Barbosa AM, Casallas Cortes S, Pulido N, Parra MY, Rodríguez-López A, Guevara-Morales J, Echeverri-Peña OY. Metabolic impact of infant formulas in young infants. An outlook from the urine metabolome. Heliyon 2022; 8:e10432. [PMID: 36119867 PMCID: PMC9475274 DOI: 10.1016/j.heliyon.2022.e10432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/25/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Although breast milk is the ideal food source for newborns during the first six months of life, a high percentage of children receive infant formulas. There is evidence that specific diet habits may influence individual metabolic profile. Therefore, in newborns, such profile can be influenced by the use of infantile formulas given the composition differences that display compared to human milk. Up to now, there are no reports in the literature that address this issue. Objectives this work aims to compare the metabolic profile of full-term newborns that were feed with either breast milk (n = 32) or infantile formulas (n = 21). Methods: Metabolic profile was established based on urine analysis through gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (H-NMR). Results our results evidenced a more gluconeogenic profile in breast-fed infants characterized by elevation of Kreb's cycle intermediaries like fumaric, succinic and ketoglutaric acids compared to infants receiving infant formula. In addition, infant formula fed infants presented urinary excretion of metabolites derived from specific compounds present in this type of diet that were not observed in breast-fed infants, for instance D-glucitol, and 4-deoxytetronic. Moreover, in infant formula fed infants there was excretion of basal levels of metabolites of clinical relevance like 3-hydroxy-3-methyl-glutaric, 2-methyl-3-keto-valeric and 3,4-dihydroxybutyric. Conclusion These results show the importance of understanding the metabolic impact of diet in newborn population in normal and pathological contexts.
Collapse
Affiliation(s)
- Angie Marcela Calvo Barbosa
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| | - Stefany Casallas Cortes
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| | - Ninna Pulido
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
- Grupo de Ciencias de Laboratorio Clínico. Hospital Universitaria San Ignacio, Bogotá, Colombia
| | - Martha Yaneth Parra
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| | - Alexander Rodríguez-López
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Departamento de Química. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| | - Johana Guevara-Morales
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| | - Olga Yaneth Echeverri-Peña
- Instituto de Errores Innatos Del Metabolismo. Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 # 43-82. Ed. 54, Bogotá, Colombia
| |
Collapse
|
18
|
Ding M, Zheng Y, Liu F, Tian F, Ross RP, Stanton C, Yu R, Zhao J, Zhang H, Yang B, Chen W. Lactation time influences the composition of Bifidobacterium and Lactobacillus at species level in human breast milk. Benef Microbes 2022; 13:319-330. [PMID: 35979712 DOI: 10.3920/bm2021.0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human breast milk is a source of microorganisms for infants that play an important role in building infant gut health and immunity. The bacterial composition in human breast milk is influenced by lactation time. This study aimed to investigate the influence of lactation time on bacteria in breast milk at the genus level and the species levels of Bifidobacterium and Lactobacillus on days 2-4, 8, 14, and 30. Eighteen individuals were recruited and 60 milk samples were collected. The 16S rRNA gene, and the bifidobacterial groEL and lactobacilli groEL genes were used for amplicon sequencing. The results revealed that the alpha diversities of colostrum and transition 1 (day 8) milk were lower than that of transition 2 (day 14) and mature milk. PCoA analysis showed that bacterial composition in colostrum and transition 1 milk differed from transition 2 and mature milk. A lower relative abundance of Blautia was found in colostrum and transition 1 milk compared with mature milk and lower abundances of Ruminococcus, Dorea, and Escherichia-Shigella were found in transition 1 compared with mature milk. Bifidobacterium ruminantium, Limosilactobacillus mucosae, and Ligilactobacillus ruminis were the predominant species across all four lactation stages, while Bifidobacterium bifidum was lower in transition 1, and Bifidobacterium pseudocatenulatum and Bifidobacterium pseudolongum were higher in transition 1 milk. This study indicated that the bacterial composition in colostrum was more similar to that of transition 1 milk, whereas the bacterial community in transition 2 milk was similar to that of mature milk which suggests that bacterial composition in human breast milk shows stage-specific signatures even within a short period at both genus level and Bifidobacterium and Lactobacillus species levels, providing insights into probiotic supplementation for the nursing mother.
Collapse
Affiliation(s)
- M Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R
| | - Y Zheng
- H&H Global Research and Technology Center, Guangzhou, China P.R
| | - F Liu
- H&H Global Research and Technology Center, Guangzhou, China P.R
| | - F Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R
| | - R P Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China P.R.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - C Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China P.R.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - R Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University,48 Huaishu Alley, Liangxi District, Wuxi, 214002, China P.R
| | - J Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China P.R.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China P.R
| | - B Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R.,H&H Global Research and Technology Center, Guangzhou, China P.R
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China P.R
| |
Collapse
|
19
|
Chen Q, Xie Q, Jiang C, Evivie SE, Cao T, Wang Z, Zhao L, Liang S, Li B, Huo G. Infant formula supplemented with 1,3-olein-2-palmitin regulated the immunity, gut microbiota, and metabolites of mice colonized by feces from healthy infants. J Dairy Sci 2022; 105:6405-6421. [PMID: 35840401 DOI: 10.3168/jds.2021-21736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
Abstract
Infant formula is currently an important food to cope with insufficient breastfeeding. Although 1,3-olein-2-palmitin (OPO) has been used in infant formula, its effects on the immune system, gut microbiota, and metabolites for infants remain unclear. This study constructed a mouse model of colonizing healthy infant feces using antibiotic treatment and fecal microbial transplantation. Thus, the gap between the infant formula supplemented with OPO and human milk in mouse serum biochemistry, immune system, intestinal microbiota, short-chain fatty acid production, and metabolites was evaluated. Our results showed that regarding IL-9, IL-10 levels, fecal secretory IgA, and endotoxin, formula supplemented with OPO and human milk types had comparable levels. Additionally, OPO slightly increased the content of short-chain fatty acids. The 16S rRNA gene sequence analysis and metabonomics analysis demonstrated that feeding different foods affects the gut microbiota of mice; in particular, supplementing formula feeding with OPO enriched the abundance of bifidobacteria. Furthermore, feeding different foods leads to unique intestinal content of metabolites, and the gut microbiota regulates the metabolites' differences. Our results reveal a brand new perspective of OPO regarding gut microbiota and metabolites.
