1
|
Baker SA, Karwa M, Lee JY, Riar S, Drumm BT, Sanders KM. Ca²⁺ signaling in myenteric interstitial cells of Cajal (ICC-MY) and their role as conditional pacemakers in the colon. Cell Calcium 2024; 125:102990. [PMID: 39755028 DOI: 10.1016/j.ceca.2024.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca2+ handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC. ICC-MY displayed stochastic, localized Ca2+ transients that seldom propagated between cells. Colonic ICC express ANO1 channels, so Ca2+ transients likely couple to activation of spontaneous transient inward currents (STICs) in these cells. The Ca2+ transients were due to Ca2+ release and blocked by cyclopiazonic acid (CPA), thapsigargin and caffeine, but unaffected by tetracaine. Antagonists of L- and T-type Ca2+ channels and reduction in extracellular Ca2+ had minimal effects on Ca2+ transients. We reasoned that STICs may not activate regenerative Ca2+ waves in ICC-MY because voltage-dependent Ca2+ conductances are largely inactivated at the relatively depolarized potentials of colonic muscles. We tested the effects of hyperpolarization with pinacidil, a KATP agonist. Ca2+ waves were initiated in some ICC-MY networks when muscles were hyperpolarized, and these events were blocked by a T-type Ca2+ channel antagonist, NNC 55-0396. Ca2+ waves activated by excitatory nerve stimulation were significantly enhanced by hyperpolarization. Our data suggest that colonic ICC-MY are conditional pacemaker cells that depend upon preparative hyperpolarization, produced physiologically by inputs from enteric inhibitory neurons and necessary for regenerative pacemaker activity.
Collapse
Affiliation(s)
- Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA.
| | - Manushri Karwa
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA
| | - Ji Yeon Lee
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA
| | - Sarah Riar
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, A91K584, Ireland
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA.
| |
Collapse
|
2
|
Ni Bhraonain EP, Turner JA, Hannigan KI, Sanders KM, Cobine CA. Immunohistochemical characterization of interstitial cells and their spatial relationship to motor neurons within the mouse esophagus. Cell Tissue Res 2024:10.1007/s00441-024-03929-z. [PMID: 39607495 DOI: 10.1007/s00441-024-03929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Interstitial cells of Cajal (ICC) and PDGFRα+ cells regulate smooth muscle motility in the gastrointestinal (GI) tract, yet their function in the esophagus remains unknown. The mouse esophagus has been described as primarily skeletal muscle; however, ICC have been identified in this region. This study characterizes the distribution of skeletal and smooth muscle cells (SMCs) and their spatial relationship to ICC, PDGFRα+ cells, and intramuscular motor neurons in the mouse esophagus. SMCs occupied approximately 30% of the distal esophagus, but their density declined in more proximal regions. Similarly, ANO1+ intramuscular ICC (ICC-IM) were distributed along the esophagus, with density decreasing proximally. While ICC-IM were closely associated with SMCs, they were also present in regions of skeletal muscle. Intramuscular, submucosal, and myenteric PDGFRα+ cells were densely distributed throughout the esophagus, yet only intramuscular PDGFRα+ cells in the lower esophageal sphincter (LES) and distal esophagus expressed SK3. ICC-IM and PDGFRα+ cells were closely associated with intramuscular nNOS+, VIP+, VAChT+, and TH+ neurons and GFAP+ cells resembling intramuscular enteric glia. These findings suggest that ICC-IM and PDGFRα+ cells may have roles in regulating esophageal motility due to their close proximity to each other and to skeletal muscle and SMCs, although further functional studies are needed to explore their role in this region. The mixed muscular composition and presence of interstitial cells in the mouse distal esophagus is anatomically similar to the transitional zone found in the human esophagus, and therefore, motility studies in the mouse may be translatable to humans.
Collapse
Affiliation(s)
- Emer P Ni Bhraonain
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Jack A Turner
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Karen I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA.
| |
Collapse
|
3
|
Gupta N, Baker SA, Sanders KM, Griffin CS, Sergeant GP, Hollywood MA, Thornbury KD, Drumm BT. Interstitial cell of Cajal-like cells (ICC-LC) exhibit dynamic spontaneous activity but are not functionally innervated in mouse urethra. Cell Calcium 2024; 123:102931. [PMID: 39068674 DOI: 10.1016/j.ceca.2024.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Urethral smooth muscle cells (USMC) contract to occlude the internal urethral sphincter during bladder filling. Interstitial cells also exist in urethral smooth muscles and are hypothesized to influence USMC behaviours and neural responses. These cells are similar to Kit+ interstitial cells of Cajal (ICC), which are gastrointestinal pacemakers and neuroeffectors. Isolated urethral ICC-like cells (ICC-LC) exhibit spontaneous intracellular Ca2+ signalling behaviours that suggest these cells may serve as pacemakers or neuromodulators similar to ICC in the gut, although observation and direct stimulation of ICC-LC within intact urethral tissues is lacking. We used mice with cell-specific expression of the Ca2+ indicator, GCaMP6f, driven off the endogenous promoter for Kit (Kit-GCaMP6f mice) to identify ICC-LC in situ within urethra muscles and to characterize spontaneous and nerve-evoked Ca2+ signalling. ICC-LC generated Ca2+ waves spontaneously that propagated on average 40.1 ± 0.7 μm, with varying amplitudes, durations, and spatial spread. These events originated from multiple firing sites in cells and the activity between sites was not coordinated. ICC-LC in urethra formed clusters but not interconnected networks. No evidence for entrainment of Ca2+ signalling between ICC-LC was obtained. Ca2+ events in ICC-LC were unaffected by nifedipine but were abolished by cyclopiazonic acid and decreased by an antagonist of Orai Ca2+ channels (GSK-7975A). Phenylephrine increased Ca2+ event frequency but a nitric oxide donor (DEA-NONOate) had no effect. Electrical field stimulation (EFS, 10 Hz) of intrinsic nerves, which evoked contractions of urethral rings and increased Ca2+ event firing in USMC, failed to evoke responses in ICC-LC. Our data suggest that urethral ICC-LC are spontaneously active but are not regulated by autonomic neurons.
Collapse
Affiliation(s)
- Neha Gupta
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland; Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
4
|
Hannigan KI, Ni Bhraonain EP, Gould TW, Keef KD, Cobine CA. Modulation of intracellular calcium activity in interstitial cells of Cajal by inhibitory neural pathways within the internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 2024; 327:G382-G404. [PMID: 38860285 PMCID: PMC11427099 DOI: 10.1152/ajpgi.00309.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The internal anal sphincter (IAS) functions to maintain continence. Previous studies utilizing mice with cell-specific expression of GCaMP6f revealed two distinct subtypes of intramuscular interstitial cells of Cajal (ICC-IM) with differing Ca2+ activities in the IAS. The present study further examined Ca2+ activity in ICC-IM and its modulation by inhibitory neurotransmission. The spatiotemporal properties of Ca2+ transients in Type II ICC-IM mimicked those of smooth muscle cells (SMCs), indicating their joint participation in the "SIP" syncytium. Electrical field stimulation (EFS; atropine present) abolished localized and whole cell Ca2+ transients in Type I and II ICC-IM. The purinergic antagonist MRS2500 did not abolish EFS responses in either cell type, whereas the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine (l-NNA) abolished responses in Type I but not Type II ICC-IM. Combined antagonists abolished EFS responses in Type II ICC-IM. In both ICC-IM subtypes, the ability of EFS to inhibit Ca2+ release was abolished by l-NNA but not MRS2500, suggesting that the nitrergic pathway directly inhibits ICC-IM by blocking Ca2+ release from intracellular stores. Since inositol (1,4,5)-trisphosphate receptor-associated cGMP kinase substrate I (IRAG1) is expressed in ICC-IM, it is possible that it participates in the inhibition of Ca2+ release by nitric oxide. Platelet-derived growth factor receptor α (PDGFRα)+ cells but not ICC-IM expressed P2Y1 receptors (P2Y1R) and small-conductance Ca2+-activated K+ channels (SK3), suggesting that the purinergic pathway indirectly blocks whole cell Ca2+ transients in Type II ICC-IM via PDGFRα+ cells. This study provides the first direct evidence for functional coupling between inhibitory motor neurons and ICC-IM subtypes in the IAS, with contractile inhibition ultimately dependent upon electrical coupling between SMCs, ICC, and PDGFRα+ cells via the SIP syncytium.NEW & NOTEWORTHY Two intramuscular interstitial cells of Cajal (ICC-IM) subtypes exist within the internal anal sphincter (IAS). This study provides the first evidence for direct coupling between nitrergic motor neurons and both ICC-IM subtypes as well as indirect coupling between purinergic inputs and Type II ICC-IM. The spatiotemporal properties of whole cell Ca2+ transients in Type II ICC-IM mimic those of smooth muscle cells (SMCs), suggesting that ICC-IM modulate the activity of SMCs via their joint participation in a SIP syncytium (SMCs, ICC, and PDGFRα+ cells).
