1
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Ahmed Adam MA, Robinson M, Schwartz AV, Wells G, Hoang A, Albekioni E, Gallo C, Chao G, Weeks J, Quichocho G, George UZ, House CD, Turcan Ş, Sohl CD. Catalytically distinct IDH1 mutants tune phenotype severity in tumor models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590655. [PMID: 38712107 PMCID: PMC11071412 DOI: 10.1101/2024.04.22.590655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces D-2-hydroxyglutarate (D2HG), which can inhibit DNA demethylases to drive tumorigenesis. Mutations affect residue R132 and display distinct catalytic profiles for D2HG production. We show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of R132Q in cellular and xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H. Though expression of IDH1 R132Q leads to hypermethylation in DNA damage pathways, DNA hypomethylation is more notable when compared to R132H expression. Transcriptome analysis shows increased expression of many pro-tumor pathways upon expression of IDH1 R132Q versus R132H, including transcripts of EGFR and PI3K signaling pathways. Thus, IDH1 mutants appear to modulate D2HG levels via altered catalysis, resulting in distinct epigenetic and transcriptomic consequences where higher D2HG levels appear to be associated with more aggressive tumors.
Collapse
Affiliation(s)
- Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Ashley V. Schwartz
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Grace Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - An Hoang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Elene Albekioni
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Cecilia Gallo
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Grace Chao
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Joi Weeks
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Giovanni Quichocho
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Uduak Z. George
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, 69120 Heidelberg, Germany
| | - Christal D. Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
3
|
Batsios G, Udutha S, Taglang C, Gillespie AM, Lau B, Ji S, Phoenix T, Mueller S, Venneti S, Koschmann C, Viswanath P. GABA production induced by imipridones is a targetable and imageable metabolic alteration in diffuse midline gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597982. [PMID: 38915617 PMCID: PMC11195108 DOI: 10.1101/2024.06.07.597982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Diffuse midline gliomas (DMGs) are lethal primary brain tumors in children. The imipridones ONC201 and ONC206 induce mitochondrial dysfunction and have emerged as promising therapies for DMG patients. However, efficacy as monotherapy is limited, identifying a need for strategies that enhance response. Another hurdle is the lack of biomarkers that report on drug-target engagement at an early timepoint after treatment onset. Here, using 1 H-magnetic resonance spectroscopy, which is a non-invasive method of quantifying metabolite pool sizes, we show that accumulation of ψ-aminobutyric acid (GABA) is an early metabolic biomarker that can be detected within a week of ONC206 treatment, when anatomical alterations are absent, in mice bearing orthotopic xenografts. Mechanistically, imipridones activate the mitochondrial protease ClpP and upregulate the stress-responsive transcription factor ATF4. ATF4, in turn, upregulates glutamate decarboxylase, which synthesizes GABA, and downregulates ABAT , which degrades GABA, leading to GABA accumulation in DMG cells and tumors. Functionally, GABA secreted by imipridone-treated cells acts in an autocrine manner via the GABAB receptor to induce expression of superoxide dismutase (SOD1), which mitigates imipridone-induced oxidative stress and, thereby, curbs apoptosis. Importantly, blocking autocrine GABA signaling using the clinical stage GABAB receptor antagonist SGS-742 exacerbates oxidative stress and synergistically induces apoptosis in combination with imipridones in DMG cells and orthotopic tumor xenografts. Collectively, we identify GABA as a unique metabolic adaptation to imipridones that can be leveraged for non-invasive assessment of drug-target engagement and therapy. Clinical translation of our studies has the potential to enable precision metabolic therapy and imaging for DMG patients. One Sentence Summary Imipridones induce GABA accumulation in diffuse midline gliomas, an effect that can be leveraged for therapy and non-invasive imaging.
Collapse
|
4
|
Beccari S, Mohamed E, Voong V, Hilz S, Lafontaine M, Shai A, Lim Y, Martinez J, Switzman B, Yu RL, Lupo JM, Chang EF, Hervey-Jumper SL, Berger MS, Costello JF, Phillips JJ. Quantitative Assessment of Preanalytic Variables on Clinical Evaluation of PI3/AKT/mTOR Signaling Activity in Diffuse Glioma. Mod Pathol 2024; 37:100488. [PMID: 38588881 DOI: 10.1016/j.modpat.2024.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.
