1
|
Xie D, Pan Y, Chen J, Mao C, Li Z, Qiu F, Yang L, Deng Y, Lu J. Association of genetic variants in soy isoflavones metabolism-related genes with decreased lung cancer risk. Gene 2024; 927:148732. [PMID: 38945312 DOI: 10.1016/j.gene.2024.148732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Soy isoflavones have been reported to exhibit anti-tumor effects. We hypothesize that genetic variants in soy isoflavone metabolism-related genes are associated with the risk of lung cancer. METHODS A two-stage case-control study design was conducted in this study. The discovery stage included 300 lung cancer cases and 600 healthy controls to evaluate the association of candidate genetic variants with lung cancer risk. The validation stage involved 1200 cases and 1200 controls to validate the associations found. Furthermore, qPCR was performed to assess the mRNA expression levels of different genotypes of the SNP. ELISA was used to explore the association between genotype and soy isoflavone levels, as well as the association between soy isoflavone levels and lung cancer risk. RESULTS A nonlinear association was observed between plasma soy isoflavone levels and lung cancer risk, with higher soy isoflavone levels associated with lower lung cancer risk (P < 0.001). The two-stage case-control study identified that UGT1A1 rs3755319 A > C was associated with decreased lung cancer risk (Recessive model: adjusted OR = 0.69, 95 %CI = 0.57-0.84, P < 0.001). Moreover, eQTL analysis showed that the expression level of UGT1A1 in the rs3755319 CC genotype was lower than in the AA + AC genotype (P < 0.05). The plasma concentration of soy isoflavones in the rs3755319 CC genotype was higher than in the AA + AC genotype (P = 0.008). CONCLUSIONS We identified a potentially functional SNP, UGT1A1 rs3755319 A > C, as being associated with decreased lung cancer risk. Further experiments will be needed to explore the mechanisms underlying the observed associations.
Collapse
Affiliation(s)
- Dongming Xie
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Yujie Pan
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Jinbin Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Chun Mao
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Zhi Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Fuman Qiu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Lei Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Yibin Deng
- Centre for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshaner Rd., Youjiang District, Baise 533000, PR China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, No. 18 Zhongshaner Rd., Youjiang District, Baise 533000, PR China.
| | - Jiachun Lu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
2
|
Mahmoudi F, Jalayeri MHT, Montaseri A, MohamedKhosroshahi L, Baradaran B. Microbial natural compounds and secondary metabolites as Immunomodulators: A review. Int J Biol Macromol 2024; 278:134778. [PMID: 39153680 DOI: 10.1016/j.ijbiomac.2024.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Immunomodulatory therapies are beneficial strategies for the improvement of immune system function. Today, due to the increasing prevalence of immune disorders, cancer, and new viral diseases, there is a greater need to introduce immunomodulatory compounds with more efficiency and fewer side effects. Microbial derivatives are fertile and attractive grounds for discovering lots of novel compounds with various medical properties. The discovery of many natural compounds derived from bacterial sources, such as secondary metabolites with promising immunomodulating activities, represents the importance of this topic in drug discovery and emphasizes the necessity for a coherent source of study in this area. Considering this need, in this review, we aim to focus on the current information about the immunomodulatory effects of bacterial secondary metabolites and natural immunomodulators derived from microorganisms.
Collapse
Affiliation(s)
- Fariba Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hadi Tajik Jalayeri
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Leila MohamedKhosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Liang H, Ren M, Zhang L, Mi H, Yu H, Huang D, Gu J, Teng T. Excessive Replacement of Fish Meal by Soy Protein Concentrate Resulted in Inhibition of Growth, Nutrient Metabolism, Antioxidant Capacity, Immune Capacity, and Intestinal Development in Juvenile Largemouth Bass ( Micropterus salmoides). Antioxidants (Basel) 2024; 13:809. [PMID: 39061878 PMCID: PMC11274161 DOI: 10.3390/antiox13070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of replacing 0% (SPC0), 25% (SPC25), 50% (SPC50), 75% (SPC75), and 100% (SPC100) of fish meal (FM) with soy protein concentrate (SPC) on the growth, nutritional metabolism, antioxidant capacity, and inflammatory factors in juvenile largemouth bass (Micropterus salmoides) (17.03 ± 0.01 g). After 56 days of culturing, various growth parameters including FW, WGR, and SGR were not significantly different among SPC0, SPC25, and SPC50 groups; however, they were significantly higher than those in SPC75 and SPC100 groups. Conversely, significantly lower FCR were determined for the SPC0, SPC25, and SPC50 groups compared with that for the SPC100 group; specifically, no significant difference among SPC0, SPC25, and SPC50 groups was found. Moreover, compared with SPC75 and SPC100 groups, a significantly higher FI was observed in the SPC0 group, whereas a significantly lower SR was observed in SPC100 compared with that in SPC0 and SPC25 groups. Compared with the SPC0 group, significantly lower mRNA levels of tor, rps6, 4ebp1, pparγ, and fas were found in SPC75 and SPC100. Additionally, the mRNA levels of cpt were significantly higher in SPC0, SPC25, and SPC50 groups than in SPC75 and SPC100 groups. Moreover, the mRNA levels of scd and acc remained unchanged for all the groups. Replacement of FM with SPC did not significantly affect the mRNA levels of gk, pk, and pepck. Compared with the SPC0 group, significantly decreased activities of CAT were observed in the SPC50, SPC75, and SPC100 groups, and significantly decreased activities of GSH-Px were observed in the SPC75 and SPC100 groups. In addition, significantly lower activity of SOD was observed in SPC100 compared with the other groups. Moreover, compared with the other groups, the SPC75 and SPC100 groups had significantly decreased and increased contents of GSH and MDA, respectively, while significantly lower mRNA levels of nrf2, cat, sod, and gsh-px were found in SPC50, SPC75, and SPC100; however, significantly higher mRNA levels of keap1 were observed in SPC75 and SPC100 groups. Additionally, significantly higher mRNA levels of il-8 and nf-κb were found in the SPC50, SPC75, and SPC100 groups compared with the SPC0 group. Conversely, significantly lower mRNA levels of il-10 and significantly higher mRNA levels of tnf-α were found in the SPC75 and SPC100 groups compared with the other groups. Compared with the SPC0 group, mucosal thickness and villus height were significantly decreased in the SPC75 and SPC100 groups. Collectively, SPC replacing 50% FM did not affect its growth of juvenile largemouth bass. However, SPC replacing 50% or more FM might inhibit antioxidant capacity and immune capacity to even threaten the SR, resulting in impaired intestinal development in replacing FM level of 75% or more.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Heng Yu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Tao Teng
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
4
|
He J, Liu X, Zhang J, Wang R, Cao X, Liu G. Gut microbiome-derived hydrolases-an underrated target of natural product metabolism. Front Cell Infect Microbiol 2024; 14:1392249. [PMID: 38915922 PMCID: PMC11194327 DOI: 10.3389/fcimb.2024.1392249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, there has been increasing interest in studying gut microbiome-derived hydrolases in relation to oral drug metabolism, particularly focusing on natural product drugs. Despite the significance of natural product drugs in the field of oral medications, there is a lack of research on the regulatory interplay between gut microbiome-derived hydrolases and these drugs. This review delves into the interaction between intestinal microbiome-derived hydrolases and natural product drugs metabolism from three key perspectives. Firstly, it examines the impact of glycoside hydrolases, amide hydrolases, carboxylesterase, bile salt hydrolases, and epoxide hydrolase on the structure of natural products. Secondly, it explores how natural product drugs influence microbiome-derived hydrolases. Lastly, it analyzes the impact of interactions between hydrolases and natural products on disease development and the challenges in developing microbial-derived enzymes. The overarching goal of this review is to lay a solid theoretical foundation for the advancement of research and development in new natural product drugs and personalized treatment.
