1
|
Yu CC, Yang CY, Chang TY, Lan KC, Liu SH. A negative regulatory role of β-cell-derived exosomes in the glucose-stimulated insulin secretion of recipient β-cells. Arch Toxicol 2024; 98:3885-3896. [PMID: 39127846 DOI: 10.1007/s00204-024-03838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Exosomes are extracellular vesicles that play a role in intercellular communication through the transportation of their cargo including mRNAs, microRNAs, proteins, and nucleic acids. Exosomes can also regulate glucose homeostasis and insulin secretion under diabetic conditions. However, the role of exosomes in insulin secretion in islet β-cells under physiological conditions remains to be clarified. The aim of this study was to investigate whether exosomes derived from pancreatic islet β-cells could affect insulin secretion in naïve β-cells. We first confirmed that exosomes derived from the RIN-m5f β-cell line interfered with the glucose-stimulated insulin secretion (GSIS) of recipient β-cells without affecting cell viability. The exosomes significantly reduced the protein expression levels of phosphorylated Akt, phosphorylated GSK3α/β, CaMKII, and GLUT2 (insulin-related signaling molecules), and they increased the protein expression levels of phosphorylated NFκB-p65 and Cox-2 (inflammation-related signaling molecules), as determined by a Western blot analysis. A bioinformatics analysis of Next-Generation Sequencing data suggested that exosome-carried microRNAs, such as miR-1224, -122-5p, -133a-3p, -10b-5p, and -423-5p, may affect GSIS in recipient β-cells. Taken together, these findings suggest that β-cell-derived exosomes may upregulate exosomal microRNA-associated signals to dysregulate glucose-stimulated insulin secretion in naïve β-cells.
Collapse
Affiliation(s)
- Chia-Ching Yu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Pediatrics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Hemedan AA, Satagopam V, Schneider R, Ostaszewski M. Cohort-specific boolean models highlight different regulatory modules during Parkinson's disease progression. iScience 2024; 27:110956. [PMID: 39429779 PMCID: PMC11489052 DOI: 10.1016/j.isci.2024.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) involves complex molecular interactions and diverse comorbidities. To better understand its molecular mechanisms, we employed systems medicine approaches using the PD map, a detailed repository of PD-related interactions and applied Probabilistic Boolean Networks (PBNs) to capture the stochastic nature of molecular dynamics. By integrating cohort-level and real-world patient data, we modeled PD's subtype-specific pathway deregulations, providing a refined representation of its molecular landscape. Our study identifies key regulatory biomolecules and pathways that vary across PD subtypes, offering insights into the disease's progression and patient stratification. These findings have significant implications for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Abdelmonem Hemedan
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata Satagopam
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reinhard Schneider
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
3
|
Fuentevilla-Alvarez G, Soto ME, Robles-Herrera GJ, Vargas-Alarcón G, Sámano R, Meza-Toledo SE, Huesca-Gómez C, Gamboa R. Analysis of Circulating miRNA Expression Profiles in Type 2 Diabetes Patients with Diabetic Foot Complications. Int J Mol Sci 2024; 25:7078. [PMID: 39000190 PMCID: PMC11241130 DOI: 10.3390/ijms25137078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with various complications, including diabetic foot, which can lead to significant morbidity and mortality. Non-healing foot ulcers in diabetic patients are a major risk factor for infections and amputations. Despite conventional treatments, which have limited efficacy, there is a need for more effective therapies. MicroRNAs (miRs) are small non-coding RNAs that play a role in gene expression and have been implicated in diabetic wound healing. miR expression was analyzed through RT-qPCR in 41 diabetic foot Mexican patients and 50 controls. Diabetic foot patients showed significant increases in plasma levels of miR-17-5p (p = 0.001), miR-191-5p (p = 0.001), let-7e-5p (p = 0.001), and miR-33a-5p (p = 0.005) when compared to controls. Elevated levels of miR-17, miR-191, and miR-121 correlated with higher glucose levels in patients with diabetic foot ulcers (r = 0.30, p = 0.004; r = 0.25, p = 0.01; and r = 0.21, p = 0.05, respectively). Levels of miR-17 showed the highest diagnostic potential (AUC 0.903, p = 0.0001). These findings underscore the possible role of these miRs in developing diabetes complications. Our study suggests that high miR-17, miR-191, and miR-121 expression is strongly associated with higher glucose levels and the development of diabetic foot ulcers.
Collapse
Affiliation(s)
- Giovanny Fuentevilla-Alvarez
- Endocrinology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico;
| | - María Elena Soto
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (M.E.S.); (G.V.-A.)
- Cardiovascular Line in American British Cowdary (ABC) Medical Center, Sur 136 No. 116 Col. Las Américas, Mexico City 01120, Mexico
| | - Gustavo Jaziel Robles-Herrera
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (G.J.R.-H.); (C.H.-G.)
| | - Gilberto Vargas-Alarcón
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (M.E.S.); (G.V.-A.)
| | - Reyna Sámano
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | - Sergio Enrique Meza-Toledo
- Biochemistry Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| | - Claudia Huesca-Gómez
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (G.J.R.-H.); (C.H.-G.)
| | - Ricardo Gamboa
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (G.J.R.-H.); (C.H.-G.)
| |
Collapse
|
4
|
Liu Y, Cui B, Zhang P, Xiao S, Duan D, Ding Y. Polymicrobial Infection Induces Adipose Tissue Dysfunction via Gingival Extracellular Vesicles. J Dent Res 2024; 103:187-196. [PMID: 38095271 DOI: 10.1177/00220345231211210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Recent studies have indicated that periodontitis promotes metabolic dysregulation and insulin resistance by affecting the function of white adipose tissue (WAT). However, the mechanisms linking periodontitis to adipose tissue dysfunction still need to be explored. Extracellular vesicles (EVs) deliver messages to distal sites and regulate their function. Also, recent studies have shown that periodontitis changes the composition of EVs in body fluids and that EVs might be one of the mechanisms underlying the relationship between periodontitis and insulin resistance. Herein, we explored the impact of polymicrobial oral infection with periodontal pathogens on the function of WAT and the role of gingival EVs (gEVs) in the process. Mice were subjected to oral inoculation with 109 Porphyromonas gingivalis and 108 Fusobacterium nucleatum every other day for 14 wk. This prolonged bacterial infection induced WAT dysfunction, characterized by reduced levels of AKT phosphorylation, adiponectin, leptin, and genes associated with adipogenesis and lipogenesis. We successfully isolated gEVs with satisfactory yield and purity. The RNA sequencing results showed that the differentially expressed microRNAs in the gEVs of mice with polymicrobial oral infection were involved in insulin signaling and adipose tissue function. Notably, our in vitro experiments and RNA sequencing results revealed the functional similarities between gEVs and plasma-derived EVs. Furthermore, intraperitoneal injection with gEVs derived from mice with oral infection induced the dysfunction of WAT in healthy mice. Overall, our findings provide evidence for the influence of polymicrobial oral infection on WAT function and propose gEVs as a novel pathway through which periodontal infection may exert its effects on WAT.
Collapse
Affiliation(s)
- Y Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - B Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - P Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Nemecz M, Stefan DS, Comarița IK, Constantin A, Tanko G, Guja C, Georgescu A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc Diabetol 2023; 22:260. [PMID: 37749569 PMCID: PMC10521428 DOI: 10.1186/s12933-023-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Circulating MicroRNAs (miRNAs) carried by microvesicles (MVs) have various physiological and pathological functions by post-transcriptional regulation of gene expression being considered markers for many diseases including diabetes and dyslipidemia. We aimed to identify new common miRNAs both in MVs and plasma that could be predictive biomarkers for diabetic dyslipidemia evolution. METHODS For this purpose, plasma from 63 participants in the study (17 type 2 diabetic patients, 17 patients with type 2 diabetes and dyslipidemia, 14 patients with dyslipidemia alone and 15 clinically healthy persons without diabetes or dyslipidemia) was used for the analysis of circulating cytokines, MVs, miRNAs and MV-associated miRNAs. RESULTS The results uncovered three miRNAs, miR-218, miR-132 and miR-143, whose expression was found to be significantly up-regulated in both circulating MVs and plasma from diabetic patients with dyslipidemia. These miRNAs showed significant correlations with important plasma markers, representative of this pathology. Thus, MV/plasma miR-218 was negatively correlated with the levels of erythrocyte MVs, plasma miR-132 was positively connected with MV miR-132 and negatively with uric acid and erythrocyte plasma levels, and plasma miR-143 was negatively related with creatinine levels and diastolic blood pressure. Also, three miRNAs common to MV and plasma, namely miR-21, miR-122, and miR-155, were identified to be down-regulated and up-regulated, respectively, in diabetic dyslipidemia. In addition, MV miR-21 was positively linked with cholesterol plasma levels and plasma miR-21 with TNFα plasma levels, MV miR-122 was negatively correlated with LDL-c levels and plasma miR-122 with creatinine and diastolic blood pressure and positively with MV miR-126 levels, MV miR-155 was positively associated with cholesterol and total MV levels and negatively with HDL-c levels, whereas plasma miR-155 was positively correlated with Il-1β plasma levels and total MV levels and negatively with MV miR-223 levels. CONCLUSIONS In conclusion, miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 show potential as biomarkers for diabetic dyslipidemia, but there is a need for more in-depth studies. These findings bring new information regarding the molecular biomarkers specific to diabetic dyslipidemia and could have important implications for the treatment of patients affected by this pathology.
Collapse
Affiliation(s)
- Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| | - Diana Simona Stefan
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Cristian Guja
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
6
|
Kim YG, Park J, Park EY, Kim SM, Lee SY. Analysis of MicroRNA Signature Differentially Expressed in Pancreatic Islet Cells Treated with Pancreatic Cancer-Derived Exosomes. Int J Mol Sci 2023; 24:14301. [PMID: 37762604 PMCID: PMC10532014 DOI: 10.3390/ijms241814301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Since the majority of patients with pancreatic cancer (PC) develop insulin resistance and/or diabetes mellitus (DM) prior to PC diagnosis, PC-induced diabetes mellitus (PC-DM) has been a focus for a potential platform for PC detection. In previous studies, the PC-derived exosomes were shown to contain the mediators of PC-DM. In the present study, the response of normal pancreatic islet cells to the PC-derived exosomes was investigated to determine the potential biomarkers for PC-DM, and consequently, for PC. Specifically, changes in microRNA (miRNA) expression were evaluated. The miRNA specimens were prepared from the untreated islet cells as well as the islet cells treated with the PC-derived exosomes (from 50 patients) and the healthy-derived exosomes (from 50 individuals). The specimens were subjected to next-generation sequencing and bioinformatic analysis to determine the differentially expressed miRNAs (DEmiRNAs) only in the specimens treated with the PC-derived exosomes. Consequently, 24 candidate miRNA markers, including IRS1-modulating miRNAs such as hsa-miR-144-5p, hsa-miR-3148, and hsa-miR-3133, were proposed. The proposed miRNAs showed relevance to DM and/or insulin resistance in a literature review and pathway analysis, indicating a potential association with PC-DM. Due to the novel approach used in this study, additional evidence from future studies could corroborate the value of the miRNA markers discovered.
Collapse
Affiliation(s)
- Young-gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
| | - Jisook Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.P.); (E.Y.P.)
| | - Eun Young Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; (J.P.); (E.Y.P.)
| | - Sang-Mi Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (Y.-g.K.); (S.-M.K.)