Collapse
Affiliation(s)
- Sol Beccari
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Esraa Mohamed
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Viva Voong
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Marisa Lafontaine
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Yunita Lim
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Jerry Martinez
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Benjamin Switzman
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ryon L Yu
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, California; Neuropathology Division, Department of Pathology, University of California, San Francisco, California.
| |
Collapse
|
5
|
Yang T, Zhang R, Cui Z, Zheng B, Zhu X, Yang X, Huang Q. Glycolysis‑related lncRNA may be associated with prognosis and immune activity in grade II‑III glioma. Oncol Lett 2024; 27:238. [PMID: 38601183 PMCID: PMC11005085 DOI: 10.3892/ol.2024.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
Glucose metabolism, as a novel theory to explain tumor cell behavior, has been intensively studied in various tumors. The present study explored the long non-coding RNAs (lncRNAs) related to glycolysis in grade II-III glioma, aiming to provide a promising target for further research. Pearson correlation analysis was used to identify glycolysis-related lncRNAs. Univariate/multivariate Cox regression analysis and the Least Absolute Shrinkage and Selection Operator algorithm were applied to identify glycolysis-related lncRNAs to construct a prognosis prediction model. Subsequently, multi-dimensional evaluations were used to verify whether the risk model could predict the prognosis and survival rate of patients with grade II-III glioma. Finally, it was verified by functional experiments. The present study finally identified seven glycolysis-related lncRNAs (CRNDE, AC022034.1, RHOQ-AS1, AL159169.2, AL133215.2, AC007098.1 and LINC02587) to construct a prognosis prediction model. The present study further investigated the underlying immune microenvironment, somatic landscape and functional enrichment pathways. Additionally, individualized immunotherapeutic strategies and candidate compounds were identified to guide clinical treatment. The experimental results demonstrated that CRNDE could increase the proliferation of SHG-44 cells. In conclusion, a large sample of human grade II-III glioma in The Cancer Genome Atlas database was used to construct a risk model using glycolysis-related lncRNAs to predict the prognosis of patients with grade II-III glioma.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
- Department of Neurosurgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ruiguang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| | - Zhenfen Cui
- Department of Neurosurgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Bowen Zheng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| | - Xiaowei Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300000, P.R. China
| |
Collapse
|
6
|
McAfee D, Moyer M, Queen J, Mortazavi A, Boddeti U, Bachani M, Zaghloul K, Ksendzovsky A. Differential metabolic alterations in IDH1 mutant vs. wildtype glioma cells promote epileptogenesis through distinctive mechanisms. Front Cell Neurosci 2023; 17:1288918. [PMID: 38026690 PMCID: PMC10680369 DOI: 10.3389/fncel.2023.1288918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma-related epilepsy (GRE) is a hallmark clinical presentation of gliomas with significant impacts on patient quality of life. The current standard of care for seizure management is comprised of anti-seizure medications (ASMs) and surgical resection. Seizures in glioma patients are often drug-resistant and can often recur after surgery despite total tumor resection. Therefore, current research is focused on the pro-epileptic pathological changes occurring in tumor cells and the peritumoral environment. One important contribution to seizures in GRE patients is metabolic reprogramming in tumor and surrounding cells. This is most evident by the significantly heightened seizure rate in patients with isocitrate dehydrogenase mutated (IDHmut) tumors compared to patients with IDH wildtype (IDHwt) gliomas. To gain further insight into glioma metabolism in epileptogenesis, this review compares the metabolic changes inherent to IDHmut vs. IDHwt tumors and describes the pro-epileptic effects these changes have on both the tumor cells and the peritumoral environment. Understanding alterations in glioma metabolism can help to uncover novel therapeutic interventions for seizure management in GRE patients.