Collapse
Affiliation(s)
- Jiaxin He
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Xiaofeng Liu
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
| | - Junming Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinyuan Cao
- People’s Hospital of Ningxia Hui Autonomous Region, Pharmacy Department, Yinchuan, China
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| | - Ge Liu
- Ningxia Medical University, School of Basic Medicine, Yinchuan, China
| |
Collapse
|
5
|
Sultana S, Foster KJ, Lawag IL, Lim LY, Hammer K, Locher C. Estrogenic Isoflavones in Clover Plants, Flower Nectar, Unripe Honeys and Mature Honeys: A Natural Biochemical Transformation of Isoflavones by Honeybees. Foods 2024; 13:1739. [PMID: 38890968 PMCID: PMC11171957 DOI: 10.3390/foods13111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
This study is the first to report on the presence of oestrogenic compounds in different clover flower nectar samples, in bee-deposited nectars collected from hive combs (unripe honey) and in mature honeys harvested from the same hives. The clover species investigated were two red clover (Trifolium pratense) cultivars, bred specifically for high isoflavone content, alongside a sainfoin (Onobrychis viciifolia) and a purple clover (T. purpureum) cultivar. A total of eight isoflavones, four of them non-glycosidic (biochanin A, formononetin, genistein and daidzein) the others glycosidic (sissotrin, ononin, genistin and daidzin), were targeted for identification and quantification in this study using high-performance thin-layer chromatography (HPTLC). Leaves and flower bracts of the clover samples were also investigated. Different isoflavone profiles were found across the four clover species and also in the different samples collected from each species indicating that, most likely due to the activity of honeybee (Apis mellifera) salivary enzymes, biochemical conversions take place when these bioactive compounds transition from flower nectar into ripe honey. Among the four investigated clover species, the two red clover cultivars, including their honeys, were found to contain higher levels of estrogenic compounds compared to other two cultivars.
Collapse
Affiliation(s)
- Sharmin Sultana
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (I.L.L.); (L.Y.L.)
| | - Kevin J. Foster
- School of Agriculture and Environment, University of Western Australia, Crawley 6009, Australia
| | - Ivan Lozada Lawag
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (I.L.L.); (L.Y.L.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (I.L.L.); (L.Y.L.)
| | - Katherine Hammer
- School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia;
- Cooperative Research Centre for Honeybee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (I.L.L.); (L.Y.L.)
- Cooperative Research Centre for Honeybee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia
| |
Collapse
|
6
|
Madjirebaye P, Peng F, Mueed A, Huang T, Mahamat B, Pahane MM, Xi Q, Chen X, Moussa K, Kadebe ZT, Otchom BB, Xu Y, Xie M, Xiong T, Peng Z. Exploring Impact of Probiotic-Fermented Soymilk on Dextran-Sulfate-Sodium-Induced Ulcerative Colitis via Modulating Inflammation and Gut Microbiota Profile. Mol Nutr Food Res 2024; 68:e2300586. [PMID: 38299716 DOI: 10.1002/mnfr.202300586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/29/2023] [Indexed: 02/02/2024]
Abstract
SCOPE Lactic acid bacteria with probiotic functions and their fermentation products play a role in regulating ulcerative colitis (UC). This study investigates the potential role of fermented soymilk (FSM4) rich in isoflavones on DSS-induced UC. METHODS AND RESULTS Mice received 3% DSS and are supplemented daily once for 1 week by NFSM and FSM4. DSS usually causes intestinal inflammation and alters the gut microbiota. FSM4 intervention improves the UC-related inflammation and gut microbiota alteration. It considerably decreases pro-inflammatories such as TNF-α, IL-1β, and IL-6 in serum and COX-2 and MPO in colon tissues and pathogenic bacteria (Escherichia-Shigella). This facilitates gut-healthy bacteria growth. These healthy bacteria negatively correlat with pro-inflammatory factors but positively associated with acetic acid, butyric acid, and propionic acid, which may act for PPAR-γ pathway activating and NF-κB p65 pathway inhibiting, lowering the risk of UC. Overall, FSM4 might alleviate UC and significantly reverse the dysbiosis of gut microbiota via the PPAR-γ activation. It could be a good alternative for developing functional food to protect against UC. CONCLUSION FSM4 attenuates intestinal inflammation and modulates the SCFA-producing bacteria growth, which enable the PPAR-γ activation to alleviate the UC target, which could be a dietary intervention strategy for gut health.
Collapse
Affiliation(s)
- Philippe Madjirebaye
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Fei Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Bechir Mahamat
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | | | - Qinghua Xi
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Kalli Moussa
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Zoua Tessou Kadebe
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Brahim Boy Otchom
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Yazhou Xu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| |
Collapse
|
7
|
Febriyanti RM, Levita J, Diantini A. Immunomodulatory Role of Plants and Their Constituents on the Management of Metabolic Disorders: An Evidence-Based Review. Drug Des Devel Ther 2024; 18:513-534. [PMID: 38415194 PMCID: PMC10898480 DOI: 10.2147/dddt.s442566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
The relationship between the immune system and metabolic diseases is complex and increasingly recognized as critical to understanding conditions like obesity, diabetes, and cardiovascular diseases. Modulation of the immune system in patients with metabolic disorders can offer several potential benefits. While the salutary impact of plant-derived bioactive compounds on metabolic and immune functions is acknowledged, there is a paucity of comprehensive reviews on the multifaceted and synergistic mechanisms through which these effects are mediated. This review elucidates the therapeutic potential of phytochemical formulations in ameliorating metabolic disorders and delineates their mechanistic implications on relevant biomarkers and immune modulation. Our analysis reveals a predominance of plant species, including Boswellia serrata, Cinnamomum cassia, Citrus bergamia, Coffea arabica, Ficus racemosa, Momordica charantia, Morus Alba, and Trigonella foenum-graecum, that have undergone clinical evaluation and have been substantiated to confer both metabolic and immunological benefits. The phytoconstituents contained in these plants exert their effects through a range of mechanisms, such as improving glucose regulation, reducing inflammatory responses, and modulating immune system. As such, these findings hold considerable promise for clinical and therapeutic translation and necessitate further empirical validation through randomized controlled trials and mechanistic elucidations to affirm the safety and efficacy of herbal formulations.
Collapse
Affiliation(s)
- Raden Maya Febriyanti
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 46363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 46363, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 46363, Indonesia
| |
Collapse
|
8
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
9
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
10
|
Ahn-Jarvis JH, Sosh D, Lombardo E, Lesinski GB, Conwell DL, Hart PA, Vodovotz Y. Short-Term Soy Bread Intervention Leads to a Dose-Response Increase in Urinary Isoflavone Metabolites and Satiety in Chronic Pancreatitis. Foods 2023; 12:foods12091762. [PMID: 37174299 PMCID: PMC10178207 DOI: 10.3390/foods12091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Patients with chronic pancreatitis (CP) are particularly vulnerable to nutrient malabsorption and undernutrition caused by the underlying pathology of their disease. Dietary intervention trials involving soy isoflavones in patients with CP are limited and isoflavone metabolites have not yet been reported. We hypothesized soy bread containing plant-based protein, dietary fiber, and isoflavones would be well-tolerated and restore gut functional capacity which would lead to isoflavone metabolites profiles like those of healthy populations. Participants (n = 9) received 1 week of soy bread in a dose-escalation design (1 to 3 slices/day) or a 4-week maximally tolerated dose (n = 1). Dietary adherence, satiety, and palatability were measured. Isoflavone metabolites from 24 h urine collections were quantified using high-performance liquid chromatography. A maximum dose of three slices (99 mg of isoflavones) of soy bread per day was achieved. Short-term exposure to soy bread showed a significant dose-response increase (p = 0.007) of total isoflavones and their metabolites in urine. With increasing slices of soy bread, dietary animal protein intake (p = 0.009) and perceived thirst (p < 0.001) significantly decreased with prolonged satiety (p < 0.001). In this study, adherence to short-term intervention with soy bread in CP patients was excellent. Soy isoflavones were reliably delivered. These findings provide the foundation for evaluating a well-characterized soy bread in supporting healthy nutrition and gut function in CP.
