1
|
Poonia N, Kumar V, Subudhi RN, Dalabehera M, Setia A, Bora KS, Arora V. Iron oxide nanoparticles: a versatile nanoplatform for the treatment and diagnosis of ovarian cancer. Ther Deliv 2024:1-14. [PMID: 39722582 DOI: 10.1080/20415990.2024.2442301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Ovarian cancer remains one of the main causes of human mortality, accounting for millions of deaths every year. Despite of several clinical options such as chemotherapy, photodynamic therapy (PDT), hormonal treatment, radiation therapy, and surgery to manage this disease, the mortality rate is still very high. This alarming statistic highlights the urgent need for innovative approaches to improve both diagnosis and treatment. Success stories of iron oxide nanoparticles, i.e. Ferucarbotran (Resovist®) and Ferrixan (Cliavist®) for liver imaging, CNS (Central nervous system) imaging, cell labeling, etc. have motivated researchers to explore these nanocarriers for treatment and diagnosis of different diseases. Iron oxide nanoparticles have improved the therapeutic efficacy of anticancer drugs through targeted delivery, heat/ROS (reactive oxygen species) generation on application of external energy and have also shown great potential as contrast agents for magnetic resonance imaging (MRI). Their unique magnetic properties enable sensitive imaging, and surface modification allows the attachment of specific biomolecules for targeted detection of ovarian cancer cells. Their unique properties, viz. magnetic responsiveness and surface functionalization, make them versatile tools for enhancing both imaging and therapeutic outcomes. Present article reviews the literature on the synthesis, functionalization, and applications of iron oxide nanoparticles in management of ovarian cancer.
Collapse
Affiliation(s)
- Neelam Poonia
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Vipan Kumar
- Department of Pharmaceutical Chemistry, Swami Vivekanand College of Pharmacy, Rajpura, India
| | | | - Manoj Dalabehera
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Anupama Setia
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa, India
| | - Kundan Singh Bora
- Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Vimal Arora
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| |
Collapse
|
2
|
Li R, Yan C, Tian Y, Wu Y, Zhou R, Meng Q, Fang L, Yue Y, Yang Y, Chen H, Yang L, Jiang W. Insights into relationship of oxidative potential of particles in the atmosphere and entering the human respiratory system with particle size, composition and source: A case study in a coastal area in Northern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136842. [PMID: 39673951 DOI: 10.1016/j.jhazmat.2024.136842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Oxidative potential (OP) of particulate matter (PM) is an important indicator of its health effects. However, the relationship between OP and its key influencing factors remains unclear. In this study, size-segregated PM samples were collected in Qingdao, China, with major components and OP of PM thoroughly examined. The PM composition and sources contributing to OP were determined by hierarchical cluster analysis and positive matrix factorization model, and deposition of size-segregated and source-specific PM in respiratory tract and its resulting OP were assessed by multiple path particle dosimetry model. Dithiothreitol (DTT) activity decreased with increase of particle size in winter, while larger particles (4.2-10.2 μm) also contributed significantly to OP in summer. WSOC strongly correlated with OP in different particle sizes, while water-soluble iron, zinc, lead, and manganese had strong correlations with DTT activity for fine particles, reflecting the co-effects of particle composition and size on OP. Coarse and fine particles were more likely to be deposited in head and pulmonary region, respectively, with traffic and industrial sources contributing significantly to the deposited OP, especially in deeper regions of respiratory tract. This study highlights that the combined effects of different factors on PM OP need to be considered in health-oriented pollution abatement.
Collapse
Affiliation(s)
- Ruiyu Li
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Caiqing Yan
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Yingze Tian
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ruizhi Zhou
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qingpeng Meng
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Li Fang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yang Yue
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanjun Yang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Haibiao Chen
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lingxiao Yang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Dutta D, Singh NS, Verma AK. Genotoxicity, acute and sub-acute toxicity profiles of methanolic Cordyceps militaris (L.) Fr. extract in Swiss Albino Mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118603. [PMID: 39067832 DOI: 10.1016/j.jep.2024.118603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps militaris, a traditional medicinal fungus, parasitizes the intestines of lepidopteron pupae or larvae, predominantly during the winter, and undergoes fruiting in the summer or autumn. Compounds extracted from C. militaris have demonstrated a broad spectrum of pharmacological effects, including antioxidant, anti-tumor, anti-metastatic, anti-inflammatory, antiviral, anti-diabetic, and various others. AIM OF THE STUDY Herein, our study aimed at elucidating the acute, sub-acute toxicity, and genotoxicity profiles of C. militaris methanolic extract following oral administration in Swiss albino mice, representing the inaugural comprehensive exploration of the toxicological and safety profiles of C. militaris. MATERIALS AND METHODS Prior studies have predominantly focused on its biological activities rather than its toxicity. Acute oral toxicity study was conducted at 500, 1000, and 2000 mg/Kg B.W. doses of C. militaris over a 14-day period. For sub-acute toxicity study, three groups of mice were administered 100, 300, and 600 mg/Kg B.W. of C. militaris extract for 28 consecutive days; one group served as a control. Mice were monitored for their body weight and behavioural changes once daily. Hematological, serum biochemical, histopathological, histomorphometric, seminal parameters, and mutagenic investigations were performed post-treatment period. RESULTS Acute oral toxicity study at 2000 mg/Kg revealed no signs of toxicity, with an LD50 value surpassing 2000 mg/Kg. No occurrences of mortality observed, and no significant changes were noted in body weight, organ weight, or behaviour. Hematological analysis illustrated a marked upsurge in RBC, Hb, HCT, PLT, MPV, and PCT, alongside minor variations in differential leucocyte count post 28-day treatment. Liver enzyme tests indicated slight elevation in ALP, while renal enzyme tests showed alterations in CRE and BUN levels. Genotoxicity profile and histopathological assessments of the liver, spleen, testis, and ovary manifested no remarkable irregularities, except for mild renal toxicity. Seminal parameters including sperm concentration, motility and testosterone levels demonstrated a noteworthy increase. CONCLUSIONS The study sheds light on the potential risks and safety considerations associated with C. militaris-based medicinal products. These findings establish a foundation for further investigations and the refinement of dosage optimization in the application of C. militaris, with the aim of mitigating any potential adverse effects.
Collapse
Affiliation(s)
- Diksha Dutta
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India.
| | - Namram Sushindrajit Singh
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India.
| | - Akalesh Kumar Verma
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India.
| |
Collapse
|
4
|
Durga BB, Ramachandran V, Senthil B, Soloman VG, Elshikh MS, Almutairi SM, Wen ZH, Lo YH. Unleashing of cytotoxic effects of thymoquinone-bovine serum albumin nanoparticles on A549 lung cancer cells. Open Life Sci 2024; 19:20221000. [PMID: 39655191 PMCID: PMC11627060 DOI: 10.1515/biol-2022-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024] Open
Abstract
This research examines the cytotoxic consequences of thymoquinone-loaded bovine serum albumin nanoparticles (TQ-BSA NPs) on the A549 lung cancer cell line. UV-visible (UV-Vis) spectroscopy, Fourier transform infrared spectrophotometer (FT-IR), scanning electron microscopy (SEM), and dynamic light scattering (DLS) were employed to verify the biogenic TQ-BSA NPs' size, shape, and distribution. UV-Vis spectrophotometry indicated peaks at 200-300 nm, 500-600 nm, and a prominent peak at 700-800 nm, confirming the presence of TQ-BSA NPs. The polydispersity index, as confirmed by DLS, indicated a solvent distribution in water, accompanied by a zeta potential value of 126.2 ± 46.8 mV. The average size of TQ-BSA NPs was confirmed to be 187 ± 8 nm by SEM. TQ-BSA NPs reduce colony formation in the A549 lung cancer cell line in a dose-dependent manner relative to the control group. Protein expression analysis indicated that TQ-BSA NPs promoted programmed cell death by increasing pro-apoptotic levels and decreasing anti-apoptotic levels. TQ-BSA NPs demonstrated inhibition of cancer cell proliferation and promotion of apoptosis and exhibited significant efficacy against cancer cells at low concentrations. As a result, they have the makings of a promising chemotherapeutic agent for low-dose, long-term administration.
Collapse
Affiliation(s)
- Bala Baskaran Durga
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education & Research, Chennai, India
| | - Vinayagam Ramachandran
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Bakthavatchalam Senthil
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, India
| | - Vasthi Gnanarani Soloman
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, India
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, 81342, Taiwan
- Department of Nursing, Meiho University, Pingtung County91200, Taiwan
| |
Collapse
|
5
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
6
|
Eleyan M, Ibrahim KA, Mohamed RA, Hussien M, Zughbur MR, Aldalou AR, Masad A, El-Rahman HAA, Abdelgaid HA. Quercetin diminishes the apoptotic pathway of magnetite nanoparticles in rats' ovary: Antioxidant status and hormonal profiles. Environ Anal Health Toxicol 2024; 39:e2024025-0. [PMID: 39536705 PMCID: PMC11560298 DOI: 10.5620/eaht.2024025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
Magnetite nanoparticles have attracted the attention of researchers for biomedical uses, but their impacts on the reproductive system did not report. Here, we have studied the possible attenuation efficiency of quercetin against magnetite nanoparticles-induced apoptosis in ovarian. Forty female rats were divided equally into control, quercetin (100 mg/kg), magnetite nanoparticles (50 mg/kg), and magnetite nanoparticles+quercetin, where all rats received their doses for four weeks. Compared with the control, magnetite nanoparticles significantly reduced the serum hormonal levels (follicle-stimulating hormone, luteinizing hormone, estrogen, and progesterone) along with glutathione and superoxide dismutase in ovarian tissues. Moreover, magnetite nanoparticles markedly increased the ovarian malondialdehyde, and apoptotic gene expressions (Bax and caspase-3), and induced many histopathological changes. Significantly, co-treatment with quercetin markedly alleviated the hormonal profile, antioxidant disturbance, and ovarian apoptotic pathway of magnetite nanoparticles. Furthermore, our docking study revealed that quercetin could act as a caspase-3 inhibitor and allosteric agonist to follicle-stimulating hormone (Met520 and Val53), luteinizing hormone (Met517, Ala589, Ser604, and Lys595), estrogen (Met421, Phe425, and Ala350), and progesterone (Met759 and Met909) receptors. Those records reveal that the antioxidants and antiapoptotic characteristics are acceptable pointers for female infertility defenders of quercetin, especially during nanoparticle exposure.