Collapse
Affiliation(s)
- Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jaden Queen
- The College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kareem Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
de Godoy LL, Lim KC, Rajan A, Verma G, Hanaoka M, O’Rourke DM, Lee JYK, Desai A, Chawla S, Mohan S. Non-Invasive Assessment of Isocitrate Dehydrogenase-Mutant Gliomas Using Optimized Proton Magnetic Resonance Spectroscopy on a Routine Clinical 3-Tesla MRI. Cancers (Basel) 2023; 15:4453. [PMID: 37760422 PMCID: PMC10526791 DOI: 10.3390/cancers15184453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The isocitrate dehydrogenase (IDH) mutation has become one of the most important prognostic biomarkers in glioma management, indicating better treatment response and prognosis. IDH mutations confer neomorphic activity leading to the conversion of alpha-ketoglutarate (α-KG) to 2-hydroxyglutarate (2HG). The purpose of this study was to investigate the clinical potential of proton MR spectroscopy (1H-MRS) in identifying IDH-mutant gliomas by detecting characteristic resonances of 2HG and its complex interplay with other clinically relevant metabolites. MATERIALS AND METHODS Thirty-two patients with suspected infiltrative glioma underwent a single-voxel (SVS, n = 17) and/or single-slice-multivoxel (1H-MRSI, n = 15) proton MR spectroscopy (1H-MRS) sequence with an optimized echo-time (97 ms) on 3T-MRI. Spectroscopy data were analyzed using the linear combination (LC) model. Cramér-Rao lower bound (CRLB) values of <40% were considered acceptable for detecting 2HG and <20% for other metabolites. Immunohistochemical analyses for determining IDH mutational status were subsequently performed from resected tumor specimens and findings were compared with the results from spectral data. Mann-Whitney and chi-squared tests were performed to ascertain differences in metabolite levels between IDH-mutant and IDH-wild-type gliomas. Receiver operating characteristic (ROC) curve analyses were also performed. RESULTS Data from eight cases were excluded due to poor spectral quality or non-tumor-related etiology, and final data analyses were performed from 24 cases. Of these cases, 9/12 (75%) were correctly identified as IDH-mutant or IDH-wildtype gliomas through SVS and 10/12 (83%) through 1H-MRSI with an overall concordance rate of 79% (19/24). The sensitivity, specificity, positive predictive value, and negative predictive value were 80%, 77%, 86%, and 70%, respectively. The metabolite 2HG was found to be significant in predicting IDH-mutant gliomas through the chi-squared test (p < 0.01). The IDH-mutant gliomas also had a significantly higher NAA/Cr ratio (1.20 ± 0.09 vs. 0.75 ± 0.12 p = 0.016) and lower Glx/Cr ratio (0.86 ± 0.078 vs. 1.88 ± 0.66; p = 0.029) than those with IDH wild-type gliomas. The areas under the ROC curves for NAA/Cr and Glx/Cr were 0.808 and 0.786, respectively. CONCLUSIONS Noninvasive optimized 1H-MRS may be useful in predicting IDH mutational status and 2HG may serve as a valuable diagnostic and prognostic biomarker in patients with gliomas.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (M.H.); (S.M.)
| | - Kheng Choon Lim
- Department of Neuroradiology, Singapore General Hospital, Singapore 169609, Singapore;
| | - Archith Rajan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (M.H.); (S.M.)
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Mauro Hanaoka
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (M.H.); (S.M.)
| | - Donald M. O’Rourke
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.O.); (J.Y.K.L.)
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19014, USA
| | - John Y. K. Lee
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.O.); (J.Y.K.L.)
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Arati Desai
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (M.H.); (S.M.)
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (M.H.); (S.M.)
| |
Collapse
|
8
|
Venneker S, Bovée JVMG. IDH Mutations in Chondrosarcoma: Case Closed or Not? Cancers (Basel) 2023; 15:3603. [PMID: 37509266 PMCID: PMC10377514 DOI: 10.3390/cancers15143603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrosarcomas are malignant cartilage-producing tumours that frequently harbour isocitrate dehydrogenase 1 and -2 (IDH) gene mutations. Several studies have confirmed that these mutations are key players in the early stages of cartilage tumour development, but their role in later stages remains ambiguous. The prognostic value of IDH mutations remains unclear and preclinical studies have not identified effective treatment modalities (in)directly targeting these mutations. In contrast, the IDH mutation status is a prognostic factor in other cancers, and IDH mutant inhibitors as well as therapeutic strategies targeting the underlying vulnerabilities induced by IDH mutations seem effective in these tumour types. This discrepancy in findings might be ascribed to a difference in tumour type, elevated D-2-hydroxyglutarate levels, and the type of in vitro model (endogenous vs. genetically modified) used in preclinical studies. Moreover, recent studies suggest that the (epi)genetic landscape in which the IDH mutation functions is an important factor to consider when investigating potential therapeutic strategies or patient outcomes. These findings imply that the dichotomy between IDH wildtype and mutant is too simplistic and additional subgroups indeed exist within chondrosarcoma. Future studies should focus on the identification, characterisation, and tailoring of treatments towards these biological subgroups within IDH wildtype and mutant chondrosarcoma.