Collapse
Affiliation(s)
- Jennifer H Ahn-Jarvis
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Sosh
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Erin Lombardo
- College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory B Lesinski
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yael Vodovotz
- College of Food, Agricultural, and Environmental Sciences, Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
12
|
Soybean product consumption decreases risk of gastric cancer: results from the Health Examinees Study. Eur J Nutr 2023; 62:1743-1753. [PMID: 36820884 DOI: 10.1007/s00394-023-03115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Epidemiological findings on the association between soybean product consumption and gastric cancer risk remain inconsistent. We evaluated the relationship between soybean product consumption and the risk of gastric cancer in a prospective cohort study in Korea. METHODS This prospective cohort study included a total of 139,267 participants aged 40-69 years from the Health Examinees-Gem (HEXA-G) study between 2004 and 2013. Information on cancer diagnosis was retrieved from the Korea Central Cancer Registry until 31 December 2018. Multivariate hazard ratios (HRs) and 95% of confidence intervals (CIs) for the risk of gastric cancer according to the consumption of soybean products were estimated using Cox proportional hazards models. RESULTS A total of 767 incident cases of gastric cancer occurred over an average follow-up period of 9.21 years. We found that men who consumed two servings per week had 37% lower risk of gastric cancer compared with who consume those who almost never consumed (HR for tofu consumption of more than two servings/week vs. almost never consumed was 0.63 (95% CI 0.45, 0.89); p for trend = 0.04). Among men with a BMI of less than 25 kg/m2, increased consumption of soybean paste (p for trend = 0.02) and tofu (HR 0.51 (95% CI 0.32, 0.82 for more than two servings/week vs. almost never consumed); p for trend = 0.01) was associated with decreased risk of gastric cancer. CONCLUSION Our results suggest that a high consumption of soybean products has a protective effect against gastric cancer.
Collapse
|
13
|
Yao L, Blasi J, Shippy T, Brice R. Transcriptomic analysis reveals the immune response of human microglia to a soy protein and collagen hybrid bioscaffold. Heliyon 2023; 9:e13352. [PMID: 36825181 PMCID: PMC9941947 DOI: 10.1016/j.heliyon.2023.e13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory reactions resulting from spinal cord injury cause significant secondary damage. Microglial cells activate CD4+ T cells via major histocompatibility complex class II (MHCII) molecules. The activated T cells lead to neural tissue damage and demyelination at early stages of spinal cord injury. Control of the inflammatory response may attenuate the injury process. In this study, we compared gene expression in human microglia grown on soy protein-collagen hybrid scaffolds versus collagen scaffolds. Differentially expressed genes (DEGs) were subjected to gene ontology (GO) and pathway enrichment assays. Among down-regulated genes, the "antigen processing and presentation" pathway shows enrichment, primarily due to the down-regulation of MHCII molecules. The DEGs in this pathway show enrichment of binding sites for several transcription factors, with CIITA and IRF8 being the top candidates. The down-regulation of MHCII along with the significant enrichment of the GO term "focal adhesion" among the up-regulated genes helps explain the higher motility of microglial cells on the hybrid scaffold compared with that on the collagen scaffold. Up-regulated genes associated with "focal adhesion" include DNM2, AHNAK, and HYOU1, which have been previously implicated in increased cell motility. Overall, our study indicates that the use of hybrid scaffolds containing soy protein and collagen may modulate the immune response of wounded neural tissue.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, United States,Corresponding author.
| | - Jacques Blasi
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, United States
| | - Teresa Shippy
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS 66506, United States
| | - Ryan Brice
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, United States
| |
Collapse
|
14
|
Li W, Twaddle NC, Spray B, Nounamo B, Monzavi-Karbassi B, Hakkak R. Feeding Soy Protein Concentrates with Low and High Isoflavones Alters 9 and 18 Weeks Serum Isoflavones and Inflammatory Protein Levels in Lean and Obese Zucker Rats. J Med Food 2023; 26:120-127. [PMID: 36720082 DOI: 10.1089/jmf.2022.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Soy's anti-inflammatory properties contribute to the health benefits of soy foods. This study was designed to investigate the bioavailability of soy isoflavones and whether the isoflavone content of soy protein concentrate diet would affect serum inflammatory proteins in an obese (fa/fa) Zucker rat model. Six-week-old male lean (L) and obese (O) Zucker rats were fed a casein control diet (C), soy protein concentrate with low isoflavones (SPC-LIF), or soy protein concentrate with high isoflavones (SPC-HIF) (7 rats/dietary group) before being killed at 9 and 18 weeks. Serum samples were analyzed for isoflavones and inflammatory proteins. At both time points, serum total (aglycone + conjugates) genistein, daidzein, and equol concentrations were significantly higher in L-SPC-HIF and O-SPC-HIF groups compared with L-SPC-LIF and O-SPC-LIF groups, respectively, and were not detectable in either L-C or O-C groups. At week 9, serum C-reactive protein (CRP) concentration was significantly lower in O-SPC-HIF group compared with O-C and O-SPC-LIF group, whereas proteins tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels did not differ between any groups. At week 18, serum CRP levels in both O-SPC-HIF and O-SPC-LIF groups were significantly lower compared with the O-C group. TNF-α level was higher in the O-SPC-LIF group compared with both O-C and O-SPC-HIF groups, whereas IL-6 levels were not different between any groups. Taken together, feeding Zucker rats SPC-LIF and SPC-HIF diets led to different serum isoflavone concentrations in both L and O Zucker rats and altered CRP and TNF-α levels in obese Zucker rats compared with controls.
Collapse
Affiliation(s)
- Wei Li
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nathan C Twaddle
- Division of Biochemical Toxicology of National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Beverly Spray
- Division of Biostatistics Core, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Bernice Nounamo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Division of Biostatistics Core, Arkansas Children's Research Institute, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
15
|
Antidiabetic Activity of Mung Bean or Vigna radiata (L.) Wilczek Seeds in Alloxan-Induced Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6990263. [PMID: 36337582 PMCID: PMC9629934 DOI: 10.1155/2022/6990263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Introduction Despite the development of oral hypoglycemic medications, diabetes and its associated complications continue to be significant clinical issues. The purpose of this study was to examine the antidiabetic effects of Vigna radiata (L.) Wilczek seeds in mice that had been given alloxan to cause diabetes. Methods In Swiss albino mice, diabetes was brought on by a single intraperitoneal injection of the drug alloxan (150 mg/kg). For 14 days, glibenclamide (5 mg/kg) and methanol extract of V. radiata seeds (100, 200, and 400 mg/kg) were given orally. Following oral administration of V. radiata to mice, the blood glucose levels (BGL) and body weight were measured at 7 and 14 days. The mice were sacrificed at the end of the trial, and blood samples were taken for the evaluation of insulin, glycated hemoglobin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), high-density lipoprotein (HDL), total cholesterol (TC), and triglyceride (TG) levels. It was determined how much glycogen was present in the liver. Additionally, the total phenolic and flavonoid contents of V. radiata were determined, along with the in vitro DPPH (2, 2 diphenyl-1-picrylhrazyl) free radical-scavenging activity. P < 0.05 was chosen as the cutoff for statistical significance. Results Following oral administration of V. radiata for 14 days, diabetic mice's BGL and bad cholesterol (TC and TG) levels significantly decreased, while HDL levels increased. Treatment with V. radiata significantly decreased the levels of AST, ALT, and glycated hemoglobin when compared with diabetes control. On the other hand, it raised insulin levels and the amount of liver glycogen. V. radiata underwent phytochemical analysis, which identified the presence of tannins, saponins, phenols, alkaloids, terpenoids, steroids, flavonoids, and glycosides. Per gram of V. radiata seed extract, the total phenolic content was 43.12 ± 3.14 mg of gallic acid equivalents, while the total flavonoid content was 38.35 ± 2.6 mg of quercetin equivalents. Ascorbic acid was shown to have an IC50 value of 18.64 µg/ml during a DPPH-scavenging assay, while V. radiata had an IC50 value of 73.35 µg/ml. Conclusion According to the findings of the current study, the methanolic extract of the seeds from the plant V. radiata possesses significant antidiabetic characteristics that are on par with those of the commonly used drug glibenclamide. Hence, V. radiata seems to be effective as a natural antidiabetic.
