1
|
Nagy A, Czitrovszky A, Lehoczki A, Farkas Á, Füri P, Osán J, Groma V, Kugler S, Micsinai A, Horváth A, Ungvári Z, Müller V. Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review. GeroScience 2024:10.1007/s11357-024-01379-7. [PMID: 39392557 DOI: 10.1007/s11357-024-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Hospital- and nursing-care-acquired infections are a growing problem worldwide, especially during epidemics, posing a significant threat to older adults in geriatric settings. Intense research during the COVID-19 pandemic highlighted the prominent role of aerosol transmission of pathogens. Aerosol particles can easily adsorb different airborne pathogens, carrying them for a long time. Understanding the dynamics of airborne pathogen transmission is essential for controlling the spread of many well-known pathogens, like the influenza virus, and emerging ones like SARS-CoV-2. Particles smaller than 50 to 100 µm remain airborne and significantly contribute to pathogen transmission. This review explores the journey of pathogen-carrying particles from formation in the airways, through airborne travel, to deposition in the lungs. The physicochemical properties of emitted particles depend on health status and emission modes, such as breathing, speaking, singing, coughing, sneezing, playing wind instruments, and medical interventions. After emission, sedimentation and evaporation primarily determine particle fate. Lung deposition of inhaled aerosol particles can be studied through in vivo, in vitro, or in silico methods. We discuss several numerical lung models, such as the Human Respiratory Tract Model, the LUng Dose Evaluation Program software (LUDEP), the Stochastic Lung Model, and the Computational Fluid Dynamics (CFD) techniques, and real-time or post-evaluation methods for detecting and characterizing these particles. Various air purification methods, particularly filtration, are reviewed for their effectiveness in healthcare settings. In the discussion, we analyze how this knowledge can help create environments with reduced PM2.5 and pathogen levels, enhancing safety in healthcare and nursing-care settings. This is particularly crucial for protecting older adults, who are more vulnerable to infections due to weaker immune systems and the higher prevalence of chronic conditions. By implementing effective airborne pathogen control measures, we can significantly improve health outcomes in geriatric settings.
Collapse
Affiliation(s)
- Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary.
| | - Aladár Czitrovszky
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Péter Füri
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - János Osán
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Veronika Groma
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Szilvia Kugler
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | | | - Alpár Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
McKee CD, Yu EX, Garcia A, Jackson J, Koyuncu A, Rose S, Azman AS, Lobner K, Sacks E, Van Kerkhove MD, Gurley ES. Superspreading of SARS-CoV-2: a systematic review and meta-analysis of event attack rates and individual transmission patterns. Epidemiol Infect 2024; 152:e121. [PMID: 39377138 PMCID: PMC11488467 DOI: 10.1017/s0950268824000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 10/09/2024] Open
Abstract
SARS-CoV-2 superspreading occurs when transmission is highly efficient and/or an individual infects many others, contributing to rapid spread. To better quantify heterogeneity in SARS-CoV-2 transmission, particularly superspreading, we performed a systematic review of transmission events with data on secondary attack rates or contact tracing of individual index cases published before September 2021 prior to the emergence of variants of concern and widespread vaccination. We reviewed 592 distinct events and 9,883 index cases from 491 papers. A meta-analysis of secondary attack rates identified substantial heterogeneity across 12 chosen event types/settings, with the highest transmission (25-35%) in co-living situations including households, nursing homes, and other congregate housing. Among index cases, 67% reported zero secondary cases and only 3% (287) infected >5 secondary cases ("superspreaders"). Index case demographic data were limited, with only 55% of individuals reporting age, sex, symptoms, real-time polymerase chain reaction (PCR) cycle threshold values, or total contacts. With the data available, we identified a higher percentage of superspreaders among symptomatic individuals, individuals aged 49-64 years, and individuals with over 100 total contacts. Addressing gaps in the literature regarding transmission events and contact tracing is needed to properly explain the heterogeneity in transmission and facilitate control efforts for SARS-CoV-2 and other infections.
Collapse
Affiliation(s)
- Clifton D. McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emma X. Yu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrés Garcia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jules Jackson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aybüke Koyuncu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sophie Rose
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew S. Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katie Lobner
- Welch Medical Library, Johns Hopkins University, Baltimore, MD, USA
| | - Emma Sacks
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maria D. Van Kerkhove
- Department of Epidemic and Pandemic Preparedness and Prevention, Emergency Preparedness Programme, World Health Organization, Geneva, Switzerland
| | - Emily S. Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Peyravi A, Quecke E, Kosareva E, Dolez P, Doroshenko A, Smith S, Quemerais B, Hashisho Z. Evaluation of masks and mask material suitability for bioaerosol capture. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024:1-12. [PMID: 39365694 DOI: 10.1080/15459624.2024.2394613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Non-medical masks such as disposable non-medical, commercially produced cloth, and homemade masks are not regulated like surgical masks. Their performance, in terms of filtration efficiency and breathability, is variable and unreliable. This research provides a quantitative evaluation of various non-medical masks, assesses their fabrics' potential for the reduction of transmission of bioaerosols such as the SARS-CoV-2 virus, and compares them to surgical masks and N95 filtering facepiece respirators. Using a testing line with a NaCl challenge aerosol, four types of commercial reusable cloth masks, two types of disposable non-medical masks, three types of surgical or N95 masks, and seven types of commonly available materials were tested individually and in combinations. The testing line and procedure were adapted from the ASTM F2299-03: Standard Test Method for Determining the Initial Efficiency of Materials Used in Medical Face Masks to Penetration by Particulates Using Latex Spheres testing method used for testing surgical masks. Filtration efficiencies at 0.15 µm particle diameter at a face velocity of 25 cm/sec for commercial cloth masks, disposable non-medical masks, surgical masks, commercial mask combinations, and homemade combinations ranged from 16-29%, 39-76%, 91-97%, 51-95%, and 45-94%, respectively. The pressure drop results for the different masks and material combinations were all under 3 mm H2O/cm2 except for one material configuration. This study builds on other research that looks at individual materials and masks by testing combinations alongside the individual masks and materials. With proper layering, household materials can achieve the filtration efficiency and low pressure drop requirements of surgical masks. The filtration capabilities of disposable and cloth mask fabrics vary considerably meaning that they are not a reliable or consistent facemask option, regardless of fit.
Collapse
Affiliation(s)
- Arman Peyravi
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Quecke
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Elena Kosareva
- Department of Human Ecology, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia Dolez
- Department of Human Ecology, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Doroshenko
- Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Stephanie Smith
- Public Health Innovation and Decision Support, Alberta Health Services, Edmonton, Alberta, Canada
| | - Bernadette Quemerais
- Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Zaher Hashisho
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Lin FC, Chen YH, Kuo YW, Ku SC, Jerng JS. Aerosol particle dispersion in spontaneous breathing training of oxygen delivery tracheostomized patients on prolonged mechanical ventilation. J Formos Med Assoc 2024; 123:1104-1109. [PMID: 38336509 DOI: 10.1016/j.jfma.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Tracheostomized patients undergoing liberation from mechanical ventilation (MV) are exposed to the ambient environment through humidified air, potentially heightening aerosol particle dispersion. This study was designed to evaluate the patterns of aerosol dispersion during spontaneous breathing trials in such patients weaning from prolonged MV. METHODS Particle Number Concentrations (PNC) at varying distances from tracheostomized patients in a specialized weaning unit were quantified using low-cost particle sensors, calibrated against a Condensation Particle Counter. Different oxygen delivery methods, including T-piece and collar mask both with the humidifier or with a small volume nebulizer (SVN), and simple collar mask, were employed. The PNC at various distances and across different oxygen devices were compared using the Kruskal-Wallis test. RESULTS Of nine patients receiving prolonged MV, five underwent major surgery, and eight were successfully weaned from ventilation. PNCs at distances ranging from 30 cm to 300 cm showed no significant disparity (H(4) = 8.993, p = 0.061). However, significant differences in PNC were noted among oxygen delivery methods, with Bonferroni-adjusted pairwise comparisons highlighting differences between T-piece or collar mask with SVN and other devices. CONCLUSION Aerosol dispersion within 300 cm of the patient was not significantly different, while the nebulization significantly enhances ambient aerosol dispersion in tracheostomized patients on prolonged MV.
Collapse
Affiliation(s)
- Feng-Ching Lin
- Division of Respiratory Therapy, Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsuan Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Wen Kuo
- Division of Respiratory Therapy, Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Chi Ku
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jih-Shuin Jerng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Center for Quality Management, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Tuhkuri Matvejeff A, Laitinen A, Korhonen M, Oksanen LM, Geneid A, Sanmark E, Vuorinen V. Superspreading of SARS-CoV-2 at a choir rehearsal in Finland-A computational fluid dynamics view on aerosol transmission and patient interviews. PLoS One 2024; 19:e0302250. [PMID: 39264883 PMCID: PMC11392323 DOI: 10.1371/journal.pone.0302250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/31/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION COVID-19 pandemic has highlighted the role of aerosol transmission and the importance of superspreading events. We analyzed a choir rehearsal in November 2020, where all participants, except one who had recently earlier recovered from COVID-19, were infected. We explore the risk factors for severe disease in this event and model the aerosol dispersion in the rehearsal room. MATERIALS AND METHODS Characteristics of participants were collected by interviews and supplemented with patient records. A computational simulation of aerosol distribution in the rehearsal room and the efficacy of potential safety measures was conducted using the Large-Eddy Simulation approach. Infection risk was studied by analyzing quanta emission and exposure with the Wells-Riley equation. RESULTS The simulation showed that airborne transmission likely explains this mass contagion event. Every singer was exposed to the virus in only 5 min from the beginning of the rehearsal, and maximum concentration levels were reached at 20 min the concentration levels started to approach a steady state after 20 min. Although concentration differences existed in the room, risk levels near (1 m) and far (5 m) from the aerosol source were similar for certain singers. Modeling indicated infection risk levels of 70-100% after one hour; the risk would have been considerably reduced by wearing high-filtration respirators. Age and pre-existing comorbidities predicted more severe disease. The high incidence of illness may be partly attributed to the relatively high median age of individuals. Additionally, those admitted to the hospital had multiple underlying health conditions that predispose them to more severe disease. CONCLUSIONS Airborne transmission and indoor space can explain this mass exposure event. High-filtration respirators could have prevented some infections. The importance of safety distances diminishes the longer the indoor event. The concept of safety distance is challenging, as our study suggests that long range airborne transmission may occur in indoor events with extended duration. We encourage informing the public, especially persons at risk, of safety measures during epidemics.
Collapse
Affiliation(s)
- Anna Tuhkuri Matvejeff
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Alpo Laitinen
- Department of Mechanical Engineering, Aalto University, Espoo, Finland
| | - Marko Korhonen
- Department of Mechanical Engineering, Aalto University, Espoo, Finland
| | - Lotta-Maria Oksanen
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ahmed Geneid
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Enni Sanmark
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ville Vuorinen
- Department of Mechanical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
6
|
Sanmark E, Tuhkuri-Matvejeff A, Geneid A, Oksanen LM, Alku P, Hakala J, Heikkilä P, Silvonen V, Taipale A, Rönkkö T, Laukkanen AM, Saari S, Vartiainen VA. Effect of Vocalization on Human Aerosol Dynamics: Whispering Produces More Aerosols than Speaking. J Voice 2024:S0892-1997(24)00239-X. [PMID: 39142922 DOI: 10.1016/j.jvoice.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVES Sound pressure and exhaled flow have been identified as important factors associated with higher particle emissions. The aim of this study was to assess how different vocalizations affect the particle generation independently from other factors. DESIGN Experimental study. METHODS Thirty-three experienced singers repeated two different sentences in normal loudness and whispering. The first sentence consisted mainly of consonants like /k/ and /t/ as well as open vowels, while the second sentence also included the /s/ sound and contained primarily closed vowels. The particle emission was measured using condensation particle counter (CPC, 3775 TSI Inc.) and aerodynamic particle sizer (APS, 3321 TSI Inc.). The CPC measured particle number concentration for particles larger than 4 nm and mainly reflects the number of particles smaller than 0.5 µm since these particles dominate total number concentration. The APS measured particle size distribution and number concentration in the size range of 0.5-10 µm and data were divided into >1 µm and <1 µm particle size ranges. Generalized linear mixed-effects models were constructed to assess the factors affecting particle generation. RESULTS Whispering produced more particles than speaking and sentence 1 produced more particles than sentence 2 while speaking. Sound pressure level had effect on particle production independently from vocalization. The effect of exhaled airflow was not statistically significant. CONCLUSIONS Based on our results the type of vocalization has a significant effect on particle production independently from other factors such as sound pressure level.
Collapse
Affiliation(s)
- Enni Sanmark
- Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Anna Tuhkuri-Matvejeff
- Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Ahmed Geneid
- Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Lotta-Maria Oksanen
- Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Paavo Alku
- Department of Information and Communications Engineering, Aalto University, Espoo, Finland
| | - Jani Hakala
- VTT Technical Reseach Centre of Finland, Tampere, Finland
| | - Paavo Heikkilä
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Ville Silvonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Aimo Taipale
- VTT Technical Reseach Centre of Finland, Tampere, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Anne-Maria Laukkanen
- Speech and Voice Research Laboratory, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Sampo Saari
- Tampere University of Applied Sciences, Tampere, Finland
| | - Ville A Vartiainen
- Faculty of Medicine, University of Helsinki, Helsinki, Finland; Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
7
|
Moseley B, Archer J, Orton CM, Symons HE, Watson NA, Saccente-Kennedy B, Philip KEJ, Hull JH, Costello D, Calder JD, Shah PL, Bzdek BR, Reid JP. Relationship between Exhaled Aerosol and Carbon Dioxide Emission Across Respiratory Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39138123 PMCID: PMC11360368 DOI: 10.1021/acs.est.4c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Respiratory particles produced during vocalized and nonvocalized activities such as breathing, speaking, and singing serve as a major route for respiratory pathogen transmission. This work reports concomitant measurements of exhaled carbon dioxide volume (VCO2) and minute ventilation (VE), along with exhaled respiratory particles during breathing, exercising, speaking, and singing. Exhaled CO2 and VE measured across healthy adult participants follow a similar trend to particle number concentration during the nonvocalized exercise activities (breathing at rest, vigorous exercise, and very vigorous exercise). Exhaled CO2 is strongly correlated with mean particle number (r = 0.81) and mass (r = 0.84) emission rates for the nonvocalized exercise activities. However, exhaled CO2 is poorly correlated with mean particle number (r = 0.34) and mass (r = 0.12) emission rates during activities requiring vocalization. These results demonstrate that in most real-world environments vocalization loudness is the main factor controlling respiratory particle emission and exhaled CO2 is a poor surrogate measure for estimating particle emission during vocalization. Although measurements of indoor CO2 concentrations provide valuable information about room ventilation, such measurements are poor indicators of respiratory particle concentrations and may significantly underestimate respiratory particle concentrations and disease transmission risk.