Collapse
Affiliation(s)
- Sanne Venneker
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
9
|
Wu T, Liu C, Thamizhchelvan AM, Fleischer C, Peng X, Liu G, Mao H. Label-Free Chemically and Molecularly Selective Magnetic Resonance Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:121-139. [PMID: 37235188 PMCID: PMC10207347 DOI: 10.1021/cbmi.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 05/28/2023]
Abstract
Biomedical imaging, especially molecular imaging, has been a driving force in scientific discovery, technological innovation, and precision medicine in the past two decades. While substantial advances and discoveries in chemical biology have been made to develop molecular imaging probes and tracers, translating these exogenous agents to clinical application in precision medicine is a major challenge. Among the clinically accepted imaging modalities, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) exemplify the most effective and robust biomedical imaging tools. Both MRI and MRS enable a broad range of chemical, biological and clinical applications from determining molecular structures in biochemical analysis to imaging diagnosis and characterization of many diseases and image-guided interventions. Using chemical, biological, and nuclear magnetic resonance properties of specific endogenous metabolites and native MRI contrast-enhancing biomolecules, label-free molecular and cellular imaging with MRI can be achieved in biomedical research and clinical management of patients with various diseases. This review article outlines the chemical and biological bases of several label-free chemically and molecularly selective MRI and MRS methods that have been applied in imaging biomarker discovery, preclinical investigation, and image-guided clinical management. Examples are provided to demonstrate strategies for using endogenous probes to report the molecular, metabolic, physiological, and functional events and processes in living systems, including patients. Future perspectives on label-free molecular MRI and its challenges as well as potential solutions, including the use of rational design and engineered approaches to develop chemical and biological imaging probes to facilitate or combine with label-free molecular MRI, are discussed.
Collapse
Affiliation(s)
- Tianhe Wu
- Department
of Radiology and Imaging Sciences, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Claire Liu
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
| | - Anbu Mozhi Thamizhchelvan
- Department
of Radiology and Imaging Sciences, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Candace Fleischer
- Department
of Radiology and Imaging Sciences, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xingui Peng
- Jiangsu
Key Laboratory of Molecular and Functional Imaging, Department of
Radiology, Zhongda Hospital, Medical School
of Southeast University, Nanjing, Jiangsu 210009, China
| | - Guanshu Liu
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
- Russell
H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hui Mao
- Department
of Radiology and Imaging Sciences, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Sokolov E, Dietrich J, Cole AJ. The complexities underlying epilepsy in people with glioblastoma. Lancet Neurol 2023; 22:505-516. [PMID: 37121239 DOI: 10.1016/s1474-4422(23)00031-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 05/02/2023]
Abstract
Seizures are among the most common clinical signs in people with glioblastoma. Advances over the past 5 years, including new clinical trial data, have increased the understanding of why some individuals with glioblastoma are susceptible to seizures, how seizures manifest clinically, and what implications seizures have for patient management. The pathophysiology of epilepsy in people with glioblastoma relates to a combination of intrinsic epileptogenicity of tumour tissue, alterations in the tumour and peritumoural microenvironment, and the physical and functional disturbance of adjacent brain structures. Successful management of epilepsy in people with glioblastoma remains challenging; factors such as drug-drug interactions between cancer therapies and antiseizure medications, and medication side-effects, can affect seizure outcomes and quality of life. Advances in novel therapies provide some promise for people with glioblastoma; however, the effects of these therapies on seizures are yet to be fully determined. Looking forward, insights into electrical activity as a driver of tumour cell growth and the intrinsic hyperexcitability of tumour tissue might represent useful targets for treatment and disease modification. There is a pressing need for large randomised clinical trials in this field.