Collapse
|
16
|
Zhao Y, Zhong X, Yan J, Sun C, Zhao X, Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front Microbiol 2022; 13:956378. [PMID: 36246222 PMCID: PMC9560768 DOI: 10.3389/fmicb.2022.956378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.
Collapse
Affiliation(s)
- Yucui Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyuan Yan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xin Zhao,
| | - Xiaoying Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Xiaoying Wang,
| |
Collapse
|
17
|
Yu Q, Newsome RC, Beveridge M, Hernandez MC, Gharaibeh RZ, Jobin C, Thomas RM. Intestinal microbiota modulates pancreatic carcinogenesis through intratumoral natural killer cells. Gut Microbes 2022; 14:2112881. [PMID: 35980869 PMCID: PMC9397420 DOI: 10.1080/19490976.2022.2112881] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Preclinical data demonstrate that the gut microbiota can promote pancreatic ductal adenocarcinoma (PDAC), but mechanisms remain unclear. We hypothesized that intestinal microbiota alters anti-tumor innate immunity response to facilitate PDAC progression. Human PDAC L3.6pl cells were heterotopically implanted into Rag1-/- mice after microbiota depletion with antibiotics, while syngeneic murine PDAC Pan02 cells were implanted intrapancreatic into germ-free (GF) C57BL/6 J mice. Natural killer (NK) cells and their IFNγ expression were quantitated by flow cytometry. NK cells were depleted in vivo using anti-Asialo GM1 antibody to confirm the role of NK cells. Bacteria-free supernatant from SPF and GF mice feces was used to test its effect on NK-92MI cell anti-tumor response in vitro. SPF and ex-GF mice (reconstituted with SPF microbiota) developed larger PDAC tumors with decreased NK cell tumor infiltration and IFNγ expression versus GF-Rag1-/-. Microbiota-induced PDAC tumorigenesis was attenuated by antibiotic exposure, a process reversed following NK cell depletion in both Rag1-/- and C57BL/6 J mice. Compared to GF, SPF-Rag1-/- abiotic stool culture supernatant inhibited NK-92MI cytotoxicity, migration, and anti-cancer related gene expression. Gut microbiota promotes PDAC tumor progression through modulation of the intratumoral infiltration and activity of NK cells.
Collapse
Affiliation(s)
- Qin Yu
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rachel C. Newsome
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mark Beveridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maria C. Hernandez
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA,Christian Jobin Department of Medicine, University of Florida, 2033 Mowry Rd, 461, Gainesville, Florida32610, USA
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA,CONTACT Ryan M. Thomas Department of Surgery, University of Florida, PO Box 100109, Gainesville, Florida32610, USA
| |
Collapse
|
18
|
Sharma S, Malhotra L, Yadav P, Mishra V, Sharma RS, Abdul Samath E. Genistein: A novel inhibitor of IL-6/IL-6R interface of the Interleukin-6–mediated STAT3 dependent pathway of carcinogenesis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Aboushanab SA, Shevyrin VA, Slesarev GP, Melekhin VV, Shcheglova AV, Makeev OG, Kovaleva EG, Kim KH. Antioxidant and Cytotoxic Activities of Kudzu Roots and Soy Molasses against Pediatric Tumors and Phytochemical Analysis of Isoflavones Using HPLC-DAD-ESI-HRMS. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060741. [PMID: 35336625 PMCID: PMC8955742 DOI: 10.3390/plants11060741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 05/08/2023]
Abstract
Pediatric solid tumors (PSTs) are life-threatening and can lead to high morbidity and mortality rates in children. Developing novel remedies to treat these tumors, such as glioblastoma multiforme and sarcomas, such as osteosarcoma, and rhabdomyosarcoma, is challenging, despite immense attempts with chemotherapeutic or radiotherapeutic interventions. Soy (Glycine max) and kudzu roots (KR) (Pueraria spp.) are well-known phytoestrogenic botanical sources that contain high amounts of naturally occurring isoflavones. In the present study, we investigated the antioxidant and cytotoxic effects of the extracts of KR and soy molasses (SM) against PSTs. The green extraction of isoflavones from KR and SM was performed using natural deep eutectic solvents. The extracts were subsequently analyzed by high-performance liquid chromatography (HPLC)-diode array detector (DAD) coupled with high-resolution (HR) mass spectrometry (MS), which identified 10 isoflavones in KR extracts and 3 isoflavones in the SM extracts. Antioxidant and cytotoxic activities of KR and SM extracts were assessed against glioblastoma multiforme (A-172), osteosarcoma (HOS), and rhabdomyosarcoma (Rd) cancer cell lines. The KR and SM extracts showed satisfactory cytotoxic effects (IC50) against the cancer cell lines tested, particularly against Rd cancer cell lines, in a dose-dependent manner. Antioxidant activity was found to be significantly (p ≤ 0.05) higher in KR than in SM, which was consistent with the results of the cytotoxic activity observed with KR and SM extracts against glioblastoma and osteosarcoma cells. The total flavonoid content and antioxidant activities of the extracts were remarkably attributed to the isoflavone content in the KR and SM extracts. This study provides experimental evidence that HPLC-ESI-HRMS is a suitable analytical approach to identify isoflavones that exhibit potent antioxidant and anticancer potential against tumor cells, and that KR and SM, containing many isoflavones, can be a potential alternative for health care in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
| | - Grigory P Slesarev
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
| | - Vsevolod V Melekhin
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Department of Biology, Ural State Medical University, Repina 3, 620014 Yekaterinburg, Russia
- Department of Gene and Cell Therapy, Institute for Medical Cell Technologies, Karla Marksa 22a, 620026 Yekaterinburg, Russia
| | - Anna V Shcheglova
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Department of Biology, Ural State Medical University, Repina 3, 620014 Yekaterinburg, Russia
| | - Oleg G Makeev
- Department of Biology, Ural State Medical University, Repina 3, 620014 Yekaterinburg, Russia
- Department of Gene and Cell Therapy, Institute for Medical Cell Technologies, Karla Marksa 22a, 620026 Yekaterinburg, Russia
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
- Innovative Center of Chemical and Pharmaceutical Technologies, Laboratory of Organic Synthesis, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
20
|
Goh YX, Jalil J, Lam KW, Husain K, Premakumar CM. Genistein: A Review on its Anti-Inflammatory Properties. Front Pharmacol 2022; 13:820969. [PMID: 35140617 PMCID: PMC8818956 DOI: 10.3389/fphar.2022.820969] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
Nowadays, non-resolving inflammation is becoming a major trigger in various diseases as it plays a significant role in the pathogenesis of atherosclerosis, asthma, cancer, obesity, inflammatory bowel disease, chronic obstructive pulmonary disease, neurodegenerative disease, multiple sclerosis, and rheumatoid arthritis. However, prolonged use of anti-inflammatory drugs is usually accompanied with undesirable effects and hence more patients tend to seek for natural compounds as alternative medicine. Considering the fact above, there is an urgency to discover and develop potential novel, safe and efficacious natural compounds as drug candidates for future anti-inflammatory therapy. Genistein belongs to the flavonoid family, in the subgroup of isoflavones. It is a phytoestrogen that is mainly derived from legumes. It is a naturally occurring chemical constituent with a similar chemical structure to mammalian estrogens. It is claimed to exert many beneficial effects on health, such as protection against osteoporosis, reduction in the risk of cardiovascular disease, alleviation of postmenopausal symptoms and anticancer properties. In the past, numerous in vitro and in vivo studies have been conducted to investigate the anti-inflammatory potential of genistein. Henceforth, this review aims to summarize the anti-inflammatory properties of genistein linking with the signaling pathways and mediators that are involved in the inflammatory response as well as its toxicity profile. The current outcomes are analysed to highlight the prospect as a lead compound for drug discovery. Data was collected using PubMed, ScienceDirect, SpringerLink and Scopus databases. Results showed that genistein possessed strong anti-inflammatory activities through inhibition of various signaling pathways such as nuclear factor kappa-B (NF-κB), prostaglandins (PGs), inducible nitric oxide synthase (iNOS), proinflammatory cytokines and reactive oxygen species (ROS). A comprehensive assessment of the mechanism of action in anti-inflammatory effects of genistein is included. However, evidence for the pharmacological effects is still lacking. Further studies using various animal models to assess pharmacological effects such as toxicity, pharmacokinetics, pharmacodynamics, and bioavailability studies are required before clinical studies can be conducted. This review will highlight the potential use of genistein as a lead compound for future drug development as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Yu Xian Goh