Collapse
Affiliation(s)
- Mohammed Eleyan
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
- Faculty of Medicine, Al Azhar University Gaza, Palestine
| | - Khairy A. Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Rania A. Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Mohamed Hussien
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Pesticide Formulation Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Dokki, Egypt
| | | | - Ayoub R. Aldalou
- Department of Laboratory Medical Sciences, Al-Aqsa University, Gaza, Palestine
| | - Atef Masad
- Faculty of Medical Sciences, Israa University Gaza, Gaza Strip, Palestine
| | | | - Hala A. Abdelgaid
- Biochemistry Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| |
Collapse
|
7
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
8
|
Fahmy HM, Shekewy S, Elhusseiny FA, Elmekawy A. Enhanced Biocompatibility by Evaluating the Cytotoxic and Genotoxic Effects of Magnetic Iron Oxide Nanoparticles and Chitosan on Hepatocellular Carcinoma Cells (HCC). Cell Biochem Biophys 2024; 82:1027-1042. [PMID: 38558242 PMCID: PMC11344728 DOI: 10.1007/s12013-024-01256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Hepatocellular carcinoma (HCC), the fifth most prevalent cancer worldwide, is influenced by a myriad of clinic-pathological factors, including viral infections and genetic abnormalities. This study delineates the synthesis, characterization, and the biological efficacy of iron oxide nanoparticles (Fe3O4) and chitosan-coated iron oxide nanoparticles (Fe3O4-CS) against HCC. Analytical methods confirmed the successful synthesis of both nanoparticles, with Fe3O4-CS demonstrating a smaller, uniform spherical morphology and distinct surface and magnetic properties attributable to its chitosan coating. The prepared materials were analyzed using various techniques, and their potential cytotoxic effects on HepG2 cancer cells line for HCC were investigated. In biological evaluations against HepG2 cells, a notable distinction in cytotoxicity was observed. Fe3O4 showed modest anticancer activity with an IC50 of 383.71 ± 23.9 µg/mL, whereas Fe3O4 exhibited a significantly enhanced cytotoxic effect, with a much lower IC50 of 39.15 ± 39.2 µg/mL. The Comet assay further evidenced Fe3O4-CS potent DNA damaging effect, showcasing its superior ability to induce apoptosis through extensive DNA fragmentation. Biochemical analyses integrated into our results reveal that Fe3O4-CS not only induces significant DNA damage but also markedly alters oxidative stress markers. Compared to control and Fe3O4-treated cells, Fe3O4-CS exposure significantly elevated levels of oxidative stress markers: superoxide dismutase (SOD) increased to 192.07 U/ml, catalase (CAT) decreased to 0.03 U/L, glutathione peroxidase (GPx) rose dramatically to 18.76 U/gT, and malondialdehyde (MDA) levels heightened to 30.33 nmol/gT. These results underscore the potential of Fe3O4-CS nanoparticles not only in inducing significant DNA damage conducive to cancer cell apoptosis but also in altering enzymatic activities and oxidative stress markers, suggesting a dual mechanism of action that may underpin their therapeutic advantage in cancer treatment. Our findings advocate for the further exploration of Fe3O4-CS nanoparticles in the development of anticancer drugs, emphasizing their capability to trigger oxidative stress and enhance antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Samar Shekewy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
- Physics Department, Faculty of Science, Menofia University, Menofia, Egypt
| | | | - Ahmed Elmekawy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
9
|
Seyed Aliyan SM, Roohbakhsh A, Jafari Fakhrabad M, Salmasi Z, Moshiri M, Shahbazi N, Etemad L. Evaluating the Protective Effects of Thymoquinone on Methamphetamine-induced Toxicity in an In Vitro Model Based on Differentiated PC12 Cells. Altern Lab Anim 2024; 52:94-106. [PMID: 38445454 DOI: 10.1177/02611929241237409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 μM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.
Collapse
Affiliation(s)
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Jafari Fakhrabad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahar Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niosha Shahbazi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Wen H, Huo G, Qin C, Wu H, Wang D, Dan M, Geng X, Liu S. Safety evaluation of PEGylated MNPs and p-PEGylated MNPs in SD rats. Sci Rep 2023; 13:21501. [PMID: 38057444 PMCID: PMC10700491 DOI: 10.1038/s41598-023-48742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Polyethylene glycol-coated magnetic nanoparticles (PEGylated MNPs) have demonstrated prominent advantages in cancer diagnosis and hyperthermia therapy. However, there is currently lack of standard mode and sufficient toxicity data for determining the delayed risk of PEGylated MNPs. Nevertheless, the toxicity potentials, especially those associated with the oxidative stress, were ubiquitously reported. In this study, PEGylated MNPs and p-PEGylated MNPs were administrated to SD (Sprague Dawley) rats by single intravenously injection, and various toxicity indicators were monitored till 56 days post-administration for a comprehensive toxicity evaluation. We revealed that both nanoparticles could be rapidly cleared from plasma and enter tissues, such as, liver, kidneys and spleen, and p-PEGylated MNP is less prone to be accumulated in the tissues, indicating a lower toxicity risk. PEGylated MNPs were more likely to up-regulate the expression levels of Th2 type cytokines and trigger inflammatory pathways, but no related pathological change was found. Both MNPs are not mutagenic, while recoverable mild DNA damage associated with the presence of nanoparticles might also be observed. This study demonstrated a research approach for the non-clinical safety evaluation of nanoparticles. It also provided comprehensive valuable safety data for PEGylated and p-PEGylated MNPs, for promoting the clinical application and bio-medical translation of such MNPs with PEG modifications in the cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Hairuo Wen
- National Center for Safety Evaluation of Drugs, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
| | - Guitao Huo
- National Center for Safety Evaluation of Drugs, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
| | - Chao Qin
- National Center for Safety Evaluation of Drugs, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
| | - Hui Wu
- National Center for Safety Evaluation of Drugs, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
- China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China
| | - Dan Wang
- National Center for Safety Evaluation of Drugs, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
- China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China
| | - Mo Dan
- National Center for Safety Evaluation of Drugs, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China.
- State Key Laboratory of Novel Pharmaceutical Preparations and Excipients, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, 050035, Hebei, People's Republic of China.
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China.
| | - Shujie Liu
- National Center for Safety Evaluation of Drugs, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China.
- Center for Drug Evaluation, National Medical Products Administration, Beijing, 100022, People's Republic of China.
| |
Collapse
|
11
|
Siddiqui MA, Wahab R, Saquib Q, Ahmad J, Farshori NN, Al-Sheddi ES, Al-Oqail MM, Al-Massarani SM, Al-Khedhairy AA. Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells. J Trace Elem Med Biol 2023; 80:127302. [PMID: 37734210 DOI: 10.1016/j.jtemb.2023.127302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Nanotechnology and material science have developed enormously fast in recent years. Due to their excellent magnetic properties, iron oxide nanoparticles (IONPs) have been broadly applied in the field of bioengineering and biomedical. Thus, it is important to evaluate the safety issues and health effects of these nanomaterials. The present investigation was aimed to evaluate the adverse effects of IONPs on human umbilical vein endothelial cells (HUVECs). METHODS The cytotoxic potential of IONPs was assessed by MTT and neutral red uptake (NRU) assays. The impact of IONPs on oxidative stress markers (glutathione (GSH) and lipid peroxidation (LPO)), reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) was also examined. Furthermore, the toxic effect of IONPs was quantified by assessing DNA damage, cell cycle arrest, and apoptosis by quantitative real time PCR. RESULTS We found that IONPs induce a dose-dependent cytotoxicity on HUVECs with IC50 value of 79.13 μg/mL. The results also displayed that IONPs induce oxidative stress, ROS production, and mitochondrial membrane dysfunction. The comet assay results exhibited IONPs induces DNA damage in HUVECs. We found significant cell cycle arrest at SubG1 phase in treated cells and consequent cell death was evidenced by microscopic analysis. Moreover, IONPs display substantial up-regulation of pro-apoptotic genes and down-regulation of anti-apoptotic gene evidenced by real time qPCR. CONCLUSION Overall, our results clearly demonstrated that IONPs have the potential to induce cytotoxicity, DNA damage, cell cycle arrest, and apoptosis in HUVECs mediated through oxidative stress and ROS production. Thus, IONPs are cytotoxic and it should be handled with proper care.
Collapse
Affiliation(s)
- Maqsood A Siddiqui
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Rizwan Wahab
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Quaiser Saquib
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Ahmad
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nida N Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Ebtesam S Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mai M Al-Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Shaza M Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Ladeira C, Araújo R, Ramalhete L, Teixeira H, Calado CRC. Blood molecular profile to predict genotoxicity from exposure to antineoplastic drugs. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503681. [PMID: 37770138 DOI: 10.1016/j.mrgentox.2023.503681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023]
Abstract
Genotoxicity is an important information that should be included in human biomonitoring programmes. However, the usually applied cytogenetic assays are laborious and time-consuming, reason why it is critical to develop rapid and economic new methods. The aim of this study was to evaluate if the molecular profile of frozen whole blood, acquired by Fourier Transform Infrared (FTIR) spectroscopy, allows to assess genotoxicity in occupational exposure to antineoplastic drugs, as obtained by the cytokinesis-block micronucleus assay. For that purpose, 92 samples of peripheral blood were studied: 46 samples from hospital professionals occupationally exposed to antineoplastic drugs and 46 samples from workers in academia without exposure (controls). It was first evaluated the metabolome from frozen whole blood by methanol precipitation of macromolecules as haemoglobin, followed by centrifugation. The metabolome molecular profile resulted in 3 ratios of spectral bands, significantly different between the exposed and non-exposed group (p < 0.01) and a spectral principal component-linear discriminant analysis (PCA-LDA) model enabling to predict genotoxicity from exposure with 73 % accuracy. After optimization of the dilution degree and solution used, it was possible to obtain a higher number of significant ratios of spectral bands, i.e., 10 ratios significantly different (p < 0.001), highlighting the high sensitivity and specificity of the method. Indeed, the PCA-LDA model, based on the molecular profile of whole blood, enabled to predict genotoxicity from the exposure with an accuracy, sensitivity, and specificity of 92 %, 93 % and 91 %, respectively. All these parameters were achieved based on 1 μL of frozen whole blood, in a high-throughput mode, i.e., based on the simultaneous analysis of 92 samples, in a simple and economic mode. In summary, it can be conclude that this method presents a very promising potential for high-dimension screening of exposure to genotoxic substances.
