1
|
Schlünder K, Cipriano M, Zbinden A, Fuchs S, Mayr T, Schenke-Layland K, Loskill P. Microphysiological pancreas-on-chip platform with integrated sensors to model endocrine function and metabolism. LAB ON A CHIP 2024; 24:2080-2093. [PMID: 38441218 DOI: 10.1039/d3lc00838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Pancreatic in vitro research is of major importance to advance mechanistic understanding and development of treatment options for diseases such as diabetes mellitus. We present a thermoplastic-based microphysiological system aiming to model the complex microphysiological structure and function of the endocrine pancreas with concurrent real-time read-out capabilities. The specifically tailored platform enables self-guided trapping of single islets at defined locations: β-cells are assembled to pseudo-islets and injected into the tissue chamber using hydrostatic pressure-driven flow. The pseudo-islets can further be embedded in an ECM-like hydrogel mimicking the native microenvironment of pancreatic islets in vivo. Non-invasive real-time monitoring of the oxygen levels on-chip is realized by the integration of luminescence-based optical sensors to the platform. To monitor insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, an automated cycling of different glucose conditions is implemented. The model's response to glucose stimulation can be monitored via offline analysis of insulin secretion and via specific changes in oxygen consumption due to higher metabolic activity of pseudo-islets at high glucose levels. To demonstrate applicability for drug testing, the effects of antidiabetic medications are assessed and changes in dynamic insulin secretion are observed in line with the respective mechanism of action. Finally, by integrating human pancreatic islet microtissues, we highlight the flexibility of the platform and demonstrate the preservation of long-term functionality of human endocrine pancreatic tissue.
Collapse
Affiliation(s)
- Katharina Schlünder
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Madalena Cipriano
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Aline Zbinden
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefanie Fuchs
- Institute for Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Torsten Mayr
- Institute for Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Porter JM, Yitayew M, Tabrizian M. Renewable Human Cell Model for Type 1 Diabetes Research: EndoC- βH5/HUVEC Coculture Spheroids. J Diabetes Res 2023; 2023:6610007. [PMID: 38162632 PMCID: PMC10757655 DOI: 10.1155/2023/6610007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
In vitro drug screening for type 1 diabetes therapies has largely been conducted on human organ donor islets for proof of efficacy. While native islets are the ultimate target of these drugs (either in situ or for transplantation), significant benefit can be difficult to ascertain due to the highly heterogeneous nature of individual donors and the overall scarcity of human islets for research. We present an in vitro coculture model based on immortalized insulin-producing beta-cell lines with human endothelial cells in 3D spheroids that aims to recapitulate the islet morphology in an effort towards developing a standardized cell model for in vitro diabetes research. Human insulin-producing immortalized EndoC-βH5 cells are cocultured with human endothelial cells in varying ratios to evaluate 3D cell culture models for type 1 diabetes research. Insulin secretion, metabolic activity, live cell fluorescence staining, and gene expression assays were used to compare the viability and functionality of spheroids composed of 100% beta-cells, 1 : 1 beta-cell/endothelial, and 1 : 3 beta-cell/endothelial. Monoculture and βH5/HUVEC cocultures formed compact spheroids within 7 days, with average diameter ~140 μm. This pilot study indicated that stimulated insulin release from 0 to 20 mM glucose increased from ~8-fold for monoculture and 1 : 1 coculture spheroids to over 20-fold for 1 : 3 EndoC-βH5/HUVEC spheroids. Metabolic activity was also ~12% higher in the 1 : 3 EndoC-βH5/HUVEC group compared to other groups. Stimulating monoculture beta-cell spheroids with 20 mM glucose +1 μg/mL glycine-modified INGAP-P increased the insulin stimulation index ~2-fold compared to glucose alone. Considering their availability and consistent phenotype, EndoC-βH5-based spheroids present a useful 3D cell model for in vitro testing and drug screening applications.
Collapse
Affiliation(s)
- James M. Porter
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada H3A 0G4
| | - Michael Yitayew
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada H3A 0G4
| | - Maryam Tabrizian
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada H3A 0G4
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada H3A 1G1
| |
Collapse
|
3
|
Kahraman S, Shibue K, De Jesus DF, Kim H, Hu J, Manna D, Wagner B, Choudhary A, Kulkarni RN. Fluorescein-based sensors to purify human α-cells for functional and transcriptomic analyses. eLife 2023; 12:e85056. [PMID: 37732504 PMCID: PMC10567109 DOI: 10.7554/elife.85056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Pancreatic α-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human α-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality α-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live α-cells from dissociated human islet cells with ~95% purity. The α-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form α-pseudoislets. The α-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key α-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in α-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary α-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.