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chandini Menon Premakumar
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Bajerska J, Łagowska K, Mori M, Reguła J, Skoczek-Rubińska A, Toda T, Mizuno N, Yamori Y. A Meta-Analysis of Randomized Controlled Trials of the Effects of Soy Intake on Inflammatory Markers in Postmenopausal Women. J Nutr 2022; 152:5-15. [PMID: 34642749 DOI: 10.1093/jn/nxab325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Elevated concentrations of serum inflammatory cytokines, specifically TNF-α and IL-6, as well as C-reactive protein (CRP), are commonly observed after menopause. OBJECTIVES Because soy isoflavones may have some anti-inflammatory potential, the aim of the present systematic review and meta-analysis of randomized controlled trials (RCTs) was to explore whether soy intake affects serum markers of inflammation in postmenopausal women. METHODS PubMed, Web of Science, and the Cochrane Library were systematically searched up to August 2020. All RCTs that met the following criteria were included: 1) studies of the effects of soy intake on inflammatory markers; 2) any date of publication; 3) conducted on postmenopausal women; 4) with sufficient quantitative data for meta-analysis. Effect sizes were expressed as weighted mean differences (WMDs) and 95% CIs. A total of 24 RCTs assessing the effects of soy intake on serum concentrations of CRP, TNF-α, and IL-6 were included in the analysis. A random-effects model was used to determine the overall effect. RESULTS Soy supplementation significantly reduced CRP by 0.11 mg/L in postmenopausal women (95% CI: -0.22, -0.004 mg/L; P = 0.0414), but did not affect IL-6 or TNF-α. Significant reductions in CRP concentration occurred when natural soy products were given (WMD: -0.23 mg/L; 95% CI: -0.29, -0.17 mg/L; P < 0.001). This is equivalent to a ∼9% reduction in CRP concentration from baseline. CONCLUSIONS Although our meta-analysis found evidence that soy products significantly reduce CRP concentrations in postmenopausal women, the mechanisms by which soy foods and their constituents affect inflammatory biomarkers still need to be clarified.This systematic review was registered at www.crd.york.ac.uk/prospero/ as CRD42020179232.
Collapse
Affiliation(s)
- Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Karolina Łagowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Mari Mori
- Department of Health Management, School of Health Studies, Tokai University, Hiratsukashi, Kanagawa, Japan
| | - Julita Reguła
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | | | - Toshiya Toda
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Naho Mizuno
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
22
|
Tamang JP, Jeyaram K, Rai AK, Mukherjee PK. Diversity of beneficial microorganisms and their functionalities in community-specific ethnic fermented foods of the Eastern Himalayas. Food Res Int 2021; 148:110633. [PMID: 34507776 DOI: 10.1016/j.foodres.2021.110633] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
The Eastern Himalayan regions of India, Nepal and Bhutan have more than 200 varieties of unsurpassed ethnic fermented foods and alcoholic beverages, which are lesser known outside the world. However, these ethnic foods are region- and community-specific, unique and some are exotic and rare, which include fermented vegetables, bamboo shoots, soybeans, cereals, milk (cow and yak), meats, fishes, and cereal-based alcoholic beverages and drinks. Ethnic communities living in the Eastern Himalayas have invented the indigenous knowledge of utilization of unseen microorganisms present in and around the environment for preservation and fermentation of perishable plant or animal substrates to obtain organoleptically desirable and culturally acceptable ethnic fermented food and alcoholic beverages. Some ethnic fermented products and traditionally prepared dry starters for production of alcoholic beverages of North Eastern states of India and Nepal were scientifically studied and reported till date, and however, limited publications are available on microbiological and nutritional aspects of ethnic fermented foods of Bhutan except on few products. Most of the beneficial microorganisms isolated from some ethnic fermented foods of the EH are listed in microbial food cultures (MFC) safe inventory. This study is aimed to review the updates on the beneficial importance of abundant microbiota and health-promoting benefits and functionalities of some ethnic fermented foods of the Eastern Himalayan regions of North East India, Nepal and Bhutan.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, Sikkim University, Science Building, Tadong, Gangtok 737102, Sikkim, India.
| | - Kumaraswamy Jeyaram
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| | - Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| |
Collapse
|
23
|
Wang X, Ha D, Yoshitake R, Chan YS, Sadava D, Chen S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int J Mol Sci 2021; 22:8798. [PMID: 34445499 PMCID: PMC8395949 DOI: 10.3390/ijms22168798] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Xenoestrogens and phytoestrogens are referred to as "foreign estrogens" that are produced outside of the human body and have been shown to exert estrogen-like activity. Xenoestrogens are synthetic industrial chemicals, whereas phytoestrogens are chemicals present in the plant. Considering that these environmental estrogen mimics potentially promote hormone-related cancers, an understanding of how they interact with estrogenic pathways in human cells is crucial to resolve their possible impacts in cancer. Here, we conducted an extensive literature evaluation on the origins of these chemicals, emerging research techniques, updated molecular mechanisms, and ongoing clinical studies of estrogen mimics in human cancers. In this review, we describe new applications of patient-derived xenograft (PDX) models and single-cell RNA sequencing (scRNA-seq) techniques in shaping the current knowledge. At the molecular and cellular levels, we provide comprehensive and up-to-date insights into the mechanism of xenoestrogens and phytoestrogens in modulating the hallmarks of cancer. At the systemic level, we bring the emerging concept of window of susceptibility (WOS) into focus. WOS is the critical timing during the female lifespan that includes the prenatal, pubertal, pregnancy, and menopausal transition periods, during which the mammary glands are more sensitive to environmental exposures. Lastly, we reviewed 18 clinical trials on the application of phytoestrogens in the prevention or treatment of different cancers, conducted from 2002 to the present, and provide evidence-based perspectives on the clinical applications of phytoestrogens in cancers. Further research with carefully thought-through concepts and advanced methods on environmental estrogens will help to improve understanding for the identification of environmental influences, as well as provide novel mechanisms to guide the development of prevention and therapeutic approaches for human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (X.W.); (D.H.); (R.Y.); (Y.S.C.); (D.S.)