Collapse
Affiliation(s)
- Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co. Ltd., Qiqihaer 164800, China
| | - Chuqi Jiang
- Heilongjiang Feihe Dairy Co. Ltd., Qiqihaer 164800, China
| | - Smith Etareri Evivie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria; Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria
| | - Ting Cao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Zengbo Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Lina Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shengnan Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
van Beijsterveldt IA, Myers PN, Snowden SG, Ong KK, Brix S, Hokken-Koelega AC, Koulman A. Distinct infant feeding type-specific plasma metabolites at age 3 months associate with body composition at 2 years. Clin Nutr 2022; 41:1290-1296. [DOI: 10.1016/j.clnu.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
21
|
Dietary lipid droplet structure in postnatal life improves hepatic energy and lipid metabolism in a mouse model for postnatal programming. Pharmacol Res 2022; 179:106193. [DOI: 10.1016/j.phrs.2022.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
|
22
|
Callahan EA, Chatila T, Deckelbaum RJ, Field CJ, Greer FR, Hernell O, Järvinen KM, Kleinman RE, Milner J, Neu J, Smolen KK, Wallingford JC. Assessing the safety of bioactive ingredients in infant formula that affect the immune system: recommendations from an expert panel. Am J Clin Nutr 2022; 115:570-587. [PMID: 34634105 DOI: 10.1093/ajcn/nqab346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022] Open
Abstract
Bioactive ingredients for infant formula have been sought to reduce disparities in health outcomes between breastfed and formula-fed infants. Traditional food safety methodologies have limited ability to assess some bioactive ingredients. It is difficult to assess the effects of nutrition on the infant immune system because of coincident developmental adaptations to birth, establishment of the microbiome and introduction to solid foods, and perinatal environmental factors. An expert panel was convened to review information on immune system development published since the 2004 Institute of Medicine report on evaluating the safety of new infant formula ingredients and to recommend measurements that demonstrate the safety of bioactive ingredients intended for that use. Panel members participated in a 2-d virtual symposium in November 2020 and in follow-up discussions throughout early 2021. Key topics included identification of immune system endpoints from nutritional intervention studies, effects of human milk feeding and human milk substances on infant health outcomes, ontologic development of the infant immune system, and microbial influences on tolerance. The panel explored how "nonnormal" conditions such as preterm birth, allergy, and genetic disorders could help define developmental immune markers for healthy term infants. With consideration of breastfed infants as a reference, ensuring proper control groups, and attention to numerous potential confounders, the panel recommended a set of standard clinical endpoints including growth, response to vaccination, infection and other adverse effects related to inflammation, and allergy and atopic diseases. It compiled a set of candidate markers to characterize stereotypical patterns of immune system development during infancy, but absence of reference ranges, variability in methods and populations, and unreliability of individual markers to predict disease prevented the panel from including many markers as safety endpoints. The panel's findings and recommendations are applicable for industry, regulatory, and academic settings, and will inform safety assessments for immunomodulatory ingredients in foods besides infant formula.
Collapse
Affiliation(s)
| | - Talal Chatila
- Boston Children's Hospital, MA, USA.,Harvard Medical School, MA, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Irving Medical Center, NY, USA
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Alberta, Canada
| | - Frank R Greer
- Department of Pediatrics (Emeritus), University of Wisconsin, WI, USA
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Kirsi M Järvinen
- Department of Pediatrics, University of Rochester Medical Center, NY, USA
| | - Ronald E Kleinman
- Harvard Medical School, MA, USA.,MassGeneral Hospital for Children, MA, USA.,Massachusetts General Hospital, MA, USA
| | - Joshua Milner
- Department of Pediatrics, Columbia University Irving Medical Center, NY, USA
| | - Josef Neu
- Department of Pediatrics, University of Florida, FL, USA
| | - Kinga K Smolen
- Boston Children's Hospital, MA, USA.,Harvard Medical School, MA, USA
| | | |
Collapse
|
23
|
Heiss BE, Ehrlich AM, Maldonado-Gomez MX, Taft DH, Larke JA, Goodson ML, Slupsky CM, Tancredi DJ, Raybould HE, Mills DA. Bifidobacterium catabolism of human milk oligosaccharides overrides endogenous competitive exclusion driving colonization and protection. Gut Microbes 2022; 13:1986666. [PMID: 34705611 PMCID: PMC8555557 DOI: 10.1080/19490976.2021.1986666] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Understanding how exogenous microbes stably colonize the animal gut is essential to reveal mechanisms of action and tailor effective probiotic treatments. Bifidobacterium species are naturally enriched in the gastrointestinal tract of breast-fed infants. Human milk oligosaccharides (HMOs) are associated with this enrichment. However, direct mechanistic proof of the importance of HMOs in this colonization is lacking given milk contains additional factors that impact the gut microbiota. This study examined mice supplemented with the HMO 2'fucosyllactose (2'FL) together with a 2'FL-consuming strain, Bifidobacterium pseudocatenulatum MP80. 2'FL supplementation creates a niche for high levels of B.p. MP80 persistence, similar to Bifidobacterium levels seen in breast-fed infants. This synergism impacted gut microbiota composition, activated anti-inflammatory pathways and protected against chemically-induced colitis. These results demonstrate that bacterial-milk glycan interactions alone drive enrichment of beneficial Bifidobacterium and provide a model for tunable colonization thus facilitating insight into mechanisms of health promotion by bifidobacteriain neonates.