Collapse
Affiliation(s)
- Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonUnited States
| | - Kimitaka Shibue
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonUnited States
| | - Dario F De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonUnited States
| | - Hyunki Kim
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonUnited States
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
| | - Debasish Manna
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and HarvardCambridgeUnited States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s HospitalBostonUnited States
| | - Bridget Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and HarvardCambridgeUnited States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s HospitalBostonUnited States
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes CenterBostonUnited States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
4
|
Watanabe H, Du W, Son J, Sui L, Asahara SI, Kurland IJ, Kuo T, Kitamoto T, Miyachi Y, de Cabo R, Accili D. Cyb5r3-based mechanism and reversal of secondary failure to sulfonylurea in diabetes. Sci Transl Med 2023; 15:eabq4126. [PMID: 36724243 DOI: 10.1126/scitranslmed.abq4126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sulfonylureas (SUs) are effective and affordable antidiabetic drugs. However, chronic use leads to secondary failure, limiting their utilization. Here, we identify cytochrome b5 reductase 3 (Cyb5r3) down-regulation as a mechanism of secondary SU failure and successfully reverse it. Chronic exposure to SU lowered Cyb5r3 abundance and reduced islet glucose utilization in mice in vivo and in ex vivo murine islets. Cyb5r3 β cell-specific knockout mice phenocopied SU failure. Cyb5r3 engaged in a glucose-dependent interaction that stabilizes glucokinase (Gck) to maintain glucose utilization. Hence, Gck activators can circumvent Cyb5r3-dependent SU failure. A Cyb5r3 activator rescued secondary SU failure in mice in vivo and restored insulin secretion in ex vivo human islets. We conclude that Cyb5r3 is a key factor in the secondary failure to SU and a potential target for its prevention, which might rehabilitate SU use in diabetes.
Collapse
Affiliation(s)
- Hitoshi Watanabe
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wen Du
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jinsook Son
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lina Sui
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Shun-Ichiro Asahara
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Irwin J Kurland
- Stable Isotope and Metabolomics Core Facility, Fleischer Institute for Diabetes and Metabolism, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Taiyi Kuo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Takumi Kitamoto
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yasutaka Miyachi
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 20814, USA
| | - Domenico Accili
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Griess K, Rieck M, Müller N, Karsai G, Hartwig S, Pelligra A, Hardt R, Schlegel C, Kuboth J, Uhlemeyer C, Trenkamp S, Jeruschke K, Weiss J, Peifer-Weiss L, Xu W, Cames S, Yi X, Cnop M, Beller M, Stark H, Kondadi AK, Reichert AS, Markgraf D, Wammers M, Häussinger D, Kuss O, Lehr S, Eizirik D, Lickert H, Lammert E, Roden M, Winter D, Al-Hasani H, Höglinger D, Hornemann T, Brüning JC, Belgardt BF. Sphingolipid subtypes differentially control proinsulin processing and systemic glucose homeostasis. Nat Cell Biol 2023; 25:20-29. [PMID: 36543979 PMCID: PMC9859757 DOI: 10.1038/s41556-022-01027-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/11/2022] [Indexed: 12/24/2022]
Abstract
Impaired proinsulin-to-insulin processing in pancreatic β-cells is a key defective step in both type 1 diabetes and type 2 diabetes (T2D) (refs. 1,2), but the mechanisms involved remain to be defined. Altered metabolism of sphingolipids (SLs) has been linked to development of obesity, type 1 diabetes and T2D (refs. 3-8); nonetheless, the role of specific SL species in β-cell function and demise is unclear. Here we define the lipid signature of T2D-associated β-cell failure, including an imbalance of specific very-long-chain SLs and long-chain SLs. β-cell-specific ablation of CerS2, the enzyme necessary for generation of very-long-chain SLs, selectively reduces insulin content, impairs insulin secretion and disturbs systemic glucose tolerance in multiple complementary models. In contrast, ablation of long-chain-SL-synthesizing enzymes has no effect on insulin content. By quantitatively defining the SL-protein interactome, we reveal that CerS2 ablation affects SL binding to several endoplasmic reticulum-Golgi transport proteins, including Tmed2, which we define as an endogenous regulator of the essential proinsulin processing enzyme Pcsk1. Our study uncovers roles for specific SL subtypes and SL-binding proteins in β-cell function and T2D-associated β-cell failure.