Collapse
Affiliation(s)
- Benjamin Moseley
- Department
of Respiratory Medicine, Royal Brompton
Hospital, London SW3 6NP, U.K.
| | - Justice Archer
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Christopher M. Orton
- Department
of Respiratory Medicine, Royal Brompton
Hospital, London SW3 6NP, U.K.
- Department
of Respiratory Medicine, Chelsea & Westminster
Hospital, London SW10 9NH, U.K.
- National
Heart and Lung Institute, Guy Scadding Building,
Imperial College London, London SW3 6LY, U.K.
| | - Henry E. Symons
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Natalie A. Watson
- Department
of Ear, Nose and Throat Surgery, Guy’s
& St. Thomas NHS Foundation Trust, London SE1 9RT, U.K.
| | - Brian Saccente-Kennedy
- Department
of Speech and Language Therapy (ENT), Royal National Ear, Nose and
Throat and Eastman Dental Hospitals, University
College London Hospitals NHS Foundation Trust, London WC1E 6DG, U.K.
| | - Keir E. J. Philip
- Department
of Respiratory Medicine, Royal Brompton
Hospital, London SW3 6NP, U.K.
- National
Heart and Lung Institute, Guy Scadding Building,
Imperial College London, London SW3 6LY, U.K.
| | - James H. Hull
- Department
of Respiratory Medicine, Royal Brompton
Hospital, London SW3 6NP, U.K.
- Institute
of Sport, Exercise and Health (ISEH), UCL, London W1T 7HA, U.K.
| | - Declan Costello
- Ear,
Nose and Throat Department, Wexham Park
Hospital, Slough SL2 4HL, U.K.
| | - James D. Calder
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Fortius Clinic, London W1H 6EQ, U.K.
| | - Pallav L. Shah
- Department
of Respiratory Medicine, Royal Brompton
Hospital, London SW3 6NP, U.K.
- Department
of Respiratory Medicine, Chelsea & Westminster
Hospital, London SW10 9NH, U.K.
- National
Heart and Lung Institute, Guy Scadding Building,
Imperial College London, London SW3 6LY, U.K.
| | - Bryan R. Bzdek
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Jonathan P. Reid
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
8
|
Choi J, Choi S, Lee B, Park YJ, Lee SE. Identifying risk factors for COVID-19 cluster infections in schools in the Republic of Korea: a case-control study. Osong Public Health Res Perspect 2024; 15:375-382. [PMID: 38988091 PMCID: PMC11391371 DOI: 10.24171/j.phrp.2023.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND No study has yet analyzed risk factors to determine whether students with confirmed coronavirus disease 2019 (COVID-19) infections may affect students at neighboring schools. Therefore, this study aimed to determine risk factors for COVID-19 transmission among schools within a community in the Republic of Korea. METHODS An epidemiological investigation was conducted among 696 students and school staff members at 3 schools where COVID-19 clusters began on October 15, 2021. Interviews, visit history surveys, a facility risk assessment, and closed-circuit television were used to identify risk factors. The statistical significance of risk factors was also evaluated. RESULTS We confirmed 129 cases (18.5%) among the individuals exposed to COVID-19 at the 3 schools, many of whom had a history of visiting the same multi-use facilities. The odds ratio of having visited multi-use facilities such as karaoke rooms was 1.90 (95% confidence interval, 1.03-3.50); the number of visits to a karaoke room and the visit durations were significantly higher among confirmed cases than non-confirmed cases (p=0.02 and p=0.03, respectively). CONCLUSION Having a history of visiting karaoke rooms often and spending a long time there were risk factors for COVID-19 infection and inter-school transmission. Thus, it is necessary to investigate the status of multi-use facilities frequently visited by adolescents and consider incorporating them into the scope of school quarantine to prevent infectious diseases at schools in a community.
Collapse
Affiliation(s)
- Jihyun Choi
- Division of Control for Zoonotic and Vector Borne Disease, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seongju Choi
- Division of Epidemiological Investigation Analysis, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Baigu Lee
- Serious Crime Team, Bundang Police Station, Korea National Police Agency, Seongnam, Republic of Korea
| | - Young-Joon Park
- Division of Epidemiological Investigation Analysis, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sang Eun Lee
- Division of Epidemiological Investigation Analysis, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| |
Collapse
|
9
|
Xie Y, Wang Y, He J, Yang X, Duan X, Zhao B. Human emissions of size-resolved fluorescent bioaerosols in control situations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171661. [PMID: 38490427 DOI: 10.1016/j.scitotenv.2024.171661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Human bioaerosols contribute significantly to indoor air quality. This study used a Wideband Integrated Bioaerosol Sensor (WIBS-4A) instrument for real-time measurement of particle size distribution and count to differentiate fluorescent bioaerosols from non-fluorescent aerosols. Through an experiment involving 12 subjects (six men and six women) wearing standard cotton clothing in a 2 m × 2 m × 2 m environmental chamber, we established a quantitative method to obtain the bioaerosol emission rate of a single subject, aiming to explore the effects of masks and sex on bioaerosol emissions from different individuals. The mean emission rates of fluorescent bioaerosols in the particle size ranges of 0.5-2.5 μm and 2.5-10 μm were 3.192±2.11×104 counts/(person·h) and 13.98±9.34×104 counts/(person·h), respectively. A comparison between those wearing and not wearing masks revealed no significant differences in the emissions of fluorescent bioaerosols. This suggests respiratory sources may not significantly impact the emissions of fluorescent bioaerosols from individuals under seated breathing conditions. Significant disparities in the fluorescent bioaerosol emission rates of different biological sexes were observed through independent sample analysis. Males exhibited 41 % and 15 % higher emission rates than females for particle size ranges of 0.5-2.5 μm and 2.5-10 μm, respectively, possibly because of different metabolic rates. A significant correlation between metabolic rates and fluorescent bioaerosols (sig = 0.044 < 0.05) was observed in all the subjects. These findings underscore the individual variations that affect bioaerosol emission rates. The data provided by this study will facilitate further analysis of the on-site measured data and source analysis.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China; Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuxing Wang
- Department of Building Environment and Energy Engineering, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, China
| | - Junzhou He
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, China.
| | - Xudong Yang
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Broccolo F, D'Urso F, Imperi E, Piscitelli P, Miani A, Picano A. Re-inventing protection in a post-pandemic world: A new aerodynamic endonasal filtration technology. ENVIRONMENTAL RESEARCH 2024; 249:118051. [PMID: 38159668 DOI: 10.1016/j.envres.2023.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Is there a "missing device" for respiratory personal protection? Does it exist an easy-to-use device, allowing extensive use in everyday settings by the population, maximizing tolerability and low visual and physical invasiveness protecting from a wide range of threats including airborne pathogens, hence including the particle range of fine and ultrafine particles? Looking at the recent past, in the urgency of finding ready-to-use solutions for the respiratory protection of the population during the outbreak of the SARS-CoV-2 pandemic, devices for occupational safety have been used, such as filtering face masks. These are devices intended for workers operating during work shifts in environments characterized by potential high risk, known a priori, often directly sensible; this makes wearers motivated to tolerate discomfort for a given period to face a localized risk, and safety managers determined to supervise compliance with usage specifications. Their use by general population has implied known shortcomings, such as weak compatibility with relational work and activities, low tolerability during prolonged use, low compliance with the proper use of the device, all of this lessening actual protection. The need for a new perspective has emerged, targeting effectiveness in whole daily life, rather than punctual efficacy. Nasal filters are promising candidates to protect individuals throughout the day during the most varied activities, but they lack a systematic definition as a device and as a product; it follows that the high complexity needed to reach an effective performance envelop is generally underestimated. By reviewing available literature, the present paper draws on the experience from the pandemic and infers systematic product specifications and characterization methods for a new, effective personal respiratory protection device; these specifications are compared with the stringent constraints associated with the endonasal applications and, based on air filtration state of the art, quantifies the need for technology disruption and outlining possible new development paths.
Collapse
Affiliation(s)
- Francesco Broccolo
- Department of Experimental Medicine, University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| | - Fabiana D'Urso
- Unità Operativa Centro Controllo Qualità e Rischio Chimico (CQRC), Azienda Ospedaliera Villa Sofia Cervello, Palermo, Italy.
| | | | - Prisco Piscitelli
- Department of Experimental Medicine, University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy; Italian Society of Environmental Medicine (SIMA), Milan, Italy.
| | | | | |
Collapse
|
11
|
Graf S, Engelmann L, Jeleff Wölfler O, Albrecht I, Schloderer M, Kramer A, Klankermayer L, Gebhardt F, Chaker AM, Spinner CD, Schwab R, Wollenberg B, Protzer U, Hoffmann D. Reopening the Bavarian State Opera Safely: Hygiene Strategies and Incidence of COVID-19 in Artistic Staff During Theater Season 2020/2021. J Voice 2024; 38:798.e7-798.e20. [PMID: 34906415 PMCID: PMC8627642 DOI: 10.1016/j.jvoice.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/16/2023]
Abstract
Due to the drastically rising coronavirus disease (COVID-19) incidence since March 2020, social life was shut down across the globe, and most opera houses were closed. As a result, there are limited data on SARS-CoV-2 infections among artists. The Bavarian State Opera has been reopened in September 2020. This study aimed to identify the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among employees in the Bavarian State Opera. In addition, the various hygiene strategies for the work groups within the institution are described. During the study period from September 1, 2020 to July 31, 2021, 10,061 nasopharyngeal swabs were obtained from 1,460 artistic staff members in a rolling system. During the entire study period, 61 individuals tested positive for SARS-CoV-2. None of the patients had a severe disease course. Compared to the seven-day-incidence per 100,000 German inhabitants, the estimated corresponding incidence among employees was lower at 37 weeks and higher or equal at 9 weeks. Among the infected individuals, 58.3% were symptomatic, 23.3% were presymptomatic, and 18.3% were asymptomatic. Forty-five percent of employees reported that they had been infected in their private environment, 41.7% suspected that their colleagues were the main contact, and 13.3% were unsure about the origin of their infection. Twenty-four diseased employees were ballet dancers, eight from the orchestra, seven from the administration, seven from the choir singers, six from the costume department, 10 from technical support, and one guest solo singer. In the 2020/2021 theater season, increased SARS-CoV-2 infections and large disease outbreaks were avoided at the Bavarian State Opera. Hygiene strategies, that existed since the beginning, was specifically designed for various work areas in the opera. Regular, mandatory PCR testing and follow-up of positive cases with the issuance of quarantine were performed. Using this disease management approach, artistic work at and reopening of the Bavarian State Opera was feasible with a well-controlled risk.
Collapse
Affiliation(s)
- Simone Graf
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany.
| | - Luca Engelmann
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany
| | - Olivia Jeleff Wölfler
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany
| | | | | | | | - Lucia Klankermayer
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany
| | - Friedemann Gebhardt
- Technical University of Munich /Helmholtz Center, School of Medicine, Munich, Institute for Medical Microbiology, Immunology and Hygiene, Germany
| | - Adam M Chaker
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany; Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Center of Allergy and Environment (ZAUM)
| | - Christoph D Spinner
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Internal Medicine II, Germany
| | | | - Barbara Wollenberg
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany
| | - Ulrike Protzer
- Technical University of Munich /Helmholtz Center, School of Medicine, Munich, Institute of Virology, Germany
| | - Dieter Hoffmann
- Technical University of Munich /Helmholtz Center, School of Medicine, Munich, Institute of Virology, Germany
| |
Collapse
|
12
|
Goray M, Taylor D, Bibbo E, Fantinato C, Fonneløp AE, Gill P, van Oorschot RAH. Emerging use of air eDNA and its application to forensic investigations - A review. Electrophoresis 2024; 45:916-932. [PMID: 38419135 DOI: 10.1002/elps.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Improvements in DNA technologies allow collection and profiling of trace samples, comprised of few cells, significantly expanding the types of exhibits targeted for DNA analysis to include touched surfaces. However, success rates from trace and touch DNA samples tend to be poorer compared to other biological materials such as blood. Simultaneously, there have been recent advances in the utility of environmental DNA collection (eDNA) in identification and tracking of different biological organisms and species from bacteria to naked mole rats in different environments, including, soil, ice, snow, air and aquatic. This paper examines the emerging methods and research into eDNA collection, with a special emphasis on the potential forensic applications of human DNA collection from air including challenges and further studies required to progress implementation.
Collapse
Affiliation(s)
- Mariya Goray
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Duncan Taylor
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Forensic Science SA, Adelaide, South Australia, Australia
| | - Emily Bibbo
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Chiara Fantinato
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ane Elida Fonneløp
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Peter Gill
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Roland A H van Oorschot
- Victoria Police Forensic Services Department, Office of Chief Forensic Scientist, Macleod, Victoria, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
13
|
Sinclair P, Zhao L, Beggs CB, Illingworth CJR. The airborne transmission of viruses causes tight transmission bottlenecks. Nat Commun 2024; 15:3540. [PMID: 38670957 PMCID: PMC11053022 DOI: 10.1038/s41467-024-47923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The transmission bottleneck describes the number of viral particles that initiate an infection in a new host. Previous studies have used genome sequence data to suggest that transmission bottlenecks for influenza and SARS-CoV-2 involve few viral particles, but the general principles of virus transmission are not fully understood. Here we show that, across a broad range of circumstances, tight transmission bottlenecks are a simple consequence of the physical process of airborne viral transmission. We use mathematical modelling to describe the physical process of the emission and inhalation of infectious particles, deriving the result that that the great majority of transmission bottlenecks involve few viral particles. While exceptions to this rule exist, the circumstances needed to create these exceptions are likely very rare. We thus provide a physical explanation for previous inferences of bottleneck size, while predicting that tight transmission bottlenecks prevail more generally in respiratory virus transmission.