Collapse
Affiliation(s)
- Britta E. Heiss
- Department of Food Science and Technology, University of California-Davis, Davis, CA, USA,Foods for Health Institute, University of California-Davis, Davis, CA, USA
| | - Amy M. Ehrlich
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Maria X. Maldonado-Gomez
- Department of Food Science and Technology, University of California-Davis, Davis, CA, USA,Foods for Health Institute, University of California-Davis, Davis, CA, USA
| | - Diana H. Taft
- Department of Food Science and Technology, University of California-Davis, Davis, CA, USA,Foods for Health Institute, University of California-Davis, Davis, CA, USA
| | - Jules A. Larke
- Department of Nutrition, University of California-Davis, Davis, CA, USA
| | - Michael L. Goodson
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Carolyn M. Slupsky
- Department of Food Science and Technology, University of California-Davis, Davis, CA, USA,Foods for Health Institute, University of California-Davis, Davis, CA, USA,Department of Nutrition, University of California-Davis, Davis, CA, USA
| | - Daniel J. Tancredi
- Center for Healthcare Policy and Research, Department of Pediatrics, University of California-Davis, Sacramento, CA, USA
| | - Helen E. Raybould
- Foods for Health Institute, University of California-Davis, Davis, CA, USA,Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA,CONTACT Helen E. Raybould Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA, USA,Foods for Health Institute, University of California-Davis, Davis, CA, USA,David A. Mills Department of Food Science and Technology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
24
|
Lee H, Li Z, Christensen B, Peng Y, Li X, Hernell O, Lönnerdal B, Slupsky CM. Metabolic Phenotype and Microbiome of Infants Fed Formula Containing Lactobacillus paracasei Strain F-19. Front Pediatr 2022; 10:856951. [PMID: 35558362 PMCID: PMC9087039 DOI: 10.3389/fped.2022.856951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Early childhood nutrition drives the development of the gut microbiota. In contrast to breastfeeding, feeding infant formula has been shown to impact both the gut microbiota and the serum metabolome toward a more unfavorable state. It is thought that probiotics may alter the gut microbiota and hence create a more favorable metabolic outcome. To investigate the impact of supplementation with Lactobacillus paracasei spp. paracasei strain F-19 on the intestinal microbiota and the serum metabolome, infants were fed a formula containing L. paracasei F19 (F19) and compared to a cohort of infants fed the same standard formula without the probiotic (SF) and a breast-fed reference group (BF). The microbiome, as well as serum metabolome, were compared amongst groups. Consumption of L. paracasei F19 resulted in lower community diversity of the gut microbiome relative to the SF group that made it more similar to the BF group at the end of the intervention (4 months). It also significantly increased lactobacilli and tended to increase bifidobacteria, also making it more similar to the BF group. The dominant genus in the microbiome of all infants was Bifidobacterium throughout the intervention, which was maintained at 12 months. Although the serum metabolome of the F19 group was more similar to the group receiving the SF than the BF group, increases in serum TCA cycle intermediates and decreases in several amino acids in the metabolome of the F19 group were observed, which resulted in a metabolome that trended toward the BF group. Overall, L. paracasei F19 supplementation did not override the impact of formula-feeding but did impact the microbiome and the serum metabolome in a way that may mitigate some unfavorable metabolic impacts of formula-feeding.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Zailing Li
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | | | - Yongmei Peng
- Department of Child Health Care, Children's Hospital, Fudan University, Shanghai, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
25
|
Kodde A, Mischke M, Rakhshandehroo M, Voggel J, Fink G, Nüsken E, Rauh M, van der Beek EM, Dötsch J, Nüsken KD. The effect of dietary lipid quality in early life on serum LysoPC(18:2) levels and their association with adult blood glucose levels in intrauterine growth restricted rats. Nutr Metab (Lond) 2021; 18:101. [PMID: 34838065 PMCID: PMC8627018 DOI: 10.1186/s12986-021-00614-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/15/2021] [Indexed: 12/17/2022] Open
Abstract
Being born small-for-gestational-age, especially with subsequent catch-up growth, is associated with impaired metabolic health in later-life. We previously showed that a postnatal diet with an adapted lipid droplet structure can ameliorate some of the adverse metabolic consequences in intrauterine growth-restricted (IUGR) rats. The aim of the present work was to explore possible underlying mechanism(s) and potential biomarkers. To this end, serum metabolomics was performed in postnatal day (PN) 42 and PN96 samples of the above-mentioned rat offspring, born after uterine vasculature ligation. Blood samples were collected at PN42, directly after a postnatal dietary intervention with either complex lipid matrix (CLM) or control (CTRL) diet, and at PN96 after a subsequent western-style diet (WSD). Offspring of Non-operated (NOP) dams fed CTRL in early life were included as control group. In the PN42 metabolomics data, 11 co-abundance modules of metabolites were identified, of which four were significantly correlated to adult blood glucose levels at PN96. Further analyses showed that Lysophosphatidylcholine(18:2) (LysoPC(18:2)) levels were reduced by ligation (p < 0.01) and restored in CLM fed animals (p < 0.05). LysoPC(18:2) levels at PN42 correlated inversely with adult blood glucose levels. These data indicate that early-life LysoPC(18:2) blood levels may predict adult blood glucose levels and are affected by a postnatal diet with an adapted lipid droplet structure in IUGR offspring.
Collapse
Affiliation(s)
- Andrea Kodde
- Danone Nutricia Research, Utrecht, The Netherlands.
| | - Mona Mischke
- Danone Nutricia Research, Utrecht, The Netherlands
| | | | - Jenny Voggel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Medical Faculty, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Eline M van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Medical Faculty, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Bervoets L, Ippel JH, Smolinska A, van Best N, Savelkoul PHM, Mommers MAH, Penders J. Practical and Robust NMR-Based Metabolic Phenotyping of Gut Health in Early Life. J Proteome Res 2021; 20:5079-5087. [PMID: 34587745 PMCID: PMC8576838 DOI: 10.1021/acs.jproteome.1c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While substantial efforts have been made to optimize and standardize fecal metabolomics for studies in adults, the development of a standard protocol to analyze infant feces is, however, still lagging behind. Here, we present the development of a hands-on and robust protocol for proton 1H NMR spectroscopy of infant feces. The influence of extraction solvent, dilution ratio, homogenization method, filtration, and duration of centrifugation on the biochemical composition of infant feces was carefully evaluated using visual inspection of 1H NMR spectra in combination with multivariate statistical modeling. The optimal metabolomics protocol was subsequently applied on feces from seven infants collected at 8 weeks, 4, and 9 months of age. Interindividual variation was exceeding the variation induced by different fecal sample preparation methods, except for filtration. We recommend extracting fecal samples using water with a dilution ratio of 1:5 feces-to-water to homogenize using bead beating and to remove particulates using centrifugation. Samples collected from infants aged 8 weeks and 4 months showed elevated concentrations of milk oligosaccharide derivatives and lactic acid, whereas short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) were higher in the 9 month samples. The established protocol enables hands-on and robust analyses of the infant gut metabolome. The wide-ranging application of this protocol will facilitate interlaboratory comparison of infants' metabolic profiles and finally aid in a better understanding of infant gut health.