Collapse
Affiliation(s)
- Kerstin Griess
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michael Rieck
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nadine Müller
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Gergely Karsai
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Pelligra
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Caroline Schlegel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jennifer Kuboth
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Sandra Trenkamp
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kay Jeruschke
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leon Peifer-Weiss
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Weiwei Xu
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Sandra Cames
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems and Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Markgraf
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marianne Wammers
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Decio Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Heiko Lickert
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Eckhard Lammert
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
6
|
Kato H, Miwa T, Quijano J, Medrano L, Ortiz J, Desantis A, Omori K, Wada A, Tatsukoshi K, Kandeel F, Mullen Y, Ku HT, Komatsu H. Microwell culture platform maintains viability and mass of human pancreatic islets. Front Endocrinol (Lausanne) 2022; 13:1015063. [PMID: 36465665 PMCID: PMC9712283 DOI: 10.3389/fendo.2022.1015063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Transplantation of the human pancreatic islets is a promising approach for specific types of diabetes to improve glycemic control. Although effective, there are several issues that limit the clinical expansion of this treatment, including difficulty in maintaining the quality and quantity of isolated human islets prior to transplantation. During the culture, we frequently observe the multiple islets fusing together into large constructs, in which hypoxia-induced cell damage significantly reduces their viability and mass. In this study, we introduce the microwell platform optimized for the human islets to prevent unsolicited fusion, thus maintaining their viability and mass in long-term cultures. Method Human islets are heterogeneous in size; therefore, two different-sized microwells were prepared in a 35 mm-dish format: 140 µm × 300 µm-microwells for <160 µm-islets and 200 µm × 370 µm-microwells for >160 µm-islets. Human islets (2,000 islet equivalent) were filtered through a 160 µm-mesh to prepare two size categories for subsequent two week-cultures in each microwell dish. Conventional flat-bottomed 35 mm-dishes were used for non-filtered islets (2,000 islet equivalent/2 dishes). Post-cultured islets are collected to combine in each condition (microwells and flat) for the comparisons in viability, islet mass, morphology, function and metabolism. Islets from three donors were independently tested. Results The microwell platform prevented islet fusion during culture compared to conventional flat bottom dishes, which improved human islet viability and mass. Islet viability and mass on the microwells were well-maintained and comparable to those in pre-culture, while flat bottom dishes significantly reduced islet viability and mass in two weeks. Morphology assessed by histology, insulin-secreting function and metabolism by oxygen consumption did not exhibit the statistical significance among the three different conditions. Conclusion Microwell-bottomed dishes maintained viability and mass of human islets for two weeks, which is significantly improved when compared to the conventional flat-bottomed dishes.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | | | - Janine Quijano
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Leonard Medrano
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Jose Ortiz
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Akiko Desantis
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Keiko Omori
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Aya Wada
- AGC Techno Glass, Shizuoka, Japan
| | | | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Yoko Mullen
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Hsun Teresa Ku
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
7
|
Effects of adrenergic-stimulated lipolysis and cytokine production on in vitro mouse adipose tissue-islet interactions. Sci Rep 2022; 12:15831. [PMID: 36138030 PMCID: PMC9499973 DOI: 10.1038/s41598-022-18262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammatory cytokines and non-esterified fatty acids (NEFAs) are obesity-linked factors that disturb insulin secretion. The aim of this study was to investigate whether pancreatic adipose tissue (pWAT) is able to generate a NEFA/cytokine overload within the pancreatic environment and as consequence to impact on insulin secretion. Pancreatic fat is a minor fat depot, therefore we used high-fat diet (HFD) feeding to induce pancreatic steatosis in mice. Relative Adipoq and Lep mRNA levels were higher in pWAT of HFD compared to chow diet mice. Regardless of HFD, Adipoq and Lep mRNA levels of pWAT were at least 10-times lower than those of epididymal fat (eWAT). Lipolysis stimulating receptors Adrb3 and Npr1 were expressed in pWAT and eWAT, and HFD reduced their expression in eWAT only. In accordance, HFD impaired lipolysis in eWAT but not in pWAT. Despite expression of Npr mRNA, lipolysis was stimulated solely by the adrenergic agonists, isoproterenol and adrenaline. Short term co-incubation of islets with CD/HFD pWAT did not alter insulin secretion. In the presence of CD/HFD eWAT, glucose stimulated insulin secretion only upon isoproterenol-induced lipolysis, i.e. in the presence of elevated NEFA. Isoproterenol augmented Il1b and Il6 mRNA levels both in pWAT and eWAT. These results suggest that an increased sympathetic activity enhances NEFA and cytokine load of the adipose microenvironment, including that of pancreatic fat, and by doing so it may alter beta-cell function.