Collapse
Affiliation(s)
- Patrick Sinclair
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Lei Zhao
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clive B Beggs
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | | |
Collapse
|
14
|
Schwarz K, Struß N, Banari L, Hohlfeld JM. Quantifying Exhaled Particles in Healthy Humans During Various Respiratory Activities Under Realistic Conditions. J Aerosol Med Pulm Drug Deliv 2024; 37:51-63. [PMID: 38285475 DOI: 10.1089/jamp.2022.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Background: Quantitatively collecting and characterizing exhaled aerosols is vital for infection risk assessment, but the entire droplet size spectrum has often been neglected. We analyzed particle number and size distribution of healthy participants in various respiratory activities, considering inter-individual variability, and deployed a simplified far-field model to inform on infection risks. Methods: Participants repeated the same respiratory activities on two visits. Particles were collected using an airtight extraction helmet supplied with High Efficiency Particulate Air (HEPA) filtered air. The sampling volume flow was transported to two particle counters covering the small and large particle spectrum. The applied simple mass balance model included respiratory activity, viral load, room size, and air exchange rates. Results: Thirty participants completed the study. The major fraction of the number-based size distribution was <5 μm in all respiratory activities. In contrast, the major fraction of the volume-based size distribution was 2-12 μm in tidal breathing, but >60 μm in all other activities. Aerosol volume flow was lowest in tidal breathing, 10-fold higher in quiet/normal speaking, deep breathing, coughing, and 100-fold higher in loud speaking/singing. Intra-individual reproducibility was high. Between participants, aerosol volume flow varied by two orders of magnitude in droplets <80 μm, and three orders of magnitude in droplets >80 μm. Simple model calculations not accounting for potential particle size-dependent differences in viral load and infection-related differences were used to model airborne pathogen concentrations. Conclusions: Quantitative analysis of exhaled aerosols for the entire droplet size spectrum as well as the variability in aerosol emission between individuals provides information that can support infection research. Clinical Trial Registration number: NCT04771585.
Collapse
Affiliation(s)
- Katharina Schwarz
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Nadja Struß
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Liudmila Banari
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, Hannover, Germany
| |
Collapse
|
15
|
Li H, Khoa ND, Kuga K, Ito K. In silico identification of viral loads in cough-generated droplets - Seamless integrated analysis of CFPD-HCD-EWF. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 246:108073. [PMID: 38341896 DOI: 10.1016/j.cmpb.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Respiratory diseases caused by respiratory viruses have significantly threatened public health worldwide. This study presents a comprehensive approach to predict viral dynamics and the generation of stripped droplets within the mucus layer of the respiratory tract during coughing using a larynx-trachea-bifurcation (LTB) model. METHODS This study integrates computational fluid-particle dynamics (CFPD), host-cell dynamics (HCD), and the Eulerian wall film (EWF) model to propose a potential means for seamless integrated analysis. The verified CFPD-HCD coupling model based on a 3D-shell model was used to characterize the severe acute respiratory syndrome, coronavirus 2 (SARS-CoV-2) dynamics in the LTB mucus layer, whereas the EWF model was employed to account for the interfacial fluid to explore the generation mechanism and trace the origin site of droplets exhaled during a coughing event of an infected host. RESULTS The results obtained using CFPD delineated the preferential deposition sites for droplets in the laryngeal and tracheal regions. Thus, the analysis of the HCD model showed that the viral load increased rapidly in the laryngeal region during the peak of infection, whereas there was a growth delay in the tracheal region (up to day 8 after infection). After two weeks of infection, the high viral load gradually migrated towards the glottic region. Interestingly, the EWF model demonstrated a high concentration of exhaled droplets originating from the larynx. The coupling technique indicated a concurrent high viral load in the mucus layer and site of origin of the exhaled droplets. CONCLUSIONS This interdisciplinary research underscores the seamless analysis from initial exposure to virus-laden droplets, the dynamics of viral infection in the LTB mucus layer, and the re-emission from the coughing activities of an infected host. Our efforts aimed to address the complex challenges at the intersection of viral dynamics and respiratory health, which can contribute to a more detailed understanding and targeted prevention of respiratory diseases.
Collapse
Affiliation(s)
- Hanyu Li
- Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Nguyen Dang Khoa
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan.
| | - Kazuki Kuga
- Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Kazuhide Ito
- Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
16
|
Chillón SA, Fernandez-Gamiz U, Zulueta E, Ugarte-Anero A, Blanco JM. Numerical performance of CO 2 accumulation and droplet dispersion from a cough inside a hospital lift under different ventilation strategies. Sci Rep 2024; 14:6843. [PMID: 38514758 PMCID: PMC10957917 DOI: 10.1038/s41598-024-57425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
The impact of mechanical ventilation on airborne diseases is not completely known. The recent pandemic of COVID-19 clearly showed that additional investigations are necessary. The use of computational tools is an advantage that needs to be included in the study of designing safe places. The current study focused on a hospital lift where two subjects were included: a healthy passenger and an infected one. The elevator was modelled with a fan placed on the middle of the ceiling and racks for supplying air at the bottom of the lateral wall. Three ventilation strategies were evaluated: a without ventilation case, an upwards-blowing exhausting fan case and a downwards-blowing fan case. Five seconds after the elevator journey began, the infected person coughed. For the risk assessment, the CO2 concentration, droplet removal performance and dispersion were examined and compared among the three cases. The results revealed some discrepancies in the selection of an optimal ventilation strategy. Depending on the evaluated parameter, downward-ventilation fan or no ventilation strategy could be the most appropriate approach.
Collapse
Affiliation(s)
- Sergio A Chillón
- Energy Engineering Department, School of Engineering of Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain
| | - Unai Fernandez-Gamiz
- Energy Engineering Department, School of Engineering of Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain.
| | - Ekaitz Zulueta
- Automatic and Simulation Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain
| | - Ainara Ugarte-Anero
- Energy Engineering Department, School of Engineering of Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain
| | - Jesus Maria Blanco
- Energy Engineering Department, School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo, Building 1, 48013, Bilbao, Spain
| |
Collapse
|
17
|
Benítez-Burraco A, Moran S. Editorial: The adaptive value of languages: non-linguistic causes of language diversity, volume II. Front Psychol 2024; 15:1387290. [PMID: 38510301 PMCID: PMC10951400 DOI: 10.3389/fpsyg.2024.1387290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| | - Steven Moran
- Department of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Anthropology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
18
|
Obeid S, White P, Rosati Rowe J, Ilacqua V, Rawat MS, Ferro AR, Ahmadi G. Airborne respiratory aerosol transport and deposition in a two-person office using a novel diffusion-based numerical model. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:356-375. [PMID: 37337048 DOI: 10.1038/s41370-023-00546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND The COVID-19 pandemic was caused by the SARS-CoV-2 coronaviruses transmitted mainly through exposure to airborne respiratory droplets and aerosols carrying the virus. OBJECTIVE To assess the transport and dispersion of respiratory aerosols containing the SARS-CoV-2 virus and other viruses in a small office space using a diffusion-based computational modeling approach. METHODS A 3-D computational model was used to simulate the airflow inside the 70.2 m3 ventilated office. A novel diffusion model accounting for turbulence dispersion and gravitational sedimentation was utilized to predict droplet concentration transport and deposition. The numerical model was validated and used to investigate the influences of partition height and different ventilation rates on the concentration of respiratory aerosols of various sizes (1, 10, 20, and 50 µm) emitted by continuous speaking. RESULTS An increase in the hourly air change rate (ACH) from 2.0 to 5.6 decreased the 1 μm droplet concentration inside the office by a factor of 2.8 and in the breathing zone of the receptor occupant by a factor of 3.2. The concentration at the receptor breathing zone is estimated by the area-weighted average of a 1 m diameter circular disk, with its centroid at the center of the receptor mannequin mouth. While all aerosols were dispersed by airflow turbulence, the gravitational sedimentation significantly influenced the transport of larger aerosols in the room. The 1 and 10 μm aerosols remained suspended in the air and dispersed throughout the room. In contrast, the larger 20 and 50 μm aerosols deposited on the floor quickly due to the gravitational sedimentation. Increasing the partition between cubicles by 0.254 m (10") has little effect on the smaller aerosols and overall exposure. IMPACT This paper provides an efficient computational model for analyzing the concentration of different respiratory droplets and aerosols in an indoor environment. Thus, the approach could be used for assessing the influence of the spatial concentration variations on exposure for which the fully mixed model cannot be used.
Collapse
Affiliation(s)
- Sohaib Obeid
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Paul White
- U.S. Environmental Protection Agency (EPA), Office of Research and Development, Research Triangle Park, Washington, DC, NC, USA
| | - Jacky Rosati Rowe
- U.S. Environmental Protection Agency (EPA), Office of Research and Development, Research Triangle Park, Washington, DC, NC, USA
| | - Vito Ilacqua
- U.S. Environmental Protection Agency (EPA), Office of Research and Development, Research Triangle Park, Washington, DC, NC, USA
| | - Mahender Singh Rawat
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Andrea R Ferro
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Goodarz Ahmadi
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY, 13699, USA.
| |
Collapse
|
19
|
Berlanga FA, Gomez P, Esteban A, Liu L, Nielsen PV. Three dimensional analysis of the exhalation flow in the proximity of the mouth. Heliyon 2024; 10:e26283. [PMID: 38434078 PMCID: PMC10906307 DOI: 10.1016/j.heliyon.2024.e26283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
The human exhalation flow is characterized in this work from the three-dimensional velocimetry results obtained by using the stereo particle image velocimetry (SPIV) measurement technique on the flow emitted from a realistic airway model. For this purpose, the transient exhalation flow through the mouth of a person performing two different breaths corresponding to two metabolic rates, standing relaxed (SR) and walking active (WA), is emulated and studied. To reproduce the flow realistically, a detailed three-dimensional model obtained from computed tomography measurements on real subjects is used. To cope with the variability of the experimental data, a subsequent analysis of the results is performed using the TR-PIV (time resolved particle image velocimetry) technique. Exhalation produces a transient jet that becomes a puff when flow emission ends. Three-dimensional vector fields of the jet velocity are obtained in five equally spaced transverse planes up to a distance of Image 1 from the mouth at equally spaced time instants Image 2 which will be referred to as phases (φ), from the beginning to the end of exhalation. The time evolution during exhalation of the jet area of influence, the velocity field and the jet air entrainment have been characterized for each of the jet cross sections. The importance of the use of realistic airway models for the study of this type of flow and the influence of the metabolic rate on its development are also analyzed. The results obtained contribute to the characterization of the human exhalation as a pathway of the transmission of pathogens such as SARS-CoV-2 virus.
Collapse
Affiliation(s)
- F A Berlanga
- Dept. de Mecánica, ETSII, Universidad Nacional de Educación a Distancia (UNED), E-28040, Madrid, Spain
| | - P Gomez
- Dept. de Mecánica, ETSII, Universidad Nacional de Educación a Distancia (UNED), E-28040, Madrid, Spain
| | - A Esteban
- Dept. de Mecánica, ETSII, Universidad Nacional de Educación a Distancia (UNED), E-28040, Madrid, Spain
| | - L Liu
- Dept. of Building Science and Technology, School of Architecture, Tsinghua University, Haidian District, Beijing, China
| | - P V Nielsen
- Dept. of the Built Environment, Aalborg Universitet, Thomas Manns Vej 23 9220 Aalborg Øst, Denmark
| |
Collapse
|
20
|
Andrup L, Krogfelt KA, Stephansen L, Hansen KS, Graversen BK, Wolkoff P, Madsen AM. Reduction of acute respiratory infections in day-care by non-pharmaceutical interventions: a narrative review. Front Public Health 2024; 12:1332078. [PMID: 38420031 PMCID: PMC10899481 DOI: 10.3389/fpubh.2024.1332078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Children who start in day-care have 2-4 times as many respiratory infections compared to children who are cared for at home, and day-care staff are among the employees with the highest absenteeism. The extensive new knowledge that has been generated in the COVID-19 era should be used in the prevention measures we prioritize. The purpose of this narrative review is to answer the questions: Which respiratory viruses are the most significant in day-care centers and similar indoor environments? What do we know about the transmission route of these viruses? What evidence is there for the effectiveness of different non-pharmaceutical prevention measures? Design Literature searches with different terms related to respiratory infections in humans, mitigation strategies, viral transmission mechanisms, and with special focus on day-care, kindergarten or child nurseries, were conducted in PubMed database and Web of Science. Searches with each of the main viruses in combination with transmission, infectivity, and infectious spread were conducted separately supplemented through the references of articles that were retrieved. Results Five viruses were found to be responsible for ≈95% of respiratory infections: rhinovirus, (RV), influenza virus (IV), respiratory syncytial virus (RSV), coronavirus (CoV), and adenovirus (AdV). Novel research, emerged during the COVID-19 pandemic, suggests that most respiratory viruses are primarily transmitted in an airborne manner carried by aerosols (microdroplets). Conclusion Since airborne transmission is dominant for the most common respiratory viruses, the most important preventive measures consist of better indoor air quality that reduces viral concentrations and viability by appropriate ventilation strategies. Furthermore, control of the relative humidity and temperature, which ensures optimal respiratory functionality and, together with low resident density (or mask use) and increased time outdoors, can reduce the occurrence of respiratory infections.