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul 06351, Republic of Korea
| |
Collapse
|
7
|
Erfan R, Shaker OG, Khalil MA, AlOrbani AM, Abu-El-Azayem AK, Samy A, Zaki OM, Abdelhamid H, Fares R, Mohammed A. Lnc-HULC, miR-122, and sirtulin-1 as potential diagnostic biomarkers for psoriasis and their association with the development of metabolic syndrome during the disease course. Noncoding RNA Res 2023; 8:340-349. [PMID: 37455763 PMCID: PMC10338904 DOI: 10.1016/j.ncrna.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 07/18/2023] Open
Abstract
Psoriasis is a persistent inflammatory skin disorder driven by T cells. The disease is characterized by aberrant keratinocytes (KCs) differentiation, epidermal proliferation, and excessive hyperplasia of veins and arteries. The purpose of the study was to identify the levels of circulating lnc-HULC, miR-122, and Sirtuin 1 (SIRT-1) in psoriatic patients, evaluate their possible roles as diagnostic biomarkers, and link their levels with the development of metabolic syndrome during psoriasis progression. This study included 176 participants. The subjects were divided into four groups, with 44 participants in each group. All patients have undergone a complete history taking and clinical examination. Laboratory investigations included Low-density lipoprotein (LDL), High-density lipoprotein (HDL), Triglycerides (TG), Fasting blood sugar (FBS), and cholesterol plasma levels. Serum levels of miR-122 and lnc-HULC were examined by qRT-PCR. Serum levels of SIRT-1 were examined by ELISA. The serum concentrations of lnc-HULC and miR-122 were significantly higher in psoriatic participants compared to controls. Psoriatic patients' serum concentrations of SIRT-1 were much lower than those of healthy individuals. There was a negative association between SIRT-1 concentration and BMI, disease duration, PASI score, LDL, and cholesterol levels. The blood levels of lnc-HULC, miR-122, and SIRT-1 in psoriasis patients provide a promising role as diagnostic biomarkers in patients with and without metabolic syndrome.
Collapse
Affiliation(s)
- Randa Erfan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Mahmoud A.F. Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Aya M. AlOrbani
- Department of Dermatology, Faculty of Medicine, Cairo University, 12613, Egypt
| | - Abeer K. Abu-El-Azayem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, 12613, Cairo, Egypt
| | - Amira Samy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 12613, Cairo, Egypt
| | - Othman M. Zaki
- Department of Clinical Pathology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | | | - Reham Fares
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt
| | - Asmaa Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
8
|
Nguyen HD. An evaluation of the effects of mixed heavy metals on prediabetes and type 2 diabetes: epidemiological and toxicogenomic analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82437-82457. [PMID: 37326729 DOI: 10.1007/s11356-023-28037-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
The link between mixed heavy metals (mercury, lead, and cadmium), prediabetes, and type 2 diabetes mellitus (T2DM), especially molecular mechanisms, is poorly understood. Thus, we aimed to identify the association between mixed heavy metals and T2DM and its components using a data set from the Korean National Health and Nutrition Examination Survey. We further analyzed the main molecular mechanisms implicated in T2DM development induced by mixed heavy metals using in-silico analysis. Our findings observed that serum mercury was associated with prediabetes, elevated glucose, and ln2-transformed glucose when using different statistical methods. "AGE-RAGE signaling pathway in diabetic complications", "non-alcoholic fatty liver disease", "metabolic Syndrome X", and three miRNAs (hsa-miR-98-5p, hsa-let-7a-5p, and hsa-miR-34a-5p) were listed as the most important molecular mechanisms related to T2DM development caused by mixed heavy metals. These miRNA sponge structures were created and examined, and they may be beneficial in the treatment of T2DM. The predicted cutoff values for three heavy metal levels linked to T2DM and its components were specifically identified. Our results imply that chronic exposure to heavy metals, particularly mercury, may contribute to the development of T2DM. To understand the changes in the pathophysiology of T2DM brought on by a combination of heavy metals, more research is required.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea.
| |
Collapse
|
9
|
Al-Mahayni S, Ali M, Khan M, Jamsheer F, Moin ASM, Butler AE. Glycemia-Induced miRNA Changes: A Review. Int J Mol Sci 2023; 24:ijms24087488. [PMID: 37108651 PMCID: PMC10144997 DOI: 10.3390/ijms24087488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is a rapidly increasing global health concern that significantly strains the health system due to its downstream complications. Dysregulation in glycemia represents one of the fundamental obstacles to achieving glycemic control in diabetic patients. Frequent hyperglycemia and/or hypoglycemia events contribute to pathologies that disrupt cellular and metabolic processes, which may contribute to the development of macrovascular and microvascular complications, worsening the disease burden and mortality. miRNAs are small single-stranded non-coding RNAs that regulate cellular protein expression and have been linked to various diseases, including diabetes mellitus. miRNAs have proven useful in the diagnosis, treatment, and prognosis of diabetes and its complications. There is a vast body of literature examining the role of miRNA biomarkers in diabetes, aiming for earlier diagnoses and improved treatment for diabetic patients. This article reviews the most recent literature discussing the role of specific miRNAs in glycemic control, platelet activity, and macrovascular and microvascular complications. Our review examines the different miRNAs involved in the pathological processes leading to the development of type 2 diabetes mellitus, such as endothelial dysfunction, pancreatic beta-cell dysfunction, and insulin resistance. Furthermore, we discuss the potential applications of miRNAs as next-generation biomarkers in diabetes with the aim of preventing, treating, and reversing diabetes.
Collapse
Affiliation(s)
- Sara Al-Mahayni
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Mohamed Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Muhammad Khan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Fatema Jamsheer
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
10
|
Mir FA, Mall R, Ullah E, Iskandarani A, Cyprian F, Samra TA, Alkasem M, Abdalhakam I, Farooq F, Taheri S, Abou-Samra AB. An integrated multi-omic approach demonstrates distinct molecular signatures between human obesity with and without metabolic complications: a case-control study. J Transl Med 2023; 21:229. [PMID: 36991398 PMCID: PMC10053148 DOI: 10.1186/s12967-023-04074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVES To examine the hypothesis that obesity complicated by the metabolic syndrome, compared to uncomplicated obesity, has distinct molecular signatures and metabolic pathways. METHODS We analyzed a cohort of 39 participants with obesity that included 21 with metabolic syndrome, age-matched to 18 without metabolic complications. We measured in whole blood samples 754 human microRNAs (miRNAs), 704 metabolites using unbiased mass spectrometry metabolomics, and 25,682 transcripts, which include both protein coding genes (PCGs) as well as non-coding transcripts. We then identified differentially expressed miRNAs, PCGs, and metabolites and integrated them using databases such as mirDIP (mapping between miRNA-PCG network), Human Metabolome Database (mapping between metabolite-PCG network) and tools like MetaboAnalyst (mapping between metabolite-metabolic pathway network) to determine dysregulated metabolic pathways in obesity with metabolic complications. RESULTS We identified 8 significantly enriched metabolic pathways comprising 8 metabolites, 25 protein coding genes and 9 microRNAs which are each differentially expressed between the subjects with obesity and those with obesity and metabolic syndrome. By performing unsupervised hierarchical clustering on the enrichment matrix of the 8 metabolic pathways, we could approximately segregate the uncomplicated obesity strata from that of obesity with metabolic syndrome. CONCLUSIONS The data suggest that at least 8 metabolic pathways, along with their various dysregulated elements, identified via our integrative bioinformatics pipeline, can potentially differentiate those with obesity from those with obesity and metabolic complications.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, USA.
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates.
| | - Ehsan Ullah
- Qatar Computational Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar.
| | - Ahmad Iskandarani
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Farhan Cyprian
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Tareq A Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Meis Alkasem
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Ibrahem Abdalhakam
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Faisal Farooq
- Qatar Computational Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Shahrad Taheri
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
- National Obesity Treatment Center, Hamad Medical Corporation, Doha, Qatar
- Weil Cornell Medicine - Qatar, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
- National Obesity Treatment Center, Hamad Medical Corporation, Doha, Qatar
- Weil Cornell Medicine - Qatar, Doha, Qatar
| |
Collapse
|
11
|
Macvanin MT, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front Endocrinol (Lausanne) 2023; 14:1124613. [PMID: 36950696 PMCID: PMC10025540 DOI: 10.3389/fendo.2023.1124613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Diabetes mellitus (DM) is on the rise, necessitating the development of novel therapeutic and preventive strategies to mitigate the disease's debilitating effects. Diabetic cardiomyopathy (DCMP) is among the leading causes of morbidity and mortality in diabetic patients globally. DCMP manifests as cardiomyocyte hypertrophy, apoptosis, and myocardial interstitial fibrosis before progressing to heart failure. Evidence suggests that non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), regulate diabetic cardiomyopathy-related processes such as insulin resistance, cardiomyocyte apoptosis and inflammation, emphasizing their heart-protective effects. This paper reviewed the literature data from animal and human studies on the non-trivial roles of miRNAs and lncRNAs in the context of DCMP in diabetes and demonstrated their future potential in DCMP treatment in diabetic patients.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Taylor HJ, Hung YH, Narisu N, Erdos MR, Kanke M, Yan T, Grenko CM, Swift AJ, Bonnycastle LL, Sethupathy P, Collins FS, Taylor DL. Human pancreatic islet microRNAs implicated in diabetes and related traits by large-scale genetic analysis. Proc Natl Acad Sci U S A 2023; 120:e2206797120. [PMID: 36757889 PMCID: PMC9963967 DOI: 10.1073/pnas.2206797120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Genetic studies have identified ≥240 loci associated with the risk of type 2 diabetes (T2D), yet most of these loci lie in non-coding regions, masking the underlying molecular mechanisms. Recent studies investigating mRNA expression in human pancreatic islets have yielded important insights into the molecular drivers of normal islet function and T2D pathophysiology. However, similar studies investigating microRNA (miRNA) expression remain limited. Here, we present data from 63 individuals, the largest sequencing-based analysis of miRNA expression in human islets to date. We characterized the genetic regulation of miRNA expression by decomposing the expression of highly heritable miRNAs into cis- and trans-acting genetic components and mapping cis-acting loci associated with miRNA expression [miRNA-expression quantitative trait loci (eQTLs)]. We found i) 84 heritable miRNAs, primarily regulated by trans-acting genetic effects, and ii) 5 miRNA-eQTLs. We also used several different strategies to identify T2D-associated miRNAs. First, we colocalized miRNA-eQTLs with genetic loci associated with T2D and multiple glycemic traits, identifying one miRNA, miR-1908, that shares genetic signals for blood glucose and glycated hemoglobin (HbA1c). Next, we intersected miRNA seed regions and predicted target sites with credible set SNPs associated with T2D and glycemic traits and found 32 miRNAs that may have altered binding and function due to disrupted seed regions. Finally, we performed differential expression analysis and identified 14 miRNAs associated with T2D status-including miR-187-3p, miR-21-5p, miR-668, and miR-199b-5p-and 4 miRNAs associated with a polygenic score for HbA1c levels-miR-216a, miR-25, miR-30a-3p, and miR-30a-5p.