Collapse
Affiliation(s)
- Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Avenida D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Portugal.
| | - Rúben Araújo
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Luís Ramalhete
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal; Blood and Transplantation Center of Lisbon, Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, n◦ 117, 1769-001 Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Hélder Teixeira
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal
| | - Cecília R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal; CIMOSM - Centro de Investigação em Modelação e Otimização de Sistemas Multifuncionais, ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emidio Navarro 1, 1959‑007 Lisboa, Portugal
| |
Collapse
|
13
|
Nassar WM, El-Kholy WM, El-Sawi MR, El-Shafai NM, Alotaibi BS, Ghamry HI, Shukry M. Ameliorative Effect of Thymoquinone and Thymoquinone Nanoparticles against Diazinon-Induced Hepatic Injury in Rats: A Possible Protection Mechanism. TOXICS 2023; 11:783. [PMID: 37755793 PMCID: PMC10536923 DOI: 10.3390/toxics11090783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
The health benefits of thymoquinone (TQ) have been a significant focus of numerous studies. However, more research is needed to ascertain whether its nano-form can effectively treat or prevent chronic diseases. In this study, we investigated how thymoquinone and its nanoparticles can mitigate liver damage induced by diazinon in male Wistar rats and explored the intracellular mechanisms involved. Forty-two Wistar male rats (n = 42) were randomly allotted into seven groups. Group 1 served as the control. Group 2 (vehicle) consisted of rats that received corn oil via a gastric tube daily. In Group 3 (TQ), rats were given a daily oral administration of TQ (40 mg/kg bw). Group 4 (thymoquinone nanoparticles, NTQ) included rats that received NTQ (0.5 mg/kg bw) orally for 21 days. Group 5 (DZN) involved rats that were administered diazinon (DZN, 15 mg/kg bw) orally. In Group 6 (TQ + DZN), rats first received TQ orally, followed by DZN. Group 7 (NTQ + DZN) consisted of rats receiving NTQ orally, then DZN. After 21 days of treatment, the rats were euthanized. After oral administration of DZN, liver enzymes were significantly elevated (p < 0.05). Additionally, there were noticeable increases in oxidative injury markers, such as nitric oxide, malondialdehyde, redox oxygen radicals, and overall increases in hydrogen peroxide and liver protein carbonyl concentrations. This was accompanied by the upregulation of apoptotic markers (Bax, caspase9, caspase 3, bax/Bcl2 ratio), inflammatory cytokines (TNF-α, IL-6), and DNA damage. There was also a noteworthy decrease (p < 0.05) in the activities of antioxidant enzymes and anti-apoptotic markers. However, the oral administration of thymoquinone or its nanoparticle form mitigated these diazinon complications; our histopathological findings corroborated our biochemical and molecular observations. In conclusion, the significant antioxidant properties of thymoquinone, or its nanoparticle form, in tandem with the downregulation of apoptotic markers and inflammatory cytokines, provided a protective effect against hepatic dysfunction caused by diazinon.
Collapse
Affiliation(s)
- Walaa M. Nassar
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Wafaa M. El-Kholy
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mamdouh R. El-Sawi
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Nagi M. El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Heba I. Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
14
|
Khan MS, Buzdar SA, Hussain R, Alouffi A, Aleem MT, Farhab M, Javid MA, Akhtar RW, Khan I, Almutairi MM. Cobalt Iron Oxide (CoFe 2O 4) Nanoparticles Induced Toxicity in Rabbits. Vet Sci 2023; 10:514. [PMID: 37624302 PMCID: PMC10459303 DOI: 10.3390/vetsci10080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
The market for nanoparticles has grown significantly over the past few decades due to a number of unique qualities, including antibacterial capabilities. It is still unclear how nanoparticle toxicity works. In order to ascertain the toxicity of synthetic cobalt iron oxide (CoFe2O4) nanoparticles (CIONPs) in rabbits, this study was carried out. Sixteen rabbits in total were purchased from the neighborhood market and divided into two groups (A and B), each of which contained eight rabbits. The CIONPs were synthesized by the co-precipitation method. Crystallinity and phase identification were confirmed by X-ray diffraction (XRD). The average size of the nanoparticles (13.2 nm) was calculated by Scherrer formula (Dhkl = 0.9 λ/β cos θ) and confirmed by TEM images. The saturation magnetization, 50.1 emug-1, was measured by vibrating sample magnetometer (VSM). CIONPs were investigated as contrast agents (CA) for magnetic resonance images (MRI). The relaxivity (r = 1/T) of the MRI was also investigated at a field strength of 0.35 T (Tesla), and the ratio r2/r1 for the CIONPs contrast agent was 6.63. The CIONPs were administrated intravenously into the rabbits through the ear vein. Blood was collected at days 5 and 10 post-exposure for hematological and serum biochemistry analyses. The intensities of the signal experienced by CA with CIONPs were 1427 for the liver and 1702 for the spleen. The treated group showed significantly lower hematological parameters, but significantly higher total white blood cell counts and neutrophils. The results of the serum biochemistry analyses showed significantly higher and lower quantities of different serum biochemical parameters in the treated rabbits at day 10 of the trial. At the microscopic level, different histological ailments were observed in the visceral organs of treated rabbits, including the liver, kidneys, spleen, heart, and brain. In conclusion, the results revealed that cobalt iron oxide (CoFe2O4) nanoparticles induced toxicity via alterations in multiple tissues of rabbits.
Collapse
Affiliation(s)
- Muhammad Shahid Khan
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
| | - Muhammad Tahir Aleem
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Farhab
- Key Laboratory of Animal Genetic Engineering, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Arshad Javid
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Rana Waseem Akhtar
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan;
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang Sub-Campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
da Silva VC, de Lima Faria JM, Guimarães LN, Costa MS, de Lima PN, Simões K, de Jesus LWO, de Saboia-Morais SMT. Ovaries of guppies (Poecilia reticulata) investigated in pre-embryonic, embryonic and post-embryonic stages after exposure to maghemite nanoparticles (y-Fe 2O 3) associated with Roundup® and glyphosate, followed by recovery period evaluation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104144. [PMID: 37149012 DOI: 10.1016/j.etap.2023.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Iron oxide nanoparticles (IONP) are promising alternatives to environmental remediation, so this study investigates IONP single and associated to contaminants, in this case, glyphosate (GLY) and Roundup® (GBH) in Poecilia reticulata (guppy). The guppies have internal development, therefore this study analyzed female gonads to establish the developmental stages of P. reticulata and evaluate effects of exposure (7, 14 and 21 days) and post-exposure (same period) to the treatments with Iron ions 0.3mg Fe/L (IFe); IONP 0.3mg Fe/L; IONP 0.3 mgFe/L + GBH 0,65mgGLY/L (IONP+GBH1); IONP 0.3 mgFe/L + GBH 1.30 mgGLY/L (IONP+GBH2); and IONP 0.3 mgFe/L + GLY 0.65 mg/L (IONP+GLY). The development was organized in immature, development, and gestation phases. The damage in all treatments after 21 days of exposure was evident in reaction patterns regressive inflammatory, and circulatory including total histopathologic index of liver, nevertheless there was a damage recovery trend during post-exposure period.
Collapse
Affiliation(s)
- Victória Costa da Silva
- Laboratory of Cellular Behavior, Institute of Biological Sciences (Federal University of Goiás)
| | | | - Lucas Nunes Guimarães
- Laboratory of Cellular Behavior, Institute of Biological Sciences (Federal University of Goiás)
| | - Matheus Santos Costa
- Laboratory of Human and Animal Morphology Research (Federal University of Goiás)
| | | | - Karina Simões
- Laboratory of Human and Animal Morphology Research (Federal University of Goiás)
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
16
|
Chauhan M, Basu SM, Qasim M, Giri J. Polypropylene sulphide coating on magnetic nanoparticles as a novel platform for excellent biocompatible, stimuli-responsive smart magnetic nanocarriers for cancer therapeutics. NANOSCALE 2023; 15:7384-7402. [PMID: 36751724 DOI: 10.1039/d2nr05218k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticle (MNP) delivery systems are promising for targeted drug delivery, imaging, and chemo-hyperthermia of cancer; however, their uses remain limited primarily due to their toxicity associated with reactive oxygen species (ROS) generation, targeted delivery, and biodegradation. Attempts employing polymer coatings to minimize the toxicity, along with other challenges, have had limited success. We designed a novel yet generic 'one-for-all' polypropylene sulphide (PPS) coated magnetic nano-delivery system (80 ± 15 nm) as a multi-faceted approach for significant biocompatibility improvement, loading of multiple drugs, ROS-responsive delivery, and combined chemo-hyperthermia therapy for biomedical applications. Three distinct MNP systems (15 ± 1 nm) were fabricated, coated with PPS polymer, and investigated to validate our hypothesis and design. Simultaneous degradation of MNPs and PPS coatings with ROS-scavenging characteristics boosted the biocompatibility of MNPs 2-3 times towards non-cancerous fibroblasts (NIH3T3) and human epithelial cells (HEK293). In an alternating magnetic field, PPS-MNPs (MnFe) had the strongest heating characteristics (SAR value of 240 W g-1). PPS-MNP drug-loaded NPs were efficiently internalised into cells and released 80% of the drugs under tumor microenvironment-mimicking (pH 5-7, ROS) conditions, and demonstrated effective chemo-hyperthermia (45 °C) application for breast cancer cells with 95% cell death in combined treatment vs. 55% and 30% cell death in only hyperthermia and chemotherapy respectively.
Collapse
Affiliation(s)
- Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Mohd Qasim
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
17
|
Ciont C, Mesaroș A, Pop OL, Vodnar DC. Iron oxide nanoparticles carried by probiotics for iron absorption: a systematic review. J Nanobiotechnology 2023; 21:124. [PMID: 37038224 PMCID: PMC10088223 DOI: 10.1186/s12951-023-01880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND One-third of the world's population has anemia, contributing to higher morbidity and death and impaired neurological development. Conventional anemia treatment raises concerns about iron bioavailability and gastrointestinal (GI) adverse effects. This research aims to establish how iron oxide nanoparticles (IONPs) interact with probiotic cells and how they affect iron absorption, bioavailability, and microbiota variation. METHODS Pointing to the study of the literature and developing a review and critical synthesis, a robust search methodology was utilized by the authors. The literature search was performed in the PubMed, Scopus, and Web of Science databases. Information was collected between January 2017 and June 2022 using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) protocols for systematic reviews and meta-analyses. We identified 122 compatible research articles. RESULTS The research profile of the selected scientific articles revealed the efficacy of IONPs treatment carried by probiotics versus conventional treatment. Therefore, the authors employed content assessment on four topics to synthesize previous studies. The key subjects of the reviewed reports are the characteristics of the IONPs synthesis method, the evaluation of cell absorption and cytotoxicity of IONPs, and the transport of IONPs with probiotics in treating anemia. CONCLUSIONS To ensure a sufficient iron level in the enterocyte, probiotics with the capacity to attach to the gut wall transport IONPs into the enterocyte, where the maghemite nanoparticles are released.