Collapse
Affiliation(s)
- Karen I Hannigan
- Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUnited States
| | - Emer P Ni Bhraonain
- Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUnited States
| | - Thomas W Gould
- Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUnited States
| | - Kathleen D Keef
- Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUnited States
| | - Caroline A Cobine
- Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUnited States
| |
Collapse
|
5
|
Ni Bhraonain E, Turner J, Hannigan K, Sanders K, Cobine C. Immunohistochemical characterization of interstitial cells and their relationship to motor neurons within the mouse esophagus. RESEARCH SQUARE 2024:rs.3.rs-4474290. [PMID: 38947055 PMCID: PMC11213231 DOI: 10.21203/rs.3.rs-4474290/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Interstitial cells of Cajal (ICC) and PDGFRα+ cells regulate smooth muscle motility in the gastrointestinal (GI) tract. However, their role(s) in esophageal motility are still unclear. The mouse esophagus has traditionally been described as almost entirely skeletal muscle in nature though ICC have been identified along its entire length. The current study evaluated the distribution of skeletal and smooth muscle within the esophagus using a mouse selectively expressing eGFP in smooth muscle cells (SMCs). The relationship of SMCs to ICC and PDGFRα+ cells was also examined. SMCs declined in density in the oral direction however SMCs represented ~ 25% of the area in the distal esophagus suggesting a likeness to the transition zone observed in humans. ANO1+ intramuscular ICC (ICC-IM) were distributed along the length of the esophagus though like SMCs, declined proximally. ICC-IM were closely associated with SMCs but were also found in regions devoid of SMCs. Intramuscular and submucosal PDGFRα+ cells were densely distributed throughout the esophagus though only intramuscular PDGFRα+ cells within the LES and distal esophagus highly expressed SK3. ICC-IM and PDGFRα+ cells were closely associated with nNOS+, VIP+, VAChT+ and TH+ neurons throughout the LES and distal esophagus. GFAP+ cells resembling intramuscular enteric glia were observed within the muscle and were closely associated with ICC-IM and PDGFRα+ cells, occupying a similar location to c. These data suggest that the mouse esophagus is more similar to the human than thought previously and thus set the foundation for future functional and molecular studies using transgenic mice.
Collapse
|
6
|
Adle-Biassette H, Ricci R, Martin A, Martini M, Ravegnini G, Kaci R, Gélébart P, Poirot B, Sándor Z, Lehman-Che J, Tóth E, Papp B. Sarco/endoplasmic reticulum calcium ATPase 3 (SERCA3) expression in gastrointestinal stromal tumours. Pathology 2024; 56:343-356. [PMID: 38184384 DOI: 10.1016/j.pathol.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/18/2023] [Indexed: 01/08/2024]
Abstract
Accurate characterisation of gastrointestinal stromal tumours (GIST) is important for prognosis and the choice of targeted therapies. Histologically the diagnosis relies on positive immunostaining of tumours for KIT (CD117) and DOG1. Here we report that GISTs also abundantly express the type 3 Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA3). SERCA enzymes transport calcium ions from the cytosol into the endoplasmic reticulum and play an important role in regulating the intensity and the periodicity of calcium-induced cell activation. GISTs from various localisations, histological and molecular subtypes or risk categories were intensely immunopositive for SERCA3 with the exception of PDGFRA-mutated cases where expression was high or moderate. Strong SERCA3 expression was observed also in normal and hyperplastic interstitial cells of Cajal. Decreased SERCA3 expression in GIST was exceptionally observed in a zonal pattern, where CD117 staining was similarly decreased, reflecting clonal heterogeneity. In contrast to GIST, SERCA3 immunostaining of spindle cell tumours and other gastrointestinal tumours resembling GIST was negative or weak. In conclusion, SERCA3 immunohistochemistry may be useful for the diagnosis of GIST with high confidence, when used as a third marker in parallel with KIT and DOG1. Moreover, SERCA3 immunopositivity may be particularly helpful in cases with negative or weak KIT or DOG1 staining, a situation that may be encountered de novo, or during the spontaneous or therapy-induced clonal evolution of GIST.
Collapse
Affiliation(s)
- Homa Adle-Biassette
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, and Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France; INSERM NeuroDiderot, DMU DREAM, France
| | - Riccardo Ricci
- Department of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy; UOC di Anatomia Patologica, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Antoine Martin
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Paris, France; Inserm UMR U978, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Maurizio Martini
- Dipartimento di patologia umana dell'adulto e dell'età evolutiva 'Gaetano Barresi' Azienda Ospedaliera Universitaria Policlinico 'G. Martino', Messina, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Rachid Kaci
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, and Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Pascal Gélébart
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Brigitte Poirot
- Molecular Oncology Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Zsuzsanna Sándor
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
| | - Jacqueline Lehman-Che
- Molecular Oncology Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM UMR U976, Hôpital Saint-Louis, Paris, France; Institut de Recherche Saint-Louis, Université de Paris, France
| | - Erika Tóth
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
| | - Bela Papp
- INSERM UMR U976, Hôpital Saint-Louis, Paris, France; Institut de Recherche Saint-Louis, Université de Paris, France; CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
7
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
8
|
Barth BB, Redington ER, Gautam N, Pelot NA, Grill WM. Calcium image analysis in the moving gut. Neurogastroenterol Motil 2023; 35:e14678. [PMID: 37736662 PMCID: PMC10999186 DOI: 10.1111/nmo.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The neural control of gastrointestinal muscle relies on circuit activity whose underlying motifs remain limited by small-sample calcium imaging recordings confounded by motion artifact, paralytics, and muscle dissections. We present a sequence of resources to register images from moving preparations and identify out-of-focus events in widefield fluorescent microscopy. METHODS Our algorithm uses piecewise rigid registration with pathfinding to correct movements associated with smooth muscle contractions. We developed methods to identify loss-of-focus events and to simulate calcium activity to evaluate registration. KEY RESULTS By combining our methods with principal component analysis, we found populations of neurons exhibit distinct activity patterns in response to distinct stimuli consistent with hypothesized roles. The image analysis pipeline makes deeper insights possible by capturing concurrently calcium dynamics from more neurons in larger fields of view. We provide access to the source code for our algorithms and make experimental and technical recommendations to increase data quality in calcium imaging experiments. CONCLUSIONS These methods make feasible large population, robust calcium imaging recordings and permit more sophisticated network analyses and insights into neural activity patterns in the gut.