Collapse
Affiliation(s)
- Elisaveta Sokolov
- Department of Neurosciences, Cleveland Clinic, London, UK; Department of Neurology and Neurophysiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jorg Dietrich
- Cancer and Neurotoxicity Clinic and Brain Repair Research Program, Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew J Cole
- MGH Epilepsy Service, Division of Clinical Neurophysiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Liu Y, Chou FJ, Lang F, Zhang M, Song H, Zhang W, Davis DL, Briceno NJ, Zhang Y, Cimino PJ, Zaghloul KA, Gilbert MR, Armstrong TS, Yang C. Protein Kinase B (PKB/AKT) Protects IDH-Mutated Glioma from Ferroptosis via Nrf2. Clin Cancer Res 2023; 29:1305-1316. [PMID: 36648507 PMCID: PMC10073324 DOI: 10.1158/1078-0432.ccr-22-3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Mutations of the isocitrate dehydrogenase (IDH) gene are common genetic mutations in human malignancies. Increasing evidence indicates that IDH mutations play critical roles in malignant transformation and progression. However, the therapeutic options for IDH-mutated cancers remain limited. In this study, the investigation of patient cohorts revealed that the PI3K/protein kinase B (AKT) signaling pathways were enhanced in IDH-mutated cancer cells. EXPERIMENTAL DESIGN In this study, we investigated the gene expression profile in IDH-mutated cells using RNA sequencing after the depletion of AKT. Gene set enrichment analysis (GSEA) and pathway enrichment analysis were used to discover altered molecular pathways due to AKT depletion. We further investigated the therapeutic effect of the AKT inhibitor, ipatasertib (Ipa), combined with temozolomide (TMZ) in cell lines and preclinical animal models. RESULTS GSEA and pathway enrichment analysis indicated that the PI3K/AKT pathway significantly correlated with Nrf2-guided gene expression and ferroptosis-related pathways. Mechanistically, AKT suppresses the activity of GSK3β and stabilizes Nrf2. Moreover, inhibition of AKT activity with Ipa synergizes with the genotoxic agent TMZ, leading to overwhelming ferroptotic cell death in IDH-mutated cancer cells. The preclinical animal model confirmed that combining Ipa and TMZ treatment prolonged survival. CONCLUSIONS Our findings highlighted AKT/Nrf2 pathways as a potential synthetic lethality target for IDH-mutated cancers.
Collapse
Affiliation(s)
- Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Fu-Ju Chou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Fengchao Lang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Meili Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Dionne L. Davis
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Nicole J. Briceno
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Yang Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Patrick J. Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Kareem A. Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Terri S. Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, MD, 20892
| |
Collapse
|
12
|
Batsios G, Taglang C, Tran M, Stevers N, Barger C, Gillespie AM, Ronen SM, Costello JF, Viswanath P. Deuterium Metabolic Imaging Reports on TERT Expression and Early Response to Therapy in Cancer. Clin Cancer Res 2022; 28:3526-3536. [PMID: 35679032 PMCID: PMC9378519 DOI: 10.1158/1078-0432.ccr-21-4418] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Telomere maintenance is a hallmark of cancer. Most tumors maintain telomere length via reactivation of telomerase reverse transcriptase (TERT) expression. Identifying clinically translatable imaging biomarkers of TERT can enable noninvasive assessment of tumor proliferation and response to therapy. EXPERIMENTAL DESIGN We used RNAi, doxycycline-inducible expression systems, and pharmacologic inhibitors to mechanistically delineate the association between TERT and metabolism in preclinical patient-derived tumor models. Deuterium magnetic resonance spectroscopy (2H-MRS), which is a novel, translational metabolic imaging modality, was used for imaging TERT in cells and tumor-bearing mice in vivo. RESULTS Our results indicate that TERT expression is associated with elevated NADH in multiple cancers, including glioblastoma, oligodendroglioma, melanoma, neuroblastoma, and hepatocellular carcinoma. Mechanistically, TERT acts via the metabolic regulator FOXO1 to upregulate nicotinamide phosphoribosyl transferase, which is the key enzyme for NAD+ biosynthesis, and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, which converts NAD+ to NADH. Because NADH is essential for pyruvate flux to lactate, we show that 2H-MRS-based assessment of lactate production from [U-2H]-pyruvate reports on TERT expression in preclinical tumor models in vivo, including at clinical field strength (3T). Importantly, [U-2H]-pyruvate reports on early response to therapy in mice bearing orthotopic patient-derived gliomas at early timepoints before radiographic alterations can be visualized by MRI. CONCLUSIONS Elevated NADH is a metabolic consequence of TERT expression in cancer. Importantly, [U-2H]-pyruvate reports on early response to therapy, prior to anatomic alterations, thereby providing clinicians with a novel tool for assessment of tumor burden and treatment response in cancer.