Collapse
Affiliation(s)
- Liene Bervoets
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Johannes H Ippel
- Department of Biochemistry, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Niels van Best
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands.,Institute of Medical Microbiology, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VUMC, 1081 HV Amsterdam, The Netherlands
| | - Monique A H Mommers
- Department of Epidemiology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
27
|
Ding M, Yang B, Khine WWT, Lee YK, Rahayu ES, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. The Species-Level Composition of the Fecal Bifidobacterium and Lactobacillus Genera in Indonesian Children Differs from That of Their Mothers. Microorganisms 2021; 9:microorganisms9091995. [PMID: 34576890 PMCID: PMC8467263 DOI: 10.3390/microorganisms9091995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
The infant gut microbiota plays a critical role in early life growth and derives mainly from maternal gut and breast milk. This study aimed to analyze the differences in the gut microbiota, namely Bifidobacterium and Lactobacillus communities at species level among breast milk as well as maternal and infant feces at different time points after delivery. Fifty-one mother–infant pairs from Indonesia were recruited, and the breast milk and maternal and infant feces were collected and analyzed by high throughput sequencing (16S rRNA, Bifidobacterium groEL and Lactobacillus groEL genes). PCoA results showed bacterial composition was different among breast milk and maternal and infant feces within the first two years. The abundance of Bifidobacterium and Bacteroides were significantly higher in infant feces compared to their maternal feces from birth to two years of age, and maternal breast milk within six months after birth (p < 0.05), whereas the abundance of Blautia, Prevotella, and Faecalibacterium was higher in maternal feces compared to that in breast milk within six months and infant feces within one year after birth, respectively (p < 0.05). The relative abundances of Bacteroides and Lactobacillus was higher and lower in infant feces compared to that in maternal feces only between one and two years of age, respectively (p < 0.05). For Bifidobacterium community at species level, B. adolescentis, B. ruminantium, B. longum subsp. infantis, B. bifidum, and B. pseudolongum were identified in all samples. However, the profile of Bifidobacterium was different between maternal and infant feces at different ages. The relative abundances of B. adolescentis and B. ruminantium were higher in maternal feces compared to those in infant feces from birth to one year of age (p < 0.05), while the relative abundances of B. longum subsp. infantis and B. bifidum were higher in infant feces compared to those in maternal feces beyond three months, and the relative abundance of B. pseudolongum was only higher in infant feces between three and six months (p < 0.05). For Lactobacillus community, L. paragasseri showed higher relative abundance in infant feces when the infant was younger than one year of age (p < 0.05). This study showed bacterial composition at the genus level and Bifidobacterium and Lactobacillus communities at the species level were stage specific in maternal breast milk as well as and maternal and infant feces.
Collapse
Affiliation(s)
- Mengfan Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (Y.-K.L.); (R.P.R.); (C.S.)
- Correspondence:
| | - Wei Wei Thwe Khine
- Department of Microbiology & Immunology, National University of Singapore, Singapore 117545, Singapore;
| | - Yuan-Kun Lee
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (Y.-K.L.); (R.P.R.); (C.S.)
- Department of Microbiology & Immunology, National University of Singapore, Singapore 117545, Singapore;
| | - Endang Sutriswati Rahayu
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - R. Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (Y.-K.L.); (R.P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (Y.-K.L.); (R.P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (Y.-K.L.); (R.P.R.); (C.S.)
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| |
Collapse
|
28
|
Castillo P, Palou M, Otero D, Núñez P, Palou A, Picó C. Sex-Specific Effects of Myo-Inositol Ingested During Lactation in the Improvement of Metabolic Health in Adult Rats. Mol Nutr Food Res 2021; 65:e2000965. [PMID: 33554468 DOI: 10.1002/mnfr.202000965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/08/2021] [Indexed: 01/06/2023]
Abstract
SCOPE To examine the effects of myo-inositol supplementation during lactation in male and female rats on metabolic parameters and its potential to reverse metabolic alterations associated with a moderate gestational calorie restriction. METHODS AND RESULTS The offspring of control and 25% gestational calorie-restricted rats are supplemented with myo-inositol or vehicle throughout lactation and exposed to a Western diet (WD) from 5 to 7 months of age. Blood parameters are measured and gene expression and protein levels in retroperitoneal white adipose tissue (rWAT) and liver are analyzed. In male offspring, but not in females, myo-inositol supplementation resulted in lower fasting triglyceride and insulin levels and HOMA-IR at 7 months, and reversed the alterations in these parameters due to gestational calorie restriction. The expression pattern of key genes in metabolism in rWAT and liver support the beneficial effect of myo-inositol supplementation in reversing metabolic alterations programmed by gestational calorie restriction in male rats. CONCLUSIONS Myo-inositol supplementation at physiological doses during lactation improves metabolic health and prevents the programmed trend to develop insulin resistance and hypertriglyceridemia in male rats acquired by inadequate fetal nutrition and exacerbated by a diabetogenic diet in adulthood. The absence of clear effects in females deserves further investigation.