Collapse
Affiliation(s)
- Henry J. Taylor
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, CambridgeCB2 0BB, UK
- Heart and Lung Research Institute, University of Cambridge, CambridgeCB2 0BB, UK
| | - Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Michael R. Erdos
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Matthew Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Caleb M. Grenko
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Amy J. Swift
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Lori L. Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Francis S. Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - D. Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
13
|
Flowers E, Aouizerat BE, Kanaya AM, Florez JC, Gong X, Zhang L. MicroRNAs Associated with Incident Diabetes in the Diabetes Prevention Program. J Clin Endocrinol Metab 2022; 108:e306-e312. [PMID: 36477577 DOI: 10.1210/clinem/dgac714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE MicroRNAs (miRs) are short (i.e., 18-26 nucleotide) regulatory elements of messenger RNA translation to amino acids. The purpose of this study was to assess whether miRs are predictive of incident T2D in the Diabetes Prevention Program (DPP) trial. RESEARCH DESIGN AND METHODS This was a secondary analysis (n = 1,000) of a subset of the DPP cohort that leveraged banked biospecimens to measure miRs. We used random survival forest and Lasso to identify the optimal miR predictors and cox proportional hazards to model time to T2D overall and within intervention arms. RESULTS We identified five miRs (miR-144, miR-186, miR-203a, miR-205, miR-206) that constituted the optimal predictors of incident T2D after adjustment for covariates (hazards ratio 2.81 (95% confidence interval (CI) 2.05, 3.87); p < 0.001). Predictive risk scores following cross-validation showed the HR for the highest quartile risk group compared to the lowest quartile risk group was 5.91 (95% CI (2.02, 17.3); p < 0.001). There was significant interaction between the intensive lifestyle (HR 3.60, 95% CI (2.50, 5.18); p < 0.001) and the metformin (HR 2.72; 95% CI (1.47, 5.00); p = 0.001) groups compared to placebo. Of the five miRs identified, one targets a gene with prior known associations with risk for T2D. DISCUSSION We identified five miRs that are optimal predictors of incident T2D in the DPP cohort. Future directions include validation of this finding in an independent sample in order to determine whether this risk score may have potential clinical utility for risk stratification of individuals with prediabetes, and functional analysis of the potential genes and pathways targeted by the miRs that were included in the risk score.
Collapse
Affiliation(s)
- Elena Flowers
- University of California, San Francisco, Department of Physiological Nursing, San Francisco, CA
- University of California, San Francisco, Institute for Human Genetics, San Francisco, CA
| | - Bradley E Aouizerat
- New York University, Bluestone Center for Clinical Research, New York, NY
- New York University, Department of Oral and Maxillofacial Surgery, New York, NY
| | - Alka M Kanaya
- University of California, San Francisco, Department of Medicine, Division of General Internal Medicine, San Francisco, CA
- University of California, San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Xingyue Gong
- University of California, San Francisco, Department of Physiological Nursing, San Francisco, CA
| | - Li Zhang
- University of California, San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA
- University of California, San Francisco, Department of Medicine, Division of Hematology and Oncology, San Francisco, CA
| |
Collapse
|
14
|
Ye Z, Wang S, Huang X, Chen P, Deng L, Li S, Lin S, Wang Z, Liu B. Plasma Exosomal miRNAs Associated With Metabolism as Early Predictor of Gestational Diabetes Mellitus. Diabetes 2022; 71:2272-2283. [PMID: 35926094 PMCID: PMC9630082 DOI: 10.2337/db21-0909] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
To date, the miRNA expression profile of plasma exosomes in women whose pregnancy is complicated by gestational diabetes mellitus (GDM) has not been fully clarified. In this study, differentially expressed miRNAs in plasma exosomes were identified by high-throughput small-RNA sequencing in 12 pregnant women with GDM and 12 with normal glucose tolerance (NGT) and validated in 102 pregnant women with GDM and 101 with NGT. A total of 22 exosomal miRNAs were found, five of which were verified by real-time qPCR. Exosomal miR-423-5p was upregulated, whereas miR-122-5p, miR-148a-3p, miR-192-5p, and miR-99a-5p were downregulated in women whose pregnancy was complicated by GDM. IGF1R and GYS1 as target genes of miR-423-5p, and G6PC3 and FDFT1 as target genes of miR-122-5p were associated with insulin and AMPK signaling pathways and may participate in the regulation of metabolism in GDM. The five exosomal miRNAs had an area under the curve of 0.82 (95%CI, 0.73, ∼0.91) in early prediction of GDM. Our study demonstrates that dysregulated exosomal miRNAs in plasma from pregnant women with GDM might influence the insulin and AMPK signaling pathways and could contribute to the early prediction of GDM.
Collapse
Affiliation(s)
- Zhixin Ye
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Songzi Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaoqing Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peisong Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Langhui Deng
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shiqi Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Suiwen Lin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bin Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Corresponding author: Bin Liu,
| |
Collapse
|
15
|
Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, Dissanayake AS, Rajapakse IH, Karunanayake P, Senarath U, Satharasinghe DA. Therapeutic Potential of miRNAs for Type 2 Diabetes Mellitus: An Overview. Epigenet Insights 2022; 15:25168657221130041. [PMID: 36262691 PMCID: PMC9575458 DOI: 10.1177/25168657221130041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNA(miRNA)s have been identified as an emerging class for therapeutic
interventions mainly due to their extracellularly stable presence in humans and
animals and their potential for horizontal transmission and action. However,
treating Type 2 diabetes mellitus using this technology has yet been in a
nascent state. MiRNAs play a significant role in the pathogenesis of Type 2
diabetes mellitus establishing the potential for utilizing miRNA-based
therapeutic interventions to treat the disease. Recently, the administration of
miRNA mimics or antimiRs in-vivo has resulted in positive modulation of glucose
and lipid metabolism. Further, several cell culture-based interventions have
suggested beta cell regeneration potential in miRNAs. Nevertheless, few such
miRNA-based therapeutic approaches have reached the clinical phase. Therefore,
future research contributions would identify the possibility of miRNA
therapeutics for tackling T2DM. This article briefly reported recent
developments on miRNA-based therapeutics for treating Type 2 Diabetes mellitus,
associated implications, gaps, and recommendations for future studies.
Collapse
Affiliation(s)
- PADS Palihaderu
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - BILM Mendis
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - JMKJK Premarathne
- Department of Livestock and Avian
Sciences, Faculty of Livestock, Fisheries, and Nutrition, Wayamba University of Sri
Lanka, Makandura, Gonawila (NWP), Sri Lanka
| | - WKRR Dias
- Department of North Indian Music,
Faculty of Music, University of the Visual and Performing Arts, Colombo, Sri
Lanka
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences,
Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang,
Selangor, Malaysia
| | - Wan Yong Ho
- Division of Biomedical Sciences,
Faculty of Medicine and Health Sciences, University of Nottingham (Malaysia Campus),
Semenyih, Malaysia
| | - AS Dissanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - IH Rajapakse
- Department of Psychiatry, Faculty of
Medicine, University of Ruhuna, Galle, Sri Lanka
| | - P Karunanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - U Senarath
- Department of Community Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - DA Satharasinghe
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka,DA Satharasinghe, Department of Basic
Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science,
University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
16
|
De Nardo Maffazioli G, Baracat EC, Soares JM, Carvalho KC, Maciel GAR. Evaluation of circulating microRNA profiles in Brazilian women with polycystic ovary syndrome: A preliminary study. PLoS One 2022; 17:e0275031. [PMID: 36206272 PMCID: PMC9543946 DOI: 10.1371/journal.pone.0275031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a heterogeneous endocrinopathy, which etiology encompasses complex genetic traits associated with epigenetic factors, including differences in microRNA (miRNA) expression in a variety of tissues. The circulating form of these molecules is raising attention in the syndrome not only as potential biomarkers of PCOS but also as possible therapeutic targets. The aim of this study was to explore the circulating miRNA profiles present in a cohort of Brazilian women with and without PCOS and to evaluate the potential role of miRNAs in the pathophysiology of the syndrome. METHODS Cross-sectional study of 36 well-characterized PCOS women and 16 healthy controls. Clinical, hormone and metabolic data were recorded and evaluated. The expression profile of the 201 circulating miRNA selected were analyzed by taqman quantitative real time polymerase chain reactions (RT-PCR) using a customized Open Array platform. Statistical and bioinformatic analyzed were performed. RESULTS Circulating miR-21-5p, miR-23a-3p and miR-26a-5p were upregulated, and miR-103a-3p, miR-376a-3p, miR-19b-3p and miR-222-3p were downregulated in women with PCOS compared to healthy normo-ovulatory controls. miR-21-5p, miR-103a-3p and miR-376a-3p levels correlated positively with androgen levels. These miRNAs, in combination, were related to pathways involved in insulin signaling, steroids biosynthesis and endothelial regulation as well as in folliculogenesis. CONCLUSION In this study, we identified a specific circulating miRNA signature in Brazilian women with PCOS. According to our data, circulating miR-21-5p, miR-23a-3p, miR-26a-5p, miR-103a-3p, miR-376a-3p, miR-19b-3p and miR-222-3p may represent potential candidates for differential diagnosis of PCOS in the future.
Collapse
Affiliation(s)
- Giovana De Nardo Maffazioli
- Faculdade de Medicina de Sao Paulo, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Sao Paulo, SP, Brazil
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Obstetricia e Ginecologia, Disciplina de Ginecologia, São Paulo, Brazil
| | - Edmund Chada Baracat
- Faculdade de Medicina de Sao Paulo, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Sao Paulo, SP, Brazil
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Obstetricia e Ginecologia, Disciplina de Ginecologia, São Paulo, Brazil
| | - José Maria Soares
- Faculdade de Medicina de Sao Paulo, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Sao Paulo, SP, Brazil
| | - Kátia Cândido Carvalho
- Faculdade de Medicina de Sao Paulo, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Sao Paulo, SP, Brazil
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Obstetricia e Ginecologia, Disciplina de Ginecologia, São Paulo, Brazil
| | - Gustavo Arantes Rosa Maciel
- Faculdade de Medicina de Sao Paulo, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Sao Paulo, SP, Brazil
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Departamento de Obstetricia e Ginecologia, Disciplina de Ginecologia, São Paulo, Brazil
| |
Collapse
|
17
|
Ghoreishi E, Shahrokhi SZ, Kazerouni F, Rahimipour A. Circulating miR-148b-3p and miR-27a-3p can be potential biomarkers for diagnosis of pre-diabetes and type 2 diabetes: integrating experimental and in-silico approaches. BMC Endocr Disord 2022; 22:207. [PMID: 35978298 PMCID: PMC9386953 DOI: 10.1186/s12902-022-01120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In view of the growing global prevalence of type 2 diabetes (T2D), detection of prediabetes and type 2 diabetes in the early stages is necessary to reduce the risk of developing diabetes, prevent the progression of the disease, and dysfunction of different organs. Since miRNAs are involved in the initiation and progression of numerous pathogenic processes, including diabetes, in the present study, we aimed to investigate the expression of miR-148b-3p and miR-27a-3p in prediabetic and T2D patients and to evaluate the diagnostic potential of these miRNAs. METHODS We evaluated the expression of miR-148b-3p and miR-27a-3p in the plasma of three groups: 20 prediabetic patients, 20 T2D patients, and 20 healthy controls. The biochemical parameters were determined by the auto-analyzer. The possible target genes of these miRNAs were identified using an in-silico approach. RESULTS Our results showed that, as compared to the healthy controls, there was a significant up regulation and down regulation in the expression of miR-148b-3p and miR-27a-3p in the T2D patients, respectively. The results of receiver operating characteristic curve analysis also suggested that miR-148b-3p acted successfully in discriminating the prediabetic and diabetic patients from the control group. According to in-silico analysis, miRs influence biological pathways involved in T2DM development, such as insulin signaling. CONCLUSIONS The miR148b-3p and miR-27a-3p expression levels were deregulated in diabetes and pre-diabetes. Furthermore, miR-148b-3p showed significant ability in discriminating between diabetic and healthy individuals, suggesting a potential diagnostic use of miR-148b-3p in the detection of T2D.