Collapse
Affiliation(s)
- Lars Andrup
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Karen A Krogfelt
- Department of Science and Environment, Molecular and Medical Biology, PandemiX Center, Roskilde University, Roskilde, Denmark
| | - Lene Stephansen
- Gladsaxe Municipality, Social and Health Department, Gladsaxe, Denmark
| | | | | | - Peder Wolkoff
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
21
|
Echternach M, Ava Hermann L, Gantner S, Tur B, Peters G, Westphalen C, Benthaus T, Köberlein M, Kuranova L, Döllinger M, Kniesburges S. The Effect of Singers' Masks on the Impulse Dispersion of Aerosols During Singing. J Voice 2024; 38:247.e1-247.e10. [PMID: 34610881 DOI: 10.1016/j.jvoice.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND During the Covid-19 pandemic, singing activities were restricted due to several super-spreading events that have been observed during rehearsals and vocal performances. However, it has not been clarified how the aerosol dispersion, which has been assumed to be the leading transmission factor, could be reduced by masks which are specially designed for singers. MATERIAL AND METHODS Twelve professional singers (10 of the Bavarian Radio-Chorus and two freelancers, seven females and five males) were asked to sing the melody of the ode of joy of Beethoven's 9th symphony "Freude schöner Götterfunken, Tochter aus Elisium" in D-major without masks and afterwards with five different singers' masks, all distinctive in their material and proportions. Every task was conducted after inhaling the basic liquid from an e-cigarette. The aerosol dispersion was recorded by three high-definition video cameras during and after the task. The cloud was segmented and the dispersion was analyzed for all three spatial dimensions. Further, the subjects were asked to rate the practicability of wearing the tested masks during singing activities using a questionnaire. RESULTS Concerning the median distances of dispersion, all masks were able to decrease the impulse dispersion of the aerosols to the front. In contrast, the dispersion to the sides and to the top was increased. The evaluation revealed that most of the subjects would reject performing a concert with any of the masks. CONCLUSION Although, the results exhibit that the tested masks could be able to reduce the radius of aerosol expulsion for virus-laden aerosol particles, there are more improvements necessary to enable the practical implementations for professional singing.
Collapse
Affiliation(s)
- Matthias Echternach
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, University Hospital, LMU Munich, Germany.
| | - Laila Ava Hermann
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, University Hospital, LMU Munich, Germany
| | - Sophia Gantner
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, University Hospital, LMU Munich, Germany
| | - Bogac Tur
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Peters
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Caroline Westphalen
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, University Hospital, LMU Munich, Germany
| | - Tobias Benthaus
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Germany
| | - Marie Köberlein
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, University Hospital, LMU Munich, Germany
| | - Liudmila Kuranova
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, University Hospital, LMU Munich, Germany
| | - Michael Döllinger
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Kniesburges
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Emery JC, Dodd PJ, Banu S, Frascella B, Garden FL, Horton KC, Hossain S, Law I, van Leth F, Marks GB, Nguyen HB, Nguyen HV, Onozaki I, Quelapio MID, Richards AS, Shaikh N, Tiemersma EW, White RG, Zaman K, Cobelens F, Houben RMGJ. Estimating the contribution of subclinical tuberculosis disease to transmission: An individual patient data analysis from prevalence surveys. eLife 2023; 12:e82469. [PMID: 38109277 PMCID: PMC10727500 DOI: 10.7554/elife.82469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/04/2023] [Indexed: 12/20/2023] Open
Abstract
Background Individuals with bacteriologically confirmed pulmonary tuberculosis (TB) disease who do not report symptoms (subclinical TB) represent around half of all prevalent cases of TB, yet their contribution to Mycobacterium tuberculosis (Mtb) transmission is unknown, especially compared to individuals who report symptoms at the time of diagnosis (clinical TB). Relative infectiousness can be approximated by cumulative infections in household contacts, but such data are rare. Methods We reviewed the literature to identify studies where surveys of Mtb infection were linked to population surveys of TB disease. We collated individual-level data on representative populations for analysis and used literature on the relative durations of subclinical and clinical TB to estimate relative infectiousness through a cumulative hazard model, accounting for sputum-smear status. Relative prevalence of subclinical and clinical disease in high-burden settings was used to estimate the contribution of subclinical TB to global Mtb transmission. Results We collated data on 414 index cases and 789 household contacts from three prevalence surveys (Bangladesh, the Philippines, and Viet Nam) and one case-finding trial in Viet Nam. The odds ratio for infection in a household with a clinical versus subclinical index case (irrespective of sputum smear status) was 1.2 (0.6-2.3, 95% confidence interval). Adjusting for duration of disease, we found a per-unit-time infectiousness of subclinical TB relative to clinical TB of 1.93 (0.62-6.18, 95% prediction interval [PrI]). Fourteen countries across Asia and Africa provided data on relative prevalence of subclinical and clinical TB, suggesting an estimated 68% (27-92%, 95% PrI) of global transmission is from subclinical TB. Conclusions Our results suggest that subclinical TB contributes substantially to transmission and needs to be diagnosed and treated for effective progress towards TB elimination. Funding JCE, KCH, ASR, NS, and RH have received funding from the European Research Council (ERC) under the Horizon 2020 research and innovation programme (ERC Starting Grant No. 757699) KCH is also supported by UK FCDO (Leaving no-one behind: transforming gendered pathways to health for TB). This research has been partially funded by UK aid from the UK government (to KCH); however, the views expressed do not necessarily reflect the UK government's official policies. PJD was supported by a fellowship from the UK Medical Research Council (MR/P022081/1); this UK-funded award is part of the EDCTP2 programme supported by the European Union. RGW is funded by the Wellcome Trust (218261/Z/19/Z), NIH (1R01AI147321-01), EDTCP (RIA208D-2505B), UK MRC (CCF17-7779 via SET Bloomsbury), ESRC (ES/P008011/1), BMGF (OPP1084276, OPP1135288 and INV-001754), and the WHO (2020/985800-0).
Collapse
Affiliation(s)
- Jon C Emery
- TB Modelling Group, TB Centre and Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Peter J Dodd
- School of Health and Related Research, University of SheffieldSheffieldUnited Kingdom
| | - Sayera Banu
- International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
| | | | - Frances L Garden
- South West Sydney Clinical Campuses, University of New South WalesSydneyAustralia
- Ingham Institute of Applied Medical ResearchSydneyAustralia
| | - Katherine C Horton
- TB Modelling Group, TB Centre and Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Shahed Hossain
- James P. Grant School of Public Health, BRAC UniversityDhakaBangladesh
| | - Irwin Law
- Global Tuberculosis Programme, World Health OrganizationGenevaSwitzerland
| | - Frank van Leth
- Department of Health Sciences, VU UniversityAmsterdamNetherlands
- Amsterdam Public Health Research InstituteAmsterdamNetherlands
| | - Guy B Marks
- South West Sydney Clinical Campuses, University of New South WalesSydneyAustralia
- Woolcock Institute of Medical ResearchSydneyAustralia
| | - Hoa Binh Nguyen
- National Lung Hospital, National Tuberculosis Control ProgramHa NoiViet Nam
| | - Hai Viet Nguyen
- National Lung Hospital, National Tuberculosis Control ProgramHa NoiViet Nam
| | - Ikushi Onozaki
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis AssociationTokyoJapan
| | | | - Alexandra S Richards
- TB Modelling Group, TB Centre and Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Nabila Shaikh
- TB Modelling Group, TB Centre and Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Sanofi PasteurReadingUnited Kingdom
| | | | - Richard G White
- TB Modelling Group, TB Centre and Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Khalequ Zaman
- International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
| | - Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Rein MGJ Houben
- TB Modelling Group, TB Centre and Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
23
|
Tripathi D, Bhandari D, Kumar R, Aboelkassem Y. Modeling virus transport and dynamics in viscous flow medium. JOURNAL OF BIOLOGICAL DYNAMICS 2023; 17:2182373. [PMID: 36861851 DOI: 10.1080/17513758.2023.2182373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In this paper, we developed a mathematical model to simulate virus transport through a viscous background flow driven by the natural pumping mechanism. Two types of respiratory pathogens viruses (SARS-Cov-2 and Influenza-A) are considered in this model. The Eulerian-Lagrangian approach is adopted to examine the virus spread in axial and transverse directions. The Basset-Boussinesq-Oseen equation is considered to study the effects of gravity, virtual mass, Basset force, and drag forces on the viruses transport velocity. The results indicate that forces acting on the spherical and non-spherical particles during the motion play a significant role in the transmission process of the viruses. It is observed that high viscosity is responsible for slowing the virus transport dynamics. Small sizes of viruses are found to be highly dangerous and propagate rapidly through the blood vessels. Furthermore, the present mathematical model can help to better understand the viruses spread dynamics in a blood flow.
Collapse
Affiliation(s)
- Dharmendra Tripathi
- Department of Mathematics, National Institute of Technology Uttarakhand, Srinagar, India
| | - Dinesh Bhandari
- Department of Mathematics, National Institute of Technology Uttarakhand, Srinagar, India
| | - Rakesh Kumar
- Department of Mechanical Engineering, Manipal University, Manipal, India
| | - Yasser Aboelkassem
- College of Innovation and Technology, University of Michigan, Flint, MI, USA
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Kompatscher K, van der Vossen JMBM, van Heumen SPM, Traversari AAL. Scoping review on the efficacy of filter and germicidal technologies for capture and inactivation of micro-organisms and viruses. J Hosp Infect 2023; 142:39-48. [PMID: 37797657 DOI: 10.1016/j.jhin.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
The COVID-19 (SARS-CoV-2) pandemic increased the focus on preventing contamination with airborne pathogens (e.g. viruses, bacteria, and fungi) by reducing their concentration. Filtration, UV or ionization technologies could contribute to air purification of the indoor environment and inactivation of micro-organisms. The aim of this study was to identify the relevant literature and review the scientific evidence presented on the efficacy of filter and germicidal technologies (e.g. non-physical technologies) in air purification applications used to capture and inactivate micro-organisms and airborne viruses (e.g. SARS-CoV-2, rhinovirus, influenzavirus) in practice. A scoping review was performed to collect literature. Adopting exclusion criteria resulted in a final number of 75 studies to be included in this research. Discussion is presented on inactivation efficiencies of ultraviolet germicidal irradiation (UVGI) and ionization applications in laboratory studies and in practice. Specific attention is given to studies relating the use of UVGI and ionization to inactivation of the SARS-CoV-2 virus. Based on the consulted literature, no unambiguous conclusions can be drawn regarding the effectiveness of air purification technologies in practice. The documented and well-controlled laboratory studies do not adequately represent the practical situation in which the purifier systems are used.
Collapse
Affiliation(s)
- K Kompatscher
- Netherlands Organization for Applied Scientific Research, Department of Building and Energy Systems, Delft, The Netherlands.
| | - J M B M van der Vossen
- Netherlands Organization for Applied Scientific Research, Department of Microbiology and Systems Biology, Leiden, The Netherlands
| | - S P M van Heumen
- Netherlands Organization for Applied Scientific Research, Department of Building and Energy Systems, Delft, The Netherlands
| | - A A L Traversari
- Netherlands Organization for Applied Scientific Research, Department of Building and Energy Systems, Delft, The Netherlands
| |
Collapse
|
25
|
Caracci E, Stabile L, Ferro AR, Morawska L, Buonanno G. Respiratory particle emission rates from children during speaking. Sci Rep 2023; 13:18294. [PMID: 37880507 PMCID: PMC10600129 DOI: 10.1038/s41598-023-45615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
The number of respiratory particles emitted during different respiratory activities is one of the main parameters affecting the airborne transmission of respiratory pathogens. Information on respiratory particle emission rates is mostly available for adults (few studies have investigated adolescents and children) and generally involves a limited number of subjects. In the present paper we attempted to reduce this knowledge gap by conducting an extensive experimental campaign to measure the emission of respiratory particles of more than 400 children aged 6 to 12 years while they pronounced a phonetically balanced word list at two different voice intensity levels ("speaking" and "loudly speaking"). Respiratory particle concentrations, particle distributions, and exhaled air flow rates were measured to estimate the respiratory particle emission rate. Sound pressure levels were also simultaneously measured. We found out that median respiratory particle emission rates for speaking and loudly speaking were 26 particles s-1 (range 7.1-93 particles s-1) and 41 particles s-1 (range 10-146 particles s-1), respectively. Children sex was significant for emission rates, with higher emission rates for males during both speaking and loudly speaking. No effect of age on the emission rates was identified. Concerning particle size distributions, for both respiratory activities, a main mode at approximately 0.6 µm and a second minor mode at < 2 µm were observed, and no differences were found between males and females. This information provides important input parameters in predictive models adopted to estimate the transmission risk of airborne pathogens in indoor spaces.
Collapse
Affiliation(s)
- Elisa Caracci
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy.
| | - Andrea R Ferro
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, USA
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Tanner K, Good KM, Goble D, Good N, Keisling A, Keller KP, L’Orange C, Morton E, Phillips R, Volckens J. Large Particle Emissions from Human Vocalization and Playing of Wind Instruments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15392-15400. [PMID: 37796739 PMCID: PMC10586367 DOI: 10.1021/acs.est.3c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Humans emit large salivary particles when talking, singing, and playing musical instruments, which have implications for respiratory disease transmission. Yet little work has been done to characterize the emission rates and size distributions of such particles. This work characterized large particle (dp > 35 μm in aerodynamic diameter) emissions from 70 volunteers of varying age and sex while vocalizing and playing wind instruments. Mitigation efficacies for face masks (while singing) and bell covers (while playing instruments) were also examined. Geometric mean particle count emission rates varied from 3.8 min-1 (geometric standard deviation [GSD] = 3.1) for brass instruments playing to 95.1 min-1 (GSD = 3.8) for talking. On average, talking produced the highest emission rates for large particles, in terms of both number and mass, followed by singing and then instrument playing. Neither age, sex, CO2 emissions, nor loudness (average dBA) were significant predictors of large particle emissions, contrary to previous findings for smaller particle sizes (i.e., for dp < 35 μm). Size distributions were similar between talking and singing (count median diameter = 53.0 μm, GSD = 1.69). Bell covers did not affect large particle emissions from most wind instruments, but face masks reduced large particle count emissions for singing by 92.5% (95% CI: 97.9%, 73.7%).