Collapse
Affiliation(s)
- Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - David Otero
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
| | - Paula Núñez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
29
|
Zhu B, Zheng S, Lin K, Xu X, Lv L, Zhao Z, Shao J. Effects of Infant Formula Supplemented With Prebiotics and OPO on Infancy Fecal Microbiota: A Pilot Randomized Clinical Trial. Front Cell Infect Microbiol 2021; 11:650407. [PMID: 33854983 PMCID: PMC8039316 DOI: 10.3389/fcimb.2021.650407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Several lines of evidence suggest that the intestinal microbiota plays crucial roles in infant development, and that it is highly influenced by extrinsic and intrinsic factors. Prebiotic-containing infant formula may increase gastrointestinal tolerance and improve commensal microbiota composition. However, it remains unknown whether supplementation of milk-formulas with prebiotics and 1,3-olein-2-palmitin (OPO) can achieve feeding outcomes similar to those of breastfeeding. In the present study, we investigated the effects of two kinds of infant formula with different additives on the overall diversity and composition of the fecal microbiota, to determine which was closer to breastfeeding. A total of 108 infants were enrolled, including breastfeeding (n=59) and formula feeding group (n=49). The formula feeding infants were prospectively randomly divided into a standard formula group (n=18), and a supplemented formula group(n=31). The fecal samples were collected at 4 months after intervention. Fecal microbiota analysis targeting the V4 region of the 16S rRNA gene was performed using MiSeq sequencing. The overall bacterial diversity and composition, key functional bacteria, and predictive functional profiles in the two different formula groups were compared with breastfeeding group. We found that the alpha diversity of the gut microbiota was not significantly different between the OPO and breastfeeding groups with Chaos 1 index (p=0.346). The relative abundances of Enhydrobacter and Akkermansia in the OPO group were more similar to those of the breastfeeding group than to those of the standard formula group. The gut microbiota metabolism function prediction analysis showed that the supplemented formula group was similar to the breastfeeding group in terms of ureolysis (p=0.297). These findings suggest that, when formula supplemented with prebiotics and OPO was given, the overall bacterial diversity and parts of the composition of the fecal microbiota would be similar to that of breastfeeding infants.
Collapse
Affiliation(s)
- Bingquan Zhu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shuangshuang Zheng
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kexin Lin
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xin Xu
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lina Lv
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhengyan Zhao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Shao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
30
|
Timby N, Adamsson M, Domellöf E, Grip T, Hernell O, Lönnerdal B, Domellöf M. Neurodevelopment and growth until 6.5 years of infants who consumed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am J Clin Nutr 2021; 113:586-592. [PMID: 33564853 DOI: 10.1093/ajcn/nqaa354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We previously reported results from a randomized controlled trial in which we found that Swedish infants consuming an experimental low-energy, low-protein formula (EF) supplemented with bovine milk fat globule membranes (MFGMs) until 6 mo of age had several positive outcomes, including better performance in the cognitive domain of Bayley Scales of Infant and Toddler Development 3rd Edition at 12 mo of age, and higher plasma cholesterol concentrations during the intervention, than infants consuming standard formula (SF). OBJECTIVES We aimed to evaluate neurodevelopment, growth, and plasma cholesterol status at 6 and 6.5 y of age in the same study population. METHODS We assessed cognitive and executive functions using the Wechsler Intelligence Scale for Children 4th Edition (WISC-IV), Brown Attention-Deficit Disorder Scales for Children and Adolescents (Brown-ADD), and Quantified Behavior (Qb) tests, and behavior using the Child Behavior Checklist (CBCL) and Teacher's Report Form (TRF), at 6.5 y of age. Anthropometrics and plasma lipids were assessed at 6 y of age. RESULTS There were no differences between the EF and SF groups in any of the subscales in WISC-IV or Brown-ADD at 6.5 y of age, in the proportion of children with scores outside the normal range in the Qb test, nor in clinical or borderline indications of problems in adaptive functioning from parental and teacher's scoring using the CBCL and TRF. There were no differences between the EF and SF groups in weight, length, or head or abdominal circumferences, nor in plasma concentrations of homocysteine, lipids, insulin, or glucose. CONCLUSIONS Among children who as infants consumed a low-energy, low-protein formula supplemented with bovine MFGMs, there were no effects on neurodevelopment, growth, or plasma cholesterol status 6-6.5 y later.
Collapse
Affiliation(s)
- Niklas Timby
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Marie Adamsson
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Erik Domellöf
- Department of Psychology, Umeå University, Umeå, Sweden
| | - Tove Grip
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Olle Hernell
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Magnus Domellöf
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Milk Fat Globule Membrane Supplementation in Children: Systematic Review with Meta-Analysis. Nutrients 2021; 13:nu13030714. [PMID: 33668227 PMCID: PMC7996302 DOI: 10.3390/nu13030714] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Milk fat globule membrane (MFGM), composing fat droplets responsible for lipid transport in breast milk, has been shown to possess immunological and antimicrobial effects. Standard formulas (SF) are devoid of MFGMs during the production process. The study’s aim was to evaluate the safety and benefits of MFGMs supplementation in children. (2) Methods: We searched four databases for randomized controlled trials evaluating the supplementation of MFGMs in children. Growth parameters were chosen as the primary outcome. (3) Results: Twenty-four publications of seventeen studies were included. Meta-analyses assessing the primary outcomes at the age of 4 months included four studies (814 children) comparing the MFGM-supplemented formulas and SF, and two trials (549 children) comparing the MFGM-supplemented formulas and breastfeeding. The primary outcomes were non-inferior in all the experimental MFGM formulas compared to SF, or even represented more similar results to breastfed infants. The promising effects, including a lower incidence of acute otitis media and improved cognitive development, cannot be firmly confirmed due to the small amount of existing evidence. No significant adverse effects were reported in any of the assessed products. (4) Conclusions: The available data signaled beneficial effects and a good safety profile, requiring future research with well-designed trials.