Collapse
Affiliation(s)
- Elnaz Ghoreishi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Faranak Kazerouni
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Rahimipour
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Wen Y, Zhu M, Zhang X, Xiao H, Wei Y, Zhao P. Integrated analysis of multiple bioinformatics studies to identify microRNA-target gene-transcription factor regulatory networks in retinoblastoma. Transl Cancer Res 2022; 11:2225-2237. [PMID: 35966326 PMCID: PMC9372260 DOI: 10.21037/tcr-21-1748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Background In children, retinoblastoma (RB) is one of the most common primary malignant ocular tumors and has a poor prognosis and high mortality. To understand the molecular mechanisms of RB, we identified microRNAs (miRNAs), key genes and transcription factors (TFs) using bioinformatics analysis to build potential miRNA-gene-TF networks. Methods We collected three gene expression profiles and one miRNA expression profile from the Gene Expression Omnibus (GEO) database. We used the limma R package to identify overlapping differentially expressed genes (DEGs) and differentially expressed miRNAs in RB tissues compared to noncancer tissues. The robust rank aggregation (RRA) method was implemented to identify key genes among the DEGs. Then, miRNA-key gene-TF networks were built using the online tools TransmiR and miRTarBase. Next, we used RT-qPCR to confirm the results. Results We identified 180 DEGs in RB tissues compared to nontumor tissues using integrative analysis, among which 109 genes were upregulated and 71 were downregulated. Gene ontology (GO) analysis revealed that these DEGs were primarily involved with chromosome segregation, condensed chromosome and DNA replication origin binding. The most highly enriched pathways obtained in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were cell cycle, DNA replication, homologous recombination, P53 signaling pathway and pyrimidine metabolism. Furthermore, two key differentially expressed miRNAs (DEMs) were also established: let-7a and let-7b. Finally, the potential regulatory networks of miRNA-target gene-TFs were examined. Conclusions This study identified key genes and built miRNA-target gene-TF regulatory networks in RB, which will deepen our understanding of the molecular mechanisms involved in the development of RB. These key genes and miRNAs may be potential targets and biomarkers for RB diagnosis and therapy.
Collapse
Affiliation(s)
- Yanjun Wen
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Maolin Zhu
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Xuerui Zhang
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Haodong Xiao
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wei
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China.,Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Shanghai Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
miR-375 is cold exposure sensitive and drives thermogenesis in visceral adipose tissue derived stem cells. Sci Rep 2022; 12:9557. [PMID: 35688898 PMCID: PMC9187663 DOI: 10.1038/s41598-022-13610-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Activation of brown adipose tissue may increase energy expenditure by non-shivering thermogenesis. Cold exposure is one of the options to activate brown adipocytes. To link changes in energy metabolism with microRNA expression (miRNAs), we analyzed 158 miRNAs in serum of 169 healthy individuals before and after cold exposure. Validating the results of a miRNA array, a significant down-regulation of miR-375 after cold exposure (P < 0.0001) was detected. These changes went along with a significant negative correlation between miR-375 and visceral adipose tissue (VAT) mass (P < 0.0001), implicating a specific function of miR-375 in this depot. Significantly higher expression levels of miR-375 were found in VAT in comparison to subcutaneous fat (SAT). Using in silico prediction, we identified putative miR-375 target genes involved in the thermogenesis pathway. Cold-stimulation of subcutaneous and visceral pre-adipocytes (PACs) led to significantly higher expression levels of FABP4, FGF21, PPARGC1A and PRDM16 in VC-PACs. Analyzing miR-375 knock down and cold stimulated VC-PACs revealed a significant up-regulation of thermogenesis associated genes PPARGC1A, ELOVL3 and PRDM16. In summary, our findings identified miR-375 as a potential adipogenic and thermogenesis-associated miRNA exclusively acting in visceral adipose tissue.
Collapse
|
20
|
Alexandru N, Procopciuc A, Vîlcu A, Comariţa IK, Bӑdilӑ E, Georgescu A. Extracellular vesicles-incorporated microRNA signature as biomarker and diagnosis of prediabetes state and its complications. Rev Endocr Metab Disord 2022; 23:309-332. [PMID: 34143360 DOI: 10.1007/s11154-021-09664-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small anuclear vesicles, delimited by a lipid bilayer, released by almost all cell types, carrying functionally active biological molecules that can be transferred to the neighbouring or distant cells, inducing phenotypical and functional changes, relevant in various physio-pathological conditions. The microRNAs are the most significant active components transported by EVs, with crucial role in intercellular communication and significant effects on recipient cells. They may also server as novel valuable biomarkers for the diagnosis of metabolic disorders. Moreover, EVs are supposed to mediate type 2 diabetes mellitus (T2DM) risk and its progress. The T2DM development is preceded by prediabetes, a state that is associated with early forms of nephropathy and neuropathy, chronic kidney disease, diabetic retinopathy, and increased risk of macrovascular disease. Although the interest of scientists was focused not only on the pathogenesis of diabetes, but also on the early diagnosis, little is known about EVs-incorporated microRNA involvement in prediabetes state and its microvascular and macrovascular complications. Here, we survey the biogenesis, classification, content, biological functions and the most popular primary isolation methods of EVs, review the EVs-associated microRNA profiling connexion with early stages of diabetes and discuss the role of EVs containing specific microRNAs in prediabetes complications.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Anastasia Procopciuc
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Alexandra Vîlcu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Ioana Karla Comariţa
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Elisabeta Bӑdilӑ
- Internal Medicine Clinic, Emergency Clinical Hospital, Bucharest, Romania.
| | - Adriana Georgescu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania.
| |
Collapse
|
21
|
Increased Platelet Reactivity and Proinflammatory Profile Are Associated with Intima-Media Thickness and Arterial Stiffness in Prediabetes. J Clin Med 2022; 11:jcm11102870. [PMID: 35628995 PMCID: PMC9142942 DOI: 10.3390/jcm11102870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
Alterations of glucose homeostasis are associated with subclinical vascular damage; however, the role of platelet reactivity in this process has not been fully investigated. In this cross-sectional study, we evaluated the correlation between markers of platelet reactivity and inflammation and markers of vascular disease in subjects with prediabetes. Markers of platelet reactivity such as 11-dehydro-thromboxane B2 urinary levels (11-dh-TXB2) and mean platelet volume (MPV) and inflammatory indexes such as platelet-to-lymphocyte ratio (PLR) were evaluated in subjects with prediabetes (n = 48), new-onset type 2 diabetes (NODM, n = 60) and controls (n = 62). Furthermore, we assessed the cardiovascular risk profile of the study population with arterial stiffness and quality intima–media thickness (qIMT). Subjects with prediabetes and NODM exhibited higher 11-dh-TXB2 urinary levels and MPV and a proinflammatory profile with an increased PLR, high-sensitivity C-reactive protein, ferritin and fibrinogen. Furthermore, after multiple regression analyses, we found that urinary 11-dh-TXB2 was one of the major determinants of IMT and arterial stiffness parameters. In conclusion, subjects with prediabetes exhibit increased platelet reactivity as well as a proinflammatory profile. Furthermore, this condition is associated with early markers of cardiovascular disease.
Collapse
|
22
|
Hakala JO, Pahkala K, Juonala M, Salo P, Kähönen M, Hutri-Kähönen N, Lehtimäki T, Laitinen TP, Jokinen E, Taittonen L, Tossavainen P, Viikari JS, Raitakari OT, Rovio SP. Repeatedly Measured Serum Creatinine and Cognitive Performance in Midlife: The Cardiovascular Risk in Young Finns Study. Neurology 2022; 98:e2268-e2281. [PMID: 35410906 DOI: 10.1212/wnl.0000000000200268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Serum creatinine is typically used to assess kidney function. Impaired kidney function and thereby high serum creatinine increases risk of poor cognitive performance. However, serum creatinine might have a non-linear association as low serum creatinine has been linked with cardiovascular risk and impaired cognitive performance. We studied the longitudinal association between serum creatinine and cognitive performance in midlife. METHODS Since 2001, participants from the Cardiovascular Risk in Young Finns Study were followed up for 10 years. Serum creatinine was measured repeatedly in 2001, 2007, and 2011. Sex-specific longitudinal trajectories for serum creatinine among participants without kidney disease were identified using latent class growth mixture modeling. Overall cognitive function and four specific domains such as 1) working memory, 2) episodic memory and associative learning, 3) reaction time, and 4) information processing were assessed using a computerized cognitive test. RESULTS Four serum creatinine trajectory groups all with clinically normal serum creatinine were identified for both men (N=973) and women (N=1,204). After 10 years of follow-up, cognitive testing was performed for 2,026 participants aged 34 to 49 years (mean age 41.8 years). In men and women, consistently low serum creatinine was associated with poor childhood school performance, low adulthood education, low adulthood annual income, low physical activity, and smoking. Compared to the men in the low serum creatinine trajectory group, those in the high serum creatinine group had better overall cognitive performance (β=0.353 SD, 95%CI 0.022-0.684) and working memory (β=0.351 SD, 95%CI 0.034-0.668), while those in the moderate (β=0.247 SD, 95%CI 0.026-0.468) or the normal (β=0.244 SD, 95%CI 0.008-0.481) serum creatinine groups had better episodic memory and associative learning. No associations were found for women. DISCUSSION Our results indicate that, in men, compared to low serum creatinine levels consistently high levels may associate with better memory and learning function in midlife.
Collapse
Affiliation(s)
- Juuso O Hakala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Paavo Nurmi Centre, Sports & Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Paavo Nurmi Centre, Sports & Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | - Pia Salo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tomi P Laitinen
- Department of Clinical Physiology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Eero Jokinen
- Department of Paediatric Cardiology, Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | - Leena Taittonen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland.,Department of Pediatrics, PEDEGO Research Unit and Medical Research Center, University of Oulu, and Oulu University Hospital Oulu, Finland
| | - Päivi Tossavainen
- Department of Pediatrics, PEDEGO Research Unit and Medical Research Center, University of Oulu, and Oulu University Hospital Oulu, Finland
| | - Jorma Sa Viikari
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
Parker DC, Wan M, Lohman K, Hou L, Nguyen AT, Ding J, Bertoni A, Shea S, Burke GL, Jacobs DR, Post W, Corcoran D, Hoeschele I, Parks JS, Liu Y. Monocyte miRNAs Are Associated With Type 2 Diabetes. Diabetes 2022; 71:853-861. [PMID: 35073575 PMCID: PMC8965663 DOI: 10.2337/db21-0704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022]
Abstract
miRNAs are small noncoding RNAs that may contribute to common diseases through epigenetic regulation of gene expression. Little is known regarding the role of miRNAs in type 2 diabetes (T2D). We performed miRNA sequencing and transcriptomic profiling of peripheral monocytes from the longitudinal Multi-Ethnic Study of Atherosclerosis (MESA) (N = 1,154). We examined associations between miRNAs and prevalent impaired fasting glucose and T2D and evaluated the T2D-associated miRNA effect on incident T2D. Of 774 detected miRNAs, 6 (miR-22-3p, miR-33a-5p, miR-181c-5p, miR-92b-3p, miR-222-3p, and miR-944) were associated with prevalent T2D. For five of the six miRNAs (all but miR-222-3p), our findings suggest a dose-response relationship with impaired fasting glucose and T2D. Two of the six miRNAs were associated with incident T2D (miR-92b-3p: hazard ratio [HR] 1.64, P = 1.30E-03; miR-222-3p: HR 1.97, P = 9.10E-03) in the highest versus lowest tertile of expression. Most of the T2D-associated miRNAs were also associated with HDL cholesterol concentrations. The genes targeted by these miRNAs belong to key nodes of a cholesterol metabolism transcriptomic network. Higher levels of miRNA expression expected to increase intracellular cholesterol accumulation in monocytes are linked to an increase in T2D risk.