Collapse
Affiliation(s)
- Ky Tanner
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Kristen M. Good
- Department
of Environmental and Radiological Health Sciences, Colorado State University, Fort
Collins, Colorado 80523, United States
- Colorado
Department of Public Health and Environment, Denver, Colorado 80246, United States
| | - Dan Goble
- School
of Music, Theatre, and Dance, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Nicholas Good
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Amy Keisling
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- School
of Music, Theatre, and Dance, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Kayleigh P. Keller
- Department
of Statistics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christian L’Orange
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Emily Morton
- School
of Music, Theatre, and Dance, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Rebecca Phillips
- School
of Music, Theatre, and Dance, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - John Volckens
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- Department
of Environmental and Radiological Health Sciences, Colorado State University, Fort
Collins, Colorado 80523, United States
| |
Collapse
|
27
|
Zhang MX, Lilien TA, van Etten-Jamaludin FS, Fraenkel CJ, Bonn D, Vlaar APJ, Löndahl J, Klompas M, Bem RA. Generation of Aerosols by Noninvasive Respiratory Support Modalities: A Systematic Review and Meta-Analysis. JAMA Netw Open 2023; 6:e2337258. [PMID: 37819660 PMCID: PMC10568354 DOI: 10.1001/jamanetworkopen.2023.37258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
Importance Infection control guidelines have historically classified high-flow nasal oxygen and noninvasive ventilation as aerosol-generating procedures that require specialized infection prevention and control measures. Objective To evaluate the current evidence that high-flow nasal oxygen and noninvasive ventilation are associated with pathogen-laden aerosols and aerosol generation. Data Sources A systematic search of EMBASE and PubMed/MEDLINE up to March 15, 2023, and CINAHL and ClinicalTrials.gov up to August 1, 2023, was performed. Study Selection Observational and (quasi-)experimental studies of patients or healthy volunteers supported with high-flow nasal oxygen or noninvasive ventilation were selected. Data Extraction and Synthesis Three reviewers were involved in independent study screening, assessment of risk of bias, and data extraction. Data from observational studies were pooled using a random-effects model at both sample and patient levels. Sensitivity analyses were performed to assess the influence of model choice. Main Outcomes and Measures The main outcomes were the detection of pathogens in air samples and the quantity of aerosol particles. Results Twenty-four studies were included, of which 12 involved measurements in patients and 15 in healthy volunteers. Five observational studies on SARS-CoV-2 detection in a total of 212 air samples during high-flow nasal oxygen in 152 patients with COVID-19 were pooled for meta-analysis. There was no association between high-flow nasal oxygen and pathogen-laden aerosols (odds ratios for positive samples, 0.73 [95% CI, 0.15-3.55] at the sample level and 0.80 [95% CI, 0.14-4.59] at the patient level). Two studies assessed SARS-CoV-2 detection during noninvasive ventilation (84 air samples from 72 patients). There was no association between noninvasive ventilation and pathogen-laden aerosols (odds ratios for positive samples, 0.38 [95% CI, 0.03-4.63] at the sample level and 0.43 [95% CI, 0.01-27.12] at the patient level). None of the studies in healthy volunteers reported clinically relevant increases in aerosol particle production by high-flow nasal oxygen or noninvasive ventilation. Conclusions and Relevance This systematic review and meta-analysis found no association between high-flow nasal oxygen or noninvasive ventilation and increased airborne pathogen detection or aerosol generation. These findings argue against classifying high-flow nasal oxygen or noninvasive ventilation as aerosol-generating procedures or differentiating infection prevention and control practices for patients receiving these modalities.
Collapse
Affiliation(s)
- Madeline X. Zhang
- Institute of Physics, Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Thijs A. Lilien
- Department of Pediatric Intensive Care, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Carl-Johan Fraenkel
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Daniel Bonn
- Institute of Physics, Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jakob Löndahl
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Michael Klompas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Reinout A. Bem
- Department of Pediatric Intensive Care, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Bale R, Li C, Fukudome H, Yumino S, Iida A, Tsubokura M. Characterizing infection risk in a restaurant environment due to airborne diseases using discrete droplet dispersion simulations. Heliyon 2023; 9:e20540. [PMID: 37842622 PMCID: PMC10568108 DOI: 10.1016/j.heliyon.2023.e20540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
The use of masks as a measure to control the spread of respiratory viruses has been widely acknowledged. However, there are instances where wearing a mask is not possible, making these environments potential vectors for virus transmission. Such environments can contain multiple sources of infection and are challenging to characterize in terms of infection risk. To address this issue, we have developed a methodology to investigate the role of ventilation in reducing the infection risk in such environments. We use a restaurant setting as a representative scenario to demonstrate the methodology. Using implicit large eddy simulations along with discrete droplet dispersion modeling we investigate the impact of ventilation and physical distance on the spread of respiratory viruses and the risk of infection. Our findings show that operating ventilation systems, such as mechanical mixing and increasing physical distance between subjects, can significantly reduce the average room infection risk and number of newly infected subjects. However, this observation is subject to the transmissibility of the airborne viruses. In the case of a highly transmissible virus, the use of mechanical mixing may be inconsequential when compared to only fresh air ventilation. These findings provide valuable insights into the mitigation of infection risk in situations where the use of masks is not possible.
Collapse
Affiliation(s)
- Rahul Bale
- RIKEN Center for Computational Sciences, Kobe, Japan
- Graduate School of System Informatics, Kobe University, Kobe, Japan
| | - ChungGang Li
- Department of Mechanical Engineering, National Cheng Kung University, Taiwan
| | | | | | - Akiyoshi Iida
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Makoto Tsubokura
- RIKEN Center for Computational Sciences, Kobe, Japan
- Graduate School of System Informatics, Kobe University, Kobe, Japan
| |
Collapse
|
29
|
Kowalsky JM, Mitchell AM, Okdie BM. Maintaining distance and avoiding going out during the COVID-19 pandemic: a longitudinal examination of an integrated social cognition model. Psychol Health 2023; 38:1420-1441. [PMID: 35007457 DOI: 10.1080/08870446.2021.2023746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Objective: To test an integrated social cognition model predicting two forms of social distancing behavior (maintaining distance and avoiding going out in public) during COVID-19.Design: Participants from the U.S. (Sample 1, n = 433) and Canada (Sample 2, n = 239) completed online measures, reflecting the theory of planned behavior (attitudes, norms, perceived control, intention), COVID-19-specific risk, anticipated regret, fear of catching COVID-19, and perceived capacity related to using technology to connect with others. Self-reported behavior was collected from the U.S. sample at 6-month follow-up.Results: Intention to maintain distance and avoid going out predicted behavior within the U.S. sample. For both samples, intention was predicted by attitudes, subjective norms and perceived behavioral control. Perceived severity of COVID-19, anticipated inaction regret, and fear of catching COVID-19 predicted intention to maintain distance and avoid going out across both samples. Finally, within the U.S. sample, significant indirect effects were present for perceived behavioral control predicting future maintaining distance and avoiding going out via intention to engage in these behaviors.Conclusion: The integrated social cognition model predicts social distancing intentions and long-term social distancing behaviors. Hazard-specific risk and affect were relevant determinants added to the models. Potential avenues for intervention research are described.Supplemental data for this article is available online at https://doi.org/10.1080/08870446.2021.2023746 .
Collapse
Affiliation(s)
| | - Amanda M Mitchell
- Department of Counseling and Human Development, University of Louisville, Louisville, USA
| | - Bradley M Okdie
- Department of Psychology, The Ohio State University, Newark, USA
| |
Collapse
|
30
|
Schijven JF, van Veen T, Delmaar C, Kos J, Vermeulen L, Roosien R, Verhoeven F, Schipper M, Peerlings B, Duizer E, Derei J, Lammen W, Bartels O, van der Ven H, Maas R, de Roda Husman AM. Quantitative Microbial Risk Assessment of Contracting COVID-19 Derived from Measured and Simulated Aerosol Particle Transmission in Aircraft Cabins. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87011. [PMID: 37589660 PMCID: PMC10434022 DOI: 10.1289/ehp11495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND SARS-CoV-2 can be effectively transmitted between individuals located in close proximity to each other for extended durations. Aircraft provide such conditions. Although high attack rates during flights were reported, little was known about the risk levels of aerosol transmission of SARS-CoV-2 in aircraft cabins. OBJECTIVES The major objective was to estimate the risk of contracting COVID-19 from transmission of aerosol particles in aircraft cabins. METHODS In two single-aisle and one twin-aisle aircraft, dispersion of generated aerosol particles over a seven-row economy class cabin section was measured under cruise and taxi conditions and simulated with a computational fluid dynamic model under cruise conditions. Using the aerosol particle dispersion data, a quantitative microbial risk assessment was conducted for scenarios with an asymptomatic infectious person expelling aerosol particles by breathing and speaking. Effects of flight conditions were evaluated using generalized additive mixed models. RESULTS Aerosol particle concentration decreased with increasing distance from the infectious person, and this decrease varied with direction. On a typical flight with an average shedder, estimated mean risk of contracting COVID-19 ranged from 1.3 × 10 - 3 to 9.0 × 10 - 2 . Risk increased to 7.7 × 10 - 2 with a super shedder (< 3 % of cases) on a long flight. Risks increased with increasing flight duration: 2-23 cruise flights of typical duration and 2-10 flights of longer duration resulted in at least 1 case of COVID-19 due to onboard aerosol transmission by one average shedder, and in the case of one super shedder, at least 1 case in 1-3 flights of typical duration cruise and 1 flight of longer duration. DISCUSSION Our findings indicate that the risk of contracting COVID-19 by aerosol transmission in an aircraft cabin is low, but it will not be zero. Testing before boarding may help reduce the chance of a (super)shedder boarding an aircraft and mask use further reduces aerosol transmission in the aircraft cabin. https://doi.org/10.1289/EHP11495.
Collapse
Affiliation(s)
- Jack F. Schijven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Theo van Veen
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Christiaan Delmaar
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Johan Kos
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Lucie Vermeulen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Rui Roosien
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | | | - Maarten Schipper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Bram Peerlings
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Erwin Duizer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jonathan Derei
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Wim Lammen
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Onno Bartels
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | | | - Robert Maas
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
31
|
Zhou J, Singanayagam A, Goonawardane N, Moshe M, Sweeney FP, Sukhova K, Killingley B, Kalinova M, Mann AJ, Catchpole AP, Barer MR, Ferguson NM, Chiu C, Barclay WS. Viral emissions into the air and environment after SARS-CoV-2 human challenge: a phase 1, open label, first-in-human study. THE LANCET. MICROBE 2023; 4:e579-e590. [PMID: 37307844 PMCID: PMC10256269 DOI: 10.1016/s2666-5247(23)00101-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Effectively implementing strategies to curb SARS-CoV-2 transmission requires understanding who is contagious and when. Although viral load on upper respiratory swabs has commonly been used to infer contagiousness, measuring viral emissions might be more accurate to indicate the chance of onward transmission and identify likely routes. We aimed to correlate viral emissions, viral load in the upper respiratory tract, and symptoms, longitudinally, in participants who were experimentally infected with SARS-CoV-2. METHODS In this phase 1, open label, first-in-human SARS-CoV-2 experimental infection study at quarantine unit at the Royal Free London NHS Foundation Trust, London, UK, healthy adults aged 18-30 years who were unvaccinated for SARS-CoV-2, not previously known to have been infected with SARS-CoV-2, and seronegative at screening were recruited. Participants were inoculated with 10 50% tissue culture infectious dose of pre-alpha wild-type SARS-CoV-2 (Asp614Gly) by intranasal drops and remained in individual negative pressure rooms for a minimum of 14 days. Nose and throat swabs were collected daily. Emissions were collected daily from the air (using a Coriolis μ air sampler and directly into facemasks) and the surrounding environment (via surface and hand swabs). All samples were collected by researchers, and tested by using PCR, plaque assay, or lateral flow antigen test. Symptom scores were collected using self-reported symptom diaries three times daily. The study is registered with ClinicalTrials.gov, NCT04865237. FINDINGS Between March 6 and July 8, 2021, 36 participants (ten female and 26 male) were recruited and 18 (53%) of 34 participants became infected, resulting in protracted high viral loads in the nose and throat following a short incubation period, with mild-to-moderate symptoms. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Viral RNA was detected in 63 (25%) of 252 Coriolis air samples from 16 participants, 109 (43%) of 252 mask samples from 17 participants, 67 (27%) of 252 hand swabs from 16 participants, and 371 (29%) of 1260 surface swabs from 18 participants. Viable SARS-CoV-2 was collected from breath captured in 16 masks and from 13 surfaces, including four small frequently touched surfaces and nine larger surfaces where airborne virus could deposit. Viral emissions correlated more strongly with viral load in nasal swabs than throat swabs. Two individuals emitted 86% of airborne virus, and the majority of airborne virus collected was released on 3 days. Individuals who reported the highest total symptom scores were not those who emitted most virus. Very few emissions occurred before the first reported symptom (7%) and hardly any before the first positive lateral flow antigen test (2%). INTERPRETATION After controlled experimental inoculation, the timing, extent, and routes of viral emissions was heterogeneous. We observed that a minority of participants were high airborne virus emitters, giving support to the notion of superspreading individuals or events. Our data implicates the nose as the most important source of emissions. Frequent self-testing coupled with isolation upon awareness of first symptoms could reduce onward transmissions. FUNDING UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy of Her Majesty's Government.
Collapse
Affiliation(s)
- Jie Zhou
- Section of Virology, Imperial College London, London, UK
| | - Anika Singanayagam
- Section of Adult Infectious Disease, Imperial College London, London, UK
| | | | - Maya Moshe
- Section of Virology, Imperial College London, London, UK
| | | | - Ksenia Sukhova
- Section of Virology, Imperial College London, London, UK
| | - Ben Killingley
- Department of Infectious Diseases, University College London Hospital, London, UK
| | | | | | | | - Michael R Barer
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Neil M Ferguson
- Department of Infectious Disease, and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Christopher Chiu
- Section of Adult Infectious Disease, Imperial College London, London, UK
| | | |
Collapse
|
32
|
Kanté DSI, Jebrane A, Hakim A, Boukamel A. Characterization of superspreaders movement in a bidirectional corridor using a social force model. Front Public Health 2023; 11:1188732. [PMID: 37575110 PMCID: PMC10416642 DOI: 10.3389/fpubh.2023.1188732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
During infectious disease outbreaks, some infected individuals may spread the disease widely and amplify risks in the community. People whose daily activities bring them in close proximity to many others can unknowingly become superspreaders. The use of contact tracking based on social networks, GPS, or mobile tracking data can help to identify superspreaders and break the chain of transmission. We propose a model that aims at providing insight into risk factors of superspreading events. Here, we use a social force model to estimate the superspreading potential of individuals walking in a bidirectional corridor. First, we applied the model to identify parameters that favor exposure to an infectious person in scattered crowds. We find that low walking speed and high body mass both increase the expected number of close exposures. Panic events exacerbate the risks while social distancing reduces both the number and duration of close encounters. Further, in dense crowds, pedestrians interact more and cannot easily maintain the social distance between them. The number of exposures increases with the density of person in the corridor. The study of movements reveals that individuals walking toward the center of the corridor tend to rotate and zigzag more than those walking along the edges, and thus have higher risks of superspreading. The corridor model can be applied to designing risk reduction measures for specific high volume venues, including transit stations, stadiums, and schools.