| |
Collapse
|
24
|
Dini I, Laneri S. Spices, Condiments, Extra Virgin Olive Oil and Aromas as Not Only Flavorings, but Precious Allies for Our Wellbeing. Antioxidants (Basel) 2021; 10:868. [PMID: 34071441 PMCID: PMC8230008 DOI: 10.3390/antiox10060868] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Spices, condiments and extra virgin olive oil (EVOO) are crucial components of human history and nutrition. They are substances added to foods to improve flavor and taste. Many of them are used not only to flavor foods, but also in traditional medicine and cosmetics. They have antioxidant, antiviral, antibiotic, anticoagulant and antiinflammatory properties and exciting potential for preventing chronic degenerative diseases such as cardiomyopathy and cancer when used in the daily diet. Research and development in this particular field are deeply rooted as the consumer inclination towards natural products is significant. It is essential to let consumers know the beneficial effects of the daily consumption of spices, condiments and extra virgin olive oil so that they can choose them based on effects proven by scientific works and not by the mere illusion that plant products are suitable only because they are natural and not chemicals. The study begins with the definition of spices, condiments and extra virgin olive oil. It continues by describing the pathologies that can be prevented with a spicy diet and it concludes by considering the molecules responsible for the beneficial effects on human health (phytochemical) and their eventual transformation when cooked.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | | |
Collapse
|
25
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
26
|
Raffner Basson A, Gomez-Nguyen A, LaSalla A, Buttó L, Kulpins D, Warner A, Di Martino L, Ponzani G, Osme A, Rodriguez-Palacios A, Cominelli F. Replacing Animal Protein with Soy-Pea Protein in an "American Diet" Controls Murine Crohn Disease-Like Ileitis Regardless of Firmicutes: Bacteroidetes Ratio. J Nutr 2021; 151:579-590. [PMID: 33484150 PMCID: PMC7948210 DOI: 10.1093/jn/nxaa386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The current nutritional composition of the "American diet" (AD; also known as Western diet) has been linked to the increasing incidence of chronic diseases, including inflammatory bowel disease (IBD), namely Crohn disease (CD). OBJECTIVES This study investigated which of the 3 major macronutrients (protein, fat, carbohydrates) in the AD has the greatest impact on preventing chronic inflammation in experimental IBD mouse models. METHODS We compared 5 rodent diets designed to mirror the 2011-2012 "What We Eat in America" NHANES. Each diet had 1 macronutrient dietary source replaced. The formulated diets were AD, AD-soy-pea (animal protein replaced by soy + pea protein), AD-CHO ("refined carbohydrate" by polysaccharides), AD-fat [redistribution of the ω-6:ω-3 (n-6:n-3) PUFA ratio; ∼10:1 to 1:1], and AD-mix (all 3 "healthier" macronutrients combined). In 3 separate experiments, 8-wk-old germ-free SAMP1/YitFC mice (SAMP) colonized with human gut microbiota ("hGF-SAMP") from CD or healthy donors were fed an AD, an AD-"modified," or laboratory rodent diet for 24 wk. Two subsequent dextran sodium sulfate-colitis experiments in hGF-SAMP (12-wk-old) and specific-pathogen-free (SPF) C57BL/6 (20-wk-old) mice, and a 6-wk feeding trial in 24-wk-old SPF SAMP were performed. Intestinal inflammation, gut metagenomics, and MS profiles were assessed. RESULTS The AD-soy-pea diet resulted in lower histology scores [mean ± SD (56.1% ± 20.7% reduction)] in all feeding trials and IBD mouse models than did other diets (P < 0.05). Compared with the AD, the AD-soy-pea correlated with increased abundance in Lactobacillaceae and Leuconostraceae (1.5-4.7 log2 and 3.0-5.1 log2 difference, respectively), glutamine (6.5 ± 0.8 compared with 3.9 ± 0.3 ng/μg stool, P = 0.0005) and butyric acid (4:0; 3.3 ± 0.5 compared with 2.54 ± 0.4 ng/μg stool, P = 0.006) concentrations, and decreased linoleic acid (18:2n-6; 5.4 ± 0.4 compared with 8.6 ± 0.3 ng/μL plasma, P = 0.01). CONCLUSIONS Replacement of animal protein in an AD by plant-based sources reduced the severity of experimental IBD in all mouse models studied, suggesting that similar, feasible adjustments to the daily human diet could help control/prevent IBD in humans.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Adrian Gomez-Nguyen
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Alexandria LaSalla
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ludovica Buttó
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Danielle Kulpins
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alexandra Warner
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Luca Di Martino
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Gina Ponzani
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Abdullah Osme
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
27
|
Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants (Basel) 2021; 10:188. [PMID: 33525629 PMCID: PMC7911950 DOI: 10.3390/antiox10020188] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols' impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole "microbiota" and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).
Collapse
Affiliation(s)
| | | | | | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (M.M.); (I.D.); (T.T.)
| |
Collapse
|
28
|
Gómez-Zorita S, González-Arceo M, Fernández-Quintela A, Eseberri I, Trepiana J, Portillo MP. Scientific Evidence Supporting the Beneficial Effects of Isoflavones on Human Health. Nutrients 2020; 12:nu12123853. [PMID: 33348600 PMCID: PMC7766685 DOI: 10.3390/nu12123853] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Isoflavones are phenolic compounds with a chemical structure similar to that of estradiol. They are present in several vegetables, mainly in legumes such as soy, white and red clover, alfalfa and beans. The most significant food source of isoflavones in humans is soy-derived products. Isoflavones could be used as an alternative therapy for pathologies dependent on hormonal disorders such as breast and prostate cancer, cardiovascular diseases, as well as to minimize menopausal symptoms. According to the results gathered in the present review, it can be stated that there is scientific evidence showing the beneficial effect of isoflavones on bone health and thus in the prevention and treatment of osteoporosis on postmenopausal women, although the results do not seem entirely conclusive as there are discrepancies among the studies, probably related to their experimental designs. For this reason, the results should be interpreted with caution, and more randomized clinical trials are required. By contrast, it seems that soy isoflavones do not lead to a meaningful protective effect on cardiovascular risk. Regarding cancer, scientific evidence suggests that isoflavones could be useful in reducing the risk of suffering some types of cancer, such as breast and endometrial cancer, but further studies are needed to confirm these results. Finally, isoflavones could be useful in reducing hot flushes associated with menopause. However, a limitation in this field is that there is still a great heterogeneity among studies. Lastly, with regard to isoflavone consumption safety, it seems that they are safe and that the most common adverse effect is mild and occurs at the gastrointestinal level.
Collapse
Affiliation(s)
- Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01002 Vitoria, Spain
| | - Maitane González-Arceo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01002 Vitoria, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01002 Vitoria, Spain
- Correspondence: (I.E.); (J.T.)