Collapse
|
32
|
Lee H, Slupsky CM, Heckmann AB, Christensen B, Peng Y, Li X, Hernell O, Lönnerdal B, Li Z. Milk Fat Globule Membrane as a Modulator of Infant Metabolism and Gut Microbiota: A Formula Supplement Narrowing the Metabolic Differences between Breastfed and Formula-Fed Infants. Mol Nutr Food Res 2020; 65:e2000603. [PMID: 33285021 DOI: 10.1002/mnfr.202000603] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/12/2020] [Indexed: 12/12/2022]
Abstract
SCOPE Milk fat globule membrane (MFGM) is an important component of milk that has previously been removed in the manufacture of infant formulas, but has recently gained attention owing to its potential to improve immunological, cognitive, and metabolic health. The goal of this study is to determine whether supplementing MFGM in infant formula would drive desirable changes in metabolism and gut microbiota to elicit benefits observed in prior studies. METHODS AND RESULTS The serum metabolome and fecal microbiota are analyzed using 1 H NMR spectroscopy and 16S rRNA gene sequencing respectively in a cohort of Chinese infants given a standard formula or a formula supplemented with an MFGM-enriched whey protein fraction. Supplementing MFGM suppressed protein degradation pathways and the levels of insulinogenic amino acids that are typically enhanced in formula-fed infants while facilitating fatty acid oxidation and ketogenesis, a feature that may favor brain development. MFGM supplementation did not induce significant compositional changes in the fecal microbiota but suppressed microbial diversity and altered microbiota-associated metabolites. CONCLUSION Supplementing MFGM in a formula reduced some metabolic gaps between formula-fed and breastfed infants.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Food Science and Technology, University of California-Davis, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California-Davis, Davis, CA, 95616, USA.,Department of Nutrition, University of California-Davis, Davis, CA, 95616, USA
| | | | | | - Yongmei Peng
- Department of Child Health Care, Children's Hospital of Fudan University, No 339 Wanyuan Road, Shanghai, 200032, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, 901 87, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California-Davis, Davis, CA, 95616, USA
| | - Zailing Li
- Department of Pediatrics, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China
| |
Collapse
|
33
|
Rosa F, Matazel KS, Bowlin AK, Williams KD, Elolimy AA, Adams SH, Bode L, Yeruva L. Neonatal Diet Impacts the Large Intestine Luminal Metabolome at Weaning and Post-Weaning in Piglets Fed Formula or Human Milk. Front Immunol 2020; 11:607609. [PMID: 33365033 PMCID: PMC7750455 DOI: 10.3389/fimmu.2020.607609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
The impact of human milk (HM) or dairy milk-based formula (MF) on the large intestine’s metabolome was not investigated. Two-day old male piglets were randomly assigned to HM or MF diet (n = 26/group), from postnatal day (PND) 2 through 21 and weaned to a solid diet until PND 51. Piglets were euthanized at PND 21 and PND 51, luminal contents of the cecum, proximal (PC) and distal colons (DC), and rectum were collected and subjected to metabolomics analysis. Data analyses were performed using Metaboanalyst. In comparison to MF, the HM diet resulted in higher levels of fatty acids in the lumen of the cecum, PC, DC, and rectum at PND 21. Glutamic acid was greater in the lumen of cecum, PC, and DC relative to the MF group at PND 21. Also, spermidine was higher in the DC and rectal contents of HM relative to MF at PND 21. MF diet resulted in greater abundances of amino acids in the cecal lumen relative to HM diet at PND 21. Additionally, several sugar metabolites were higher in various regions of the distal gut of MF fed piglets relative to HM group at PND 21. In contrast, at PND 51, in various regions there were higher levels of erythritol, maltotriose, isomaltose in HM versus MF fed piglets. This suggests a post weaning shift in sugar metabolism that is impacted by neonatal diet. The data also suggest that infant diet type and host-microbiota interactions likely influence the lower gut metabolome.
Collapse
Affiliation(s)
- Fernanda Rosa
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Katelin S Matazel
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Anne K Bowlin
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Keith D Williams
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock AR, United States
| | - Ahmed A Elolimy
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
34
|
Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients 2020; 12:nu12113486. [PMID: 33202897 PMCID: PMC7696746 DOI: 10.3390/nu12113486] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Cow milk is the most common dairy milk and has been extensively researched for its functional, technological and nutritional properties for a wide range of products. One such product category is infant formula, which is the most suitable alternative to feed infants, when breastfeeding is not possible. Most infant formulas are based on cow milk protein ingredients. For several reasons, consumers now seek alternatives such as goat milk, which has increasingly been used to manufacture infant, follow-on and young child formulas over the last 30 years. While similar in many aspects, compositional and functional differences exist between cow and goat milk. This offers the opportunity to explore different formulations or manufacturing options for formulas based on goat milk. The use of whole goat milk as the only source of proteins in formulas allows levels of milk fat, short and medium chain fatty acids, sn-2 palmitic acid, and milk fat globule membrane (MFGM) to be maximised. These features improve the composition and microstructure of whole goat milk-based infant formula, providing similarities to the complex human milk fat globules, and have been shown to benefit digestion, and cognitive and immune development. Recent research indicates a role for milk fat and MFGM on digestive health, the gut–brain axis and the gut–skin axis. This review highlights the lipid composition of whole goat milk-based infant formula and its potential for infant nutrition to support healthy digestion, brain development and immunity. Further work is warranted on the role of these components in allergy development and the advantages of goat milk fat and MFGM for infant nutrition and health.
Collapse
|
35
|
Brink LR, Lönnerdal B. Milk fat globule membrane: the role of its various components in infant health and development. J Nutr Biochem 2020; 85:108465. [PMID: 32758540 DOI: 10.1016/j.jnutbio.2020.108465] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Breastfeeding confers many benefits to the breast-fed infant which are reflected by better short-term and long-term outcomes as compared to formula-fed infants. Many components of breast milk are likely to contribute to these favorable outcomes, and there has recently been focus on the milk fat globule membrane (MFGM). This fraction is a heterogenous mixture of proteins (many of them glycosylated), phospholipids, sphingolipids, gangliosides, choline, sialic acid and cholesterol which is lacking in infant formula as milk fat (which is also low in these components) is replaced by vegetable oils. Many of these components have been shown to have biological effects, and there is considerable evidence from preclinical studies and clinical trials that providing bovine MFGM results in improved outcomes, in particular with regard to infections and neurodevelopment. Since bovine MFGM is commercially available, it is possible to add it to infant formula. There are, however, considerable variations in composition among commercial sources of bovine MFGM, and as it is not known which of the individual components provide the various bioactivities, it becomes important to critically review studies to date and to delineate the mechanisms behind the activities observed. In this review, we critically examine the preclinical and clinical studies on MFGM and its components in relation to resistance to infections, cognitive development, establishment of gut microbiota and infant metabolism, and discuss possible mechanisms of action.