Collapse
Affiliation(s)
- Dramane Sam Idris Kanté
- LAMAI, Department of Mathematics, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakesh, Morocco
- Centrale Casablanca, Complex Systems and Interactions Research Center, Ville Verte, Bouskoura, Morocco
| | - Aissam Jebrane
- Centrale Casablanca, Complex Systems and Interactions Research Center, Ville Verte, Bouskoura, Morocco
| | - Abdelilah Hakim
- LAMAI, Department of Mathematics, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakesh, Morocco
| | - Adnane Boukamel
- Centrale Casablanca, Complex Systems and Interactions Research Center, Ville Verte, Bouskoura, Morocco
| |
Collapse
|
33
|
Okajima J, Kato M, Hayakawa A, Iga Y. Investigation of bimodal characteristics of the droplet size distribution in condensation spray. Sci Rep 2023; 13:12006. [PMID: 37491517 PMCID: PMC10368728 DOI: 10.1038/s41598-023-39087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
To understand the generation process of airborne droplets during exhalation, this study investigates the mechanism of bimodal characteristics of the size distribution of droplets generated in a condensed spray flow. The phase change process in the condensed spray flow was estimated based on the droplet size distribution measured by a phase Doppler particle analyzer and the temperature distribution measured by a thermistor. On the central axis, the size distribution was unimodal in the spray interior. In contrast, bimodality of the size distribution at the outer edge of the spray flow was observed. At the edge of the spray flow, a large temperature gradient was formed. This indicates that condensation actively occurred at the outer edge. For the same reason as outlined above, condensation did not progress at the spray center because of the consumption of water vapor at the outer edge by the condensation, and the droplet diameter did not change significantly. Hence, owing to the difference in the local phase change process between the center and outer edge of the spray, large and small droplets can exist simultaneously in the middle region. As a result, the size distribution of the condensation spray is bimodal.
Collapse
Affiliation(s)
- Junnosuke Okajima
- Institute of Fluid Science, Tohoku University, Sendai, 980-8579, Japan.
| | - Mitsuki Kato
- Institute of Fluid Science, Tohoku University, Sendai, 980-8579, Japan
- Mechanical Engineering Division, Tohoku University, Sendai, 980-8579, Japan
| | - Akihiro Hayakawa
- Institute of Fluid Science, Tohoku University, Sendai, 980-8579, Japan
| | - Yuka Iga
- Institute of Fluid Science, Tohoku University, Sendai, 980-8579, Japan
| |
Collapse
|
34
|
van Mersbergen M, Marchetta J, Foti D, Pillow E, Dasgupta A, Cain C, Morvant S. Comparison of Aerosol Emissions during Specific Speech Tasks. J Voice 2023:S0892-1997(23)00156-X. [PMID: 37423794 DOI: 10.1016/j.jvoice.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES/HYPOTHESIS Recent investigations into the behavior of aerosolized emissions from the oral cavity have shown that particulate emissions do indeed occur during speech. To date, there is little information about the relative contribution of different speech sounds in producing particle emissions in a free field. This study compares airborne aerosol generation in participants producing isolated speech sounds: fricative consonants, plosive consonants, and vowel sounds. STUDY DESIGN Prospective, reversal experimental design, where each participant served as their own control and all participants were exposed to all stimuli. METHODS While participants produced isolated speech tasks, a planar beam of laser light, a high-speed camera, and image software calculated the number of particulates detected over time. This study compared airborne aerosols emitted by human participants at a distance of 2.54 cm between the laser sheet and the mouth. RESULTS Statistically significant increases in particulate count over ambient dust distribution for all speech sounds. When collapsed across loudness levels, emitted particles in vowel sounds were statistically greater than consonants, suggesting that mouth opening, as opposed to the place of vocal tract constriction or manner of sound production, might also be influential in the degree to which particulates become aerosolized during speech. CONCLUSIONS The results of this research will inform boundary conditions for computational models of aerosolized particulates during speech.
Collapse
Affiliation(s)
- Miriam van Mersbergen
- School of Communication Sciences and Disorders, University of Memphis, Memphis, Tennessee; Department of Otolaryngology, Head and Neck Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee; Institute for Intelligent Systems, University of Memphis, Tennessee.
| | - Jeffrey Marchetta
- Department of Mechanical Engineering, University of Memphis, Memphis, Tennessee
| | - Daniel Foti
- Department of Mechanical Engineering, University of Memphis, Memphis, Tennessee
| | - Eric Pillow
- Department of Mechanical Engineering, University of Memphis, Memphis, Tennessee
| | - Apratim Dasgupta
- Department of Mechanical Engineering, University of Memphis, Memphis, Tennessee
| | - Chandler Cain
- Department of Mechanical Engineering, University of Memphis, Memphis, Tennessee
| | - Stephen Morvant
- Department of Otolaryngology, Head and Neck Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee
| |
Collapse
|
35
|
Luo M, Liu S, Zhu L, Wang F, Wu K, He H, Qi X, Pang Z, Dong X, Gong Z, Yu M. Analysis of a super-transmission of SARS-CoV-2 omicron variant BA.5.2 in the outdoor night market. Front Public Health 2023; 11:1153303. [PMID: 37469696 PMCID: PMC10352652 DOI: 10.3389/fpubh.2023.1153303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction The COVID-19 pandemic continues to ravage the world, and mutations of the SARS-CoV-2 continues. The new strain has become more transmissible. The role of aerosol transmission in the pandemic deserves great attention. Methods In this observational study, we collected data from market customers and stallholders who had been exposed to the virus in the Qingkou night market on July 31 and were subsequently infected. We analyzed the possible infection zones of secondary cases and aerosol suspension time in ambient air. We described and analyzed the characteristics of the secondary cases and the transmission routes for customers. Results The point source outbreak of COVID-19 in Qingkou night market contained a cluster of 131 secondary cases. In a less-enclosed place like the Qingkou night market, aerosols with BA.5.2 strain released by patients could suspend in ambient air up to 1 h 39 min and still be contagious. Conclusion Aerosols with viruses can spread over a relatively long distance and stay in ambient air for a long time in a less enclosed space, but shorter than that under experimental conditions. Therefore, the aerosol suspension time must be considered when identifying and tracing close contact in outbreak investigations.
Collapse
Affiliation(s)
- Mingyu Luo
- Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shelan Liu
- Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Liebo Zhu
- Yiwu County-level Center for Disease Control and Prevention, Jinhua, China
| | - Fengying Wang
- Jinhua Prefecture-level Center for Disease Control and Prevention, Jinhua, China
| | - Kunyang Wu
- Department of TB Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hanqing He
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaohua Qi
- Department of Public Health Emergency Response, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhifeng Pang
- Jinhua Prefecture-level Center for Disease Control and Prevention, Jinhua, China
| | - Xuanjun Dong
- Yiwu County-level Center for Disease Control and Prevention, Jinhua, China
| | - Zhenyu Gong
- Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
36
|
Mendez S, Garcia W, Nicolas A. From Microscopic Droplets to Macroscopic Crowds: Crossing the Scales in Models of Short-Range Respiratory Disease Transmission, with Application to COVID-19. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205255. [PMID: 37132608 PMCID: PMC10323631 DOI: 10.1002/advs.202205255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/14/2023] [Indexed: 05/04/2023]
Abstract
Short-range exposure to airborne virus-laden respiratory droplets is an effective transmission route of respiratory diseases, as exemplified by Coronavirus Disease 2019 (COVID-19). In order to assess the risks associated with this pathway in daily-life settings involving tens to hundreds of individuals, the chasm needs to be bridged between fluid dynamical simulations and population-scale epidemiological models. This is achieved by simulating droplet trajectories at the microscale in numerous ambient flows, coarse-graining their results into spatio-temporal maps of viral concentration around the emitter, and coupling these maps to field-data about pedestrian crowds in different scenarios (streets, train stations, markets, queues, and street cafés). At the individual scale, the results highlight the paramount importance of the velocity of the ambient air flow relative to the emitter's motion. This aerodynamic effect, which disperses infectious aerosols, prevails over all other environmental variables. At the crowd's scale, the method yields a ranking of the scenarios by the risks of new infections, dominated by the street cafés and then the outdoor market. While the effect of light winds on the qualitative ranking is fairly marginal, even the most modest air flows dramatically lower the quantitative rates of new infections.
Collapse
Affiliation(s)
- Simon Mendez
- IMAGUniv. MontpellierCNRSMontpellierF‐34095France
| | - Willy Garcia
- Institut Lumière Matière, CNRSUniv. Claude Bernard Lyon 1VilleurbanneF‐69622France
| | - Alexandre Nicolas
- Institut Lumière Matière, CNRSUniv. Claude Bernard Lyon 1VilleurbanneF‐69622France
| |
Collapse
|
37
|
Alves M, Asbell P, Dogru M, Giannaccare G, Grau A, Gregory D, Kim DH, Marini MC, Ngo W, Nowinska A, Saldanha IJ, Villani E, Wakamatsu TH, Yu M, Stapleton F. TFOS Lifestyle Report: Impact of environmental conditions on the ocular surface. Ocul Surf 2023; 29:1-52. [PMID: 37062427 DOI: 10.1016/j.jtos.2023.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Environmental risk factors that have an impact on the ocular surface were reviewed and associations with age and sex, race/ethnicity, geographical area, seasonality, prevalence and possible interactions between risk factors are reviewed. Environmental factors can be (a) climate-related: temperature, humidity, wind speed, altitude, dew point, ultraviolet light, and allergen or (b) outdoor and indoor pollution: gases, particulate matter, and other sources of airborne pollutants. Temperature affects ocular surface homeostasis directly and indirectly, precipitating ocular surface diseases and/or symptoms, including trachoma. Humidity is negatively associated with dry eye disease. There is little data on wind speed and dewpoint. High altitude and ultraviolet light exposure are associated with pterygium, ocular surface degenerations and neoplastic disease. Pollution is associated with dry eye disease and conjunctivitis. Primary Sjögren syndrome is associated with exposure to chemical solvents. Living within a potential zone of active volcanic eruption is associated with eye irritation. Indoor pollution, "sick" building or house can also be associated with eye irritation. Most ocular surface conditions are multifactorial, and several environmental factors may contribute to specific diseases. A systematic review was conducted to answer the following research question: "What are the associations between outdoor environment pollution and signs or symptoms of dry eye disease in humans?" Dry eye disease is associated with air pollution (from NO2) and soil pollution (from chromium), but not from air pollution from CO or PM10. Future research should adequately account for confounders, follow up over time, and report results separately for ocular surface findings, including signs and symptoms.
Collapse
Affiliation(s)
- Monica Alves
- Department of Ophthalmology and Otorhinolaryngology, University of Campinas Campinas, Brazil.
| | - Penny Asbell
- Department of Bioengineering, University of Memphis, Memphis, USA
| | - Murat Dogru
- School of Optometry and Vision Science, UNSW, Sydney, NSW, Australia
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Cantanzaro, Italy
| | - Arturo Grau
- Department of Ophthalmology, Pontifical Catholic University of Chile, Santiago, Chile
| | - Darren Gregory
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, USA
| | - Dong Hyun Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | | | - William Ngo
- School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Anna Nowinska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Ian J Saldanha
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Edoardo Villani
- Department of Clinical Sciences and Community Health, University of Milan, Eye Clinic, San Giuseppe Hospital, IRCCS Multimedica, Milan, Italy
| | - Tais Hitomi Wakamatsu
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, Brazil
| | - Mitasha Yu
- Sensory Functions, Disability and Rehabilitation Unit, World Health Organization, Geneva, Switzerland
| | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW, Sydney, NSW, Australia
| |
Collapse
|
38
|
Howard NS, Alrefaie A, Mejia NA, Ugbeye T, Schmidt BE. Characterizing Aerosol Generating Procedures With Background Oriented Schlieren. J Biomech Eng 2023; 145:074502. [PMID: 36961437 PMCID: PMC10158973 DOI: 10.1115/1.4062191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
The potential for characterizing aerosol generating procedures (AGPs) using background oriented schlieren (BOS) flow visualization was investigated in two clinical situations. A human-scale BOS system was used on a manikin simulating jet ventilation and extubation. A novel approach to representation of the BOS images using line integral convolution allows direct evaluation of both magnitude and direction of the refractive index gradient field. Plumes issuing from the manikin's mouth were clearly visualized and characterized in both experiments, and it is recommended that BOS be adapted into a clinical tool for risk evaluation in clinical environments.