Collapse
Affiliation(s)
- Daniel C. Parker
- Division of Geriatrics, Department of Medicine, Duke University School of Medicine, Durham, NC
- Duke University Center for the Study of Aging and Human Development, Durham, NC
| | - Ma Wan
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Kurt Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Li Hou
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Anh Tram Nguyen
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Jingzhong Ding
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alain Bertoni
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - Steve Shea
- Columbia University School of Medicine, New York, NY
| | | | - David R. Jacobs
- University of Minnesota School of Public Health, Minneapolis, MN
| | - Wendy Post
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - David Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC
| | - Ina Hoeschele
- Department of Statistics and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA
| | - John S. Parks
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| |
Collapse
|
24
|
Flowers E, Asam K, Allen IE, Kanaya AM, Aouizerat BE. Co‑expressed microRNAs, target genes and pathways related to metabolism, inflammation and endocrine function in individuals at risk for type 2 diabetes. Mol Med Rep 2022; 25:156. [PMID: 35244194 PMCID: PMC8941378 DOI: 10.3892/mmr.2022.12672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) may be considered important regulators of risk for type 2 diabetes (T2D). The aim of the present study was to identify novel sets of miRNAs associated with T2D risk, as well as their gene and pathway targets. Circulating miRNAs (n=59) were measured in plasma from participants in a previously completed clinical trial (n=82). An agnostic statistical approach was applied to identify novel sets of miRNAs with optimal co-expression patterns. In silico analyses were used to identify the messenger RNA and biological pathway targets of the miRNAs within each factor. A total of three factors of miRNAs were identified, containing 18, seven and two miRNAs each. Eight biological pathways were revealed to contain genes targeted by the miRNAs in all three factors, 38 pathways contained genes targeted by the miRNAs in two factors, and 55, 18 and two pathways were targeted by the miRNAs in a single factor, respectively (all q<0.05). The pathways containing genes targeted by miRNAs in the largest factor shared a common theme of biological processes related to metabolism and inflammation. By contrast, the pathways containing genes targeted by miRNAs in the second largest factor were related to endocrine function and hormone activity. The present study focused on the pathways uniquely targeted by each factor of miRNAs in order to identify unique mechanisms that may be associated with a subset of individuals. Further exploration of the genes and pathways related to these biological themes may provide insights about the subtypes of T2D and lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Elena Flowers
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA 94143‑0610, USA
| | - Kesava Asam
- Bluestone Center for Clinical Research, New York University, New York, NY 10010, USA
| | - Isabel Elaine Allen
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143‑0610, USA
| | - Alka M Kanaya
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143‑0610, USA
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, NY 10010, USA
| |
Collapse
|
25
|
Shi L, Su Y, Zheng Z, Qi J, Wang W, Wang C. miR‑146b‑5p promotes colorectal cancer progression by targeting TRAF6. Exp Ther Med 2022; 23:231. [PMID: 35222708 PMCID: PMC8815033 DOI: 10.3892/etm.2022.11155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/06/2021] [Indexed: 12/09/2022] Open
Abstract
Increasing evidence highlights the multiple roles of microRNAs (miRs) in the tumorigenesis of colorectal cancer (CRC); however, the molecular mechanism, particularly the target of miR-146b-5p in CRC has not been fully elucidated. The present study aimed to elucidate the influence of miR-146b-5p via regulating tumor necrosis factor receptor-associated factor 6 (TRAF6) in CRC. The expression levels of miR-146b-5p and TRAF6 in CRC tissue and cells were determined by reverse transcription quantitative PCR and western blotting. Binding between miR-146b-5p and TRAF6 was examined using a dual luciferase reporter gene assay. The impact of miR-146b-5p and TRAF6 on proliferation and migration of CRC cells was determined using Cell Counting Kit-8 and Transwell assays, respectively. An animal model of CRC was established to determine the carcinogenic effect of the miR-146b-5p-TRAF6 axis. The results demonstrated that miR-146b-5p was highly expressed in CRC tissue samples compared with in normal adjacent tissue samples and in CRC cells compared with in the normal NCM460 cell line, whereas TRAF6 was expressed at low levels. Overexpression of miR-146b-5p decreased TRAF6 expression in CRC HT29 and SW620 cells. miR-146b-5p targeted and inhibited TRAF6 expression in CRC cells. Furthermore, transfection with a miR-146b-5p mimic promoted the proliferation, migration and invasion of CRC cells and tumor growth; however, these effects were abolished by TRAF6 overexpression. Transfection with a miR-146b-5p inhibitor suppressed the proliferation of CRC cells. Taken together, the results from the present study demonstrated that miR-146b-5p could enhance the initiation and tumorigenesis of CRC by targeting TRAF6. These results will help elucidate the mechanisms underlying CRC development and will facilitate the development of targeted therapy for CRC.
Collapse
Affiliation(s)
- Liangpan Shi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yibin Su
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhihua Zheng
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jinyu Qi
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Weidong Wang
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
26
|
Wang Y, Wei J, Chen T, Yang X, Zhao L, Wang M, Dou Y, Du Y, Ni R, Li T, Ma X. A Whole Transcriptome Analysis in Peripheral Blood Suggests That Energy Metabolism and Inflammation Are Involved in Major Depressive Disorder. Front Psychiatry 2022; 13:907034. [PMID: 35633815 PMCID: PMC9136012 DOI: 10.3389/fpsyt.2022.907034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Previous studies on transcriptional profiles suggested dysregulation of multiple RNA species in major depressive disorder (MDD). However, the interaction between different types of RNA was neglected. Therefore, integration of different RNA species in transcriptome analysis would be helpful for interpreting the functional readout of the transcriptome in MDD. METHODS A whole transcriptome sequencing were performed on the peripheral blood of 15 patients with MDD and 15 matched healthy controls (HCs). The differential expression of miRNAs, lncRNAs, circRNAs, and mRNAs was examined between MDD and HCs using empirical analysis of digital gene expression data in R (edgeR). Weighted correlation network analysis (WGCNA) was used to identify RNA co-expression modules associated with MDD. A ceRNA network was constructed for interpretation of interactions between different RNA species. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to explore potential biological mechanisms associated with MDD. RESULTS Multiple RNAs and co-expression modules were identified to be significantly dysregulated in MDD compared to HCs. Based on the differential RNAs, a ceRNA network that were dysregulated in MDD were constructed. The pathway networks that related to oxidative phosphorylation and the chemokine signaling were found to be associated with MDD. CONCLUSION Our results suggested that the processes of energy metabolism and inflammation may be involved in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Yu Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Ting Chen
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Min Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yikai Dou
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Du
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Rongjun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Lewis KA, Chang L, Cheung J, Aouizerat BE, Jelliffe-Pawlowski LL, McLemore MR, Piening B, Rand L, Ryckman KK, Flowers E. Systematic review of transcriptome and microRNAome associations with gestational diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:971354. [PMID: 36704034 PMCID: PMC9871895 DOI: 10.3389/fendo.2022.971354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Gestational diabetes (GDM) is associated with increased risk for preterm birth and related complications for both the pregnant person and newborn. Changes in gene expression have the potential to characterize complex interactions between genetic and behavioral/environmental risk factors for GDM. Our goal was to summarize the state of the science about changes in gene expression and GDM. DESIGN The systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS PubMed articles about humans, in English, from any date were included if they described mRNA transcriptome or microRNA findings from blood samples in adults with GDM compared with adults without GDM. RESULTS Sixteen articles were found representing 1355 adults (n=674 with GDM, n=681 controls) from 12 countries. Three studies reported transcriptome results and thirteen reported microRNA findings. Identified pathways described various aspects of diabetes pathogenesis, including glucose and insulin signaling, regulation, and transport; natural killer cell mediated cytotoxicity; and fatty acid biosynthesis and metabolism. Studies described 135 unique miRNAs that were associated with GDM, of which eight (miR-16-5p, miR-17-5p, miR-20a-5p, miR-29a-3p, miR-195-5p, miR-222-3p, miR-210-3p, and miR-342-3p) were described in 2 or more studies. Findings suggest that miRNA levels vary based on the time in pregnancy when GDM develops, the time point at which they were measured, sex assigned at birth of the offspring, and both the pre-pregnancy and gestational body mass index of the pregnant person. CONCLUSIONS The mRNA, miRNA, gene targets, and pathways identified in this review contribute to our understanding of GDM pathogenesis; however, further research is warranted to validate previous findings. In particular, longitudinal repeated-measures designs are needed that control for participant characteristics (e.g., weight), use standardized data collection methods and analysis tools, and are sufficiently powered to detect differences between subgroups. Findings may be used to improve early diagnosis, prevention, medication choice and/or clinical treatment of patients with GDM.
Collapse
Affiliation(s)
- Kimberly A. Lewis
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Kimberly A. Lewis,
| | - Lisa Chang
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Julinna Cheung
- College of Biological Sciences, University of California at Davis, Davis, CA, United States
| | | | - Laura L. Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, School of Medicine, University of California at San Francisco, San Francisco, CA, United States
| | - Monica R. McLemore
- School of Nursing, Department of Family Health Care Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Brian Piening
- Earle A. Chiles Research Institute, Providence St Joseph Health, Portland, OR, United States
| | - Larry Rand
- Obstetrics and Gynecology, Reproductive Sciences, School of Medicine, University of California at San Francisco, San Francisco, CA, United States
| | - Kelli K. Ryckman
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Elena Flowers
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Zhang Y, Zhao Q, Su S, Dan L, Li X, Wang Y, Lin Y, Tian Z, Sun C, Lu H. Comparative analysis of circRNA expression profile and circRNA-miRNA-mRNA regulatory network between palmitic and stearic acid-induced lipotoxicity to pancreatic β cells. Bioengineered 2021; 12:9031-9045. [PMID: 34654356 PMCID: PMC8806959 DOI: 10.1080/21655979.2021.1992333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chronic exposure to high concentrations of circulating palmitic acid and stearic acid leads to impaired β cell function, which accelerates the development of type 2 diabetes. However, differences in the mechanisms underlying this process between these two saturated fatty acids remain largely unknown. In this study, we screened for potential circular RNAs (circRNAs) and their associated regulatory pathways in palmitic acid- and stearic acid-induced mouse β-TC6 cell dysfunction. CircRNA high-throughput sequencing, gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analysis were performed and co-expression and competing endogenous RNAs (ceRNA) networks were constructed. We identified that four circRNAs that were differentially expressed specifically in β cells exposed to palmitic acid, whereas four circRNAs were differentially expressed specifically in β cells exposed to stearic acid. Seven circRNAs were differentially co-expressed in palmitic acid- and stearic acid-treated β cells. In pathway exploration, we identified the core protein Solute carrier family 2 member 2 (SLc2a2), which is mainly involved in insulin resistance, maturity onset diabetes of the young and type 2 diabetes. The expressions of key circRNAs in β-TC6 cells were validated by Real time quantitative PCR, with a consistent result in high-throughput sequencing. The findings aid our understanding of the mechanisms governing the difference between palmitic acid- and stearic acid-induced β cell dysfunction and provide potential therapeutic targets for developing treatments against long-term high fat diet-induced β cell injury. Abbreviations: Acvr1c: Activin A receptor, type 1C; CeRNA, Competing endogenous RNAs; circRNA, circular RNA; DEcircRNA: Differentially Expressed circular RNA; DEmiRNA: Differentially Expressed microRNA; DEmRNA: Differentially Expressed mRNA; GO: Gene Ontology; HPDHigh Palmitic acid Diet; HSD: High Stearic acid Diet; KEGG: Kyoto Encyclopedia of Genes and Genomes; miRNA: microRNA; ncRNAs: non-coding RNAs; qPCR: Real time quantitative PCRS; FAs: Saturated Fatty Acids; SLc2a2: Solute carrier family 2 member 2; T2D: Type 2 Diabetes
Collapse
Affiliation(s)
- Yunjin Zhang
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | | | | | - Lingfeng Dan
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Xuebei Li
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Yu Wang
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Yuqing Lin
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Zhen Tian
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| | - Huimin Lu
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Taghizadeh M, Kargarfard M, Braune S, Jung F, Naderi M. Long-term aerobic exercise training in type two diabetic patients alters the expression of miRNA-223 and its corresponding target, the P2RY12 receptor, attenuating platelet function. Clin Hemorheol Microcirc 2021; 80:107-116. [PMID: 34420942 DOI: 10.3233/ch-211209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Type two diabetes mellitus (T2DM) patients are prone to develop atherothrombotic events due to platelet hyper-reactivity stemming from platelet miRNA-223 down-regulation and over-expression of its corresponding target, P2RY12. OBJECTIVE The study sought to determine the effects of long-term aerobic training on the expression levels of miRNA-223 and P2RY12 mRNA, and platelet function in T2DM patients. METHODS Twenty-four patients with T2DM (age, 60.0±2.8 yrs.) were selected and randomly divided into two groups: aerobic exercise training (AET, n = 12) and control (CON, n = 12). The AET protocol was performed with moderate intensity for 12 weeks, while patients in the CON group followed their usual routine. Weight, body mass index (BMI), peak oxygen consumption (VO2peak), lipid profile, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin resistance index (HOMA-IR), platelet miRNA-223 and P2RY12 expression were measured before and after the period. RESULTS There was a significant improvement in body weight, BMI, VO2peak, FBG, HbA1c, and HOMA-IR, after 12 weeks of AET (P < 0.01). Platelet aggregation decreased significantly after 12 weeks in the AET group compared with the CON (P < 0.001) group. Platelets' miRNA-223 and P2RY12 were significantly up- and down-regulated after AET in comparison with the CON group (P < 0.05), respectively. Moreover, the relative expression of miRNA-223 and P2RY12 significantly correlated with FBG changes following the intervention. CONCLUSIONS It can be concluded that long-term moderate-intensity aerobic training might be effective for reducing the occurrence of atherothrombotic events leading to premature death in T2DM patients through the modulation of miRNA-223, P2RY12 receptor expression, and platelet function.