Collapse
Affiliation(s)
- Lauren R Brink
- Department of Nutrition, University of California, Davis, 95616
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, 95616.
| |
Collapse
|
36
|
Phan M, Momin SR, Senn MK, Wood AC. Metabolomic Insights into the Effects of Breast Milk Versus Formula Milk Feeding in Infants. Curr Nutr Rep 2020; 8:295-306. [PMID: 31203566 DOI: 10.1007/s13668-019-00284-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the latest scientific evidence for the presence of metabolomic differences between infants fed breast milk (I-BM) and infants fed formula milk (I-FM). RECENT FINDINGS Across the studies included in this review, a total of 261 metabolites were analyzed, of which 151 metabolites were reported as significantly associated with infant feeding modality (BM versus FM). However, taken as a whole, the relevant literature was notable both for methodological limitations, such as small sample sizes, and heterogeneity between the studies. This may be why many associations between infant metabolite profile and feeding modality have not replicated across studies. To our knowledge, this is the first review to integrate the available literature on metabolomic differences between I-BM versus I-FM. This narrative review synthesized the data across studies and identified those metabolites which show the most robust associations with infant feeding modality. Methodological limitations of the current studies are identified, followed by recommendations for how to address these in future studies.
Collapse
Affiliation(s)
- Mimi Phan
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Shabnam R Momin
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Mackenzie K Senn
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Alexis C Wood
- USDA / ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Fontecha J, Brink L, Wu S, Pouliot Y, Visioli F, Jiménez-Flores R. Sources, Production, and Clinical Treatments of Milk Fat Globule Membrane for Infant Nutrition and Well-Being. Nutrients 2020; 12:E1607. [PMID: 32486129 PMCID: PMC7352329 DOI: 10.3390/nu12061607] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Research on milk fat globule membrane (MFGM) is gaining traction. The interest is two-fold; on the one hand, it is a unique trilayer structure with specific secretory function. On the other hand, it is the basis for ingredients with the presence of phospho- and sphingolipids and glycoproteins, which are being used as food ingredients with valuable functionality, in particular, for use as a supplement in infant nutrition. This last application is at the center of this Review, which aims to contribute to understanding MFGM's function in the proper development of immunity, cognition, and intestinal trophism, in addition to other potential effects such as prevention of diseases including cardiovascular disease, impaired bone turnover and inflammation, skin conditions, and infections as well as age-associated cognitive decline and muscle loss. The phospholipid composition of MFGM from bovine milk is quite like human milk and, although there are some differences due to dairy processing, these do not result in a chemical change. The MFGM ingredients, as used to improve the formulation in different clinical studies, have indeed increased the presence of phospholipids, sphingolipids, glycolipids, and glycoproteins with the resulting benefits of different outcomes (especially immune and cognitive outcomes) with no reported adverse effects. Nevertheless, the precise mechanism(s) of action of MFGM remain to be elucidated and further basic investigation is warranted.
Collapse
Affiliation(s)
- Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain
| | - Lauren Brink
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
| | - Steven Wu
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Laval University, Québec, QC G1V 0A6, Canada;
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
- IMDEA-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Rafael Jiménez-Flores
- Food Science and Technology Department, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Yuan T, Zhu X, Mu G, Qian F, Xiong H. Effects of Chemical Composition and Microstructure in Human Milk and Infant Formulas on Lipid Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5462-5470. [PMID: 32307995 DOI: 10.1021/acs.jafc.0c00745] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infant formula (IF) is an important substitute for infants when human milk (HM) is unavailable; however, it was often observed with "insufficient fat" and showed different metabolic phenotypes, which may affect the growth and brain development of the infant. Considering that the milk fat digestion rate may affect the fat absorption and metabolism and further influence the metabolic phenotype, it is valuable to study the fat digestive behaviors of IF and HM. In the current study, we investigated the in vitro fat digestive properties of HM in comparison to four formulas (IF1, 2, 3, 4) including IFs enriched in OPO lipids (IF1 and IF3) and IFs with common mixed plant oils (IF2 and IF4). Results showed that the extent of eventual lipid hydrolysis of HM (98.9 ± 2.70%) was higher than those of IF1 and IF3 (90.4 ± 3.39 and 91.1 ± 1.67%, respectively) (p < 0.05) and IF2 and IF4 (81.9 ± 1.64 and 79.9 ± 1.05% respectively) (p < 0.01). Native fat globules and protein aggregation were observed at the end of HM gastric digestion, and the aggregates became smaller and then resolved from 60 to 120 min in intestinal digestion, while a large number of aggregates were observed in IF, which may slow the lipid digestion. The absorption differences between HM and IFs in lipid digestion need further study to elucidate the nutritional relevance to infant development and growth.
Collapse
Affiliation(s)
- Tinglan Yuan
- State Key Lab of Food Science and Technology, College of Life Science and Food Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xuemei Zhu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- State Key Lab of Food Science and Technology, College of Life Science and Food Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Guangqing Mu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Fang Qian
- College of Food Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hua Xiong
- State Key Lab of Food Science and Technology, College of Life Science and Food Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
39
|
Forgie AJ, Drall KM, Bourque SL, Field CJ, Kozyrskyj AL, Willing BP. The impact of maternal and early life malnutrition on health: a diet-microbe perspective. BMC Med 2020; 18:135. [PMID: 32393275 PMCID: PMC7216331 DOI: 10.1186/s12916-020-01584-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Early-life malnutrition may have long-lasting effects on microbe-host interactions that affect health and disease susceptibility later in life. Diet quality and quantity in conjunction with toxin and pathogen exposure are key contributors to microbe-host physiology and malnutrition. Consequently, it is important to consider both diet- and microbe-induced pathologies as well as their interactions underlying malnutrition. MAIN BODY Gastrointestinal immunity and digestive function are vital to maintain a symbiotic relationship between the host and microbiota. Childhood malnutrition can be impacted by numerous factors including gestational malnutrition, early life antibiotic use, psychological stress, food allergy, hygiene, and exposure to other chemicals and pollutants. These factors can contribute to reoccurring environmental enteropathy, a condition characterized by the expansion of commensal pathobionts and environmental pathogens. Reoccurring intestinal dysfunction, particularly during the critical window of development, may be a consequence of diet-microbe interactions and may lead to life-long immune and metabolic programming and increased disease risk. We provide an overview of the some key factors implicated in the progression of malnutrition (protein, fat, carbohydrate, iron, vitamin D, and vitamin B12) and discuss the microbiota during early life that may contribute health risk later in life. CONCLUSION Identifying key microbe-host interactions, particularly those associated with diet and malnutrition requires well-controlled dietary studies. Furthering our understanding of diet-microbe-host interactions will help to provide better strategies during gestation and early life to promote health later in life.