Collapse
|
8
|
Ilegems E, Bryzgalova G, Correia J, Yesildag B, Berra E, Ruas JL, Pereira TS, Berggren PO. HIF-1α inhibitor PX-478 preserves pancreatic β cell function in diabetes. Sci Transl Med 2022; 14:eaba9112. [PMID: 35353540 DOI: 10.1126/scitranslmed.aba9112] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During progression of type 2 diabetes, pancreatic β cells are subjected to sustained metabolic overload. We postulated that this state mediates a hypoxic phenotype driven by hypoxia-inducible factor-1α (HIF-1α) and that treatment with the HIF-1α inhibitor PX-478 would improve β cell function. Our studies showed that the HIF-1α protein was present in pancreatic β cells of diabetic mouse models. In mouse islets with high glucose metabolism, the emergence of intracellular Ca2+ oscillations at low glucose concentration and the abnormally high basal release of insulin were suppressed by treatment with the HIF-1α inhibitor PX-478, indicating improvement of β cell function. Treatment of db/db mice with PX-478 prevented the rise of glycemia and diabetes progression by maintenance of elevated plasma insulin concentration. In streptozotocin-induced diabetic mice, PX-478 improved the recovery of glucose homeostasis. Islets isolated from these mice showed hallmarks of improved β cell function including elevation of insulin content, increased expression of genes involved in β cell function and maturity, inhibition of dedifferentiation markers, and formation of mature insulin granules. In response to PX-478 treatment, human islet organoids chronically exposed to high glucose presented improved stimulation index of glucose-induced insulin secretion. These results suggest that the HIF-1α inhibitor PX-478 has the potential to act as an antidiabetic therapeutic agent that preserves β cell function under metabolic overload.
Collapse
Affiliation(s)
- Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Galyna Bryzgalova
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Jorge Correia
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Edurne Berra
- Centro de Investigación Cooperativa en Biociencias CIC bioGUNE, 48160 Derio, Spain
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Teresa S Pereira
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.,Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 308232 Singapore, Singapore.,School of Biomedical Sciences, Ulster University, BT52 1SA Coleraine, Northern Ireland, UK
| |
Collapse
|
9
|
Marquez-Curtis LA, Dai XQ, Hang Y, Lam JY, Lyon J, Manning Fox JE, McGann LE, MacDonald PE, Kim SK, Elliott JAW. Cryopreservation and post-thaw characterization of dissociated human islet cells. PLoS One 2022; 17:e0263005. [PMID: 35081145 PMCID: PMC8791532 DOI: 10.1371/journal.pone.0263005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
The objective of this study is to optimize the cryopreservation of dissociated islet cells and obtain functional cells that can be used in single-cell transcriptome studies on the pathology and treatment of diabetes. Using an iterative graded freezing approach we obtained viable cells after cooling in 10% dimethyl sulfoxide and 6% hydroxyethyl starch at 1°C/min to -40°C, storage in liquid nitrogen, rapid thaw, and removal of cryoprotectants by serial dilution. The expression of epithelial cell adhesion molecule declined immediately after thaw, but recovered after overnight incubation, while that of an endocrine cell marker (HPi2) remained high after cryopreservation. Patch-clamp electrophysiology revealed differences in channel activities and exocytosis of various islet cell types; however, exocytotic responses, and the biophysical properties of voltage-gated Na+ and Ca2+ channels, are sustained after cryopreservation. Single-cell RNA sequencing indicates that overall transcriptome and crucial exocytosis genes are comparable between fresh and cryopreserved dispersed human islet cells. Thus, we report an optimized procedure for cryopreserving dispersed islet cells that maintained their membrane integrity, along with their molecular and functional phenotypes. Our findings will not only provide a ready source of cells for investigating cellular mechanisms in diabetes but also for bio-engineering pseudo-islets and islet sheets for modeling studies and potential transplant applications.