Collapse
Affiliation(s)
- Călina Ciont
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372, Cluj-Napoca, Romania
| | - Amalia Mesaroș
- Physics and Chemistry Department, C4S Centre, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114, Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372, Cluj-Napoca, Romania.
| |
Collapse
|
18
|
Serov DA, Baimler IV, Burmistrov DE, Baryshev AS, Yanykin DV, Astashev ME, Simakin AV, Gudkov SV. The Development of New Nanocomposite Polytetrafluoroethylene/Fe 2O 3 NPs to Prevent Bacterial Contamination in Meat Industry. Polymers (Basel) 2022; 14:polym14224880. [PMID: 36433009 PMCID: PMC9695638 DOI: 10.3390/polym14224880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
The bacterial contamination of cutting boards and other equipment in the meat processing industry is one of the key reasons for reducing the shelf life and consumer properties of products. There are two ways to solve this problem. The first option is to create coatings with increased strength in order to prevent the formation of micro damages that are favorable for bacterial growth. The second possibility is to create materials with antimicrobial properties. The use of polytetrafluoroethylene (PTFE) coatings with the addition of metal oxide nanoparticles will allow to the achieving of both strength and bacteriostatic effects at the same time. In the present study, a new coating based on PTFE and Fe2O3 nanoparticles was developed. Fe2O3 nanoparticles were synthesized by laser ablation in water and transferred into acetone using the developed procedures. An acetone-based colloidal solution was mixed with a PTFE-based varnish. Composites with concentrations of Fe2O3 nanoparticles from 0.001-0.1% were synthesized. We studied the effect of the obtained material on the generation of ROS (hydrogen peroxide and hydroxyl radicals), 8-oxoguanine, and long-lived active forms of proteins. It was found that PTFE did not affect the generation of all the studied compounds, and the addition of Fe2O3 nanoparticles increased the generation of H2O2 and hydroxyl radicals by up to 6 and 7 times, respectively. The generation of 8-oxoguanine and long-lived reactive protein species in the presence of PTFE/Fe2O3 NPs at 0.1% increased by 2 and 3 times, respectively. The bacteriostatic and cytotoxic effects of the developed material were studied. PTFE with the addition of Fe2O3 nanoparticles, at a concentration of 0.001% or more, inhibited the growth of E. coli by 2-5 times compared to the control or PTFE without NPs. At the same time, PTFE, even with the addition of 0.1% Fe2O3 nanoparticles, did not significantly impact the survival of eukaryotic cells. It was assumed that the resulting composite material could be used to cover cutting boards and other polymeric surfaces in the meat processing industry.
Collapse
|
19
|
Abd El-Aziz YM, Hendam BM, Al-Salmi FA, Qahl SH, Althubaiti EH, Elsaid FG, Shati AA, Hosny NM, Fayad E, Abu Almaaty AH. Ameliorative Effect of Pomegranate Peel Extract (PPE) on Hepatotoxicity Prompted by Iron Oxide Nanoparticles (Fe 2O 3-NPs) in Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3074. [PMID: 36080111 PMCID: PMC9457799 DOI: 10.3390/nano12173074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
An evaluation of the ameliorative effect of pomegranate peel extract (PPE) in counteracting the toxicity of iron oxide nanoparticles (Fe2O3-NPs) that cause hepatic tissue damage is focused on herein. Forty male albino mice were haphazardly grouped into four groups as follows: the first control group was orally gavage daily with physiological saline; the second group received 100 mg/kg of PPE by the oral route day after day; the third group received 30 mg/kg Fe2O3-NPs orally; and the fourth group received both PPE and Fe2O3-NPs by the oral route, the same as the second and third sets. Later, after the completion of the experiment, we collected the liver, blood, and bone marrow of bone specimens that were obtained for further laboratory tests. For instance, exposure to Fe2O3-NPs significantly altered serum antioxidant biomarkers by decreasing the levels of total antioxidant capacity (TAC), catalase (CAT), and glutathione s-transferase (GST). Additionally, it caused changes in the morphology of hepatocytes, hepatic sinusoids, and inflammatory Kupffer cells. Furthermore, they significantly elevated the number of chromosomal aberrations including gaps, breaks, deletions, fragments, polyploidies, and ring chromosomes. Moreover, they caused a significant overexpression of TIMP-1, TNF-α, and BAX mRNA levels. Finally, the use of PPE alleviates the toxicity of Fe2O3-NPs that were induced in the hepatic tissues of mice. It is concluded that PPE extract has mitigative roles against the damage induced by Fe2O3-NPs, as it serves as an antioxidant and hepatoprotective agent. The use of PPE as a modulator of Fe2O3-NPs' hepatotoxicity could be considered as a pioneering method in the use of phytochemicals against the toxicity of nanoparticles.
Collapse
Affiliation(s)
- Yasmin M. Abd El-Aziz
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Basma M. Hendam
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura 35516, Egypt
| | - Fawziah A. Al-Salmi
- Department of Biology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Eman H. Althubaiti
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Fahmy G. Elsaid
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ali A. Shati
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia
| | - Nasser M. Hosny
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ali H. Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
20
|
Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in Stimuli-Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200291. [PMID: 35306751 DOI: 10.1002/smll.202200291] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) describe abnormal vascular system conditions affecting the brain and heart. Among these, ischemic heart disease and ischemic stroke are the leading causes of death worldwide, resulting in 16% and 11% of deaths globally. Although several therapeutic approaches are presented over the years, the continuously increasing mortality rates suggest the need for more advanced strategies for their treatment. One of these strategies lies in the use of stimuli-responsive biomaterials. These "smart" biomaterials can specifically target the diseased tissue, and after "reading" the altered environmental cues, they can respond by altering their physicochemical properties and/or their morphology. In this review, the progress in the field of stimuli-responsive biomaterials for CCVDs in the last five years, aiming at highlighting their potential as early-stage therapeutics in the preclinical scenery, is described.
Collapse
Affiliation(s)
- Christos Tapeinos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Han Gao
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Tomás Bauleth-Ramos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
21
|
Dechsupa N, Kosintarajit P, Kamkan K, Khanjina T, Sirikul C, Innuan P, Suwan A, Anukul N, Kantapan J. Iron(III)-Quercetin Complexes' Safety for MRI Cell Tracking in Cell Therapy Applications: Cytotoxic and Genotoxic Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2776. [PMID: 36014641 PMCID: PMC9414527 DOI: 10.3390/nano12162776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The theranostic agent iron-quercetin complex (IronQ) provides a T1-positive magnetic resonance imaging (MRI) contrast agent. The magnetically IronQ-labeled cells can be used for cell tracking and have active biological applications in promoting cell and tissue regeneration. However, a detailed investigation of IronQ's cytotoxicity and genotoxicity is necessary. Thus, this study aimed to evaluate the possibility of IronQ inducing cytotoxicity and genotoxicity in peripheral blood mononuclear cells (PBMCs). We evaluated the vitality of cells, the production of reactive oxygen species (ROS), the level of antioxidant enzymes, and the stability of the genetic material in PBMCs treated with IronQ. The results show that IronQ had a negligible impact on toxicological parameters such as ROS production and lipid peroxidation, indicating that it is not harmful. IronQ-labeled PMBCs experienced an insignificant depletion of antioxidant enzyme levels at the highest concentration of IronQ. There is no evident genotoxicity in the magnetically IronQ-labeled PBMCs. The results show that IronQ does not potentiate the cytotoxicity and genotoxicity effects of the labeled PMBCs and might be safe for therapeutic and cell tracking purposes. These results could provide a reference guideline for the toxicological analysis of IronQ in in vivo studies.
Collapse
Affiliation(s)
- Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Radiation Research and Medical Imaging, Faculty of Associated Medical Sciences, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panida Kosintarajit
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanyapak Kamkan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanyalak Khanjina
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chonticha Sirikul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Authaphinya Suwan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nampeung Anukul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Radiation Research and Medical Imaging, Faculty of Associated Medical Sciences, Department of Radiologic Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
22
|
Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 2022; 23:499-515. [PMID: 35190722 DOI: 10.1038/s41580-022-00456-z] [Citation(s) in RCA: 625] [Impact Index Per Article: 208.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
'Reactive oxygen species' (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.-. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.- and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Vsevolod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Navdeep S Chandel
- Division of Pulmonary & Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Christine Winterbourn
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
23
|
Sanati M, Afshari AR, Kesharwani P, Sukhorukov VN, Sahebkar A. Recent trends in the application of nanoparticles in cancer therapy: The involvement of oxidative stress. J Control Release 2022; 348:287-304. [PMID: 35644289 DOI: 10.1016/j.jconrel.2022.05.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/15/2022]
Abstract
In the biomedical area, the interdisciplinary field of nanotechnology has the potential to bring numerous unique applications, including better tactics for cancer detection, diagnosis, and therapy. Nanoparticles (NPs) have been the topic of many research and material applications throughout the last decade. Unlike small-molecule medications, NPs are defined by distinct physicochemical characteristics, such as a large surface-to-volume ratio, which allows them to permeate live cells with relative ease. The versatility of NPs as both therapeutics and diagnostics makes them ideal for a broad spectrum of illnesses, from infectious diseases to cancer. A significant amount of data has been participated in the current scientific publications, emphasizing the concept that NPs often produce reactive oxygen species (ROS) to a larger degree than micro-sized particles. It is important to note that oxidative stress governs a wide range of cell signaling cascades, many of which are responsible for cancer cell cytotoxicity. Here, we aimed to provide insight into the signaling pathways triggered by oxidative stress in cancer cells in response to several types of nanomaterials, such as metallic and polymeric NPs and quantum dots. We discuss recent advances in developing integrated anticancer medicines based on NPs targeted to destroy malignant cells by increasing their ROS setpoint.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Vasily N Sukhorukov
- Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
McGraw E, Roberts JD, Kunte N, Westerfield M, Streety X, Held D, Avila LA. Insight into Cellular Uptake and Transcytosis of Peptide Nanoparticles in Spodoptera frugiperda Cells and Isolated Midgut. ACS OMEGA 2022; 7:10933-10943. [PMID: 35415340 PMCID: PMC8991906 DOI: 10.1021/acsomega.1c06638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Silencing genes in insects by introducing double-stranded RNA (dsRNA) in the diet holds promise as a new pest management method. It has been demonstrated that nanoparticles (NPs) can potentiate dsRNA silencing effects by promoting cellular internalization and protecting dsRNA against early degradation. However, many mysteries of how NPs and dsRNA are internalized by gut epithelial cells and, subsequently, transported across the midgut epithelium remain to be unraveled. The sole purpose of the current study is to investigate the role of endocytosis and transcytosis in the transport of branched amphipathic peptide nanocapsules (BAPCs) associated with dsRNA through midgut epithelium cells. Spodoptera frugiperda midguts and the epithelial cell line Sf9, derived from S. frugiperda, were used to study transcytosis and endocytosis, respectively. Results suggest that clathrin-mediated endocytosis and macropinocytosis are largely responsible for cellular uptake, and once within the midgut, transcytosis is involved in shuttling BAPCs-dsRNA from the lumen to the hemolymph. In addition, BAPCs were not found to be toxic to Sf9 cells or generate damaging reactive species once internalized.