Collapse
Affiliation(s)
- Andrew J. Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Kelsea M. Drall
- Department of Pediatrics, University of Alberta, Edmonton, Alberta Canada
| | - Stephane L. Bourque
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta Canada
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| | - Anita L. Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta Canada
| |
Collapse
|
40
|
Li T, Gong H, Yuan Q, Du M, Ren F, Mao X. Supplementation of polar lipids-enriched milk fat globule membrane in high-fat diet-fed rats during pregnancy and lactation promotes brown/beige adipocyte development and prevents obesity in male offspring. FASEB J 2020; 34:4619-4634. [PMID: 32020679 DOI: 10.1096/fj.201901867rrr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Promoting brown adipose tissue (BAT) function or browning of white adipose tissue (WAT) provides a defense against obesity. The aim of the study was to investigate whether maternal polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to high-fat diet (HFD) rats during pregnancy and lactation could promote brown/beige adipogenesis and protect against HFD-induced adiposity in offspring. Female SD rats were fed a HFD for 8 weeks to induce obesity and, then, fed a HFD during pregnancy and lactation with or without MFGM-PL. Male offspring were weaned at postnatal Day 21 and then fed a HFD for 9 weeks. MFGM-PL treatment to HFD dams decreased the body weight gain and WAT mass as well as lowered the serum levels of insulin and triglycerides in male offspring at weaning. MFGM-PL+HFD offspring showed promoted thermogenic function in BAT and inguinal WAT through the upregulation of UCP1 and other thermogenic genes. In adulthood, maternal MFGM-PL supplementation reduced adiposity and increased oxygen consumption, respiratory exchange ratio, and heat production in male offspring. The enhancement of energy expenditure was correlated with elevated BAT activity and inguinal WAT thermogenic program. In conclusion, maternal MFGM-PL treatment activated thermogenesis in offspring, which exerted long-term beneficial effects against HFD-induced obesity in later life.
Collapse
Affiliation(s)
- Tiange Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Han Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Qichen Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
He X, Sotelo-Orozco J, Rudolph C, Lönnerdal B, Slupsky CM. The Role of Protein and Free Amino Acids on Intake, Metabolism, and Gut Microbiome: A Comparison Between Breast-Fed and Formula-Fed Rhesus Monkey Infants. Front Pediatr 2020; 7:563. [PMID: 32039120 PMCID: PMC6993202 DOI: 10.3389/fped.2019.00563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
Background: Compared to breast-fed (BF), formula-fed (FF) infants exhibit more rapid weight gain, a different fecal microbial profile, as well as elevated serum insulin, insulin growth factor 1 (IGF-1), and branched chain amino acids (BCAAs). Since infant formula contains more protein and lower free amino acids than breast milk, it is thought that protein and/or free amino acids may be key factors that explain phenotypic differences between BF and FF infants. Methods: Newborn rhesus monkeys (Macaca mulatta) were either exclusively BF or fed regular formula or reduced protein formula either supplemented or not with a mixture of amino acids. Longitudinal sampling and clinical evaluation were performed from birth to 16 weeks including anthropometric measurements, intake records, collection of blood for hematology, serum biochemistry, hormones, and metabolic profiling, collection of urine for metabolic profiling, and collection of feces for 16s rRNA fecal microbial community profiling. Results: Reducing protein in infant formula profoundly suppressed intake, lowered weight gain and improved the FF-specific metabolic phenotype in the first month of age. This time-dependent change paralleled an improvement in serum insulin. All lower protein FF groups showed reduced protein catabolism with lower levels of blood urea nitrogen (BUN), urea, ammonia, albumin, creatinine, as well as lower excretion of creatinine in urine compared to infants fed regular formula. Levels of fecal microbes (Bifidobacterium and Ruminococcus from the Ruminococcaceae family), that are known to have varying ability to utilize complex carbohydrates, also increased with protein reduction. Adding free amino acids to infant formula did not alter milk intake or fecal microbial composition, but did significantly increase urinary excretion of amino acids and nitrogen-containing metabolites. However, despite the lower protein intake, these infants still exhibited a distinct FF-specific metabolic phenotype characterized by accelerated weight gain, higher levels of insulin and C-peptide as well as elevated amino acids including BCAA, lysine, methionine, threonine and asparagine. Conclusions: Reducing protein and adding free amino acids to infant formula resulted in growth and metabolic performance of infants that were more similar to BF infants, but was insufficient to reverse the FF-specific accelerated growth and insulin-inducing high BCAA phenotype.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Jennie Sotelo-Orozco
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Colin Rudolph
- Mead Johnson Nutrition, Evansville, IN, United States
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
42
|
He X, Parenti M, Grip T, Lönnerdal B, Timby N, Domellöf M, Hernell O, Slupsky CM. Fecal microbiome and metabolome of infants fed bovine MFGM supplemented formula or standard formula with breast-fed infants as reference: a randomized controlled trial. Sci Rep 2019; 9:11589. [PMID: 31406230 PMCID: PMC6690946 DOI: 10.1038/s41598-019-47953-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Human milk delivers an array of bioactive components that safeguard infant growth and development and maintain healthy gut microbiota. Milk fat globule membrane (MFGM) is a biologically functional fraction of milk increasingly linked to beneficial outcomes in infants through protection from pathogens, modulation of the immune system and improved neurodevelopment. In the present study, we characterized the fecal microbiome and metabolome of infants fed a bovine MFGM supplemented experimental formula (EF) and compared to infants fed standard formula (SF) and a breast-fed reference group. The impact of MFGM on the fecal microbiome was moderate; however, the fecal metabolome of EF-fed infants showed a significant reduction of several metabolites including lactate, succinate, amino acids and their derivatives from that of infants fed SF. Introduction of weaning food with either human milk or infant formula reduces the distinct characteristics of breast-fed- or formula-fed- like infant fecal microbiome and metabolome profiles. Our findings support the hypothesis that higher levels of protein in infant formula and the lack of human milk oligosaccharides promote a shift toward amino acid fermentation in the gut. MFGM may play a role in shaping gut microbial activity and function.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Mariana Parenti
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Tove Grip
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Niklas Timby
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Carolyn M Slupsky
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|