Collapse
Affiliation(s)
- Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Céline Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Meryssa Tran
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Carter Barger
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
13
|
Avsar T, Kose TB, Oksal MD, Turan G, Kilic T. IDH1 mutation activates mTOR signaling pathway, promotes cell proliferation and invasion in glioma cells. Mol Biol Rep 2022; 49:9241-9249. [DOI: 10.1007/s11033-022-07750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
|
14
|
Rallis KS, George AM, Wozniak AM, Bigogno CM, Chow B, Hanrahan JG, Sideris M. Molecular Genetics and Targeted Therapies for Paediatric High-grade Glioma. Cancer Genomics Proteomics 2022; 19:390-414. [PMID: 35732328 PMCID: PMC9247880 DOI: 10.21873/cgp.20328] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Brain tumours are the leading cause of paediatric cancer-associated death worldwide. High-grade glioma (HGG) represents a main cause of paediatric brain tumours and is associated with poor prognosis despite surgical and chemoradiotherapeutic advances. The molecular genetics of paediatric HGG (pHGG) are distinct from those in adults, and therefore, adult clinical trial data cannot be extrapolated to children. Compared to adult HGG, pHGG is characterised by more frequent mutations in PDGFRA, TP53 and recurrent K27M and G34R/V mutations on histone H3. Ongoing trials are investigating novel targeted therapies in pHGG. Promising results have been achieved with BRAF/MEK and PI3K/mTOR inhibitors. Combination of PI3K/mTOR, EGFR, CDK4/6, and HDAC inhibitors are potentially viable options. Inhibitors targeting the UPS proteosome, ADAM10/17, IDO, and XPO1 are more novel and are being investigated in early-phase trials. Despite preclinical and clinical trials holding promise for the discovery of effective pHGG treatments, several issues persist. Inadequate blood-brain barrier penetration, unfavourable pharmacokinetics, dose-limiting toxicities, long-term adverse effects in the developing child, and short-lived duration of response due to relapse and resistance highlight the need for further improvement. Future pHGG management will largely depend on selecting combination therapies which work synergistically based on a sound knowledge of the underlying molecular target pathways. A systematic investigation of multimodal therapy with chemoradiotherapy, surgery, target agents and immunotherapy is paramount. This review provides a comprehensive overview of pHGG focusing on molecular genetics and novel targeted therapies. The diagnostics, genetic discrepancies with adults and their clinical implications, as well as conventional treatment approaches are discussed.
Collapse
Affiliation(s)
- Kathrine S Rallis
- Barts Cancer Institute, Queen Mary University of London, London, U.K.;
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Alan Mathew George
- Liverpool School of Medicine, University of Liverpool, Liverpool, U.K
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - Anna Maria Wozniak
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Carola Maria Bigogno
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Barbara Chow
- UCL Cancer Institute, University College London, London, U.K
- GKT School of Medicine, King's College London, London, U.K
| | | | - Michail Sideris
- Women's Health Research Unit, Queen Mary University of London, London, U.K
| |
Collapse
|
15
|
Abstract
Abstract
Purpose
Gliomas, the most common primary brain tumours, have recently been re-classified incorporating molecular aspects with important clinical, prognostic, and predictive implications. Concurrently, the reprogramming of metabolism, altering intracellular and extracellular metabolites affecting gene expression, differentiation, and the tumour microenvironment, is increasingly being studied, and alterations in metabolic pathways are becoming hallmarks of cancer. Magnetic resonance spectroscopy (MRS) is a complementary, non-invasive technique capable of quantifying multiple metabolites. The aim of this review focuses on the methodology and analysis techniques in proton MRS (1H MRS), including a brief look at X-nuclei MRS, and on its perspectives for diagnostic and prognostic biomarkers in gliomas in both clinical practice and preclinical research.
Methods
PubMed literature research was performed cross-linking the following key words: glioma, MRS, brain, in-vivo, human, animal model, clinical, pre-clinical, techniques, sequences, 1H, X-nuclei, Artificial Intelligence (AI), hyperpolarization.
Results
We selected clinical works (n = 51), preclinical studies (n = 35) and AI MRS application papers (n = 15) published within the last two decades. The methodological papers (n = 62) were taken into account since the technique first description.
Conclusions
Given the development of treatments targeting specific cancer metabolic pathways, MRS could play a key role in allowing non-invasive assessment for patient diagnosis and stratification, predicting and monitoring treatment responses and prognosis. The characterization of gliomas through MRS will benefit of a wide synergy among scientists and clinicians of different specialties within the context of new translational competences. Head coils, MRI hardware and post-processing analysis progress, advances in research, experts’ consensus recommendations and specific professionalizing programs will make the technique increasingly trustworthy, responsive, accessible.