Collapse
Affiliation(s)
- Bradley B. Barth
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Emily R. Redington
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
- Current employment Regeneron Pharmaceuticals, Inc. Contributions to this article were made as an employee of Duke University and the views expressed do not necessarily represent the views of Regeneron Pharmaceuticals Inc
| | - Nitisha Gautam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| |
Collapse
|
9
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
10
|
Dwivedi R, Drumm BT, Alkawadri T, Martin SL, Sergeant GP, Hollywood MA, Thornbury KD. The TMEM16A blockers benzbromarone and MONNA cause intracellular Ca2+-release in mouse bronchial smooth muscle cells. Eur J Pharmacol 2023; 947:175677. [PMID: 36967079 DOI: 10.1016/j.ejphar.2023.175677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
We investigated effects of TMEM16A blockers benzbromarone, MONNA, CaCCinhA01 and Ani9 on isometric contractions in mouse bronchial rings and on intracellular calcium in isolated bronchial myocytes. Separate concentrations of carbachol (0.1-10 μM) were applied for 10 min periods to bronchial rings, producing concentration-dependent contractions that were well maintained throughout each application period. Benzbromarone (1 μM) markedly reduced the contractions with a more pronounced effect on their sustained component (at 10 min) compared to their initial component (at 2 min). Iberiotoxin (0.3 μM) enhanced the contractions, but they were still blocked by benzbromarone. MONNA (3 μM) and CaCCinhA01 (10 μM) had similar effects to benzbromarone, but were less potent. In contrast, Ani9 (10 μM) had no effect on carbachol-induced contractions. Confocal imaging revealed that benzbromarone (0.3 μM), MONNA (1 μM) and CaCCinhA01 (10 μM) increased intracellular calcium in isolated myocytes loaded with Fluo-4AM. In contrast, Ani9 (10 μM) had no effect on intracellular calcium. Benzbromarone and MONNA also increased calcium in calcium-free extracellular solution, but failed to do so when intracellular stores were discharged with caffeine (10 mM). Caffeine was unable to cause further discharge of the store when applied in the presence of benzbromarone. Ryanodine (100 μM) blocked the ability of benzbromarone (0.3 μM) to increase calcium, while tetracaine (100 μM) reversibly reduced the rise in calcium induced by benzbromarone. We conclude that benzbromarone and MONNA caused intracellular calcium release, probably by opening ryanodine receptors. Their ability to block carbachol contractions was likely due to this off-target effect.
Collapse
|
11
|
Hwang SJ, Drumm BT, Kim MK, Lyu JH, Baker S, Sanders KM, Ward SM. Calcium transients in intramuscular interstitial cells of Cajal of the murine gastric fundus and their regulation by neuroeffector transmission. J Physiol 2022; 600:4439-4463. [PMID: 36057845 DOI: 10.1113/jp282876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The cells responsible for mediating enteric neuroeffector transmission remain controversial. In the stomach intramuscular interstitial cells of Cajal (ICC-IM) were the first ICC reported to receive cholinergic and nitrergic neural inputs. Utilization of a cell specific calcium biosensor, GCaMP6f, the activity and neuroeffector responses of ICC-IM were examined. ICC-IM were highly active, generating stochastic intracellular Ca2+ -transients. Stimulation of enteric motor nerves abolished Ca2+ -transients in ICC-IM. This inhibitory response was preceded by a global rise in intracellular Ca2+ . Individual ICC-IM responded to nerve stimulation with a rise in Ca2+ followed by inhibition of Ca2+ -transients. Inhibition of Ca2+ -transients was blocked by the nitric oxide synthase antagonist, L-NNA. The global rise in Ca2+ was inhibited by the muscarinic antagonist, atropine. Simultaneous intracellular recordings with video imaging revealed that the global rise in intracellular Ca2+ and inhibition of Ca2+ -transients was temporally associated with rapid excitatory junction potentials followed by more sustained inhibitory junction potentials. The data presented support the premise of serial innervation of ICC-IM in excitatory and inhibitory neuroeffector transmission in the proximal stomach. ABSTRACT Enteric neurotransmission is critical for coordinating motility throughout the gastrointestinal (GI) tract. However, there is considerable controversy regarding the cells that are responsible for the transduction of these neural inputs. In the present study, utilization of a cell-specific calcium biosensor GCaMP6f, the spontaneous activity and neuroeffector responses of intramuscular ICC (ICC-IM) to motor neural inputs was examined. Simultaneous intracellular microelectrode recordings and high-speed video-imaging during nerve stimulation was used to reveal the temporal relationship between changes in intracellular Ca2+ and post-junctional electrical responses to neural stimulation. ICC-IM were highly active, generating intracellular Ca2+ -transients that occurred stochastically, from multiple independent sites in single ICC-IM. Ca2+ -transients were not entrained in single ICC-IM or between neighboring ICC-IM. Activation of enteric motor neurons produced a dominant inhibitory response that abolished Ca2+ -transients in ICC-IM. This inhibitory response was often preceded by a summation of Ca2+ -transients that led to a global rise in Ca2+ . Individual ICC-IM responded to nerve stimulation by a global rise in Ca2+ followed by inhibition of Ca2+ -transients. The inhibition of Ca2+ -transients was blocked by the nitric oxide synthase antagonist, L-NNA. The global rise in intracellular Ca2+ was inhibited by the muscarinic antagonist, atropine. Simultaneous intracellular microelectrode recordings with video-imaging revealed that the rise in Ca2+ was temporally associated with rapid excitatory junction potentials and the inhibition of Ca2+ -transients with inhibitory junction potentials. These data support the premise of serial innervation of ICC-IM in excitatory and inhibitory neuroeffector transmission in the proximal stomach. Abstract figure legend Intramuscular interstitial cells of Cajal (ICC-IM) of the gastric fundus receive nitrergic inhibitory and cholinergic excitatory neuroeffector motor inputs. Using a genetically encoded calcium sensor we demonstrate that ICC-IM are highly active cells generating stochastic intracellular Ca2 -transients. Stimulation of enteric motor nerves abolished Ca2 -transients in ICC-IM, produced an inhibitory junction potential (IJP) and muscle relaxation that was mediated by nitric oxide (left hand side of figure). This inhibitory response was often preceded by a global rise in intracellular Ca2 in ICC-IM, a rapid excitatory junction potential (EJP) and muscle contraction, that was mediated by acetylcholine (right hand side of figure). Individual ICC-IM could respond to both excitatory and inhibitory neural inputs. These data support the premise of serial innervation of ICC-IM in excitatory and inhibitory neuroeffector transmission in the proximal stomach. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sung Jin Hwang
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Min Kyung Kim
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Ju Hyeong Lyu
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sal Baker
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
12
|
Drumm BT, Cobine CA, Baker SA. Insights on gastrointestinal motility through the use of optogenetic sensors and actuators. J Physiol 2022; 600:3031-3052. [PMID: 35596741 DOI: 10.1113/jp281930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
The muscularis of the gastrointestinal (GI) tract consists of smooth muscle cells (SMCs) and various populations of interstitial cells of Cajal (ICC), platelet-derived growth factor receptor α+ (PDGFRα+ ) cells, as well as excitatory and inhibitory enteric motor nerves. SMCs, ICC and PDGFRα+ cells form an electrically coupled syncytium, which together with inputs from the enteric nervous system (ENS) regulate GI motility. Early studies evaluating Ca2+ signalling behaviours in the GI tract relied upon indiscriminate loading of tissues with Ca2+ dyes. These methods lacked the means to study activity in specific cells of interest without encountering contamination from other cells within the preparation. Development of mice expressing optogenetic sensors (GCaMP, RCaMP) has allowed visualization of Ca2+ signalling behaviours in a cell specific manner. Additionally, availability of mice expressing optogenetic modulators (channelrhodopsins or halorhodospins) has allowed manipulation of specific signalling pathways using light. GCaMP expressing animals have been used to characterize Ca2+ signalling behaviours of distinct classes of ICC and SMCs throughout the GI musculature. These findings illustrate how Ca2+ signalling in ICC is fundamental in GI muscles, contributing to tone in sphincters, pacemaker activity in rhythmic muscles and relaying enteric signals to SMCs. Animals that express channelrhodopsin in specific neuronal populations have been used to map neural circuitry and to examine post junctional neural effects on GI motility. Thus, optogenetic approaches provide a novel means to examine the contribution of specific cell types to the regulation of motility patterns within complex multi-cellular systems. Abstract Figure Legends Optogenetic activators and sensors can be used to investigate the complex multi-cellular nature of the gastrointestinal (GI tract). Optogenetic activators that are activated by light such as channelrhodopsins (ChR2), OptoXR and halorhodopsinss (HR) proteins can be genetically encoded into specific cell types. This can be used to directly activate or silence specific GI cells such as various classes of enteric neurons, smooth muscle cells (SMC) or interstitial cells, such as interstitial cells of Cajal (ICC). Optogenetic sensors that are activated by different wavelengths of light such as green calmodulin fusion protein (GCaMP) and red CaMP (RCaMP) make high resolution of sub-cellular Ca2+ signalling possible within intact tissues of specific cell types. These tools can provide unparalleled insight into mechanisms underlying GI motility and innervation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.,Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