Collapse
Affiliation(s)
- Mahmoudreza Taghizadeh
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Steffen Braune
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Iacomino G, Lauria F, Russo P, Venezia A, Iannaccone N, Marena P, Ahrens W, De Henauw S, Molnár D, Eiben G, Foraita R, Hebestreit A, Kourides G, Moreno LA, Veidebaum T, Siani A. The association of circulating miR-191 and miR-375 expression levels with markers of insulin resistance in overweight children: an exploratory analysis of the I.Family Study. GENES AND NUTRITION 2021; 16:10. [PMID: 34243726 PMCID: PMC8272322 DOI: 10.1186/s12263-021-00689-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023]
Abstract
Background In recent years, the exciting emergence of circulating miRNAs as stable, reproducible, and consistent among individuals has opened a promising research opportunity for the detection of non-invasive biomarkers. A firm connection has been established between circulating miRNAs and glycaemic as well as metabolic homeostasis, showing that levels of specific miRNAs vary under different physio-pathological conditions. Objective In this pilot study, we investigated the expression of candidate miRNAs, hsa-miR-191-3p and hsa-miR-375, in relation to biomarkers associated with insulin sensitivity in a subgroup (n=58) of subjects participating to the European I.Family Study, a project aimed to assess the determinants of eating behaviour in children and adolescents and related health outcomes. The sample included overweight/obese children/adolescents since overweight/obesity is a known risk factor for impaired glucose homeostasis and metabolic disorders. Biological targets of candidate miRNAs were also explored in silico. Results We observed a significant association of the two miRNAs and early changes in glycaemic homeostasis, independent of covariates including country of origin, age, BMI z-score, puberty status, highest educational level of parents, total energy intake, energy from fats, energy from carbohydrates, and energy from proteins. Conclusion Identification of circulating miRNAs associated with insulin impairment may offer novel approaches of assessing early variations in insulin sensitivity and provide evidence about the molecular mechanisms connected to early changes in glycaemic homeostasis. Trial registration ISRCTN, ISRCTN62310987. Retrospectively registered, http://isrctn.com/ISRCTN62310987 Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00689-1.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy.
| | - Fabio Lauria
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | - Paola Russo
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | - Antonella Venezia
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | - Nunzia Iannaccone
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | - Pasquale Marena
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology, BIPS, Achterstraße 30, 28359, Bremen, Germany
| | | | - Dénes Molnár
- Department of Pediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Gabriele Eiben
- Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 3, 413 90, Göteborg, Sweden
| | - Ronja Foraita
- Leibniz Institute for Prevention Research and Epidemiology, BIPS, Achterstraße 30, 28359, Bremen, Germany
| | - Antje Hebestreit
- Leibniz Institute for Prevention Research and Epidemiology, BIPS, Achterstraße 30, 28359, Bremen, Germany
| | - Giannis Kourides
- Research and Education Institute of Child Health, ave, #205 2015, Strovolos, 138, Limassol, Cyprus
| | - Luis A Moreno
- University of Zaragoza, Domingo Miral, s/n, 50009, Zaragoza, Spain
| | - Toomas Veidebaum
- National Institute for Health Development, Hiiu 42, 11619, Tallinn, Estonia
| | - Alfonso Siani
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | | |
Collapse
|
31
|
Liang Y, Wang M, Wang C, Liu Y, Naruse K, Takahashi K. The Mechanisms of the Development of Atherosclerosis in Prediabetes. Int J Mol Sci 2021; 22:ijms22084108. [PMID: 33921168 PMCID: PMC8071517 DOI: 10.3390/ijms22084108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Lifestyle changes, such as overeating and underexercising, can increase the risk of prediabetes. Diabetes is one of the leading causes of atherosclerosis, and recently it became clear that the pathophysiology of atherosclerosis progresses even before the onset of diabetic symptoms. In addition to changes in platelets and leukocytes in the hyperglycemic state and damage to vascular endothelial cells, extracellular vesicles and microRNAs were found to be involved in the progression of prediabetes atherosclerosis. This review discusses the cellular and molecular mechanisms of these processes, with an intention to enable a comprehensive understanding of the pathophysiology of prediabetes and atherosclerosis.
Collapse
|
32
|
Shah KB, Chernausek SD, Teague AM, Bard DE, Tryggestad JB. Maternal diabetes alters microRNA expression in fetal exosomes, human umbilical vein endothelial cells and placenta. Pediatr Res 2021; 89:1157-1163. [PMID: 32663836 PMCID: PMC7854929 DOI: 10.1038/s41390-020-1060-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Exposure to diabetes in utero influences future metabolic health of the offspring. MicroRNAs (miRNA) are small noncoding RNAs that may contribute mechanistically to the effects on offspring imparted by diabetes mellitus (DM) during pregnancy. We hypothesized that exposure to DM during pregnancy influences select miRNAs in fetal circulation, in human umbilical vein endothelial cells (HUVEC), and placenta. METHODS miRNA abundance was quantified using real-time PCR from RNA isolated from umbilical cord serum exosomes, HUVEC, and placenta exposed to diabetes or normoglycemia during pregnancy. The abundance of each of these miRNAs was determined by comparison to a known standard and the relative expression assessed using the 2-ΔΔCt method. Multivariable regression models examined the associations between exposure to diabetes during pregnancy and miRNA expression. RESULTS miR-126-3p was highly abundant in fetal circulation, HUVEC, and placenta. Diabetes exposure during pregnancy resulted in lower expression of miR-148a-3p and miR-29a-3p in the HUVEC. In the placenta, for miR-126-3p, there was a differential effect of DM by birth weight between DM versus control group, expression being lower at the lower birth weight, however not different at the higher birth weight. CONCLUSION Exposure to DM during pregnancy alters miRNA expression in the offspring in a tissue-specific manner. IMPACT miRNAs are differentially expressed in fetal tissues from offspring exposed to in utero diabetes mellitus compared to those who were not exposed. miRNA expression differs among tissue types (human umbilical vein endothelial cells, placenta and circulation exosomes) and response to diabetes exposure varies according to tissue of origin. miRNA expression is also affected by maternal and infant characteristics such as infant birth weight, infant sex, maternal age, and maternal BMI. miRNAs might be one of the potential mechanisms by which offspring's future metabolic status may be influenced by maternal diabetes mellitus.
Collapse
Affiliation(s)
- Kruti B Shah
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Steven D Chernausek
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - April M Teague
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - David E Bard
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeanie B Tryggestad
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA.
| |
Collapse
|
33
|
Wang H. MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22062953. [PMID: 33799467 PMCID: PMC8001823 DOI: 10.3390/ijms22062953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
34
|
Šatrauskienė A, Navickas R, Laucevičius A, Krilavičius T, Užupytė R, Zdanytė M, Ryliškytė L, Jucevičienė A, Holvoet P. Mir-1, miR-122, miR-132, and miR-133 Are Related to Subclinical Aortic Atherosclerosis Associated with Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041483. [PMID: 33557426 PMCID: PMC7915826 DOI: 10.3390/ijerph18041483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
Previously, miR-1, miR-122, miR-126, miR-132, miR-133, and miR-370 were found to be related to coronary artery disease (CAD) progression. However, their relationship with subclinical atherosclerosis, especially in subjects with metabolic syndrome, is unknown. Therefore, our aim was to determine their relationship with arterial markers of subclinical atherosclerosis. Metabolic syndrome subjects (n = 182) with high cardiovascular risk but without overt cardiovascular disease (CVD) were recruited from the Lithuanian High Cardiovascular Risk (LitHiR) primary prevention program. The ardio-ankle vascular index (CAVI), augmentation index normalized to a heart rate of 75 bpm (AIxHR75), aortic pulse wave velocity (AoPWV), and carotid artery stiffness were assessed. MicroRNAs (miRs) were analyzed in serum. Pearson correlation and a univariate linear regression t-test showed that miR-1, miR-133b, and miR-133a were negatively associated with CAVI mean, whereas miR-122 was positively associated. MiR-1, miR-133b and miR-133a, and miR-145 were negatively associated with AIxHR75. MiR-122 correlated negatively with AoPWV. In multivariate linear regression models, miR-133b and miR-122 predicted CAVImean, miR-133 predicted AIxHR75, and miR-122 predicted AoPWV. MiR-132 predicted right carotid artery stiffness, and miR-1 predicted left carotid artery stiffness. The addition of smoking to miR-133b and miR-122 enhanced the prediction of CAVI. Age and triglycerides enhanced the prediction of AoPWV by miR-122. A cluster of four miRs are related to subclinical atherosclerosis in subjects with metabolic syndrome. Combined, they may have a more substantial diagnostic or prognostic value than any single miR. Future follow-up studies are needed to establish their clinical relevance.
Collapse
Affiliation(s)
- Agnė Šatrauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania; (A.Š.); (A.L.); (L.R.); (A.J.)
- Centre of Cardiology and Angiology, Vilnius University Hospital, Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Rokas Navickas
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania; (A.Š.); (A.L.); (L.R.); (A.J.)
- Centre of Cardiology and Angiology, Vilnius University Hospital, Santaros Klinikos, 08410 Vilnius, Lithuania
- Correspondence:
| | - Aleksandras Laucevičius
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania; (A.Š.); (A.L.); (L.R.); (A.J.)
- Centre of Cardiology and Angiology, Vilnius University Hospital, Santaros Klinikos, 08410 Vilnius, Lithuania
- Experimental, Preventive, and Clinic Medicine Department, Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Tomas Krilavičius
- Informatics Faculty, Vytautas Magnus University, 44248 Kaunas, Lithuania; (T.K.); (R.U.)
- Baltic Institute of Advanced Technology, 01124 Vilnius, Lithuania
| | - Rūta Užupytė
- Informatics Faculty, Vytautas Magnus University, 44248 Kaunas, Lithuania; (T.K.); (R.U.)
- Baltic Institute of Advanced Technology, 01124 Vilnius, Lithuania
- Faculty of Mathematics and Informatics, Vilnius University, 03225 Vilnius, Lithuania
| | - Monika Zdanytė
- Department of Cardiology and Cardiovascular Medicine, Universität Tübingen, 72074 Tübingen, Germany;
| | - Ligita Ryliškytė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania; (A.Š.); (A.L.); (L.R.); (A.J.)
- Centre of Cardiology and Angiology, Vilnius University Hospital, Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Agnė Jucevičienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania; (A.Š.); (A.L.); (L.R.); (A.J.)