Collapse
Affiliation(s)
- Erin McGraw
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Jonathan D. Roberts
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Nitish Kunte
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Matthew Westerfield
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Xavier Streety
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - David Held
- Department
of Entomology and Plant Pathology, Auburn
University, Auburn, Alabama 36849-5412, United States
| | - L. Adriana Avila
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| |
Collapse
|
25
|
Mîndrilă B, Rogoveanu I, Buteică SA, Cercelaru L, Mihaiescu DE, Mănescu MD, Mîndrilă I, Pirici I. Liver Histopathological Changes Related to Intraperitoneal Administration of Salicylic Acid/Fe3O4 Nanoparticles to C57BL/6 Mice. CURRENT HEALTH SCIENCES JOURNAL 2022; 48:146-154. [PMID: 36320876 PMCID: PMC9590356 DOI: 10.12865/chsj.48.02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
With a simple synthesis and easy engineering of physicochemical properties, iron oxide nanoparticles (IONPs) have become widely used in multiple biomedical applications. The study of IONPs toxicity has become an important issue, especially as the results reported so far are contradictory and range from lack of toxicity to cellular toxicity. The aim of this study was to evaluate the histopathological changes induced in mouse liver by long-term intraperitoneal injection of low doses of IONPs functionalized with salicylic acid (SaIONPs). The study was performed on C57BL/6 mice that received by intraperitoneal injection (IP), every two days, 0.6ml of SaIONPs aqueous suspension (35mg/kg body weight SaIONPs that contained 20mg/kg body weight of Fe3O4) for 28 days. The results of this study showed that the cumulative dose of 105mg/kg body weight SaIONPs (62mg/kg body weight of Fe3O4) induced histopathological changes in the subcapsular region of the mouse liver, possible by the release of salicylic acid into the peritoneal cavity. The cumulative dose of 244mg/kg body weight SaIONPs (145mg/kg body weight of Fe3O4) induced liver centrilobular necrosis, which requires the use of lower doses in biological applications. However, this may prove to be beneficial in the case of targeted accumulation of SaIONPs.
Collapse
Affiliation(s)
- Bogdan Mîndrilă
- Doctoral School, University of Medicine and Pharmacy of Craiova, Romania
| | - Ion Rogoveanu
- Department of Gastroenterology, Faculty of Medicine University of Medicine and Pharmacy of Craiova, Romania
| | | | - Liliana Cercelaru
- Department of Morphology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Dan-Eduard Mihaiescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Romania
| | | | - Ion Mîndrilă
- Department of Morphology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Ionica Pirici
- Department of Morphology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
26
|
Bhattacharya R, Chatterjee A, Chatterjee S, Saha NC. Commonly used surfactants sodium dodecyl sulphate, cetylpyridinium chloride and sodium laureth sulphate and their effects on antioxidant defence system and oxidative stress indices in Cyprinus carpio L.: an integrated in silico and in vivo approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30622-30637. [PMID: 34993779 DOI: 10.1007/s11356-021-17864-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
The present study evaluated the homology modelling, in silico prediction and characterization of Cyprinus carpio cytochrome P450, as well as molecular docking experiments between the modelled protein and the surfactants sodium dodecyl sulphate (SDS), sodium laureth sulphate (SLES) and cetylpyridinium chloride (CPC). Homology modelling of cytochrome P450 was performed using the best fit template structure. The structure was optimized with 3D refine, and the ultimate 3D structure was checked with PROCHEK and ERRATA. ExPASy's ProtParam was likewise used to analyse the modelled protein's physiochemical and stereochemical attributes. To establish the binding pattern of each ligand to the targeted protein and its effect on the overall protein conformation, molecular docking calculations and protein-ligand interactions were performed. Our in silico analysis revealed that hydrophobic interactions with the active site amino acid residues of cytochrome p450 were more prevalent than hydrogen bonds and salt bridges. The in vivo analysis exhibited that exposure of fish to sublethal concentrations (10% and 30% of 96 h LC50) of SDS (0.34 and 1.02 mg/l), CPC (0.002 and 0.006 mg/l) and SLES (0.69 and 2.07 mg/l) at 15d, 30d and 45d adversely affected the oxidative stress and antioxidant enzymes (CAT, SOD, GST, GPx and MDA) in the liver of Cyprinus carpio. As a result, the study suggests that elicited oxidative stress, prompted by the induction of antioxidant enzymes activity, could be attributable to the stable binding of cytochrome P450 with SDS, CPC and SLES which ultimately leads to the evolution of antioxidant enzymes for its neutralization.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
27
|
Abdel-Rahman HG, Alian HA, Mahmoud MMA. Impacts of dietary supplementation with nano-iron and methionine on growth, blood chemistry, liver biomarkers, and tissue histology of heat-stressed broiler chickens. Trop Anim Health Prod 2022; 54:126. [PMID: 35246767 PMCID: PMC8897364 DOI: 10.1007/s11250-022-03130-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
A 28-day study was done to explore the impact of nano-iron alone or combined with methionine on growth, blood chemistry, liver biomarkers, and tissue histology of heat-stressed chicken. One-day-old Ross 308 chicks were randomly allocated to three groups. Each group was divided into three replicates (13 chicks/replicate). The first group was the control one that was fed a basal diet without supplementation (T0). The second group was fed a basal diet with nano-iron 4 mg kg-1 diet (T1). The third group was fed a basal diet with nano-iron 4 mg kg-1 diet plus methionine 4 g kg-1 diet (T2). The results showed that the birds in the control group had significantly (p < 0.05) higher final weights. Also, a partial relief of heat stress adverse effects was observed on growth by T1 compared to T2. The T2 showed a significantly increased (p < 0.05) free iron (Fe) level and transferrin saturation index. Likewise, T2 significantly (p < 0.05) reduced total iron-binding capacity (TIBC) and transferrin level in comparison with T0 and T1. Also, hepatic impairment and inflammatory response were observed in the T2 group when compared to T0 and T1, besides a bad lipid profile. Further, T2 showed raised levels of Fe and ferritin in their hepatic tissues compared to those T1 and T0. A significant increment of thiobarbituric acid reactive and decrement of reduced glutathione levels in the hepatic tissues of T2 and T1 versus T0 levels were recorded. It is concluded that nano-iron at the level of 4 mg kg-1 in this study is highly absorbed, leading to harmful effects. Further investigations are needed to detect the proper supplemental level.
Collapse
Affiliation(s)
- Haidy G Abdel-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba A Alian
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Manal M A Mahmoud
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
28
|
Genotoxicity of aluminium oxide, iron oxide, and copper nanoparticles in mouse bone marrow cells. Arh Hig Rada Toksikol 2021; 72:315-325. [PMID: 34985838 PMCID: PMC8785108 DOI: 10.2478/aiht-2021-72-3578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the genotoxic effects of Al2O3, Fe2O3, and Cu nanoparticles with chromosomal aberration (CA), micronucleus (MN), and comet assays on the bone marrow of male BALB/c mice. Three doses of Al2O3, Fe2O3 (75, 150, and 300 mg/kg), or Cu (5, 10, and 15 mg/kg) nanoparticles were administered to mice through intraperitoneal injection once a day for 14 days and compared with negative control (distilled water) and positive control (mitomycin C and methyl methanesulphonate). Al2O3 and Fe2O3 did not show genotoxic effects, but Cu nanoparticles induced significant (P<0.05) genotoxicity at the highest concentration compared to negative control. Our findings add to the health risk information of Al2O3, Fe2O3, and Cu nanoparticles regarding human exposure (occupational and/or through consumer products or medical treatment), and may provide regulatory reference for safe use of these nanoparticles. However, before they can be used safely and released into the environment further chronic in vivo studies are essential.
Collapse
|
29
|
Prasad R, Prasad SB. Modulatory Effect of Rutin on the Antitumor Activity and Genotoxicity of Cisplatin in Tumor-Bearing Mice. Adv Pharm Bull 2021; 11:746-754. [PMID: 34888222 PMCID: PMC8642793 DOI: 10.34172/apb.2021.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/29/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose: Cisplatin is a cancer chemotherapeutic drug that has been extensively used in the treatment of a variety of cancers. However, the full usage of cisplatin is limited due to its treatment associated development of multiple side effects in the host. In the present study, the modulatory effect of rutin, a type of flavonoid, on the cisplatin mediated antitumor activity and allied genotoxicity in ascites Dalton’s lymphoma (DL)-bearing mice were investigated. Methods: The antitumor activity was determined by calculating the percent increase in the life span of mice, cell viability and scanning electron microscopy (SEM) of DL cells. Further, the modulatory effect of rutin on the cisplatin-induced genotoxic effects in the same DL-bearing mice was assessed by the analysis of micronuclei, chromosomal aberration and sperm abnormality. Results: The combination treatment of mice with rutin and cisplatin showed a considerable increase in the life span of the DL-bearing mice depicting better antitumor efficacy. SEM of these DL cells showed severe membrane deformities in DL cells such as fusion of cell membrane, membrane blebbing, cell shrinkage, membrane folding and loss in microvilli from the tumor cell surface which may lead to cell death. Cisplatin alone treatment caused an increase in the frequency of chromosomal aberrations, micronuclei and sperms abnormality. However, the combination treatment of DL-bearing mice with rutin and cisplatin comparatively reduced these genotoxic effects. Conclusion: The overall findings suggest that rutin enhances the cisplatin-mediated antitumor activity and cytotoxicity against DL cells and at the same time diminishes the genotoxic effects induced by cisplatin in the DL-bearing mice.
Collapse
Affiliation(s)
- Rajesh Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, School of Life Sciences, North-Eastern Hill University, Umshing-Mawkynroh, Shillong, Meghalaya, India
| | - Surya Bali Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, School of Life Sciences, North-Eastern Hill University, Umshing-Mawkynroh, Shillong, Meghalaya, India
| |
Collapse
|
30
|
Hussain I, Fatima S, Siddiqui S, Ahmed S, Tabish M. Exploring the binding mechanism of β-resorcylic acid with calf thymus DNA: Insights from multi-spectroscopic, thermodynamic and bioinformatics approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119952. [PMID: 34052761 DOI: 10.1016/j.saa.2021.119952] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
β-resorcylic acid (BR) is a phytochemical which is widely used in the food industry as a flavouring agent and preservative. It has also been found to exhibit antibacterial action against several types of food-borne bacteria. DNA is the main molecular target for many small molecules of therapeutic importance. Hence, the interest is rapidly growing among the researchers to elucidate the interaction between small molecules and DNA. Thus, paving the way to design novel DNA-specific drugs. In this study, an attempt was made to examine the mechanism of binding of BR with calf thymus DNA (ctDNA) with the help of various experiments based on spectroscopy and in silico studies. The spectroscopic studies like UV absorption and fluorescence affirmed the complex formation between BR and ctDNA. The observed binding constant was in the order of 103 M-1 which is indicative of the groove binding mechanism. These findings were further verified by dye-displacement assay, potassium iodide quenching, urea denaturation assay, the study of the effect of ssDNA, circular dichroism and DNA thermal denaturing studies. Different temperature-based fluorescence and isothermal titration calorimetry (ITC) experiments were employed to evaluate thermodynamic parameters. The analysis of thermodynamic parameters supports the enthalpically driven, exothermic and spontaneous nature of the reaction between BR and ctDNA. The forces involved in the binding process were mainly found to be hydrogen bonding, van der Waals and hydrophobic interactions. The results obtained from the molecular docking and molecular dynamics (MD) simulation were consistent with the in vitro experiments, which support the groove binding mode of BR with ctDNA.