13
|
Koh SD, Drumm BT, Lu H, Kim HJ, Ryoo SB, Kim HU, Lee JY, Rhee PL, Wang Q, Gould TW, Heredia D, Perrino BA, Hwang SJ, Ward SM, Sanders KM. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal. Proc Natl Acad Sci U S A 2022; 119:e2123020119. [PMID: 35446689 PMCID: PMC9170151 DOI: 10.1073/pnas.2123020119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
The peristaltic reflex is a fundamental behavior of the gastrointestinal (GI) tract in which mucosal stimulation activates propulsive contractions. The reflex occurs by stimulation of intrinsic primary afferent neurons with cell bodies in the myenteric plexus and projections to the lamina propria, distribution of information by interneurons, and activation of muscle motor neurons. The current concept is that excitatory cholinergic motor neurons are activated proximal to and inhibitory neurons are activated distal to the stimulus site. We found that atropine reduced, but did not block, colonic migrating motor complexes (CMMCs) in mouse, monkey, and human colons, suggesting a mechanism other than one activated by cholinergic neurons is involved in the generation/propagation of CMMCs. CMMCs were activated after a period of nerve stimulation in colons of each species, suggesting that the propulsive contractions of CMMCs may be due to the poststimulus excitation that follows inhibitory neural responses. Blocking nitrergic neurotransmission inhibited poststimulus excitation in muscle strips and blocked CMMCs in intact colons. Our data demonstrate that poststimulus excitation is due to increased Ca2+ transients in colonic interstitial cells of Cajal (ICC) following cessation of nitrergic, cyclic guanosine monophosphate (cGMP)-dependent inhibitory responses. The increase in Ca2+ transients after nitrergic responses activates a Ca2+-activated Cl− conductance, encoded by Ano1, in ICC. Antagonists of ANO1 channels inhibit poststimulus depolarizations in colonic muscles and CMMCs in intact colons. The poststimulus excitatory responses in ICC are linked to cGMP-inhibited cyclic adenosine monophosphate (cAMP) phosphodiesterase 3a and cAMP-dependent effects. These data suggest alternative mechanisms for generation and propagation of CMMCs in the colon.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Bernard T. Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Hongli Lu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Hyun Jin Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Seung-Bum Ryoo
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Heung-Up Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Ji Yeon Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Gangnam-Gu, Seoul, Korea 135-710
| | - Qianqian Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Thomas W. Gould
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Dante Heredia
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Brian A. Perrino
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| |
Collapse
|
14
|
Drumm BT, Hannigan KI, Lee JY, Rembetski BE, Baker SA, Koh SD, Cobine CA, Sanders KM. Ca 2+ signalling in interstitial cells of Cajal contributes to generation and maintenance of tone in mouse and monkey lower esophageal sphincters. J Physiol 2022; 600:2613-2636. [PMID: 35229888 DOI: 10.1113/jp282570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/15/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The lower esophageal sphincter (LES) generates contractile tone preventing reflux of gastric contents into the esophagus. LES smooth muscle cells (SMCs) display depolarized membrane potentials facilitating activation of L-type Ca2+ channels. Interstitial cells of Cajal (ICC) express Ca2+ -activated Cl- channels encoded by Ano1 in mouse and monkey LES. Ca2+ signaling in ICC activates ANO1 currents in ICC. ICC displayed spontaneous Ca2+ transients in mice from multiple firing sites in each cell and no entrainment of Ca2+ firing between sites or between cells. Inhibition of ANO1 channels with a specific antagonist caused hyperpolarization of mouse LES and inhibition of tone in monkey and mouse LES muscles. Our data suggest a novel mechanism for LES tone in which Ca2+ transient activation of ANO1 channels in ICC generates depolarizing inward currents that conduct to SMCs to activate L-type Ca2+ currents, Ca2+ entry and contractile tone. ABSTRACT The lower esophageal sphincter (LES) generates tone and prevents reflux of gastric contents. LES smooth muscle cells (SMCs) are relatively depolarized, facilitating activation of Cav 1.2 channels to sustain contractile tone. We hypothesised that intramuscular interstitial cells of Cajal (ICC-IM), through activation of Ca2+ -activated-Cl- channels (ANO1), set membrane potentials of SMCs favorable for activation of Cav 1.2 channels. In some gastrointestinal muscles, ANO1 channels in ICC-IM are activated by Ca2+ transients, but no studies have examined Ca2+ dynamics in ICC-IM within the LES. Immunohistochemistry and qPCR were used to determine expression of key proteins and genes in ICC-IM and SMCs. These studies revealed that Ano1 and its gene product, ANO1 are expressed in c-Kit+ cells (ICC-IM) in mouse and monkey LES clasp muscles. Ca2+ signaling was imaged in situ, using mice expressing GCaMP6f specifically in ICC (Kit-KI-GCaMP6f). ICC-IM exhibited spontaneous Ca2+ transients from multiple firing sites. Ca2+ transients were abolished by CPA or caffeine but were unaffected by tetracaine or nifedipine. Maintenance of Ca2+ transients depended on Ca2+ influx and store reloading, as Ca2+ transient frequency was reduced in Ca2+ free solution or by Orai antagonist. Spontaneous tone of LES muscles from mouse and monkey was reduced ∼80% either by Ani9, an ANO1 antagonist or by the Cav 1.2 channel antagonist nifedipine. Membrane hyperpolarisation occurred in the presence of Ani9. These data suggest that intracellular Ca2+ activates ANO1 channels in ICC-IM in the LES. Coupling of ICC-IM to SMCs drives depolarization, activation of Cav 1.2 channels, Ca2+ entry and contractile tone. Abstract figure legend Proposed mechanism for generation of contractile tone in the lower esophageal sphincter (LES). Interstitial cells of Cajal (ICC) in the LES generate spontaneous, stochastic Ca2+ transients via Ca2+ release from the endoplasmic reticulum (ER). The Ca2+ transients activate ANO1 Cl- channels causing Cl- efflux (inward current). ANO1 currents have a depolarizing effect on ICC (+++s inside membrane) and this conducts through gap junctions (GJ) to smooth muscle cells (SMCs). Input from thousands of ICC results in depolarized membrane potentials (-40 to -50 mV) which is within the window current range for L-type Ca2+ channels. Activation of these channels causes Ca2+ influx, activation of contractile elements (CE) and development of tonic contraction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.,Smooth Muscle Research Centre, Dundalk Institute of Technology, Ireland
| | - Karen I Hannigan
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ji Yeon Lee
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Benjamin E Rembetski
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sang Don Koh
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
15
|
Meerschaert KA, Davis BM, Smith-Edwards KM. New Insights on Extrinsic Innervation of the Enteric Nervous System and Non-neuronal Cell Types That Influence Colon Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:133-139. [PMID: 36587153 DOI: 10.1007/978-3-031-05843-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system not only innervates the colon to execute various functions in a semi-autonomous manner but also receives neural input from three extrinsic sources, (1) vagal, (2) thoracolumbar (splanchnic), and (3) lumbosacral (pelvic) pathways, that permit bidirectional communication between the colon and central nervous system. Extrinsic pathways signal sensory input via afferent fibers, as well as motor autonomic output via parasympathetic or sympathetic efferent fibers, but the shared and unique roles for each pathway in executing sensory-motor control of colon function have not been well understood. Here, we describe the recently developed approaches that have provided new insights into the diverse mechanisms utilized by extrinsic pathways to influence colon functions related to visceral sensation, motility, and inflammation. Based on the cumulative results from anatomical, molecular, and functional studies, we propose pathway-specific functions for vagal, thoracolumbar, and lumbosacral innervation of the colon.