Collapse
Affiliation(s)
- N. Scott Howard
- School of Medicine, Case Western Reserve University Otolaryngology, Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Abdulaziz Alrefaie
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University Cleveland, Cleveland, OH 44106
| | - Nicholas A. Mejia
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University Cleveland, Cleveland, OH 44106
| | - Tosan Ugbeye
- S.C.O.P.E. Medical Cleveland, Cleveland, OH 44106
| | - Bryan E. Schmidt
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University Cleveland, Cleveland, OH 44106
| |
Collapse
|
39
|
Shawn ST, Harshman SW, Davidson CN, Lee JH, Jung AE, Parker A, Hawkins MA, Stamps BW, Pitsch RL, Martin JA. Sterilization and reuse of masks for a standardized exhaled breath collection device by autoclaving. J Breath Res 2023; 17:036006. [PMID: 37352843 DOI: 10.1088/1752-7163/ace127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/23/2023] [Indexed: 06/25/2023]
Abstract
Exhaled breath research has been hindered by a lack of standardization in collection and analysis methodologies. Recently, the Respiration Collector forIn VitroAnalysis (ReCIVA) sampling device has illustrated the potential to provide a consistent and convenient method for exhaled breath collection onto adsorbent media. However, the significant costs, compared to exhaled breath bags, associated with the standardized collector is believed to be the reason for limited widespread use by researchers in the exhaled breath field. For example, in addition to the sampling hardware, a single-use disposable silicon mask affixed with a filter is required for each exhaled breath collection. To reduce the financial burden, streamline device upkeep, reduce waste material, and ease the logistical burden associated with the single use masks, it is hypothesized that the consumable masks and filters could be sterilized by autoclaving for reuse. The masks were contaminated, autoclaved, and then tested for any surviving pathogens with spore strip standards and by measuring the optical density of cultures. The compound background collected when using the ReCIVA with new masks was compared to that collected with repeatedly autoclaved masks via thermal desorption gas chromatography mass spectrometry (TD-GC-MS). The capacity to block particulate matter of new filters was tested against that of autoclaved filters by introducing an aerosol and comparing pre-filter and post-filter particle counts. Finally, breath samplings were conducted with new masks and autoclaved masks to test for changes in measurements by TD-GC-MS of exogenous and endogenous compounds. The data illustrate the autoclave cycle sterilizes masks spiked with saliva to background levels (p= 0.2527). The results indicate that background levels of siloxane compounds are increased as masks are repetitively autoclaved. The data show that mask filters have significant breakthrough of 1μm particles after five repetitive autoclaving cycles compared to new filters (p= 0.0219). Finally, exhaled breath results utilizing a peppermint ingestion protocol indicate two compounds associated with peppermint, menthone and 1-Methyl-4-(1-methylethyl)-cyclohexanol, and an endogenous exhaled breath compound, isoprene, show no significant difference if sampled with a new mask or a mask autoclaved five times (p> 0.1063). Collectively, the data indicate that ReCIVA masks and filters can be sterilized via autoclave and reused. The results suggest ReCIVA mask and filter reuse should be limited to three times to limit potentially problematic background contaminants and filter dysfunction.
Collapse
Affiliation(s)
- Samuel T Shawn
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Sean W Harshman
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Christina N Davidson
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Jae Hwan Lee
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Anne E Jung
- UES Inc., 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Ariel Parker
- UES Inc., 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - M Aaron Hawkins
- UES Inc., 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Blake W Stamps
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2977 Hobson Way, Area B, Building 653, Wright- Patterson AFB, OH 45433, United States of America
| | - Rhonda L Pitsch
- Air Force Research Laboratory, 711th Human Performance Wing/RHBBA, 2510 Fifth Street, Area B, Building 840, Wright- Patterson AFB, OH 45433, United States of America
| | - Jennifer A Martin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 2977 Hobson Way, Area B, Building 653, Wright- Patterson AFB, OH 45433, United States of America
| |
Collapse
|
40
|
Nguyen HV, Tiemersma E, Nguyen NV, Nguyen HB, Cobelens F. Disease Transmission by Patients With Subclinical Tuberculosis. Clin Infect Dis 2023; 76:2000-2006. [PMID: 36660850 PMCID: PMC10249982 DOI: 10.1093/cid/ciad027] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Subclinical tuberculosis has been increasingly recognized as a separate state in the spectrum of the disease. However, evidence on the transmissibility of subclinical tuberculosis is still inconclusive. METHODS We re-analyzed the data from the 2007 combined tuberculosis prevalence and tuberculin surveys in Vietnam. Poisson regression with robust standard errors was conducted to assess the effect of clinical presentation of individuals with tuberculosis in the household on tuberculin skin test (TST) positivity among children aged 6-14 years who participated in the tuberculin survey, adjusting for child's age, smear status of the index patient, and other covariates. RESULTS In the multivariate analysis, we found significantly increased risks for TST positivity in children living with patients with clinical, smear-positive tuberculosis, compared with those living with individuals without tuberculosis (adjusted risk ratio [aRR]: 3.04; 95% confidence interval [CI]: 2.00-4.63) and with those living with patients with subclinical tuberculosis, adjusting for index smear status (aRR: 2.26; 95% CI: 1.03-4.96). Among children aged 6-10 years, those living with patients with clinical, smear-positive tuberculosis and those living with patients with subclinical, smear-positive tuberculosis had similarly increased risks of TST positivity compared with those living with individuals without tuberculosis (aRRs [95% CI] of 3.56 [1.91-6.62] and 3.11 [1.44-6.72], respectively). CONCLUSIONS Our findings support the hypothesis that smear-positive subclinical tuberculosis contributes to Mycobacterium tuberculosis transmission. To eliminate tuberculosis in 2035, control strategies need to address subclinical presentations of the disease.
Collapse
Affiliation(s)
- Hai Viet Nguyen
- Vietnam National Tuberculosis Program, Ha Noi, Vietnam
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | | | | | - Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Diarra M, Ndiaye R, Barry A, Talla C, Diagne MM, Dia N, Faye J, Sarr FD, Gaye A, Diallo A, Cisse M, Dieng I, Fall G, Tall A, Faye O, Faye O, Sall AA, Loucoubar C. Analysis of contact tracing data showed contribution of asymptomatic and non-severe infections to the maintenance of SARS-CoV-2 transmission in Senegal. Sci Rep 2023; 13:9121. [PMID: 37277417 DOI: 10.1038/s41598-023-35622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023] Open
Abstract
During the COVID-19 pandemic in Senegal, contact tracing was done to identify transmission clusters, their analysis allowed to understand their dynamics and evolution. In this study, we used information from the surveillance data and phone interviews to construct, represent and analyze COVID-19 transmission clusters from March 2, 2020, to May 31, 2021. In total, 114,040 samples were tested and 2153 transmission clusters identified. A maximum of 7 generations of secondary infections were noted. Clusters had an average of 29.58 members and 7.63 infected among them; their average duration was 27.95 days. Most of the clusters (77.3%) are concentrated in Dakar, capital city of Senegal. The 29 cases identified as super-spreaders, i.e., the indexes that had the most positive contacts, showed few symptoms or were asymptomatic. Deepest transmission clusters are those with the highest percentage of asymptomatic members. The correlation between proportion of asymptomatic and degree of transmission clusters showed that asymptomatic strongly contributed to the continuity of transmission within clusters. During this pandemic, all the efforts towards epidemiological investigations, active case-contact detection, allowed to identify in a short delay growing clusters and help response teams to mitigate the spread of the disease.
Collapse
Affiliation(s)
- Maryam Diarra
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ramatoulaye Ndiaye
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, BP 220, Dakar, Senegal
| | - Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, BP 220, Dakar, Senegal
| | - Cheikh Talla
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, BP 220, Dakar, Senegal
| | | | - Ndongo Dia
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Joseph Faye
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, BP 220, Dakar, Senegal
| | - Fatoumata Diene Sarr
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, BP 220, Dakar, Senegal
| | - Aboubacry Gaye
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, BP 220, Dakar, Senegal
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mamadou Cisse
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, BP 220, Dakar, Senegal
| | - Idrissa Dieng
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Adama Tall
- Scientific Direction, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou A Sall
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, BP 220, Dakar, Senegal.
| |
Collapse
|
42
|
Kundu D, Panchagnula MV. Asymmetric lung increases particle filtration by deposition. Sci Rep 2023; 13:9040. [PMID: 37270569 DOI: 10.1038/s41598-023-36176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Human lung is known to be an asymmetric dichotomously branched network of bronchioles. Existing literature on the relation between anatomy and air-flow physics in the tracheobronchial trees has discussed the results of asymmetry. We discuss a secondary (but an important) lung function to seek asymmetry: to protect the acinus from a high pathogen load. We build morphometric parameter-based mathematical models of realistic bronchial trees to explore the structure-function relationship. We observe that maximum surface area for gas exchange, minimum resistance and minimum volume are obtained near the symmetry condition. In contrast, we show that deposition of inhaled foreign particles in the non-terminal airways is enhanced by asymmetry. We show from our model, that the optimal value of asymmetry for maximum particle filtration is within 10% of the experimentally measured value in human lungs. This structural trait of the lung aids in self-defence of the host against pathogen laden aerosols. We explain how natural asymmetric design of typical human lungs makes a sacrifice away from gas exchange optimality to gain this protection. In a typical human lung, when compared to most optimal condition (which is associated with symmetric branching), the fluidic resistance is 14% greater, the gas exchange surface area is about 11% lower, the lung volume is about 13% greater to gain an increase of 4.4% protection against foreign particles. This afforded protection is also robust to minor variations in branching ratio or variation in ventilation, which are both crucial to survival.
Collapse
Affiliation(s)
- Debjit Kundu
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Mahesh V Panchagnula
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
43
|
Moschovis PP, Lombay J, Rooney J, Schenkel SR, Singh D, Rezaei SJ, Salo N, Gong A, Yonker LM, Shah J, Hayden D, Hibberd PL, Demokritou P, Kinane TB. The effect of activity and face masks on exhaled particles in children. Pediatr Investig 2023; 7:75-85. [PMID: 37324601 PMCID: PMC10262878 DOI: 10.1002/ped4.12376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/29/2023] [Indexed: 06/17/2023] Open
Abstract
Importance Despite the high burden of respiratory infections among children, the production of exhaled particles during common activities and the efficacy of face masks in children have not been sufficiently studied. Objective To determine the effect of type of activity and mask usage on exhaled particle production in children. Methods Healthy children were asked to perform activities that ranged in intensity (breathing quietly, speaking, singing, coughing, and sneezing) while wearing no mask, a cloth mask, or a surgical mask. The concentration and size of exhaled particles were assessed during each activity. Results Twenty-three children were enrolled in the study. Average exhaled particle concentration increased by intensity of activity, with the lowest particle concentration during tidal breathing (1.285 particles/cm3 [95% CI 0.943, 1.627]) and highest particle concentration during sneezing (5.183 particles/cm3 [95% CI 1.911, 8.455]). High-intensity activities were associated with an increase primarily in the respirable size (≤ 5 µm) particle fraction. Surgical and cloth masks were associated with lower average particle concentration compared to no mask (P = 0.026 for sneezing). Surgical masks outperformed cloth masks across all activities, especially within the respirable size fraction. In a multivariable linear regression model, we observed significant effect modification of activity by age and by mask type. Interpretation Similar to adults, children produce exhaled particles that vary in size and concentration across a range of activities. Production of respirable size fraction particles (≤ 5 µm), the dominant mode of transmission of many respiratory viruses, increases significantly with coughing and sneezing and is most effectively reduced by wearing surgical face masks.
Collapse
Affiliation(s)
- Peter P. Moschovis
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jesiel Lombay
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer Rooney
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sara R. Schenkel
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Dilpreet Singh
- Department of Environmental HealthHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Mechanical and Aerospace EngineeringRutgers University School of Public HealthNew BrunswickNew JerseyUSA
| | - Shawheen J. Rezaei
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Nora Salo
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Amanda Gong
- David Geffen School of Medicinethe University of California Los AngelesLos AngelesCaliforniaUSA
| | - Lael M. Yonker
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jhill Shah
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Douglas Hayden
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Patricia L. Hibberd
- Department of Global HealthBoston University School of Public HealthBostonMassachusettsUSA
| | - Philip Demokritou
- Department of Environmental HealthHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Mechanical and Aerospace EngineeringRutgers University School of Public HealthNew BrunswickNew JerseyUSA
| | - T. Bernard Kinane
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
44
|
Saccente-Kennedy B, Szczepanska A, Harrison J, Archer J, Watson NA, Orton CM, Costello D, Calder JD, Shah PL, Reid JP, Bzdek BR, Epstein R. Mitigation of Respirable Aerosol Particles from Speech and Language Therapy Exercises. J Voice 2023:S0892-1997(23)00124-8. [PMID: 37248120 DOI: 10.1016/j.jvoice.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Phonation and speech are known sources of respirable aerosol in humans. Voice assessment and treatment manipulate all the subsystems of voice production, and previous work (Saccente-Kennedy et al., 2022) has demonstrated such activities can generate >10 times more aerosol than conversational speech and 30 times more aerosol than breathing. Aspects of voice therapy may therefore be considered aerosol generating procedures and pose a greater risk of potential airborne pathogen (eg, SARS-CoV-2) transmission than typical speech. Effective mitigation measures may be required to ensure safe service delivery for therapist and patient. OBJECTIVE To assess the effectiveness of mitigation measures in reducing detectable respirable aerosol produced by voice assessment/therapy. METHODS We recruited 15 healthy participants (8 cis-males, 7 cis-females), 9 of whom were voice-specialist speech-language pathologists. Optical Particle Sizers (OPS) (Model 3330, TSI) were used to measure the number concentration of respirable aerosol particles (0.3 µm-10 µm) generated during a selection of voice assessment/therapy tasks, both with and without mitigation measures in place. Measurements were performed in a laminar flow operating theatre, with near-zero background aerosol concentration, allowing us to quantify the number concentration of respiratory aerosol particles produced. Mitigation measures included the wearing of Type IIR fluid resistant surgical masks, wrapping the same masks around the end of straws, and the use of heat and moisture exchange microbiological filters (HMEFs) for a water resistance therapy (WRT) task. RESULTS All unmitigated therapy tasks produced more aerosol than unmasked breathing or speaking. Mitigation strategies reduced detectable aerosol from all tasks to a level significantly below, or no different to, that of unmasked breathing. Pooled filtration efficiencies determined that Type IIR surgical masks reduced detectable aerosol by 90%. Surgical masks wrapped around straws reduced detectable aerosol by 96%. HMEF filters were 100% effective in mitigating the aerosol from WRT, the exercise that generated more aerosol than any other task in the unmitigated condition. CONCLUSIONS Voice therapy and assessment causes the release of significant quantities of respirable aerosol. However, simple mitigation strategies can reduce emitted aerosol concentrations to levels comparable to unmasked breathing.