Collapse
|
16
|
Zhang J, Li Y. High-Dimensional Gaussian Graphical Regression Models with Covariates. J Am Stat Assoc 2022; 118:2088-2100. [PMID: 38143787 PMCID: PMC10746132 DOI: 10.1080/01621459.2022.2034632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Though Gaussian graphical models have been widely used in many scientific fields, relatively limited progress has been made to link graph structures to external covariates. We propose a Gaussian graphical regression model, which regresses both the mean and the precision matrix of a Gaussian graphical model on covariates. In the context of co-expression quantitative trait locus (QTL) studies, our method can determine how genetic variants and clinical conditions modulate the subject-level network structures, and recover both the population-level and subject-level gene networks. Our framework encourages sparsity of covariate effects on both the mean and the precision matrix. In particular for the precision matrix, we stipulate simultaneous sparsity, i.e., group sparsity and element-wise sparsity, on effective covariates and their effects on network edges, respectively. We establish variable selection consistency first under the case with known mean parameters and then a more challenging case with unknown means depending on external covariates, and establish in both cases the ℓ2 convergence rates and the selection consistency of the estimated precision parameters. The utility and efficacy of our proposed method is demonstrated through simulation studies and an application to a co-expression QTL study with brain cancer patients.
Collapse
Affiliation(s)
- Jingfei Zhang
- Department of Management Science, University of Miami, Coral Gables, FL 33146
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
17
|
Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T, Ghavami S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int J Mol Sci 2022; 23:ijms23031353. [PMID: 35163279 PMCID: PMC8836096 DOI: 10.3390/ijms23031353] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a devastating type of brain tumor, and current therapeutic treatments, including surgery, chemotherapy, and radiation, are palliative at best. The design of effective and targeted chemotherapeutic strategies for the treatment of GBM require a thorough analysis of specific signaling pathways to identify those serving as drivers of GBM progression and invasion. The Wnt/β-catenin and PI3K/Akt/mTOR (PAM) signaling pathways are key regulators of important biological functions that include cell proliferation, epithelial–mesenchymal transition (EMT), metabolism, and angiogenesis. Targeting specific regulatory components of the Wnt/β-catenin and PAM pathways has the potential to disrupt critical brain tumor cell functions to achieve critical advancements in alternative GBM treatment strategies to enhance the survival rate of GBM patients. In this review, we emphasize the importance of the Wnt/β-catenin and PAM pathways for GBM invasion into brain tissue and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Brain Cancer Department, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (A.B.B.); (Z.T.)
| | - Zahra Talaie
- Brain Cancer Department, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran; (A.B.B.); (Z.T.)
| | - Fatemeh Jusheghani
- Department of Biotechnology, Asu vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Correspondence:
| |
Collapse
|
18
|
The Bumpy Road towards mTOR Inhibition in Glioblastoma: Quo Vadis? Biomedicines 2021; 9:biomedicines9121809. [PMID: 34944625 PMCID: PMC8698473 DOI: 10.3390/biomedicines9121809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM), a grade IV astrocytoma, is a lethal brain tumor with a poor prognosis. Despite recent advances in the molecular biology of GBM, neuro-oncologists have very limited treatment options available to improve the survival of GBM patients. A prominent signaling pathway implicated in GBM pathogenesis is that of the mechanistic target of rapamycin (mTOR). Attempts to target the mTOR pathway with first-generation mTOR inhibitors appeared promising in the preclinical stage; however, results have been disappointing in clinical trials, owing to the heterogeneous nature of GBM, escape mechanisms against treatment, the blood–brain barrier, drug-related toxicities, and the imperfect design of clinical trials, among others. The development of next-generation mTOR inhibitors and their current evaluation in clinical trials have sparked new hope to realize the clinical potential of mTOR inhibitors in GBM. Meanwhile, studies are continuously furthering our understanding of mTOR signaling dysregulation, its downstream effects, and interplay with other signaling pathways in GBM tumors. Therefore, it remains to be seen whether targeting mTOR in GBM will eventually prove to be fruitful or futile.