Collapse
Affiliation(s)
- Leah A. Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States of America
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Jonathan Y. Lam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - James Lyon
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E. Manning Fox
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Locksley E. McGann
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States of America
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States of America
- Endocrinology Division, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Janet A. W. Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Henquin JC. Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies. Metabolism 2021; 122:154821. [PMID: 34174327 DOI: 10.1016/j.metabol.2021.154821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Optimal metabolic homeostasis requires precise temporal and quantitative control of insulin secretion. Both in vivo and in vitro studies have often focused on the regulation by glucose although many additional factors including other nutrients, neurotransmitters, hormones and drugs, modulate the secretory function of pancreatic β-cells. This review is based on the analysis of clinical investigations characterizing the effects of non-glucose modulators of insulin secretion in healthy subjects, and of experimental studies testing the same modulators in islets isolated from normal human donors. The aim was to determine whether the information gathered in vitro can reliably be translated to the in vivo situation. The comparison evidenced both convincing similarities and areas of discordance. The lack of coherence generally stems from the use of exceedingly high concentrations of test agents at too high or too low glucose concentrations in vitro, which casts doubts on the physiological relevance of a number of observations made in isolated islets. Future projects resorting to human islets should avoid extreme experimental conditions, such as oversized stimulations or inhibitions of β-cells, which are unlikely to throw light on normal insulin secretion and contribute to the elucidation of its defects.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
11
|
Friedlander MSH, Nguyen VM, Kim SK, Bevacqua RJ. Pancreatic Pseudoislets: An Organoid Archetype for Metabolism Research. Diabetes 2021; 70:1051-1060. [PMID: 33947722 PMCID: PMC8343609 DOI: 10.2337/db20-1115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/20/2021] [Indexed: 01/08/2023]
Abstract
Pancreatic islets are vital endocrine regulators of systemic metabolism, and recent investigations have increasingly focused on understanding human islet biology. Studies of isolated human islets have advanced understanding of the development, function, and regulation of cells comprising islets, especially pancreatic α- and β-cells. However, the multicellularity of the intact islet has stymied specific experimental approaches-particularly in genetics and cell signaling interrogation. This barrier has been circumvented by the observation that islet cells can survive dispersion and reaggregate to form "pseudoislets," organoids that retain crucial physiological functions, including regulated insulin and glucagon secretion. Recently, exciting advances in the use of pseudoislets for genetics, genomics, islet cell transplantation, and studies of intraislet signaling and islet cell interactions have been reported by investigators worldwide. Here we review molecular and cellular mechanisms thought to promote islet cell reaggregation, summarize methods that optimize pseudoislet development, and detail recent insights about human islet biology from genetic and transplantation-based pseudoislet experiments. Owing to robust, international programs for procuring primary human pancreata, pseudoislets should serve as both a durable paradigm for primary organoid studies and as an engine of discovery for islet biology, diabetes, and metabolism research.
Collapse
Affiliation(s)
- Mollie S H Friedlander
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Vy M Nguyen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- JDRF Center of Excellence, Stanford University School of Medicine, Stanford, CA
| | - Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
12
|
Campbell-Thompson M, Butterworth EA, Boatwright JL, Nair MA, Nasif LH, Nasif K, Revell AY, Riva A, Mathews CE, Gerling IC, Schatz DA, Atkinson MA. Islet sympathetic innervation and islet neuropathology in patients with type 1 diabetes. Sci Rep 2021; 11:6562. [PMID: 33753784 PMCID: PMC7985489 DOI: 10.1038/s41598-021-85659-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of glucagon secretion in type 1 diabetes (T1D) involves hypersecretion during postprandial states, but insufficient secretion during hypoglycemia. The sympathetic nervous system regulates glucagon secretion. To investigate islet sympathetic innervation in T1D, sympathetic tyrosine hydroxylase (TH) axons were analyzed in control non-diabetic organ donors, non-diabetic islet autoantibody-positive individuals (AAb), and age-matched persons with T1D. Islet TH axon numbers and density were significantly decreased in AAb compared to T1D with no significant differences observed in exocrine TH axon volume or lengths between groups. TH axons were in close approximation to islet α-cells in T1D individuals with long-standing diabetes. Islet RNA-sequencing and qRT-PCR analyses identified significant alterations in noradrenalin degradation, α-adrenergic signaling, cardiac β-adrenergic signaling, catecholamine biosynthesis, and additional neuropathology pathways. The close approximation of TH axons at islet α-cells supports a model for sympathetic efferent neurons directly regulating glucagon secretion. Sympathetic islet innervation and intrinsic adrenergic signaling pathways could be novel targets for improving glucagon secretion in T1D.