Collapse
Affiliation(s)
- Brian Saccente-Kennedy
- Department of Speech and Language Therapy (ENT), Royal National Ear, Nose and Throat and Eastman Dental Hospitals, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Alicja Szczepanska
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Joshua Harrison
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Justice Archer
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Natalie A Watson
- Department of Ear, Nose and Throat Surgery, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Christopher M Orton
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom; Department of Respiratory Medicine, Chelsea and Westminster Hospital, London, United Kingdom; National Heart and Lung Institute, Guy Scadding Building, Imperial College London, London, United Kingdom
| | - Declan Costello
- Ear, Nose and Throat Department, Wexham Park Hospital, United Kingdom
| | - James D Calder
- Department of Bioengineering, Imperial College London, United Kingdom; Fortius Clinic, Fitzhardinge St, London, United Kingdom
| | - Pallav L Shah
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom; Department of Respiratory Medicine, Chelsea and Westminster Hospital, London, United Kingdom; National Heart and Lung Institute, Guy Scadding Building, Imperial College London, London, United Kingdom
| | - Jonathan P Reid
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Bryan R Bzdek
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Ruth Epstein
- Department of Speech and Language Therapy (ENT), Royal National Ear, Nose and Throat and Eastman Dental Hospitals, University College London Hospitals NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
45
|
Han SY, Yun G, Cha HM, Lee MK, Lee H, Kang EK, Hong SP, Teahan KA, Park M, Hwang H, Lee SS, Kim M, Choi IS. A Natural Virucidal and Microbicidal Spray Based on Polyphenol-Iron Sols. ACS APPLIED BIO MATERIALS 2023; 6:1981-1991. [PMID: 37083357 PMCID: PMC10152399 DOI: 10.1021/acsabm.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023]
Abstract
Numerous disinfection methods have been developed to reduce the transmission of infectious diseases that threaten human health. However, it still remains elusively challenging to develop eco-friendly and cost-effective methods that deactivate a wide range of pathogens, from viruses to bacteria and fungi, without doing any harm to humans or the environment. Herein we report a natural spraying protocol, based on a water-dispersible supramolecular sol of nature-derived tannic acid (TA) and Fe3+, which is easy-to-use and low-cost. Our formulation effectively deactivates viruses (influenza A viruses, SARS-CoV-2, and human rhinovirus) as well as suppressing the growth and spread of pathogenic bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Acinetobacter baumannii) and fungi (Pleurotus ostreatus and Trichophyton rubrum). Its versatile applicability in a real-life setting is also demonstrated against microorganisms present on the surfaces of common household items (e.g., air filter membranes, disposable face masks, kitchen sinks, mobile phones, refrigerators, and toilet seats).
Collapse
Affiliation(s)
| | - Gyeongwon Yun
- Department of Chemistry,
KAIST, Daejeon 34141, Korea
| | - Hyeon-Min Cha
- Infectious Diseases Therapeutic Research Center,
KRICT, Daejeon 34114, Korea
- Graduate School of New Drug Discovery and Development,
Chungnam National University, Daejeon 34134,
Korea
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center,
KRICT, Daejeon 34114, Korea
| | - Hojae Lee
- Department of Chemistry, Hallym
University, Chuncheon 24252, Korea
| | | | - Seok-Pyo Hong
- Department of Chemistry,
KAIST, Daejeon 34141, Korea
| | - Kirsty A. Teahan
- School of Chemistry and Institute for Life Sciences,
Highfield Campus, University of Southampton, Southampton SO17
1BJ, United Kingdom
| | - Minjeong Park
- Hansol RootOne, Inc., 165
Myeoncheon-ro, Dangjin 31803, Korea
| | - Hansol Hwang
- Hansol RootOne, Inc., 165
Myeoncheon-ro, Dangjin 31803, Korea
| | - Seung Seo Lee
- School of Chemistry and Institute for Life Sciences,
Highfield Campus, University of Southampton, Southampton SO17
1BJ, United Kingdom
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center,
KRICT, Daejeon 34114, Korea
- Graduate School of New Drug Discovery and Development,
Chungnam National University, Daejeon 34134,
Korea
| | | |
Collapse
|
46
|
Everett C, Darquenne C, Niles R, Seifert M, Tumminello PR, Slade JH. Aerosols, airflow, and more: examining the interaction of speech and the physical environment. Front Psychol 2023; 14:1184054. [PMID: 37255523 PMCID: PMC10225543 DOI: 10.3389/fpsyg.2023.1184054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
We describe ongoing efforts to better understand the interaction of spoken languages and their physical environments. We begin by briefly surveying research suggesting that languages evolve in ways that are influenced by the physical characteristics of their environments, however the primary focus is on the converse issue: how speech affects the physical environment. We discuss the speech-based production of airflow and aerosol particles that are buoyant in ambient air, based on some of the results in the literature. Most critically, we demonstrate a novel method used to capture aerosol, airflow, and acoustic data simultaneously. This method captures airflow data via a pneumotachograph and aerosol data via an electrical particle impactor. The data are collected underneath a laminar flow hood while participants breathe pure air, thereby eliminating background aerosol particles and isolating those produced during speech. Given the capabilities of the electrical particle impactor, which has not previously been used to analyze speech-based aerosols, the method allows for the detection of aerosol particles at temporal and physical resolutions exceeding those evident in the literature, even enabling the isolation of the role of individual sound types in the production of aerosols. The aerosols detected via this method range in size from 70 nanometers to 10 micrometers in diameter. Such aerosol particles are capable of hosting airborne pathogens. We discuss how this approach could ultimately yield data that are relevant to airborne disease transmission and offer preliminary results that illustrate such relevance. The method described can help uncover the actual articulatory gestures that generate aerosol emissions, as exemplified here through a discussion focused on plosive aspiration and vocal cord vibration. The results we describe illustrate in new ways the unseen and unheard ways in which spoken languages interact with their physical environments.
Collapse
Affiliation(s)
- Caleb Everett
- Departments of Anthropology and Psychology, University of Miami, Coral Gables, FL, United States
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Renee Niles
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Marva Seifert
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Paul R. Tumminello
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan H. Slade
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
47
|
Butler MJ, Sloof D, Peters C, Conway Morris A, Gouliouris T, Thaxter R, Keevil VL, Beggs CB. Impact of supplementary air filtration on aerosols and particulate matter in a UK hospital ward: a case study. J Hosp Infect 2023; 135:81-89. [PMID: 36842537 PMCID: PMC9957342 DOI: 10.1016/j.jhin.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Aerosol spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a major problem in hospitals, leading to an increase in supplementary high-efficiency particulate air filtration aimed at reducing nosocomial transmission. This article reports a natural experiment that occurred when an air cleaning unit (ACU) on a medicine for older people ward was switched off accidentally while being commissioned. AIM To assess aerosol transport within the ward and determine whether the ACU reduced airborne particulate matter (PM) levels. METHODS An ACU was placed in a ward comprising two six-bedded bays plus three single-bed isolation rooms which had previously experienced several outbreaks of coronavirus disease 2019. During commissioning, real-time measurements of key indoor air quality parameters (PM1-10, CO2, temperature and humidity) were collected from multiple sensors over 2 days. During this period, the ACU was switched off accidentally for approximately 7 h, allowing the impact of the intervention on PM to be assessed. FINDINGS The ACU reduced the PM counts considerably (e.g. PM1 65.5-78.2%) throughout the ward (P<0.001 all sizes), with positive correlation found for all PM fractions and CO2 (r=0.343-0.817; all P<0.001). PM counts rose/fell simultaneously when the ACU was off, with correlation of PM signals from multiple locations (e.g. r=0.343-0.868; all P<0.001) for particulates <1 μm). CONCLUSION Aerosols migrated rapidly between the various ward subcompartments, suggesting that social distancing alone cannot prevent nosocomial transmission of SARS-CoV-2 as this fails to mitigate longer-range (>2 m) transmission. The ACU reduced PM levels considerably throughout the ward space, indicating its potential as an effective intervention to reduce the risk posed by infectious airborne particles.
Collapse
Affiliation(s)
- M J Butler
- Department of Medicine for the Elderly, Cambridge University Hospitals, Cambridge, UK
| | - D Sloof
- AirPurity UK, Ltd, Cambridge, UK
| | - C Peters
- Department of Microbiology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - A Conway Morris
- John V Farman Intensive Care Unit, Cambridge University Hospitals, Cambridge, UK; Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - T Gouliouris
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - R Thaxter
- Infection Prevention and Control, Cambridge University Hospitals, Cambridge, UK
| | - V L Keevil
- Department of Medicine for the Elderly, Cambridge University Hospitals, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - C B Beggs
- Department of Medicine for the Elderly, Cambridge University Hospitals, Cambridge, UK; Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
| |
Collapse
|
48
|
Kurogi K, Ikegami K, Ando H, Hino A, Tsuji M, Igarashi Y, Nagata T, Muramatsu K, Fujino Y. Evaluation of workplace infection prevention and control measures for COVID-19: A prospective cohort study in Japan. Heliyon 2023; 9:e15996. [PMID: 37163163 PMCID: PMC10156382 DOI: 10.1016/j.heliyon.2023.e15996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
Background Encouraging the implementation of infection prevention and control (IPC) measures has been necessary to prevent workplace infections caused by the coronavirus disease 2019 (COVID-19). However, the effectiveness of these measures in reducing infections has not been thoroughly evaluated. We evaluated employees' COVID-19 infection rates in relation to the implementation of IPC measures at their workplaces to identify effective workplace measures. Methods This prospective cohort study was conducted between December 2020 and December 2021 using Internet-based self-assessment questionnaires, with 11,982 participants included from the baseline. To estimate whether implementing workplace IPC measures was associated with COVID-19 incidence rates among participants, we estimated multivariate-adjusted relative risk (RR) using a log-binomial model. Results After adjusting for sex, age, education, household members, occupation-related factors, and personal preventive behaviors, requesting ill employees to refrain from going to work showed significantly lower COVID-19 infection rates than not requesting it (RR: 0.56, 95% CI: 0.34-0.91, p = 0.019). Conclusions Employees restricted from reporting to work when ill had significantly lower COVID-19 infection rates than those who did not follow this measure. The results indicated that not coming to work when ill was effective in reducing COVID-19 infections at the workplace. We suggest that companies proactively adopt this policy and encourage their employees to comply with it.
Collapse
Affiliation(s)
- Kazushirou Kurogi
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Kazunori Ikegami
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Hajime Ando
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Ayako Hino
- Department of Mental Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Mayumi Tsuji
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Yu Igarashi
- Disaster Occupational Health Center, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Tomohisa Nagata
- Department of Occupational Health Practice and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Keiji Muramatsu
- Department of Public Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| |
Collapse
|
49
|
Dolev E, Eli I, Mashkit E, Grinberg N, Emodi-Perlman A. Fluorescent Marker as a Tool to Improve Strategies to Control Contaminated Surfaces and Decrease Danger of Cross-Contamination in Dental Clinics, during and beyond the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5229. [PMID: 36982137 PMCID: PMC10049276 DOI: 10.3390/ijerph20065229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The COVID-19 pandemic posed an increased threat to dental personnel and patients. Close encounters with patients' breath and saliva and the use of intraoral rotating instruments which disperse microscopic airborne particles both increase the possibility of environmental infection. In this study, fluorescent marker (FM) was used to assess and enhance surface cleanliness in the dental clinics and public areas of a major dental school. Initially, 574 surfaces in various areas of a dental school were marked with FM for 3 consecutive months to monitor the surface cleanliness. The initial evaluation results were visually presented to both students and para-dental and cleaning personnel during a designated educational session, and were used to stress the importance of preventing cross-contamination. Following educational intervention, 662 surfaces were re-examined for an additional 3 months, using the same method. A significant improvement in the surfaces' cleanliness (ANOVA, F(1) = 10.89, p < 0.005) was observed post-intervention. The results were more prominent in students' clinics, which were the students' cleaning responsibility. The results show that fluorescent markers can serve as an educational tool to improve strategies to control contaminated surfaces in large clinics, such as dental schools. Their use can substantially decrease the hazard of cross-contamination during the pandemic and beyond.
Collapse
|
50
|
Wang Y, Wei J, Gao CX, Jin T, Liu L. Tracing the origin of large respiratory droplets by their deposition characteristics inside the respiratory tract during speech. BUILDING SIMULATION 2023; 16:781-794. [PMID: 37101943 PMCID: PMC10009356 DOI: 10.1007/s12273-022-0982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 05/28/2023]
Abstract
Origin of differently sized respiratory droplets is fundamental for clarifying their viral loads and the sequential transmission mechanism of SARS-CoV-2 in indoor environments. Transient talking activities characterized by low (0.2 L/s), medium (0.9 L/s), and high (1.6 L/s) airflow rates of monosyllabic and successive syllabic vocalizations were investigated by computational fluid dynamics (CFD) simulations based on a real human airway model. SST k-ω model was chosen to predict the airflow field, and the discrete phase model (DPM) was used to calculate the trajectories of droplets within the respiratory tract. The results showed that flow field in the respiratory tract during speech is characterized by a significant laryngeal jet, and bronchi, larynx, and pharynx-larynx junction were main deposition sites for droplets released from the lower respiratory tract or around the vocal cords, and among which, over 90% of droplets over 5 µm released from vocal cords deposited at the larynx and pharynx-larynx junction. Generally, droplets' deposition fraction increased with their size, and the maximum size of droplets that were able to escape into external environment decreased with the airflow rate. This threshold size for droplets released from the vocal folds was 10-20 µm, while that for droplets released from the bronchi was 5-20 µm under various airflow rates. Besides, successive syllables pronounced at low airflow rates promoted the escape of small droplets, but do not significantly affect the droplet threshold diameter. This study indicates that droplets larger than 20 µm may entirely originate from the oral cavity, where viral loads are lower; it provides a reference for evaluating the relative importance of large-droplet spray and airborne transmission route of COVID-19 and other respiratory infections.
Collapse
Affiliation(s)
- Yihan Wang
- Institute of Refrigeration and Cryogenics, Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310000 China
| | - Jianjian Wei
- Institute of Refrigeration and Cryogenics, Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310000 China
| | - Caroline X. Gao
- Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004 Australia
| | - Tao Jin
- Institute of Refrigeration and Cryogenics, Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310000 China
| | - Li Liu
- Department of Building Science, Tsinghua University, Beijing, 100084 China
| |
Collapse
|