Collapse
Affiliation(s)
- Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Sharmin Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, U.P. 202002, India.
| |
Collapse
|
31
|
Genotoxicity Assessment of Metal-Based Nanocomposites Applied in Drug Delivery. MATERIALS 2021; 14:ma14216551. [PMID: 34772074 PMCID: PMC8585152 DOI: 10.3390/ma14216551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
Nanocomposites as drug delivery systems (e.g., metal nanoparticles) are being exploited for several applications in the biomedical field, from therapeutics to diagnostics. Green nanocomposites stand for nanoparticles of biocompatible, biodegradable and non-toxic profiles. When using metal nanoparticles for drug delivery, the question of how hazardous these "virus-sized particles" can be is posed, due to their nanometer size range with enhanced reactivity compared to their respective bulk counterparts. These structures exhibit a high risk of being internalized by cells and interacting with the genetic material, with the possibility of inducing DNA damage. The Comet Assay, or Single-Cell Gel Electrophoresis (SCGE), stands out for its capacity to detect DNA strand breaks in eukaryotic cells. It has huge potential in the genotoxicity assessment of nanoparticles and respective cells' interactions. In this review, the Comet assay is described, discussing several examples of its application in the genotoxicity evaluation of nanoparticles commonly administered in a set of routes (oral, skin, inhaled, ocular and parenteral administration). In the nanoparticles boom era, where guidelines for their evaluation are still very limited, it is urgent to ensure their safety, alongside their quality and efficacy. Comet assay or SCGE can be considered an essential tool and a reliable source to achieve a better nanotoxicology assessment of metal nanoparticles used in drug delivery.
Collapse
|
32
|
Tyumentseva AV, Yaroslavtsev RN, Stolyar SV, Saitova AT, Tyutrina ES, Gorbenko AS, Stolyar MA, Olkhovskiy IA. Silica-Coated Iron Oxide Nanoparticles for DNA Isolation for Molecular Genetic Studies in Hematology. Genet Test Mol Biomarkers 2021; 25:611-614. [PMID: 34550778 DOI: 10.1089/gtmb.2021.0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To develop magnetic nanoparticles (MNPs) based on iron oxide for DNA isolation from blood cells for quantitative molecular genetic analyses of the V617F mutation in the Januskinase 2 (JAK2) gene. Materials and Methods: MNPs were synthesized by the coprecipitation method and coated with tetraethyl orthosilicate (TEOS). The size and shape of the complexes were estimated using transmission electron microscopy. Twenty blood samples from patients with myeloproliferative disorders were used for DNA isolation with the MNPs. DNA quality and compatibility for molecular genetic studies of the JAK2 V617F mutation were investigated by gel electrophoresis and real-time polymerase chain reaction (RT-PCR). Results: The average amount of DNA isolated from 150 μL of whole blood was 75.2 ng when MNPs were used and 72.5 ng when standard silica sorbent was used. There was no DNA damage observed after interaction with MNPs. RT-PCR demonstrated similar values for the JAK2 V617F mutant DNA ratios in the samples after DNA isolation with MNPs and by standard sorption on silica. Conclusions: MNPs with silicate capsules of sufficient thickness were obtained and the undesirable damaging effect of iron oxides on nucleic acids during isolation from cells were eliminated. Designed MNPs allow obtaining intact DNA for molecular genetic studies using the example of the JAK2 V617F for study.
Collapse
Affiliation(s)
- Anna V Tyumentseva
- Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch of RAS, Krasnoyarsk, Russia
| | - Roman N Yaroslavtsev
- Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch of RAS, Krasnoyarsk, Russia.,Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
| | - Sergey V Stolyar
- Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch of RAS, Krasnoyarsk, Russia.,Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia
| | - Alina T Saitova
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
| | - Ekaterina S Tyutrina
- Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch of RAS, Krasnoyarsk, Russia.,The Federal State-Financed Institution "Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency," Krasnoyarsk, Russia
| | - Alexey S Gorbenko
- Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch of RAS, Krasnoyarsk, Russia.,Krasnoyarsk Branch of the "National Research Center for Hematology" Department of Health, Krasnoyarsk, Russia
| | - Marina A Stolyar
- Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch of RAS, Krasnoyarsk, Russia.,Krasnoyarsk Branch of the "National Research Center for Hematology" Department of Health, Krasnoyarsk, Russia
| | - Igor A Olkhovskiy
- Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch of RAS, Krasnoyarsk, Russia.,Krasnoyarsk Branch of the "National Research Center for Hematology" Department of Health, Krasnoyarsk, Russia
| |
Collapse
|
33
|
Arjona MI, González-Manchón C, Durán S, Duch M, Del Real RP, Kadambi A, Agusil JP, Redondo-Horcajo M, Pérez-García L, Gómez E, Suárez T, Plaza JA. Integrating magnetic capabilities to intracellular chips for cell trapping. Sci Rep 2021; 11:18495. [PMID: 34531498 PMCID: PMC8446022 DOI: 10.1038/s41598-021-98095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Current microtechnologies have shown plenty of room inside a living cell for silicon chips. Microchips as barcodes, biochemical sensors, mechanical sensors and even electrical devices have been internalized into living cells without interfering their cell viability. However, these technologies lack from the ability to trap and preconcentrate cells in a specific region, which are prerequisites for cell separation, purification and posterior studies with enhanced sensitivity. Magnetic manipulation of microobjects, which allows a non-contacting method, has become an attractive and promising technique at small scales. Here, we show intracellular Ni-based chips with magnetic capabilities to allow cell enrichment. As a proof of concept of the potential to integrate multiple functionalities on a single device of this technique, we combine coding and magnetic manipulation capabilities in a single device. Devices were found to be internalized by HeLa cells without interfering in their viability. We demonstrated the tagging of a subpopulation of cells and their subsequent magnetic trapping with internalized barcodes subjected to a force up to 2.57 pN (for magnet-cells distance of 4.9 mm). The work opens the venue for future intracellular chips that integrate multiple functionalities with the magnetic manipulation of cells.
Collapse
Affiliation(s)
- María Isabel Arjona
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain.
| | | | - Sara Durán
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain
| | - Marta Duch
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain
| | - Rafael P Del Real
- Instituto de Ciencia de Materiales de Madrid, ICMM (CSIC), Cantoblanco, 28049, Madrid, Spain
| | - Abhinav Kadambi
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain
| | - Juan Pablo Agusil
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain
| | | | - Lluïsa Pérez-García
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UK
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Elvira Gómez
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Teresa Suárez
- Centro de Investigaciones Biológicas Margarita Salas, CIB (CSIC), 28040, Madrid, Spain
| | - José Antonio Plaza
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, 08193, Cerdanyola, Barcelona, Spain
| |
Collapse
|
34
|
Pal RR, Rajpal V, Singh P, Saraf SA. Recent Findings on Thymoquinone and Its Applications as a Nanocarrier for the Treatment of Cancer and Rheumatoid Arthritis. Pharmaceutics 2021; 13:775. [PMID: 34067322 PMCID: PMC8224699 DOI: 10.3390/pharmaceutics13060775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer causes a considerable amount of mortality in the world, while arthritis is an immunological dysregulation with multifactorial pathogenesis including genetic and environmental defects. Both conditions have inflammation as a part of their pathogenesis. Resistance to anticancer and disease-modifying antirheumatic drugs (DMARDs) happens frequently through the generation of energy-dependent transporters, which lead to the expulsion of cellular drug contents. Thymoquinone (TQ) is a bioactive molecule with anticancer as well as anti-inflammatory activities via the downregulation of several chemokines and cytokines. Nevertheless, the pharmacological importance and therapeutic feasibility of thymoquinone are underutilized due to intrinsic pharmacokinetics, including short half-life, inadequate biological stability, poor aqueous solubility, and low bioavailability. Owing to these pharmacokinetic limitations of TQ, nanoformulations have gained remarkable attention in recent years. Therefore, this compilation intends to critically analyze recent advancements in rheumatoid arthritis and cancer delivery of TQ. This literature search revealed that nanocarriers exhibit potential results in achieving targetability, maximizing drug internalization, as well as enhancing the anti-inflammatory and anticancer efficacy of TQ. Additionally, TQ-NPs (thymoquinone nanoparticles) as a therapeutic payload modulated autophagy as well as enhanced the potential of other drugs when given in combination. Moreover, nanoformulations improved pharmacokinetics, drug deposition, using EPR (enhanced permeability and retention) and receptor-mediated delivery, and enhanced anti-inflammatory and anticancer properties. TQ's potential to reduce metal toxicity, its clinical trials and patents have also been discussed.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Vasundhara Rajpal
- Department of Biotechology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India;
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| |
Collapse
|
35
|
Bhattacharya R, Chatterjee A, Chatterjee S, Saha NC. Acute toxicity and sublethal effects of sodium laureth sulfate on oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108998. [PMID: 33556537 DOI: 10.1016/j.cbpc.2021.108998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
The present study was performed to determine the acute toxicity of sodium laureth sulfate (SLES) and its sublethal effects on oxidative stress enzymes in benthic oligochaete worm Tubifex tubifex. The results showed that 96 h median lethal concentration (LC50) value of SLES for Tubifex tubifex is 21.68 mg/l. Moreover exposed worms showed abnormal behaviours including incremented erratic movement, mucus secretion, and decreased clumping tendency at acute level. Percentage of autotomy additionally increased significantly (P < 0.05) with the increasing dose of toxicant at 96 h exposure. Sublethal concentrations of SLES (10% and 30% of 96 h LC50 value) caused paramount alterations in the oxidative stress enzymes. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione S-transferase (GST), and glutathione peroxidase (GPx) exhibited a striking initiatory increment followed by a resulting descending pattern. Moreover, during exposure times, catalase (CAT) activity and malondialdehyde (MDA) level increased markedly with incrementing concentrations of SLES. However, the effects of sodium laureth sulfate on Tubifex tubifex were characterized and portrayed by the development of a correlation matrix and an integrated biomarker response (IBR) assessment. These results indicate that exposure to this anionic surfactant alters the survivability and behavioral response at acute level and modifies changes in oxidative stress enzymes at sublethal level in Tubifex tubifex.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
36
|