Collapse
Affiliation(s)
- Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, 32610, USA.
| | - Elizabeth A Butterworth
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - J Lucas Boatwright
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Malavika A Nair
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lith H Nasif
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kamal Nasif
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Andy Y Revell
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Ivan C Gerling
- Department of Medicine-Endocrinology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
13
|
FFA2-, but not FFA3-agonists inhibit GSIS of human pseudoislets: a comparative study with mouse islets and rat INS-1E cells. Sci Rep 2020; 10:16497. [PMID: 33020504 PMCID: PMC7536384 DOI: 10.1038/s41598-020-73467-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The expression of short chain fatty acid receptors FFA2 and FFA3 in pancreatic islets raised interest in using them as drug targets for treating hyperglycemia in humans. This study aims to examine the efficacy of synthetic FFA2- and FFA3-ligands to modulate glucose-stimulated insulin secretion (GSIS) in human pseudoislets which display intact glucose responsiveness. The FFA2-agonists 4-CMTB and TUG-1375 inhibited GSIS, an effect reversed by the FFA2-antagonist CATPB. GSIS itself was not augmented by CATPB. The FFA3-agonists FHQC and 1-MCPC did not affect GSIS in human pseudoislets. For further drug evaluation we used mouse islets. The CATPB-sensitive inhibitory effect of 100 µM 4-CMTB on GSIS was recapitulated. The inhibition was partially sensitive to the Gi/o-protein inhibitor pertussis toxin. A previously described FFA2-dependent increase of GSIS was observed with lower concentrations of 4-CMTB (10 and 30 µM). The stimulatory effect of 4-CMTB on secretion was prevented by the Gq-protein inhibitor FR900359. As in human pseudoislets, in mouse islets relative mRNA levels were FFAR2 > FFAR3 and FFA3-agonists did not affect GSIS. The FFA3-agonists, however, inhibited GSIS in a pertussis toxin-sensitive manner in INS-1E cells and this correlated with relative mRNA levels of Ffar3 > > Ffar2. Thus, in humans, when FFA2-activation impedes GSIS, FFA2-antagonism may reduce glycemia.
Collapse
|
14
|
Direct suppression of human islet dedifferentiation, progenitor genes, but not epithelial to mesenchymal transition by liraglutide. Heliyon 2020; 6:e04951. [PMID: 32995630 PMCID: PMC7501427 DOI: 10.1016/j.heliyon.2020.e04951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/03/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
β-cell dedifferentiation has been accounted as one of the major mechanisms for β-cell failure; thus, is a cause to diabetes. We study direct impacts of liraglutide treatment on ex vivo human dedifferentiated islets, and its effects on genes important in endocrine function, progenitor states, and epithelial mesenchymal transition (EMT). Human islets from non-diabetic donors, were purified and incubated until day 1 and day 4, and were determined insulin contents, numbers of insulin (INS+) and glucagon (GCG+) cells. The islets from day 3 to day 7 were treated with diabetic drugs, the long acting GLP-1 receptor agonist, liraglutide. As observed in pancreatic islets of type 2 diabetic patients, ex vivo dedifferentiated islets showed more than 50% reduced insulin contents while number of glucagon increased from 10% to about 20%. β-cell specific genes: PDX1, MAFA, as well as β-cell functional markers: GLUT1 and SUR1, were significantly depleted more than 40%. Notably, we found increased levels of glucagon regulator, ARX and pre-glucagon transcripts, and remarkably upregulated progenitor expressions: NEUROG3 and ALDH1A identified as β-cell dysfunction markers in diabetic models. Hyperglucagonemia was often observed in type 2 patients that could lead to over production of gluconeogenesis by the liver. Liraglutide treatments resulted in decreased number of GCG+ cells, increased numbers of GLP-1 positive cells but did not alter elevated levels of EMT marker genes: ACTA2, CDH-2, SNAIL2, and VIM. These effects of liraglutide were blunted when FOXO1 transcripts were depleted. This work illustrates that ex vivo human isolated islets can be used as a tool to study different aspects of β-cell dedifferentiation. Our novel finding suggests a role of GLP-1 pathway in beta-cell maintenance in FOXO1-dependent manner. Importantly, dedifferentiated islets ex vivo is a useful model that can be utilized to verify the actions of potential drugs to diabetic β-cell failure.