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01002 Vitoria, Spain
- Correspondence: (I.E.); (J.T.)
| | - María Puy Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (S.G.-Z.); (M.G.-A.); (A.F.-Q.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01002 Vitoria, Spain
| |
Collapse
|
29
|
Mukherjee D, DiVincenzo MJ, Torok M, Choueiry F, Kumar RJ, Deems A, Miller JL, Hinton A, Geraghty C, Maranon JA, Kulp SK, Coss C, Carson WE, Conwell DL, Hart PA, Cooperstone JL, Mace TA. Soy-tomato enriched diet reduces inflammation and disease severity in a pre-clinical model of chronic pancreatitis. Sci Rep 2020; 10:21824. [PMID: 33311549 PMCID: PMC7733503 DOI: 10.1038/s41598-020-78762-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pancreatitis (CP) is a fibro-inflammatory syndrome in individuals who develop persistent pathological responses to parenchymal injury or stress. Novel therapeutic or dietary interventions that could lessen inflammation in this disease could significantly improve quality of life in patients with CP. Complex dietary foods like soy and tomatoes are composed of active metabolites with anti-inflammatory effects. Data from our group reports that bioactive agents in soy and tomatoes can reduce pro-inflammatory cytokines and suppressive immune populations. Additionally, our team has developed a novel soy-tomato juice currently being studied in healthy individuals with no toxicities, and good compliance and bioavailability. Thus, we hypothesize that administration of a soy-tomato enriched diet can reduce inflammation and severity of CP. C57BL/6 mice were injected intraperitoneally with 50 μg/kg caeurlein (7 hourly injections, twice weekly) for 6 weeks to induce CP. After 4 weeks of caerulein injections, mice were administered a control or a soy-tomato enriched diet for 2 weeks. Disease severity was measured via immunohistochemical analysis of pancreata measuring loss of acini, fibrosis, inflammation, and necrosis. Serum lipase and amylase levels were analyzed at the end of the study. Inflammatory factors in the serum and pancreas, and immune populations in the spleen of mice were analyzed by cytokine multiplex detection, qRT-PCR, and flow cytometry respectively. Infra-red (IR) sensing of mice was used to monitor spontaneous activity and distress of mice. Mice fed a soy-tomato enriched diet had a significantly reduced level of inflammation and severity of CP (p = 0.032) compared to mice administered a control diet with restored serum lipase and amylase levels (p < 0.05). Mice with CP fed a soy-tomato diet had a reduction in inflammatory factors (TNF-α, IL-1β, IL-5) and suppressive immune populations (myeloid-derived suppressor cells; MDSC) compared to control diet fed mice (p < 0.05). Infra-red sensing to monitor spontaneous activity of mice showed that soy-tomato enriched diet improved total activity and overall health of mice with CP (p = 0.055) and CP mice on a control diet were determined to spend more time at rest (p = 0.053). These pre-clinical results indicate that a soy-tomato enriched diet may be a novel treatment approach to reduce inflammation and pain in patients with CP.
Collapse
Affiliation(s)
| | - Mallory J DiVincenzo
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, USA
| | - Molly Torok
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Fouad Choueiry
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Rahul J Kumar
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Anna Deems
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Jenna L Miller
- Department of Food Science and Technology, The Ohio State University, Columbus, USA
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, USA
| | - Connor Geraghty
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - Samuel K Kulp
- College of Pharmacy, The Ohio State University, Columbus, USA
| | | | | | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W 12th Ave., Columbus, OH, 43210, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W 12th Ave., Columbus, OH, 43210, USA
| | - Jessica L Cooperstone
- Department of Food Science and Technology, The Ohio State University, Columbus, USA
- Departments of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas A Mace
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA.
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, 420 W 12th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Jenab A, Roghanian R, Emtiazi G. Bacterial Natural Compounds with Anti-Inflammatory and Immunomodulatory Properties (Mini Review). Drug Des Devel Ther 2020; 14:3787-3801. [PMID: 32982183 PMCID: PMC7509312 DOI: 10.2147/dddt.s261283] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Inflammation is part of the body's complex biological response to harmful stimuli such as damaged cells, pathogens, or irritants. It is a protective response involving blood cells, immune cells, and molecular mediators. The inflammation not only can eliminate the primary cause of cell injury but also clears out necrotic cells, tissue damaged from the original insults and inflammatory process. Furthermore, it can initiate tissue repair. Pro-inflammatory cytokines are produced predominantly by activated macrophages and are involved in the up-regulation of inflammatory reactions. They are involved in further regulating inflammatory reactions. There is ample evidence that some pro-inflammatory cytokines, such as interleukin 1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), are involved in the pathological pain process. Some of the natural compounds promote cytokines production and inhibit inflammatory responses. The natural compounds which are produced from microorganisms such as omega-3 fatty acid, cyclic peptide, antimicrobial peptide, oligosaccharides, and polysaccharides can reduce inflammation and could be easily incorporated into the diet without any adverse effects. For example, SCFA (short-chain fatty acids), peptide bacteriocin, and polycyclic peptide bacteriocin (nisin) could be used in the treatment of atherosclerosis, orthopedic postoperative infections, and mycobacterium tuberculosis infection, respectively. Also, fatty acids (saturated and unsaturated fatty acids) can be introduced as anti-inflammatory drugs. This review article summarizes bacterial natural compounds with modulating effects on cytokines that are surveyed which may have potential anti-inflammatory drug-like activity.
Collapse
Affiliation(s)
- Anahita Jenab
- Biological Science and Technology, Department of Cellular and Microbiology, University of Isfahan, Hezar Jerib, Isfahan, Iran
| | - Rasoul Roghanian
- Biological Science and Technology, Department of Cellular and Microbiology, University of Isfahan, Hezar Jerib, Isfahan, Iran
| | - Giti Emtiazi
- Biological Science and Technology, Department of Cellular and Microbiology, University of Isfahan, Hezar Jerib, Isfahan, Iran
| |
Collapse
|
31
|
Sarkar N, Bose S. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds. Acta Biomater 2020; 114:407-420. [PMID: 32652224 DOI: 10.1016/j.actbio.2020.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023]
Abstract
Recent challenges in post-surgical bone tumor management have elucidated the need for a multifunctional scaffold, which can be used for residual tumor-cell suppression, defect repair, and simultaneous bone regeneration. In this perspective, 3D printing allows to create a wide variety of patient-specific implant with complex porous architecture and compatible mechanical strength to that of cancellous bone. Here, a multifunctional bone graft substitute is designed by incorporating the three primary soy isoflavones: genistein, daidzein, and glycitein onto a 3D printed (3DP) tricalcium phosphate (TCP) scaffolds with designed pores, endowing them with in vitro chemopreventive, bone-cell proliferating and immune-modulatory potential. The interconnected porosity and biodegradability of 3DP TCP ceramics have allowed controlled release kinetics of genistein, daidzein and glycitein in acidic and physiological buffer medium for 16 days, which is fitted with Korsmeyer-Peppas model. Presence of genistein, a well-known natural biomolecule shows a 90% reduction in vitro osteosarcoma (MG-63) cell viability and proliferation after 11 days. Meanwhile, daidzein, the other primary isoflavone, promotes in vitro cellular attachment and enhances viability and proliferation of human fetal osteoblast cell (hFOB). Furthermore, controlled release of genistein, daidzein, and glycitein from 3DP TCP scaffold demonstrates improved hFOB cell proliferation, viability, and differentiation in a dynamic flow-perfusion bioreactor, which is utilized to better simulate the clinical microenvironment. Finally, in vivo H&E staining confirms controlled co-delivery of genistein-daidzein-glycitein from 3DP scaffold carefully modulated neutrophil recruitment to the surgery site after 24 h of implantation in a rat distal femur model. These results advance our understanding towards multipronged therapeutic approaches utilizing synthetic bone graft substitutes as a drug delivery vehicle, and more importantly, demonstrate the feasibility of localized tumor cell suppression and bone cell proliferation for post-surgical defect repair application. STATEMENT OF SIGNIFICANCE: Designed multimodal porosity of 3D printed TCP scaffold allows a controlled and sustained release of soy isoflavones, genistein, daidzein and glycitein in both physiological and acidic pH. Presence of genistein shows 90% reduction in vitro bone cancer cell viability and proliferation. Meanwhile, controlled release of genistein, daidzein, and glycitein from 3DP TCP scaffolds demonstrate improved osteoblast cell proliferation, viability, and differentiation in static and dynamic flow-perfusion bioreactor. Furthermore, H&E staining at 24 h post-surgical specimens from rat distal femur model shows neutrophil recruitment at the surgery site is significantly decreased, suggesting the anti-inflammatory property of soy isoflavones. This work provides deeper understanding on the design of a multifunctional 3D printed patient-specific scaffold with enhanced in vitro chemopreventive, osteogenic and in vivo anti-inflammatory ability.