Salehi B, Quispe C, Imran M, Ul-Haq I, Živković J, Abu-Reidah IM, Sen S, Taheri Y, Acharya K, Azadi H, del Mar Contreras M, Segura-Carretero A, Mnayer D, Sethi G, Martorell M, Abdull Razis AF, Sunusi U, Kamal RM, Rasul Suleria HA, Sharifi-Rad J. Nigella Plants - Traditional Uses, Bioactive Phytoconstituents, Preclinical and Clinical Studies. Front Pharmacol 2021; 12:625386. [PMID: 33981219 PMCID: PMC8107825 DOI: 10.3389/fphar.2021.625386] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Nigella is a small genus of the family Ranunculaceae, which includes some popular species due to their culinary and medicinal properties, especially in Eastern Europe, Middle East, Western, and Central Asia. Therefore, this review covers the traditional uses and phytochemical composition of Nigella and, in particular, Nigella sativa. The pharmacological studies reported in vitro, in vivo, and in humans have also been reviewed. One of the main strength of the use of Nigella is that the seeds are rich in the omega-6 fatty acid linoleic acid and provide an extra-source of dietary phytochemicals, including the bioactive thymoquinone, and characteristics saponins, alkaloids, and flavonoids. Among Nigella species, N. sativa L. is the most studied plant from the genus. Due to the phytochemical composition and pharmacological properties, the seed and seed oil from this plant can be considered as good candidates to formulate functional ingredients on the basis of folklore and scientific knowledge. Nonetheless, the main limations are that more studies, especially, clinical trials are required to standardize the results, e.g. to establish active molecules, dosage, chemical profile, long-term effects and impact of cooking/incorporation into foods.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Iahtisham Ul-Haq
- Department of Diet and Nutritional Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Belgrade, Serbia
| | - Ibrahim M. Abu-Reidah
- Department of Environmental Science/Boreal Ecosystem Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
- Department of Botany, Fakir Chand College, Diamond Harbour, India
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Hamed Azadi
- Department of Agronomy and Plant Breeding Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Jaén, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Granada, Spain
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Pharmacology, Federal University Dutse, Dutse, Nigeria
| | | | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
37
|
Leonel AG, Mansur AAP, Mansur HS. Advanced Functional Nanostructures based on Magnetic Iron Oxide Nanomaterials for Water Remediation: A Review. WATER RESEARCH 2021; 190:116693. [PMID: 33302040 DOI: 10.1016/j.watres.2020.116693] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 05/24/2023]
Abstract
The fast growth of industrialization combined with the increasing population has led to an unparalleled demand for providing water in a safe, reliable, and cost-effective way, which has become one of the biggest challenges of the twenty-first century faced by global society. The application of nanotechnology in water treatment and pollution cleanup is a promising alternative in order to overcome the current limitations. In particular, the application of magnetic iron oxide nanoparticles (MIONs) for environmental remediation has currently received remarkable attention due to its unique combination of physicochemical and magnetic properties. Given the broadening use of these functional engineered nanomaterials, there is a growing concern about the adverse effects upon exposure of products and by-products to the environment. This makes vitally relevant the development of green chemistry in the synthesis processes combined with a trustworthy risk assessment of the nanotoxicity of MIONs as the scientific knowledge of the potential hazard of nanomaterials remains limited. This work provides comprehensive coverage of the recent progress on designing and developing iron oxide-based nanomaterials through a green synthesis strategy, including the use of benign solvents and ligands. Despite the limitations of nanotoxicity and environmental risks of iron oxide-based nanoparticles for the ecosystem, this critical review presents a contribution to the emerging knowledge concerning the theoretical and experimental studies on the toxicity of MIONs. Potential improvement of applications of advanced iron oxide-based hybrid nanostructures in water treatment and pollution control is also addressed in this review.
Collapse
Affiliation(s)
- Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Belo Horizonte/MG, Brazil.
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Belo Horizonte/MG, Brazil.
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Belo Horizonte/MG, Brazil.
| |
Collapse
|
38
|
Radeloff K, Ramos Tirado M, Haddad D, Breuer K, Müller J, Hochmuth S, Hackenberg S, Scherzad A, Kleinsasser N, Radeloff A. Superparamagnetic Iron Oxide Particles (VSOPs) Show Genotoxic Effects but No Functional Impact on Human Adipose Tissue-Derived Stromal Cells (ASCs). MATERIALS 2021; 14:ma14020263. [PMID: 33430323 PMCID: PMC7825809 DOI: 10.3390/ma14020263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Adipose tissue-derived stromal cells (ASCs) represent a capable source for cell-based therapeutic approaches. For monitoring a cell-based application in vivo, magnetic resonance imaging (MRI) of cells labeled with iron oxide particles is a common method. It is the aim of the present study to analyze potential DNA damage, cytotoxicity and impairment of functional properties of human (h)ASCs after labeling with citrate-coated very small superparamagnetic iron oxide particles (VSOPs). Cytotoxic as well as genotoxic effects of the labeling procedure were measured in labeled and unlabeled hASCs using the MTT assay, comet assay and chromosomal aberration test. Trilineage differentiation was performed to evaluate an impairment of the differentiation potential due to the particles. Proliferation as well as migration capability were analyzed after the labeling procedure. Furthermore, the labeling of the hASCs was confirmed by Prussian blue staining, transmission electron microscopy (TEM) and high-resolution MRI. Below the concentration of 0.6 mM, which was used for the procedure, no evidence of genotoxic effects was found. At 0.6 mM, 1 mM as well as 1.5 mM, an increase in the number of chromosomal aberrations was determined. Cytotoxic effects were not observed at any concentration. Proliferation, migration capability and differentiation potential were also not affected by the procedure. Labeling with VSOPs is a useful labeling method for hASCs that does not affect their proliferation, migration and differentiation potential. Despite the absence of cytotoxicity, however, indications of genotoxic effects have been demonstrated.
Collapse
Affiliation(s)
- Katrin Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
- Correspondence:
| | - Mario Ramos Tirado
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Daniel Haddad
- Fraunhofer Development Center X-ray Technology EZRT, Department Magnetic Resonance and X-ray Imaging, A Division of Fraunhofer Institute for Integrated Circuits IIS, 97074 Wuerzburg, Germany;
| | - Kathrin Breuer
- Department of Radiation Oncology, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Jana Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| | - Sabine Hochmuth
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Andreas Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| |
Collapse
|
39
|
Pan X. Mutagenicity Evaluation of Nanoparticles by the Ames Assay. Methods Mol Biol 2021; 2326:275-285. [PMID: 34097276 DOI: 10.1007/978-1-0716-1514-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Ames assay is a classic and robust method for identifying and evaluating chemical mutagens that reverse the mutations of Salmonella typhimurium and/or Escherichia coli bacteria strains with amino acid synthesis defects. It is also called the bacterial reverse mutation assay. Ames assay has been widely used for detecting genetic toxicity of many chemicals and gained increased applications in risk assessment of emerging environmental pollutants such as nanomaterials. In this chapter, we presented a detailed step-by-step method using the Ames assay to detect potential mutagenicity of metal oxide nanoparticles. The strategy to use the liver S9 fraction for bioactivation and a preincubation procedure is recommended. This method is easy to use to test genetic toxicity of other environmental contaminants and new chemicals.
Collapse
Affiliation(s)
- Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
40
|
Ahamed M, Akhtar MJ, Khan MM, Alhadlaq HA, Alshamsan A. Barium Titanate (BaTiO 3) Nanoparticles Exert Cytotoxicity through Oxidative Stress in Human Lung Carcinoma (A549) Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2309. [PMID: 33266501 PMCID: PMC7700150 DOI: 10.3390/nano10112309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Barium titanate (BaTiO3) nanoparticles (BT NPs) have shown exceptional characteristics such as high dielectric constant and suitable ferro-, piezo-, and pyro-electric properties. Thus, BT NPs have shown potential to be applied in various fields including electro-optical devices and biomedicine. However, very limited knowledge is available on the interaction of BT NPs with human cells. This work was planned to study the interaction of BT NPs with human lung carcinoma (A549) cells. Results showed that BT NPs decreased cell viability in a dose- and time-dependent manner. Depletion of mitochondrial membrane potential and induction of caspase-3 and -9 enzyme activity were also observed following BT NP exposure. BT NPs further induced oxidative stress indicated by induction of pro-oxidants (reactive oxygen species and hydrogen peroxide) and reduction of antioxidants (glutathione and several antioxidant enzymes). Moreover, BT NP-induced cytotoxicity and oxidative stress were effectively abrogated by N-acetyl-cysteine (an ROS scavenger), suggesting that BT NP-induced cytotoxicity was mediated through oxidative stress. Intriguingly, the underlying mechanism of cytotoxicity of BT NPs was similar to the mode of action of ZnO NPs. At the end, we found that BT NPs did not affect the non-cancerous human lung fibroblasts (IMR-90). Altogether, BT NPs selectively induced cytotoxicity in A549 cells via oxidative stress. This work warrants further research on selective cytotoxicity mechanisms of BT NPs in different types of cancer cells and their normal counterparts.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - M.A. Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - Hisham A. Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
41
|
Natarajan P, Tomich JM. Understanding the influence of experimental factors on bio-interactions of nanoparticles: Towards improving correlation between in vitro and in vivo studies. Arch Biochem Biophys 2020; 694:108592. [PMID: 32971033 PMCID: PMC7503072 DOI: 10.1016/j.abb.2020.108592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Bionanotechnology has developed rapidly over the past two decades, owing to the extensive and versatile, functionalities and applicability of nanoparticles (NPs). Fifty-one nanomedicines have been approved by FDA since 1995, out of the many NPs based formulations developed to date. The general conformation of NPs consists of a core with ligands coating their surface, that stabilizes them and provides them with added functionalities. The physicochemical properties, especially the surface composition of NPs influence their bio-interactions to a large extent. This review discusses recent studies that help understand the nano-bio interactions of iron oxide and gold NPs with different surface compositions. We discuss the influence of the experimental factors on the outcome of the studies and, thus, the importance of standardization in the field of nanotechnology. Recent studies suggest that with careful selection of experimental parameters, it is possible to improve the positive correlation between in vitro and in vivo studies. This provides a fundamental understanding of the NPs which helps in assessing their potential toxic side effects and may aid in manipulating them further to improve their biocompatibility and biosafety.