Collapse
Affiliation(s)
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
16
|
Sanders KM, Baker SA, Drumm BT, Kurahashi M. Ca 2+ Signaling Is the Basis for Pacemaker Activity and Neurotransduction in Interstitial Cells of the GI Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:229-241. [PMID: 36587162 DOI: 10.1007/978-3-031-05843-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Years ago gastrointestinal motility was thought to be due to interactions between enteric nerves and smooth muscle cells (SMCs) in the tunica muscularis. Thus, regulatory mechanisms controlling motility were either myogenic or neurogenic. Now we know that populations of interstitial cells, c-Kit+ (interstitial cells of Cajal or ICC), and PDGFRα+ cells (formerly "fibroblast-like" cells) are electrically coupled to SMCs, forming the SIP syncytium. Pacemaker and neurotransduction functions are provided by interstitial cells through Ca2+ release from the endoplasmic reticulum (ER) and activation of Ca2+-activated ion channels in the plasma membrane (PM). ICC express Ca2+-activated Cl- channels encoded by Ano1. When activated, Ano1 channels produce inward current and, therefore, depolarizing or excitatory effects in the SIP syncytium. PDGFRα+ cells express Ca2+-activated K+ channels encoded by Kcnn3. These channels generate outward current when activated and hyperpolarizing or membrane-stabilizing effects in the SIP syncytium. Inputs from enteric and sympathetic neurons regulate Ca2+ transients in ICC and PDGFRα+ cells, and currents activated in these cells conduct to SMCs and regulate contractile behaviors. ICC also serve as pacemakers, generating slow waves that are the electrophysiological basis for gastric peristalsis and intestinal segmentation. Pacemaker types of ICC express voltage-dependent Ca2+ conductances that organize Ca2+ transients, and therefore Ano1 channel openings, into clusters that define the amplitude and duration of slow waves. Ca2+ handling mechanisms are at the heart of interstitial cell function, yet little is known about what happens to Ca2+ dynamics in these cells in GI motility disorders.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa, Iowa, Iowa City, USA
| |
Collapse
|
17
|
Barth BB, Spencer NJ, Grill WM. Activation of ENS Circuits in Mouse Colon: Coordination in the Mouse Colonic Motor Complex as a Robust, Distributed Control System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:113-123. [PMID: 36587151 DOI: 10.1007/978-3-031-05843-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The characteristic motor patterns of the colon are coordinated by the enteric nervous system (ENS) and involve enterochromaffin (EC) cells, enteric glia, smooth muscle fibers, and interstitial cells. While the fundamental control mechanisms of colonic motor patterns are understood, greater complexity in the circuitry underlying motor patterns has been revealed by recent advances in the field. We review these recent advances and new findings from our laboratories that provide insights into how the ENS coordinates motor patterns in the isolated mouse colon. We contextualize these observations by describing the neuromuscular system underling the colonic motor complex (CMC) as a robust, distributed control system. Framing the colonic motor complex as a control system reveals a new perspective on the coordinated motor patterns in the colon. We test the control system by applying electrical stimulation in the isolated mouse colon to disrupt the coordination and propagation of the colonic motor complex.
Collapse
Affiliation(s)
- Bradley B Barth
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
Zhao M, Zhang N, Yang R, Chen D, Zhao Y. Which is Better for Nanomedicines: Nanocatalysts or Single-Atom Catalysts? Adv Healthc Mater 2021; 10:e2001897. [PMID: 33326185 DOI: 10.1002/adhm.202001897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Indexed: 12/24/2022]
Abstract
With the rapid advancements in nanotechnology and materials science, numerous nanomaterials have been used as catalysts for nanomedical applications. Their design and modification according to the microenvironment of diseases have been shown to achieve effective treatment. Chemists are in pursuit of nanocatalysts that are more efficient, controllable, and less toxic by developing innovative synthetic technologies and improving existing ones. Recently, single-atom catalysts (SACs) with excellent catalytic activity and high selectivity have attracted increasing attention because of their accurate design as nanomaterials at the atomic level, thereby highlighting their potential for nanomedical applications. In this review, the recent advances in nanocatalysts and SACs are briefly summarized according to their synthesis, characterizations, catalytic mechanisms, and nanomedical applications. The opportunities and future scope for their development and the issues and challenges for their application as nanomedicine are also discussed. As far as it is known, the review is the systematic comparison of nanocatalysts and SACs, especially in the field of nanomedicine, which has promoted the development of nanocatalytic medicine.
Collapse
Affiliation(s)
- Mengyang Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- School of Materials Science and Engineering Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Ruigeng Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Deliang Chen
- School of Materials Science and Engineering Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- School of Materials Science and Engineering Dongguan University of Technology Dongguan 523808 P. R. China
| | - Yongxing Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| |
Collapse
|
19
|
Drumm BT, Thornbury KD, Hollywood MA, Sergeant GP. Role of Ano1 Ca 2+-activated Cl - channels in generating urethral tone. Am J Physiol Renal Physiol 2021; 320:F525-F536. [PMID: 33554780 DOI: 10.1152/ajprenal.00520.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Urinary continence is maintained in the lower urinary tract by the contracture of urethral sphincters, including smooth muscle of the internal urethral sphincter. These contractions occlude the urethral lumen, preventing urine leakage from the bladder to the exterior. Over the past 20 years, research on the ionic conductances that contribute to urethral smooth muscle contractility has greatly accelerated. A debate has emerged over the role of interstitial cell of Cajal (ICC)-like cells in the urethra and their expression of Ca2+-activated Cl- channels encoded by anoctamin-1 [Ano1; transmembrane member 16 A (Tmem16a) gene]. It has been proposed that Ano1 channels expressed in urethral ICC serve as a source of depolarization for smooth muscle cells, increasing their excitability and contributing to tone. Although a clear role for Ano1 channels expressed in ICC is evident in other smooth muscle organs, such as the gastrointestinal tract, the role of these channels in the urethra is unclear, owing to differences in the species (rabbit, rat, guinea pig, sheep, and mouse) examined and experimental approaches by different groups. The importance of clarifying this situation is evident as effective targeting of Ano1 channels may lead to new treatments for urinary incontinence. In this review, we summarize the key findings from different species on the role of ICC and Ano1 channels in urethral contractility. Finally, we outline proposals for clarifying this controversial and important topic by addressing how cell-specific optogenetic and inducible cell-specific genetic deletion strategies coupled with advances in Ano1 channel pharmacology may clarify this area in future studies.NEW & NOTEWORTHY Studies from the rabbit have shown that anoctamin-1 (Ano1) channels expressed in urethral interstitial cells of Cajal (ICC) serve as a source of depolarization for smooth muscle cells, increasing excitability and tone. However, the role of urethral Ano1 channels is unclear, owing to differences in the species examined and experimental approaches. We summarize findings from different species on the role of urethral ICC and Ano1 channels in urethral contractility and outline proposals for clarifying this topic using cell-specific optogenetic approaches.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
20
|
Dan W, Park GH, Vemaraju S, Wu AD, Perez K, Rao M, Berkowitz DE, Lang RA, Yim PD. Light-Mediated Inhibition of Colonic Smooth Muscle Constriction and Colonic Motility via Opsin 3. Front Physiol 2021; 12:744294. [PMID: 34975518 PMCID: PMC8716924 DOI: 10.3389/fphys.2021.744294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Opsin photoreceptors outside of the central nervous system have been shown to mediate smooth muscle photorelaxation in several organs. We hypothesized that opsin receptor activation in the colon would have a similar effect and influence colonic motility. We detected Opsin 3 (OPN3) protein expression in the colonic wall and demonstrated that OPN3 was present in enteric neurons in the muscularis propria of the murine colon. Precontracted murine colon segments demonstrated blue light (BL) -mediated relaxation ex vivo. This photorelaxation was wavelength specific and was increased with the administration of the chromophore 9-cis retinal and a G protein receptor kinase 2 (GRK2) inhibitor. Light-mediated relaxation of the colon was not inhibited by L-NAME or tetrodotoxin (TTX). Furthermore, BL exposure in the presence of 9-cis retinal decreased the frequency of colonic migrating motor complexes (CMMC) in spontaneously contracting mouse colons ex vivo. These results demonstrate for the first time a receptor-mediated photorelaxation of colonic smooth muscle and implicate opsins as possible new targets in the treatment of spasmodic gastrointestinal dysmotility.