- Centre of Cardiology and Angiology, Vilnius University Hospital, Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Paul Holvoet
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
35
|
Qiu Y, Xu J, Yang L, Zhao G, Ding J, Chen Q, Zhang N, Yang R, Wang J, Li S, Zhang L. MiR-375 silencing attenuates pro-inflammatory macrophage response and foam cell formation by targeting KLF4. Exp Cell Res 2021; 400:112507. [PMID: 33545131 DOI: 10.1016/j.yexcr.2021.112507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
Macrophage mediated inflammation and foam cell formation play crucial roles in the development of atherosclerosis. MiR-375 is a small noncoding RNA that significantly implicated in multiple tumor regulation and has been emerged as a novel biomarker for type 2 diabetes. However, the exact role of miR-375 on macrophage activation remains unknown. In the present study, we observed that miR-375 expression showed an up-regulated expression in atherosclerotic aortas, as well as in bone marrow derived macrophages (BMDMs) and mouse peritoneal macrophages (MPMs) isolated from ApoE deficiency mice and was gradually increased followed the Ox-LDL treated time. Functionally, miR-375 inhibition significantly decreased foam cell formation accompanied by up-regulated genes expression involved in cholesterol efflux but reduced genes expression implicated in cholesterol influx. Moreover, miR-375 silencing increased resolving M2 macrophage but reduced pro-inflammatory M1 macrophage markers expression. Such above effects can be reversed by miR-375 overexpression. Mechanistically, we noticed that miR-375 knockdown promoted KLF4 expression which was required for the ameliorated effect of miR-375 silencing on macrophage activation. Importantly, the consistent results in mRNA expression of M1 and M2 markers were observed in vivo, and miR-375-/-ApoE-/- mice significant decreased atherosclerotic lesions in the whole aorta and aortic sinus. Taken together, these evidences suggested that miR-375 knockdown attenuated macrophage activation partially through activation of KLF4-dependent mechanism.
Collapse
Affiliation(s)
- Yanyan Qiu
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jinyi Xu
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Lihong Yang
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Guihua Zhao
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jing Ding
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Qiong Chen
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Na Zhang
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Ruike Yang
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jijing Wang
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Shuaibing Li
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Luming Zhang
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| |
Collapse
|
36
|
Snowhite I, Pastori R, Sosenko J, Messinger Cayetano S, Pugliese A. Baseline Assessment of Circulating MicroRNAs Near Diagnosis of Type 1 Diabetes Predicts Future Stimulated Insulin Secretion. Diabetes 2021; 70:638-651. [PMID: 33277338 PMCID: PMC7881864 DOI: 10.2337/db20-0817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes is an autoimmune disease resulting in severely impaired insulin secretion. We investigated whether circulating microRNAs (miRNAs) are associated with residual insulin secretion at diagnosis and predict the severity of its future decline. We studied 53 newly diagnosed subjects enrolled in placebo groups of TrialNet clinical trials. We measured serum levels of 2,083 miRNAs, using RNA sequencing technology, in fasting samples from the baseline visit (<100 days from diagnosis), during which residual insulin secretion was measured with a mixed meal tolerance test (MMTT). Area under the curve (AUC) C-peptide and peak C-peptide were stratified by quartiles of expression of 31 miRNAs. After adjustment for baseline C-peptide, age, BMI, and sex, baseline levels of miR-3187-3p, miR-4302, and the miRNA combination of miR-3187-3p/miR-103a-3p predicted differences in MMTT C-peptide AUC/peak levels at the 12-month visit; the combination miR-3187-3p/miR-4723-5p predicted proportions of subjects above/below the 200 pmol/L clinical trial eligibility threshold at the 12-month visit. Thus, miRNA assessment at baseline identifies associations with C-peptide and stratifies subjects for future severity of C-peptide loss after 1 year. We suggest that miRNAs may be useful in predicting future C-peptide decline for improved subject stratification in clinical trials.
Collapse
Affiliation(s)
- Isaac Snowhite
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Ricardo Pastori
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
- Division of Endocrinology and Metabolism, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Jay Sosenko
- Division of Endocrinology and Metabolism, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Shari Messinger Cayetano
- Department of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
- Division of Endocrinology and Metabolism, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
37
|
Pérez-Sánchez L, Patiño-Trives AM, Aguirre-Zamorano MÁ, Luque-Tévar M, Ábalos-Aguilera MC, Arias-de la Rosa I, Seguí P, Velasco-Gimena F, Barbarroja N, Escudero-Contreras A, Collantes-Estévez E, Pérez-Sánchez C, López-Pedrera C. Characterization of Antiphospholipid Syndrome Atherothrombotic Risk by Unsupervised Integrated Transcriptomic Analyses. Arterioscler Thromb Vasc Biol 2020; 41:865-877. [PMID: 33356391 DOI: 10.1161/atvbaha.120.315346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our aim was to characterize distinctive clinical antiphospholipid syndrome phenotypes and identify novel microRNA (miRNA)-mRNA-intracellular signaling regulatory networks in monocytes linked to cardiovascular disease. Approach and Results: Microarray analysis in antiphospholipid syndrome monocytes revealed 547 differentially expressed genes, mainly involved in inflammatory, cardiovascular, and reproductive disorders. Besides, this approach identified several genes related to inflammatory, renal, and dermatologic diseases. Functional analyses further demonstrated phosphorylation of intracellular kinases related to thrombosis and immune-mediated chronic inflammation. miRNA profiling showed altered expression of 22 miRNAs, enriched in pathways related to immune functions, cardiovascular disease, and autoimmune-associated pathologies. Unbiased integrated mRNA-miRNA analysis identified a signature of 9 miRNAs as potential modulators of 17 interconnected genes related to cardiovascular disease. The altered expression of that miRNA-mRNA signature was proven to be stable along time and distinctive of nonautoimmune thrombotic patients. Transfection studies and luciferase assays established the relationship between specific miRNAs and their identified target genes and proteins, along with their involvement in the regulation of monocytes procoagulant activity and cell adhesion. Correlation analyses showed relationship among altered miRNAs and their interconnected genes with aPL (antiphospholipid antibodies)-titers, along with microvascular endothelial dysfunction. In vitro studies demonstrated modulation in healthy monocytes by IgG-aPLs of several genes/miRNAs, which further intermediated downstream effects on endothelial function. The identified transcriptomic signature allowed the unsupervised division of three clusters of patients with antiphospholipid syndrome showing distinctive clinical profiles, mainly associated with their prothrombotic risk (thrombosis, autoantibody profile, cardiovascular risk factors, and atherosclerosis). CONCLUSIONS Extensive molecular profiling of monocytes in patients with primary antiphospholipid syndrome might help to identify distinctive clinical phenotypes, thus enabling new patients' tailored treatments.
Collapse
Affiliation(s)
- Laura Pérez-Sánchez
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Alejandra M Patiño-Trives
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - M Ángeles Aguirre-Zamorano
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - María Luque-Tévar
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - M Carmen Ábalos-Aguilera
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Iván Arias-de la Rosa
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Pedro Seguí
- Radiology Service (P.S.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Francisco Velasco-Gimena
- Haematology Service (F.V.-G.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (N.B.)
| | - Alejandro Escudero-Contreras
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Eduardo Collantes-Estévez
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Carlos Pérez-Sánchez
- Deparment of Medicine, University of Cambridge, School of Clinical Medicine, Addenbroke's Hospital, Cambridge Institute for Medical Research, United Kingdom (C.P.-S.)
| | - Chary López-Pedrera
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| |
Collapse
|
38
|
Fachim HA, Loureiro CM, Siddals K, Dalton CF, Reynolds GP, Gibson JM, Chen ZB, Heald AH. Circulating microRNA changes in patients with impaired glucose regulation. Adipocyte 2020; 9:443-453. [PMID: 32752917 PMCID: PMC7469475 DOI: 10.1080/21623945.2020.1798632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We analysed if levels of four miRNAs would change after a lifestyle intervention involving dietary and exercises in prediabetes. MiRNAs previously shown to be associated with diabetes (Let-7a, Let-7e, miR-144 and miR-92a) were extracted from serum pre- and post-intervention. mRNA was extracted from fat-tissue for gene expression analyses. The intervention resulted in increased Let-7a and miR-92a. We found correlations between miRNAs and clinical variables (triglycerides, cholesterol, insulin, weight and BMI). We also found correlations between miRNAs and target genes, revealing a link between miR-92a and IGF system. A lifestyle intervention resulted in marked changes in miRNAs. The association of miRNAs with insulin and the IGF system (both receptors and binding proteins) may represent a mechanism of regulating IGFs metabolic actions.
Collapse
Affiliation(s)
- Helene A. Fachim
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Camila M. Loureiro
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Kirk Siddals
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gavin P. Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - J. Martin Gibson
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adrian H. Heald
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| |
Collapse
|
39
|
S.V. A, Pratibha M, Kapil B, M.K. S. Identification of circulatory miRNAs as candidate biomarkers in prediabetes - A systematic review and bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Wang H. MicroRNA, Diabetes Mellitus and Colorectal Cancer. Biomedicines 2020; 8:biomedicines8120530. [PMID: 33255227 PMCID: PMC7760221 DOI: 10.3390/biomedicines8120530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is an endocrinological disorder that is due to either the pancreas not producing enough insulin, or the body does not respond appropriately to insulin. There are many complications of DM such as retinopathy, nephropathy, and peripheral neuropathy. In addition to these complications, DM was reported to be associated with different cancers. In this review, we discuss the association between DM and colorectal cancer (CRC). CRC is the third most commonly diagnosed cancer worldwide that mostly affects older people, however, its incidence and mortality are rising among young people. We discuss the relationship between DM and CRC based on their common microRNA (miRNA) biomarkers. miRNAs are non-coding RNAs playing important functions in cell differentiation, development, regulation of cell cycle, and apoptosis. miRNAs can inhibit cell proliferation and induce apoptosis in CRC cells. miRNAs also can improve glucose tolerance and insulin sensitivity. Therefore, investigating the common miRNA biomarkers of both DM and CRC can shed a light on how these two diseases are correlated and more understanding of the link between these two diseases can help the prevention of both DM and CRC.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
41
|
Shin PK, Kim MS, Park SJ, Kwon DY, Kim MJ, Yang HJ, Kim SH, Kim K, Chun S, Lee HJ, Choi SW. A Traditional Korean Diet Alters the Expression of Circulating MicroRNAs Linked to Diabetes Mellitus in a Pilot Trial. Nutrients 2020; 12:nu12092558. [PMID: 32846929 PMCID: PMC7551128 DOI: 10.3390/nu12092558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
The traditional Korean diet (K-diet) is considered to be healthy and circulating microRNAs (miRs) have been proposed as useful markers or targets in diet therapy. We, therefore, investigated the metabolic influence of the K-diet by evaluating the expression of plasma and salivary miRs. Ten women aged 50 to 60 years were divided into either a K-diet or control diet (a Westernized Korean diet) group. Subjects were housed in a metabolic unit-like condition during the two-week dietary intervention. Blood and saliva samples were collected before and after the intervention, and changes in circulating miRs were screened by an miR array and validated by individual RT-qPCRs. In the K-diet group, eight plasma miRs were down-regulated by array (p < 0.05), out of which two miRs linked to diabetes mellitus, hsa-miR26a-5p and hsa-miR126-3p, were validated (p < 0.05). Among five down-regulated salivary miRs, hsa-miR-92-3p and hsa-miR-122a-5p were validated, which are associated with diabetes mellitus, acute coronary syndrome and non-alcoholic fatty liver disease. In the control diet group, validated were down-regulated plasma hsa-miR-25-3p and salivary hsa-miR-31-5p, which are associated with diabetes mellitus, adipogenesis and obesity. The K-diet may influence the metabolic conditions associated with diabetes mellitus, as evidenced by changes in circulating miRs, putative biomarkers for K-diet.