Collapse
|
42
|
Pearce KM, Okon I, Watson-Wright C. Induction of Oxidative DNA Damage and Epithelial Mesenchymal Transitions in Small Airway Epithelial Cells Exposed to Cosmetic Aerosols. Toxicol Sci 2020; 177:248-262. [DOI: 10.1093/toxsci/kfaa089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Engineered metal nanoparticles (ENPs) are frequently incorporated into aerosolized consumer products, known as nano-enabled products (NEPs). Concern for consumer pulmonary exposures grows as NEPs produce high concentrations of chemically modified ENPs. A significant knowledge gap still exists surrounding NEP aerosol respiratory effects as previous research focuses on pristine/unmodified ENPs. Our research evaluated metal-containing aerosols emitted from nano-enabled cosmetics and their induction of oxidative stress and DNA damage, which may contribute to epithelial mesenchymal transitions (EMT) within primary human small airway epithelial cells. We utilized an automated NEP generation system to monitor and gravimetrically collect aerosols from two aerosolized cosmetic lines. Aerosol monitoring data were inputted into modeling software to determine potential inhaled dose and in vitro concentrations. Toxicological profiles of aerosols and comparable pristine ENPs (TiO2 and Fe2O3) were used to assess reactive oxygen species and oxidative stress by fluorescent-based assays. Single-stranded DNA (ssDNA) damage and 8-oxoguanine were detected using the CometChip assay after 24-h exposure. Western blots were conducted after 21-day exposure to evaluate modulation of EMT markers. Results indicated aerosols possessed primarily ultrafine particles largely depositing in tracheobronchial lung regions. Significant increases in oxidative stress, ssDNA damage, and 8-oxoguanine were detected post-exposure to aerosols versus pristine ENPs. Western blots revealed statistically significant decreases in E-cadherin and increases in vimentin, fascin, and CD44 for two aerosols, indicating EMT. This work suggests certain prolonged NEP inhalation exposures cause oxidative DNA damage, which may play a role in cellular changes associated with reduced respiratory function and should be of concern.
Collapse
Affiliation(s)
| | - Imoh Okon
- Center for Molecular & Translational Medicine, Georgia State University, Atlanta, Georgia 30302
| | | |
Collapse
|
43
|
Natarajan P, Roberts JD, Kunte N, Hunter WB, Fleming SD, Tomich JM, Avila LA. A Study of the Cellular Uptake of Magnetic Branched Amphiphilic Peptide Capsules. Mol Pharm 2020; 17:2208-2220. [PMID: 32324415 DOI: 10.1021/acs.molpharmaceut.0c00393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding cellular uptake mechanisms of nanoparticles with therapeutic potential has become critical in the field of drug delivery. Elucidation of cellular entry routes can aid in the dissection of the complex intracellular trafficking and potentially allow for the manipulation of nanoparticle fate after cellular delivery (i.e., avoid lysosomal degradation). Branched amphiphilic peptide capsules (BAPCs) are peptide nanoparticles that have been and are being explored as delivery systems for nucleic acids and other therapeutic molecules in vitro and in vivo. In the present study, we determined the cellular uptake routes of BAPCs with and without a magnetic nanobead core (BAPc-MNBs) in two cell lines: macrophages and intestinal epithelial cells. We also studied the influence of size and growth media composition in this cellular process. Substituting the water-filled core with magnetic nanobeads might provide the peptide bilayer nanocapsules with added functionalities, facilitating their use in bio/immunoassays, magnetic field guided drug delivery, and magnetofection among others. Results suggest that BAPc-MNBs are internalized into the cytosol using more than one endocytic pathway. Flow cytometry and analysis of reactive oxygen and nitrogen species (ROS/RNS) demonstrated that cell viability was minimally impacted by BAPc-MNBs. Cellular uptake pathways of peptide vesicles remain poorly understood, particularly with respect to endocytosis and intracellular trafficking. Outcomes from these studies provide a fundamental understanding of the cellular uptake of this peptide-based delivery system which will allow for strengthening of their delivery capabilities and expanding their applications both in vitro and in vivo.
Collapse
Affiliation(s)
- Pavithra Natarajan
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jonathan D Roberts
- Department of Biological Sciences, 101 Life Science Bldg, Auburn University, Auburn, Alabama 36849, United States
| | - Nitish Kunte
- Department of Biological Sciences, 101 Life Science Bldg, Auburn University, Auburn, Alabama 36849, United States
| | - Wayne B Hunter
- U.S. Horticultural Research Lab, USDA, ARS, 2001 South Rock Road, Fort Pierce, Florida 34945, United States
| | - Sherry D Fleming
- Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, Kansas 66506, United States
| | - John M Tomich
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas 66506, United States
| | - L Adriana Avila
- Department of Biological Sciences, 101 Life Science Bldg, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
44
|
Jaganjac M, Borovic Sunjic S, Zarkovic N. Utilizing Iron for Targeted Lipid Peroxidation as Anticancer Option of Integrative Biomedicine: A Short Review of Nanosystems Containing Iron. Antioxidants (Basel) 2020; 9:E191. [PMID: 32106528 PMCID: PMC7139573 DOI: 10.3390/antiox9030191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Traditional concepts of life sciences consider oxidative stress as a fundamental process of aging and various diseases including cancer, whereas traditional medicine recommends dietary intake of iron to support physiological functions of the organism. However, due to its strong pro-oxidative capacity, if not controlled well, iron can trigger harmful oxidative stress manifested eventually by toxic chain reactions of lipid peroxidation. Such effects of iron are considered to be major disadvantages of uncontrolled iron usage, although ferroptosis seems to be an important defense mechanism attenuating cancer development. Therefore, a variety of iron-containing nanoparticles were developed for experimental radio-, chemo-, and photodynamic as well as magnetic dynamic nanosystems that alter redox homeostasis in cancer cells. Moreover, studies carried over recent decades have revealed that even the end products of lipid peroxidation, represented by 4-hydroxynonenal (4-HNE), could have desirable effects even acting as kinds of selective anticancer substances produced by non-malignant cells for defense again invading cancer. Therefore, advanced nanotechnologies should be developed for using iron to trigger targeted lipid peroxidation as an anticancer option of integrative biomedicine.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Laboratory, Anti Doping Laboratory Qatar, Doha, Qatar;
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Suzana Borovic Sunjic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| |
Collapse
|
45
|
Nanospheres as a technological alternative to suppress hepatic cellular damage and impaired bioenergetics caused by nerolidol in Nile tilapia (Oreochromis niloticus). Naunyn Schmiedebergs Arch Pharmacol 2020; 393:751-759. [PMID: 31953674 DOI: 10.1007/s00210-020-01824-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
Nerolidol is a sesquiterpene found in essential oils of several plant species. It is found commonly in human and animal diets and is approved by the US Food and Drug Administration as a flavoring agent. Nevertheless, recent studies have suggested that nerolidol has potent hepatotoxic effects. Because use of plant-based products in human and animal food has expanded considerably, it is essential to develop approaches such as nanotechnology to avoid or reduce hepatic toxic effects. Therefore, the aim of the study was to determine whether nerolidol dietary supplementation elicited hepatic damage associated with impairment of energy homeostasis, as well as whether supplementation with nerolidol-loaded in nanospheres prevented hepatotoxic effects in Nile tilapia (Oreochromis niloticus). Nile tilapia were divided into five groups (A-E, n = 10 per group) with four replicates each, as follows: group A received basal feed (without supplementation); group B received feed containing 0.5 mL free nerolidol/kg; group C received feed containing 1.0 mL free nerolidol/kg; group D received feed containing 0.5 mL nanospheres nerolidol/kg; and group E received feed containing 1.0 mL nanospheres nerolidol/kg. All groups received experimental feed once a day (10% total biomass) at 2 p.m. for 60 consecutive days. Hepatic liver weight and relative liver weight were significantly lower in fish fed 1.0 mL free nerolidol/kg feed than in fish given basal diet (control group). Hepatic pyruvate kinase (1.0 mL free nerolidol/kg) and adenylate kinase (0.5 and 1.0 mL free nerolidol/kg) activities were significantly lower than in the control group, while hepatic reactive oxygen species and lipid damage levels were significantly higher. Finally, the comet assay revealed significant increases in the frequency of damage and the damage index in fish given 0.5 and 1.0 mL free nerolidol/kg in a dose-dependent manner. Nerolidol-loaded in nanospheres prevented all alterations elicited by free nerolidol. Based on these data, we concluded that dietary supplementation with free nerolidol elicited severe impairment of hepatic bioenergetics homeostasis that appeared to be mediated by excessive ROS production and lipid damage, contributing to a genotoxic effect. Dietary supplementation with nerolidol-loaded in nanospheres did not elicit hepatic damage, and therefore, should be considered as a replacement so as to limit toxicity, permitting its continued use as a dietary supplement.
Collapse
|
46
|
Wu H, Li R, Liu Y, Zhang X, Zhang J, Ma E. A second intracellular copper/zinc superoxide dismutase and a manganese superoxide dismutase in Oxya chinensis: Molecular and biochemical characteristics and roles in chlorpyrifos stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109830. [PMID: 31648074 DOI: 10.1016/j.ecoenv.2019.109830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
A second intracellular copper/zinc superoxide dismutase (icCuZnSOD2) and manganese SOD (MnSOD) were cloned and characterized in Oxya chinensis. The open reading frame (ORF) of OcicCuZnSOD2 and OcMnSOD are 462 and 672 bp encoding 153 and 223 amino acids, respectively. OcicCuZnSOD2 contains two signature sequences, one potential N-glycosylation site, and seven copper/zinc binding sites. OcMnSOD includes a mitochondria targeting sequence of 7 amino acids at N-terminal, one signature sequence, two N-glycosylation sites, and four manganese binding sites. The secondary structure and homology model of OcicCuZnSOD2 include nine β sheets, two Greek-key motifs, and one electrostatic loop. OcMnSOD contains nine α-helices and three β-sheets. Phylogenetic analysis shows that OcMnSOD is evolutionarily conserved while OcicCuZnSOD2 may be gene duplication and is paralogous to OcicCuZnSOD1. OcMnSOD expressed widely in all tissues and developmental stages. OcicCuZnSOD2 showed testis-specific expression and expressed highest in the 5th-instar nymph and the adult. The optimum temperatures and pH values of the recombinant OcicCuZnSOD2 and OcMnSOD were 40 °C and 8.0. They were stable at 25-55 °C and at pH 5.0-12.0 and pH 6.0-12.0, respectively. The activity and mRNA expression of each OcSOD were assayed after chlorpyrifos treatments. Total SOD and CuZnSOD activities first increased then declined under chlorpyrifos stress. Chlorpyrifos induced the mRNA expression and activity of OcMnSOD as a dose-dependent manner and inhibited OcicCuZnSOD2 transcription. The role of each OcSOD gene in chlorpyrifos stress was investigated using RNAi and disc diffusion assay with Escherichia coli overexpressing OcSOD proteins. Silencing of OcMnSOD significantly increased ROS content in chlorpyrifos-exposed grasshoppers. Disc diffusion assay showed that the plates with E. coli overexpressing OcMnSOD had the smaller inhibition zones around the chlorpyrifos-soaked filter discs. These results implied that OcMnSOD played a significant role in defense chlorpyrifos-induced oxidative stress.
Collapse
Affiliation(s)
- Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China.
| | - Ruiying Li
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China
| | - Yongmei Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China
| | - Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|