Collapse
Affiliation(s)
- William Dan
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Ga Hyun Park
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Pediatric Ophthalmology, Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Amy D Wu
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Kristina Perez
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama, Birmingham, AL, United States
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Pediatric Ophthalmology, Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Peter D Yim
- Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
21
|
Leigh WA, Del Valle G, Kamran SA, Drumm BT, Tavakkoli A, Sanders KM, Baker SA. A high throughput machine-learning driven analysis of Ca 2+ spatio-temporal maps. Cell Calcium 2020; 91:102260. [PMID: 32795721 PMCID: PMC7530121 DOI: 10.1016/j.ceca.2020.102260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022]
Abstract
High-resolution Ca2+ imaging to study cellular Ca2+ behaviors has led to the creation of large datasets with a profound need for standardized and accurate analysis. To analyze these datasets, spatio-temporal maps (STMaps) that allow for 2D visualization of Ca2+ signals as a function of time and space are often used. Methods of STMap analysis rely on a highly arduous process of user defined segmentation and event-based data retrieval. These methods are often time consuming, lack accuracy, and are extremely variable between users. We designed a novel automated machine-learning based plugin for the analysis of Ca2+ STMaps (STMapAuto). The plugin includes optimized tools for Ca2+ signal preprocessing, automated segmentation, and automated extraction of key Ca2+ event information such as duration, spatial spread, frequency, propagation angle, and intensity in a variety of cell types including the Interstitial cells of Cajal (ICC). The plugin is fully implemented in Fiji and able to accurately detect and expeditiously quantify Ca2+ transient parameters from ICC. The plugin's speed of analysis of large-datasets was 197-fold faster than the commonly used single pixel-line method of analysis. The automated machine-learning based plugin described dramatically reduces opportunities for user error and provides a consistent method to allow high-throughput analysis of STMap datasets.
Collapse
Affiliation(s)
- Wesley A Leigh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Guillermo Del Valle
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Sharif Amit Kamran
- Department of Computer Science and Engineering, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Bernard T Drumm
- Department of Life & Health Science, Dundalk Institute of Technology, Co. Louth, Ireland
| | - Alireza Tavakkoli
- Department of Computer Science and Engineering, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
22
|
Mohd RR, Heitmann P, Raghu K, Hibbard TJ, Costa M, Wiklendt L, Wattchow DA, Arkwright J, de Fontgalland D, Brookes S, Spencer NJ, Dinning P. Distinct patterns of myogenic motor activity identified in isolated human distal colon with high-resolution manometry. Neurogastroenterol Motil 2020; 32:e13871. [PMID: 32374068 PMCID: PMC7529858 DOI: 10.1111/nmo.13871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colonic high-resolution manometry (HRM) has been used to reveal discrete, propagating colonic motor patterns. To help determine mechanisms underlying these patterns, we used HRM to record contractile activity in human distal colon ex vivo. METHODS Surgically excised segments of descending (n = 30) or sigmoid colon (n = 4) were immersed in oxygenated Krebs solution at 36°C (n = 34; 16 female; 67.6 ± 12.4 years; length: 24.7 ± 3.5 cm). Contractility was recorded by HRM catheters. After 30 minutes of baseline recording, 0.3 mM lidocaine and/or 1 mM hexamethonium were applied. Ascending neural pathways were activated by electrical field stimulation (EFS; 10 Hz, 0.5 ms, 50 V, 5-s duration) applied to the anal end before and after drug application. RESULTS Spontaneous propagating contractions were recorded in all specimens (0.1-1.5 cycles/minute). Most contractions occurred synchronously across all recording sites. In five specimens, rhythmic antegrade contractions propagated across the full length of the preparation. EFS evoked local contractions at the site of stimulation (latency: 5.5 ± 2.4 seconds) with greater amplitude than spontaneous contractions (EFS; 29.3 ± 26.9 vs 12.1 ± 14.8 mm Hg; P = .02). Synchronous or retrograde propagating motor patterns followed EFS; 71% spanned the entire preparation length. Hexamethonium and lidocaine modestly and only temporarily inhibited spontaneous contractions, whereas TTX increased the frequency of contractile activity while inhibiting EFS-evoked contractions. CONCLUSIONS AND INFERENCES Our study suggests that the propagated contractions recorded in the organ bath have a myogenic origin which can be regulated by neural input. Once activated at a local site, the contractions do not require the propulsion of fecal content to sustain long-distance propagation.
Collapse
Affiliation(s)
- Rosli R Mohd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - P.T Heitmann
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University,Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia
| | - K Raghu
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia
| | - T. J. Hibbard
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - M Costa
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - L Wiklendt
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - D. A Wattchow
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University,Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia
| | - J Arkwright
- College of Science and Engineering, Flinders University. Adelaide, Australia
| | - D de Fontgalland
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia
| | - S.J.H Brookes
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - N. J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University
| | - P.G Dinning
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University,Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia
| |
Collapse
|
23
|
Ji Q, Shi S, Guo S, Zhan Y, Zhang H, Chen Y, An H. Activation of TMEM16A by natural product canthaxanthin promotes gastrointestinal contraction. FASEB J 2020; 34:13430-13444. [PMID: 32812278 DOI: 10.1096/fj.202000443rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/11/2022]
Abstract
Transmembrane 16A (TMEM16A), also known as anoctamin 1, is the molecular basis of the calcium-activated chloride channels. TMEM16A is present in interstitial cells of Cajal, which are the pacemaker cells that control smooth muscle contraction. TMEM16A is implicated in gastrointestinal disorders. Activation of TMEM16A is believed to promote the gastrointestinal muscle contraction. Here, we report a highly efficient, nontoxic, and selective activator of TMEM16A, canthaxanthin (CX). The study using molecular docking and site-directed mutation revealed that CX-specific binging site in TMEM16A is K769. CX was also found to promote the contraction of smooth muscle cells in gastrointestinal tract through activation of TMEM16A channels, which provides an excellent basis for development of CX as a chemical tool and potential therapeutic for gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Sai Shi
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Hailin Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drug, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
24
|
Hannigan KI, Bossey AP, Foulkes HJL, Drumm BT, Baker SA, Ward SM, Sanders KM, Keef KD, Cobine CA. A novel intramuscular Interstitial Cell of Cajal is a candidate for generating pacemaker activity in the mouse internal anal sphincter. Sci Rep 2020; 10:10378. [PMID: 32587396 PMCID: PMC7316801 DOI: 10.1038/s41598-020-67142-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The internal anal sphincter (IAS) generates phasic contractions and tone. Slow waves (SWs) produced by interstitial cells of Cajal (ICC) underlie phasic contractions in other gastrointestinal regions. SWs are also present in the IAS where only intramuscular ICC (ICC-IM) are found, however the evidence linking ICC-IM to SWs is limited. This study examined the possible relationship between ICC-IM and SWs by recording Ca2+ transients in mice expressing a genetically-encoded Ca2+-indicator in ICC (Kit-Cre-GCaMP6f). A role for L-type Ca2+ channels (CavL) and anoctamin 1 (ANO1) was tested since each is essential for SW and tone generation. Two distinct ICC-IM populations were identified. Type I cells (36% of total) displayed localised asynchronous Ca2+ transients not dependent on CavL or ANO1; properties typical of ICC-IM mediating neural responses in other gastrointestinal regions. A second novel sub-type, i.e., Type II cells (64% of total) generated rhythmic, global Ca2+ transients at the SW frequency that were synchronised with neighbouring Type II cells and were abolished following blockade of either CavL or ANO1. Thus, the spatiotemporal characteristics of Type II cells and their dependence upon CavL and ANO1 all suggest that these cells are viable candidates for the generation of SWs and tone in the IAS.