Collapse
|
32
|
Akbaribazm M, Khazaei MR, Khazaei M. Trifolium pratense L. (red clover) extract and doxorubicin synergistically inhibits proliferation of 4T1 breast cancer in tumor-bearing BALB/c mice through modulation of apoptosis and increase antioxidant and anti-inflammatory related pathways. Food Sci Nutr 2020; 8:4276-4290. [PMID: 32884708 PMCID: PMC7455927 DOI: 10.1002/fsn3.1724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Therapeutic strategies against triple-negative breast cancer (TNBC) are associated with drug-induced toxicities. The tropical edible red clover (Trifolium pratense L.) is rich in polyphenolic compounds which confer the plant potential anticancer properties. The aim of this study was to investigate the effects of T. pratense and doxorubicin (DOX) on the apoptosis and proliferation of 4T1 tumor cells in an allograft model of tumor-bearing BALB/c mice. Fifty-six female 4T1-tumor bearing- BALB/c mice were randomly divided into 7 groups (n = 8/group) to receive different doses and combinations of DOX and T. pratense extract for 35 days. On the 36th day, serum estradiol (E2), IL-12 and IFN-γ cytokines, and glutathione peroxidase (GPx) activity were measured. Tumor's ferric reducing antioxidant power (FRAP) and the expressions of apoptosis-related genes (p53, Bax, Bcl-2, and caspase-3) were also evaluated. Immunohistochemical staining for Ki-67 and p53 were performed. Our results showed that the co-treatment of DOX and T. pratense (100-400 mg/kg) inhibited the proliferation of 4T1 tumor cells in dose- and time-dependent manners. The co-treatment of DOX and T. pratense (especially at the dose of 400 mg/kg) decreased the serum level of E2 (as a stimulant for breast tumor growth) and increased the serum levels of IL-12 and IFN-γ along with significant increments in serum GPx and tumor FRAP activities. The co-administration of DOX and T. pratense also decreased the expression of Ki-67 proliferation marker and increased the number p53 positive (i.e., apoptotic) cells within tumors. This was accompanied with the upregulation of pro-apoptotic and down-regulation of antiapoptotic genes. The key findings indicated the synergistic effects of DOX and T. pratense against TNBC xenografts.
Collapse
Affiliation(s)
- Mohsen Akbaribazm
- Students Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Rasoul Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Mozafar Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
33
|
Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020; 80:237-255. [PMID: 32470379 PMCID: PMC7688484 DOI: 10.1016/j.semcancer.2020.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
34
|
Cady N, Peterson SR, Freedman SN, Mangalam AK. Beyond Metabolism: The Complex Interplay Between Dietary Phytoestrogens, Gut Bacteria, and Cells of Nervous and Immune Systems. Front Neurol 2020; 11:150. [PMID: 32231636 PMCID: PMC7083015 DOI: 10.3389/fneur.2020.00150] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
The human body has a large, diverse community of microorganisms which not only coexist with us, but also perform many important physiological functions, including metabolism of dietary compounds that we are unable to process ourselves. Furthermore, these bacterial derived/induced metabolites have the potential to interact and influence not only the local gut environment, but the periphery via interaction with and modulation of cells of the immune and nervous system. This relationship is being further appreciated every day as the gut microbiome is researched as a potential target for immunomodulation. A common feature among inflammatory diseases including relapsing-remitting multiple sclerosis (RRMS) is the presence of gut microbiota dysbiosis when compared to healthy controls. However, the specifics of these microbiota-neuro-immune system interactions remain unclear. Among all factors, diet has emerged as a strongest factor regulating structure and function of gut microbial community. Phytoestrogens are one class of dietary compounds emerging as potentially being of interest in this interaction as numerous studies have identified depletion of phytoestrogen-metabolizing bacteria such as Adlercreutzia, Parabacteroides and Prevotella in RRMS patients. Additionally, phytoestrogens or their metabolites have been reported to show protective effects when compounds are administered in the animal model of MS, Experimental Autoimmune Encephalomyelitis (EAE). In this review, we will illustrate the link between MS and phytoestrogen metabolizing bacteria, characterize the importance of gut bacteria and their mechanisms of action in the production of phytoestrogen metabolites, and discuss what is known about the interactions of specific compounds with cells immune and nervous system. A better understanding of gut bacteria-mediated phytoestrogen metabolism and mechanisms through which these metabolites facilitate their biological actions will help in development of novel therapeutic options for MS as well as other inflammatory diseases.
Collapse
Affiliation(s)
- Nicole Cady
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | | | | | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Immunology, University of Iowa, Iowa City, IA, United States
- Molecular Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
35
|
Dietary Compounds Influencing the Sensorial, Volatile and Phytochemical Properties of Bovine Milk. Molecules 2019; 25:molecules25010026. [PMID: 31861730 PMCID: PMC6983252 DOI: 10.3390/molecules25010026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 11/28/2022] Open
Abstract
The main aim of this study was to evaluate the volatile profile, sensory perception, and phytochemical content of bovine milk produced from cows fed on three distinct feeding systems, namely grass (GRS), grass/clover (CLV), and total mixed ration (TMR). Previous studies have identified that feed type can influence the sensory perception of milk directly via the transfer of volatile aromatic compounds, or indirectly by the transfer of non-volatile substrates that act as precursors for volatile compounds. In the present study, significant differences were observed in the phytochemical profile of the different feed and milk samples. The isoflavone formonoetin was significantly higher in CLV feed samples, but higher in raw GRS milk, while other smaller isoflavones, such as daidzein, genistein, and apigenin were highly correlated to raw CLV milk. This suggests that changes in isoflavone content and concentration in milk relate to diet, but also to metabolism in the rumen. This study also found unique potential volatile biomarkers in milk (dimethyl sulfone) related to feeding systems, or significant differences in the concentration of others (toluene, p-cresol, ethyl and methyl esters) based on feeding systems. TMR milk scored significantly higher for hay-like flavor and white color, while GRS and CLV milk scored significantly higher for a creamy color. Milk samples were easily distinguishable by their volatile profile based on feeding system, storage time, and pasteurization.
Collapse
|
36
|
Sittipo P, Shim JW, Lee YK. Microbial Metabolites Determine Host Health and the Status of Some Diseases. Int J Mol Sci 2019; 20:ijms20215296. [PMID: 31653062 PMCID: PMC6862038 DOI: 10.3390/ijms20215296] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a highly complex organ composed of the intestinal epithelium layer, intestinal microbiota, and local immune system. Intestinal microbiota residing in the GI tract engages in a mutualistic relationship with the host. Different sections of the GI tract contain distinct proportions of the intestinal microbiota, resulting in the presence of unique bacterial products in each GI section. The intestinal microbiota converts ingested nutrients into metabolites that target either the intestinal microbiota population or host cells. Metabolites act as messengers of information between the intestinal microbiota and host cells. The intestinal microbiota composition and resulting metabolites thus impact host development, health, and pathogenesis. Many recent studies have focused on modulation of the gut microbiota and their metabolites to improve host health and prevent or treat diseases. In this review, we focus on the production of microbial metabolites, their biological impact on the intestinal microbiota composition and host cells, and the effect of microbial metabolites that contribute to improvements in inflammatory bowel diseases and metabolic diseases. Understanding the role of microbial metabolites in protection against disease might offer an intriguing approach to regulate disease.
Collapse
Affiliation(s)
- Panida Sittipo
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| | - Jae-Won Shim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| |
Collapse
|
37
|
Yao L, DeBrot A. Fabrication and Characterization of a Protein Composite Conduit for Neural Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:4213-4221. [DOI: 10.1021/acsabm.9b00498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260-0133-0026, United States
| | - Ashley DeBrot
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260-0133-0026, United States
| |
Collapse
|