Collapse
|
15
|
Li WH. Functional analysis of islet cells in vitro, in situ, and in vivo. Semin Cell Dev Biol 2020; 103:14-19. [PMID: 32081627 DOI: 10.1016/j.semcdb.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
The islet of Langerhans contains at least five types of endocrine cells producing distinct hormones. In response to nutrient or neuronal stimulation, islet endocrine cells release biochemicals including peptide hormones to regulate metabolism and to control glucose homeostasis. It is now recognized that malfunction of islet cells, notably insufficient insulin release of β-cells and hypersecretion of glucagon from α-cells, represents a causal event leading to hyperglycemia and frank diabetes, a disease that is increasing at an alarming rate to reach an epidemic level worldwide. Understanding the mechanisms regulating stimulus-secretion coupling and investigating how islet β-cells maintain a robust secretory activity are important topics in islet biology and diabetes research. To facilitate such studies, a number of biological systems and assay platforms have been developed for the functional analysis of islet cells. These technologies have enabled detailed analyses of individual islets at the cellular level, either in vitro, in situ, or in vivo.
Collapse
Affiliation(s)
- Wen-Hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, United States.
| |
Collapse
|
16
|
Wendt A, Eliasson L. Pancreatic α-cells - The unsung heroes in islet function. Semin Cell Dev Biol 2020; 103:41-50. [PMID: 31983511 DOI: 10.1016/j.semcdb.2020.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
The pancreatic islets of Langerhans consist of several hormone-secreting cell types important for blood glucose control. The insulin secreting β-cells are the best studied of these cell types, but less is known about the glucagon secreting α-cells. The α-cells secrete glucagon as a response to low blood glucose. The major function of glucagon is to release glucose from the glycogen stores in the liver. In both type 1 and type 2 diabetes, glucagon secretion is dysregulated further exaggerating the hyperglycaemia, and in type 1 diabetes α-cells fail to counter regulate hypoglycaemia. Although glucagon has been recognized for almost 100 years, the understanding of how glucagon secretion is regulated and how glucagon act within the islet is far from complete. However, α-cell research has taken off lately which is promising for future knowledge. In this review we aim to highlight α-cell regulation and glucagon secretion with a special focus on recent discoveries from human islets. We will present some novel aspects of glucagon function and effects of selected glucose lowering agents on glucagon secretion.
Collapse
Affiliation(s)
- Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden.
| |
Collapse
|
17
|
Henquin JC. The challenge of correctly reporting hormones content and secretion in isolated human islets. Mol Metab 2019; 30:230-239. [PMID: 31767174 PMCID: PMC6829677 DOI: 10.1016/j.molmet.2019.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/28/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Background An increased access of research laboratories to isolated human islets has improved our understanding of the biology of the endocrine pancreas and hence the mechanisms causing diabetes. However, in vitro studies of human islets remain technically challenging, and optimal use of such precious material requires a minimum of rigor and coordination to optimize the reliability and share of the information. A detailed report of the demographics of pancreas donors and of the procedures of islet handling after isolation is important but insufficient. Correct characterization of islet basic functions (a token of quality) at the time of experimentation is also crucial. Scope of review I have analyzed the literature reporting measurements of insulin and glucagon in the human pancreas or isolated human islets. The published information is often fragmentary. Elementary features such as islet size, insulin content, or rate of hormone secretion are either unreported or incorrectly reported in many papers. Although internal comparisons between control and test groups may remain valid, comparisons with data from other laboratories are problematic. The drawbacks, pitfalls and errors of common ways of expressing hormone content or secretion rates are discussed and alternatives to harmonize data presentation are proposed. Major Conclusions Greater coherence and rigor in the report of in vitro studies using human islets are necessary to ensure optimal progress in our understanding of the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|