Collapse
Affiliation(s)
- Karen I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Aaron P Bossey
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Holly J L Foulkes
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Kathleen D Keef
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
| |
Collapse
|
25
|
Drumm BT, Rembetski BE, Huynh K, Nizar A, Baker SA, Sanders KM. Excitatory cholinergic responses in mouse colon intramuscular interstitial cells of Cajal are due to enhanced Ca 2+ release via M 3 receptor activation. FASEB J 2020; 34:10073-10095. [PMID: 32539213 DOI: 10.1096/fj.202000672r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Colonic intramuscular interstitial cells of Cajal (ICC-IM) are associated with cholinergic varicosities, suggesting a role in mediating excitatory neurotransmission. Ca2+ release in ICC-IM activates Ano1, a Ca2+ -activated Cl- conductance, causing tissue depolarization and increased smooth muscle excitability. We employed Ca2+ imaging of colonic ICC-IM in situ, using mice expressing GCaMP6f in ICC to evaluate ICC-IM responses to excitatory neurotransmission. Expression of muscarinic type 2, 3 (M2 , M3 ), and NK1 receptors were enriched in ICC-IM. NK1 receptor agonists had minimal effects on ICC-IM, whereas neostigmine and carbachol increased Ca2+ transients. These effects were reversed by DAU 5884 (M3 receptor antagonist) but not AF-DX 116 (M2 receptor antagonist). Electrical field stimulation (EFS) in the presence of L-NNA and MRS 2500 enhanced ICC-IM Ca2+ transients. Responses were blocked by atropine or DAU 5884, but not AF-DX 116. ICC-IM responses to EFS were ablated by inhibiting Ca2+ stores with cyclopiazonic acid and reduced by inhibiting Ca2+ influx via Orai channels. Contractions induced by EFS were reduced by an Ano1 channel antagonist, abolished by DAU 5884, and unaffected by AF-DX 116. Colonic ICC-IM receive excitatory inputs from cholinergic neurons via M3 receptor activation. Enhancing ICC-IM Ca2+ release and Ano1 activation contributes to excitatory responses of colonic muscles.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA.,Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Benjamin E Rembetski
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Kaitlin Huynh
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Aqeel Nizar
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
26
|
Krueger D, Schäuffele S, Zeller F, Demir IE, Theisen J, Michel K, Schemann M. Peppermint and caraway oils have muscle inhibitory and pro-secretory activity in the human intestine in vitro. Neurogastroenterol Motil 2020; 32:e13748. [PMID: 31612595 DOI: 10.1111/nmo.13748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/05/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Herbal medicinal products with a broad activity spectrum may be promising alternatives to treat functional gastrointestinal disorders (FGD). Menthacarin® is a drug with a fixed combination of peppermint and caraway oils, which is clinically used to treat FGD-associated symptoms. MATERIALS We studied the effects of peppermint and caraway oils on contractile and secretory activity in 255 human small and large intestinal preparations derived from surgical resections (73 patients). Motility was recorded in circular smooth muscle strips and secretion with the Ussing chamber-voltage clamp technique. Electrical field stimulation evoked nerve induced contractile responses. KEY RESULTS: Peppermint and caraway oil concentrations dependently inhibited muscle contractility as indicated by sustained muscle relaxation and decrease in phasic contractility. These effects occurred in small and large intestinal preparations with IC50 values ranging between 17 and 90 µg/mL for peppermint oil and between 7 and 127 µg/mL for caraway oil. Neither peppermint nor caraway oil influenced the nerve evoked contractile response. The inhibition of contractile activity, but not the muscle relaxation, was prevented by the L-type calcium channel activator Bay K8644 but not by the neurotoxin tetrodotoxin. Both peppermint oil and caraway oil increased epithelial secretion, which remained in tetrodotoxin. CONCLUSION & INTERFERENCE The findings revealed a strong muscle inhibitory and pro-secretory action of peppermint and caraway oils at clinically relevant concentrations. Both actions were nerve-independent. The inhibition of contractility was mediated by inhibition of L-type calcium channels. The effects on muscle and epithelial activity may contribute to the beneficial effects observed in patients with FGD.
Collapse
Affiliation(s)
- Dagmar Krueger
- Human Biology, Technical University Munich, Freising, Germany
| | | | - Florian Zeller
- Department of Surgery, Klinikum Freising, Freising, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Jörg Theisen
- Department of Surgery, Klinikum Landkreis Erding, Erding, Germany
| | - Klaus Michel
- Human Biology, Technical University Munich, Freising, Germany
| | | |
Collapse
|
27
|
Drumm BT, Rembetski BE, Messersmith K, Manierka MS, Baker SA, Sanders KM. Pacemaker function and neural responsiveness of subserosal interstitial cells of Cajal in the mouse colon. J Physiol 2020; 598:651-681. [PMID: 31811726 DOI: 10.1113/jp279102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Rhythmic action potentials and intercellular Ca2+ waves are generated in smooth muscle cells of colonic longitudinal muscles (LSMC). Longitudinal muscle excitability is tuned by input from subserosal ICC (ICC-SS), a population of ICC with previously unknown function. ICC-SS express Ano1 channels and generate spontaneous Ca2+ transients in a stochastic manner. Release of Ca2+ and activation of Ano1 channels causes depolarization of ICC-SS and LSMC, leading to activation of L-type Ca2+ channels, action potentials, intercellular Ca2+ waves and contractions in LSMC. Nitrergic neural inputs regulate the Ca2+ events in ICC-SS. Pacemaker activity in longitudinal muscle is an emergent property as a result of integrated processes in ICC-SS and LSMC. ABSTRACT Much is known about myogenic mechanisms in circular muscle (CM) in the gastrointestinal tract, although less is known about longitudinal muscle (LM). Two Ca2+ signalling behaviours occur in LM: localized intracellular waves not causing contractions and intercellular waves leading to excitation-contraction coupling. An Ano1 channel antagonist inhibited intercellular Ca2+ waves and LM contractions. Ano1 channels are expressed by interstitial cells of Cajal (ICC) but not by smooth muscle cells (SMCs). We investigated Ca2+ signalling in a novel population of ICC that lies along the subserosal surface of LM (ICC-SS) in mice expressing GCaMP6f in ICC. ICC-SS fired stochastic localized Ca2+ transients. Such events have been linked to activation of Ano1 channels in ICC. Ca2+ transients in ICC-SS occurred by release from stores most probably via inositol trisphosphate receptors. This activity relied on influx via store-operated Ca2+ entry and Orai channels. No voltage-dependent mechanism that synchronized Ca2+ transients in a single cell or between cells was found. Nitrergic agonists inhibited Ca2+ transients in ICC-SS, and stimulation of intrinsic nerves activated nitrergic responses in ICC-SS. Cessation of stimulation resulted in significant enhancement of Ca2+ transients compared to the pre-stimulus activity. No evidence of innervation by excitatory, cholinergic motor neurons was found. Our data suggest that ICC-SS contribute to regulation of LM motor activity. Spontaneous Ca2+ transients activate Ano1 channels in ICC-SS. Resulting depolarization conducts to SMCs, depolarizing membrane potential, activating L-type Ca2+ channels and initiating contraction. Rhythmic electrical and mechanical behaviours of LM are an emergent property of SMCs and ICC-SS.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Benjamin E Rembetski
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Katelyn Messersmith