Collapse
Affiliation(s)
- Phil-Kyung Shin
- CHA Bio Complex, CHA University, Seongnam 13488, Korea; (P.-K.S.); (S.C.)
| | - Myung Sunny Kim
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (M.S.K.); (D.Y.K.); (M.J.K.); (H.J.Y.); (S.-H.K.)
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seon-Joo Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| | - Dae Young Kwon
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (M.S.K.); (D.Y.K.); (M.J.K.); (H.J.Y.); (S.-H.K.)
| | - Min Jung Kim
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (M.S.K.); (D.Y.K.); (M.J.K.); (H.J.Y.); (S.-H.K.)
| | - Hye Jeong Yang
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (M.S.K.); (D.Y.K.); (M.J.K.); (H.J.Y.); (S.-H.K.)
| | - Soon-Hee Kim
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (M.S.K.); (D.Y.K.); (M.J.K.); (H.J.Y.); (S.-H.K.)
| | - KyongChol Kim
- Department of Healthy Aging, GangNam Major Hospital, Seoul 06279, Korea;
| | - Sukyung Chun
- CHA Bio Complex, CHA University, Seongnam 13488, Korea; (P.-K.S.); (S.C.)
- Chaum Life Center, CHA University, Seoul 06062, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
- Correspondence: (H.-J.L.); (S.-W.C.)
| | - Sang-Woon Choi
- CHA Bio Complex, CHA University, Seongnam 13488, Korea; (P.-K.S.); (S.C.)
- Chaum Life Center, CHA University, Seoul 06062, Korea
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
- Correspondence: (H.-J.L.); (S.-W.C.)
| |
Collapse
|
42
|
The Possible Influence of Mediterranean Diet on Extracellular Vesicle miRNA Expression in Breast Cancer Survivors. Cancers (Basel) 2020; 12:cancers12061355. [PMID: 32466456 PMCID: PMC7352167 DOI: 10.3390/cancers12061355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
The Mediterranean diet (MD) has been reported to have beneficial effects on breast cancer and cardiovascular diseases. Recently, microRNAs (miRNAs) have been suggested as biomarkers for the diagnosis and disease prognosis in cancer and cardiovascular diseases. We evaluated the influence of the MD on the plasma-derived extracellular vesicle miRNA signature of overweight breast cancer survivors. Sixteen participants instructed to adhere to the MD for eight weeks were included in this study. To curate differentially expressed miRNAs after MD intervention, we employed two methods: significance analysis of microarrays and DESeq2. The selected miRNAs were analyzed using ingenuity pathway analysis. After an eight-week intervention, body mass index, waist circumference, fasting glucose, fasting insulin, and homeostatic model assessment for insulin resistance were significantly improved. Expression levels of 798 miRNAs were comprehensively analyzed, and 42 extracellular vesicle miRNAs were significantly differentially regulated after the eight-week MD (36 were up and 6 were down-regulated). We also identified enriched pathways in genes regulated by differentially expressed 42 miRNAs, which include signaling associated with breast cancer, energy metabolism, glucose metabolism, and insulin. Our study indicates that extracellular vesicle miRNAs differentially expressed as a result of the MD might be involved in the mechanisms that relate to cardiometabolic risk factors in overweight breast cancer survivors.
Collapse
|
43
|
Zamil BM, Ali-Labib R, Youssef WY, Khairy E. Evaluation of miR-106a and ADARB1 in autistic children. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Hu W, Ding Y, Wang S, Xu L, Yu H. The Construction and Analysis of the Aberrant lncRNA-miRNA-mRNA Network in Adipose Tissue from Type 2 Diabetes Individuals with Obesity. J Diabetes Res 2020; 2020:3980742. [PMID: 32337289 PMCID: PMC7168724 DOI: 10.1155/2020/3980742] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/12/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The prevalence of obesity and type 2 diabetes mellitus (T2DM) has become the most serious global public health issue. In recent years, there has been increasing attention to the role of long noncoding RNAs (lncRNAs) in the occurrence and development of obesity and T2DM. The aim of this work was to find new lncRNAs as potential predictive biomarkers or therapeutic targets for obesity and T2DM. METHODS In this study, we identified significant differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) between adipose tissue of individuals with obesity and T2DM and normal adipose tissue (absolute log2FC ≥ 1 and FDR < 0.05). Then, the lncRNA-miRNA interactions predicted by miRcode were further screened with a threshold of MIC > 0.2. Simultaneously, the mRNA-miRNA interactions were explored by miRWalk 2.0. Finally, a ceRNA network consisting of lncRNAs, miRNAs, and mRNAs was established by integrating lncRNA-miRNA interactions and mRNA-miRNA interactions. RESULTS Upon comparing adipose tissue from individuals with obesity and T2DM and normal adipose tissues, 364 significant DEmRNAs, including 140 upregulated and 224 downregulated mRNAs, were identified in GSE104674; in addition, 231 significant DEmRNAs, including 146 upregulated and 85 downregulated mRNAs, were identified in GSE133099. GO and KEGG analyses have shown that downregulated DEmRNAs in GSE104674 and GSE133099 were associated with obesity- and T2DM-related biological pathways, such as lipid metabolism, AMPK signaling, and insulin resistance. Furthermore, 28 significant DElncRNAs, including 14 upregulated and 14 downregulated lncRNAs, were found. Based on the predicted lncRNA-miRNA and mRNA-miRNA relationships, we constructed a competitive endogenous RNA (ceRNA) network, including five lncRNAs, ten miRNAs, and 15 mRNAs. KEGG-GSEA analysis revealed that four lncRNAs (FLG-AS1, SNAI3-AS1, AC008147.0, and LINC02015) in the ceRNA network were related to the biological pathways of metabolic diseases. CONCLUSIONS Through ceRNA network analysis, our study identified four new lncRNAs that may be used as potential biomarkers and therapeutic targets of obesity and T2DM, thus laying a foundation for future clinical studies.
Collapse
Affiliation(s)
- Wei Hu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Shu Wang
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lin Xu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
45
|
Iacomino G, Lauria F, Venezia A, Iannaccone N, Russo P, Siani A. microRNAs in Obesity and Metabolic Diseases. OBESITY AND DIABETES 2020:71-95. [DOI: 10.1007/978-3-030-53370-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Melnik BC. Milk exosomal miRNAs: potential drivers of AMPK-to-mTORC1 switching in β-cell de-differentiation of type 2 diabetes mellitus. Nutr Metab (Lond) 2019; 16:85. [PMID: 31827573 PMCID: PMC6898964 DOI: 10.1186/s12986-019-0412-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) steadily increases in prevalence since the 1950's, the period of widespread distribution of refrigerated pasteurized cow's milk. Whereas breastfeeding protects against the development of T2DM in later life, accumulating epidemiological evidence underlines the role of cow's milk consumption in T2DM. Recent studies in rodent models demonstrate that during the breastfeeding period pancreatic β-cells are metabolically immature and preferentially proliferate by activation of mechanistic target of rapamycin complex 1 (mTORC1) and suppression of AMP-activated protein kinase (AMPK). Weaning determines a metabolic switch of β-cells from a proliferating, immature phenotype with low insulin secretion to a differentiated mature phenotype with glucose-stimulated insulin secretion, less proliferation, reduced mTORC1- but increased AMPK activity. Translational evidence presented in this perspective implies for the first time that termination of milk miRNA transfer is the driver of this metabolic switch. miRNA-148a is a key inhibitor of AMPK and phosphatase and tensin homolog, crucial suppressors of mTORC1. β-Cells of diabetic patients return to the postnatal phenotype with high mTORC1 and low AMPK activity, explained by continuous transfer of bovine milk miRNAs to the human milk consumer. Bovine milk miRNA-148a apparently promotes β-cell de-differentiation to the immature mTORC1-high/AMPK-low phenotype with functional impairments in insulin secretion, increased mTORC1-driven endoplasmic reticulum stress, reduced autophagy and early β-cell apoptosis. In contrast to pasteurized cow's milk, milk's miRNAs are inactivated by bacterial fermentation, boiling and ultra-heat treatment and are missing in current infant formula. Persistent milk miRNA signaling adds a new perspective to the pathogenesis of T2DM and explains the protective role of breastfeeding but the diabetogenic effect of continued milk miRNA signaling by persistent consumption of pasteurized cow's milk.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, D-49076 Osnabrück, Germany
| |
Collapse
|
47
|
MicroRNA Signatures as Future Biomarkers for Diagnosis of Diabetes States. Cells 2019; 8:cells8121533. [PMID: 31795194 PMCID: PMC6953078 DOI: 10.3390/cells8121533] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/24/2022] Open
Abstract
Diabetes results from the inability of pancreatic islets to maintain blood glucose concentrations within a normal physiological range. Clinical features are usually not observed until islets begin to fail and irreversible damage has occurred. Diabetes is generally diagnosed based on elevated glucose, which does not distinguish between type 1 and 2 diabetes. Thus, new diagnostic approaches are needed to detect different modes of diabetes before manifestation of disease. During prediabetes (pre-DM), islets undergo stress and release micro (mi) RNAs. Here, we review studies that have measured and tracked miRNAs in the blood for those with recent-onset or longstanding type 1 diabetes, obesity, pre-diabetes, type 2 diabetes, and gestational diabetes. We summarize the findings on miRNA signatures with the potential to stage progression of different modes of diabetes. Advances in identifying selective biomarker signatures may aid in early detection and classification of diabetic conditions and treatments to prevent and reverse diabetes.
Collapse
|
48
|
Zhao H, Tao S. MiRNA-221 protects islet β cell function in gestational diabetes mellitus by targeting PAK1. Biochem Biophys Res Commun 2019; 520:218-224. [PMID: 31587871 DOI: 10.1016/j.bbrc.2019.09.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
To elucidate the potential function of miRNA-221 in gestational diabetes mellitus (GDM) and the underlying mechanism. MiRNA-221 level was analyzed in the microarray containing placental tissues of GDM rats. After constructing GDM model in rats, miRNA-221 level in placental tissues of GDM rats or controls was determined as well. The relationship between miRNA-221 level and blood glucose in GDM rats was analyzed by Spearman correlation test. Regulatory effects of miRNA-221 on proliferation, apoptosis and insulin secretion in INS-1 cells were assessed. Through dual-luciferase reporter gene assay, the direct target of miRNA-221, PAK1 was identified. At last, potential influences of miRNA-221/PAK1 axis on INS-1 cell phenotypes were determined. MiRNA-221 was downregulated in placental tissues of GDM rats, and its level was negatively correlated to that of blood glucose level in GDM rats. Overexpression of miRNA-221 stimulated insulin secretion, cell proliferation and suppressed apoptosis in INS-1 cells. Knockdown of miRNA-221 achieved the opposite results. PAK1 was proved as the direct target of miRNA-221. Notably, PAK1 was able to reverse regulatory effects of miRNA-221 on INS-1 cell phenotypes. MiRNA-221 regulates proliferation, apoptosis and insulin secretion in islet β cells through targeting PAK1, thus protecting GDM-induced islet dysfunction.
Collapse
Affiliation(s)
- Hongqiang Zhao
- Department of Gerontology, Jinan People's Hospital of Shandong Province, Jinan, China.
| | - Shujuan Tao
- Department of Obstetrics, Jinan Second Maternal and Child Health Hospital of Shandong Province, Jinan, China
| |
Collapse
|
49
|
Brunetti A, Arcidiacono B, Foti DP, Semple RK. Editorial: Transcriptional Regulation of Glucose Metabolism: Gaps and Controversies. Front Endocrinol (Lausanne) 2019; 10:629. [PMID: 31620085 PMCID: PMC6759599 DOI: 10.3389/fendo.2019.00629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Antonio Brunetti
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Robert K. Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
- Robert K. Semple
| |
Collapse
|