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Marena S Manierka
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
28
|
Rembetski BE, Sanders KM, Drumm BT. Contribution of Ca v1.2 Ca 2+ channels and store-operated Ca 2+ entry to pig urethral smooth muscle contraction. Am J Physiol Renal Physiol 2020; 318:F496-F505. [PMID: 31904286 DOI: 10.1152/ajprenal.00514.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Urethral smooth muscle (USM) generates tone to prevent urine leakage from the bladder during filling. USM tone has been thought to be a voltage-dependent process, relying on Ca2+ influx via voltage-dependent Ca2+ channels in USM cells, modulated by the activation of Ca2+-activated Cl- channels encoded by Ano1. However, recent findings in the mouse have suggested that USM tone is voltage independent, relying on Ca2+ influx through Orai channels via store-operated Ca2+ entry (SOCE). We explored if this pathway also occurred in the pig using isometric tension recordings of USM tone. Pig USM strips generated myogenic tone, which was nearly abolished by the Cav1.2 channel antagonist nifedipine and the ATP-dependent K+ channel agonist pinacidil. Pig USM tone was reduced by the Orai channel blocker GSK-7975A. Electrical field stimulation (EFS) led to phentolamine-sensitive contractions of USM strips. Contractions of pig USM were also induced by phenylephrine. Phenylephrine-evoked and EFS-evoked contractions of pig USM were reduced by ~50-75% by nifedipine and ~30% by GSK-7975A. Inhibition of Ano1 channels had no effect on tone or EFS-evoked contractions of pig USM. In conclusion, unlike the mouse, pig USM exhibited voltage-dependent tone and agonist/EFS-evoked contractions. Whereas SOCE plays a role in generating tone and agonist/neural-evoked contractions in both species, this dominates in the mouse. Tone and agonist/EFS-evoked contractions of pig USM are the result of Ca2+ influx primarily through Cav1.2 channels, and no evidence was found supporting a role of Ano1 channels in modulating these mechanisms.
Collapse
Affiliation(s)
- Benjamin E Rembetski
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| |
Collapse
|
29
|
Gould TW, Swope WA, Heredia DJ, Corrigan RD, Smith TK. Activity within specific enteric neurochemical subtypes is correlated with distinct patterns of gastrointestinal motility in the murine colon. Am J Physiol Gastrointest Liver Physiol 2019; 317:G210-G221. [PMID: 31268770 PMCID: PMC6734370 DOI: 10.1152/ajpgi.00252.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/31/2023]
Abstract
The enteric nervous system in the large intestine generates two important patterns relating to motility: 1) propagating rhythmic peristaltic smooth muscle contractions referred to as colonic migrating motor complexes (CMMCs) and 2) tonic inhibition, during which colonic smooth muscle contractions are suppressed. The precise neurobiological substrates underlying each of these patterns are unclear. Using transgenic animals expressing the genetically encoded calcium indicator GCaMP3 to monitor activity or the optogenetic actuator channelrhodopsin (ChR2) to drive activity in defined enteric neuronal subpopulations, we provide evidence that cholinergic and nitrergic neurons play significant roles in mediating CMMCs and tonic inhibition, respectively. Nitrergic neurons [neuronal nitric oxide synthase (nNOS)-positive neurons] expressing GCaMP3 exhibited higher levels of activity during periods of tonic inhibition than during CMMCs. Consistent with these findings, optogenetic activation of ChR2 in nitrergic neurons depressed ongoing CMMCs. Conversely, cholinergic neurons [choline acetyltransferase (ChAT)-positive neurons] expressing GCaMP3 markedly increased their activity during the CMMC. Treatment with the NO synthesis inhibitor Nω-nitro-l-arginine also augmented the activity of ChAT-GCaMP3 neurons, suggesting that the reciprocal patterns of activity exhibited by nitrergic and cholinergic enteric neurons during distinct phases of colonic motility may be related.NEW & NOTEWORTHY Correlating the activity of neuronal populations in the myenteric plexus to distinct periods of gastrointestinal motility is complicated by the difficulty of measuring the activity of specific neuronal subtypes. Here, using mice expressing genetically encoded calcium indicators or the optical actuator channelrhodopsin-2, we provide compelling evidence that cholinergic and nitrergic neurons play important roles in mediating coordinated propagating peristaltic contractions or tonic inhibition, respectively, in the murine colon.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - William A Swope
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Dante J Heredia
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Robert D Corrigan
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Terence K Smith
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| |
Collapse
|
30
|
Drumm BT, Hwang SJ, Baker SA, Ward SM, Sanders KM. Ca 2+ signalling behaviours of intramuscular interstitial cells of Cajal in the murine colon. J Physiol 2019; 597:3587-3617. [PMID: 31124144 DOI: 10.1113/jp278036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Colonic intramuscular interstitial cells of Cajal (ICC-IM) exhibit spontaneous Ca2+ transients manifesting as stochastic events from multiple firing sites with propagating Ca2+ waves occasionally observed. Firing of Ca2+ transients in ICC-IM is not coordinated with adjacent ICC-IM in a field of view or even with events from other firing sites within a single cell. Ca2+ transients, through activation of Ano1 channels and generation of inward current, cause net depolarization of colonic muscles. Ca2+ transients in ICC-IM rely on Ca2+ release from the endoplasmic reticulum via IP3 receptors, spatial amplification from RyRs and ongoing refilling of ER via the sarcoplasmic/endoplasmic-reticulum-Ca2+ -ATPase. ICC-IM are sustained by voltage-independent Ca2+ influx via store-operated Ca2+ entry. Some of the properties of Ca2+ in ICC-IM in the colon are similar to the behaviour of ICC located in the deep muscular plexus region of the small intestine, suggesting there are functional similarities between these classes of ICC. ABSTRACT A component of the SIP syncytium that regulates smooth muscle excitability in the colon is the intramuscular class of interstitial cells of Cajal (ICC-IM). All classes of ICC (including ICC-IM) express Ca2+ -activated Cl- channels, encoded by Ano1, and rely upon this conductance for physiological functions. Thus, Ca2+ handling in ICC is fundamental to colonic motility. We examined Ca2+ handling mechanisms in ICC-IM of murine proximal colon expressing GCaMP6f in ICC. Several Ca2+ firing sites were detected in each cell. While individual sites displayed rhythmic Ca2+ events, the overall pattern of Ca2+ transients was stochastic. No correlation was found between discrete Ca2+ firing sites in the same cell or in adjacent cells. Ca2+ transients in some cells initiated Ca2+ waves that spread along the cell at ∼100 µm s-1 . Ca2+ transients were caused by release from intracellular stores, but depended strongly on store-operated Ca2+ entry mechanisms. ICC Ca2+ transient firing regulated the resting membrane potential of colonic tissues as a specific Ano1 antagonist hyperpolarized colonic muscles by ∼10 mV. Ca2+ transient firing was independent of membrane potential and not affected by blockade of L- or T-type Ca2+ channels. Mechanisms regulating Ca2+ transients in the proximal colon displayed both similarities to and differences from the intramuscular type of ICC in the small intestine. Similarities and differences in Ca2+ release patterns might determine how ICC respond to neurotransmission in these two regions of the gastrointestinal tract.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Sung J Hwang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|