Collapse
|
19
|
PI3K Pathway Inhibition with NVP-BEZ235 Hinders Glycolytic Metabolism in Glioblastoma Multiforme Cells. Cells 2021; 10:cells10113065. [PMID: 34831287 PMCID: PMC8616488 DOI: 10.3390/cells10113065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain cancer that lacks effective molecular targeted therapies. The PI3K/AKT/mTOR pathway is activated in 90% of all Glioblastoma multiforme (GBM) tumors. To gain insight into the impact of the PI3K pathway on GBM metabolism, we treated U87MG GBM cells with NVP-BEZ235 (PI3K and mTOR a dual inhibitor) and identified differentially expressed genes with RNA-seq analysis. RNA-seq identified 7803 differentially regulated genes in response to NVP-BEZ235. Gene Set Enrichment Analysis (GSEA) identified two glycolysis-related gene sets that were significantly enriched (p < 0.05) in control samples compared to NVP-BEZ235-treated samples. We validated the inhibition of glycolytic genes by NVP-BEZ235 and examined the impact of the FOXO1 inhibitor (AS1842856) on these genes in a set of GBM cell lines. FOXO1 inhibition alone was associated with reduced LDHA expression, but not ENO1 or PKM2. Bioinformatics analyses revealed that PI3K-impacted glycolytic genes were over-expressed and co-expressed in GBM clinical samples. The elevated expression of PI3K-impacted glycolytic genes was associated with poor prognosis in GBM based on Kaplan-Meier survival analyses. Our results suggest novel insights into hallmark metabolic reprogramming associated with the PI3K-mTOR dual inhibition.
Collapse
|
20
|
Barthel L, Hadamitzky M, Dammann P, Schedlowski M, Sure U, Thakur BK, Hetze S. Glioma: molecular signature and crossroads with tumor microenvironment. Cancer Metastasis Rev 2021; 41:53-75. [PMID: 34687436 PMCID: PMC8924130 DOI: 10.1007/s10555-021-09997-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
In patients with glioblastoma, the average survival time with current treatments is short, mainly due to recurrences and resistance to therapy. This insufficient treatment success is, in large parts, due to the tremendous molecular heterogeneity of gliomas, which affects the overall prognosis and response to therapies and plays a vital role in gliomas’ grading. In addition, the tumor microenvironment is a major player for glioma development and resistance to therapy. Active communication between glioma cells and local or neighboring healthy cells and the immune environment promotes the cancerogenic processes and contributes to establishing glioma stem cells, which drives therapy resistance. Besides genetic alterations in the primary tumor, tumor-released factors, cytokines, proteins, extracellular vesicles, and environmental influences like hypoxia provide tumor cells the ability to evade host tumor surveillance machinery and promote disease progression. Moreover, there is increasing evidence that these players affect the molecular biological properties of gliomas and enable inter-cell communication that supports pro-cancerogenic cell properties. Identifying and characterizing these complex mechanisms are inevitably necessary to adapt therapeutic strategies and to develop novel measures. Here we provide an update about these junctions where constant traffic of biomolecules adds complexity in the management of glioblastoma.
Collapse
Affiliation(s)
- Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany. .,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Cancer Exosome Research Lab, Department of Pediatric Hematology and Oncology, University Hospital Essen, 45147, Essen, Germany
| | - Susann Hetze
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
21
|
Ellingson BM, Wen PY, Cloughesy TF. Therapeutic Response Assessment of High-Grade Gliomas During Early-Phase Drug Development in the Era of Molecular and Immunotherapies. Cancer J 2021; 27:395-403. [PMID: 34570454 PMCID: PMC8480435 DOI: 10.1097/ppo.0000000000000543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Several new therapeutic strategies have emerged over the past decades to address unmet clinical needs in high-grade gliomas, including targeted molecular agents and various forms of immunotherapy. Each of these strategies requires addressing fundamental questions, depending on the stage of drug development, including ensuring drug penetration into the brain, engagement of the drug with the desired target, biologic effects downstream from the target including metabolic and/or physiologic changes, and identifying evidence of clinical activity that could be expanded upon to increase the likelihood of a meaningful survival benefit. The current review article highlights these strategies and outlines how imaging technology can be used for therapeutic response evaluation in both targeted and immunotherapies in early phases of drug development in high-grade gliomas.
Collapse
Affiliation(s)
- Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - Timothy F. Cloughesy
- UCLA Neuro Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
22
|
Mohtashami E, Shafaei-Bajestani N, Mollazadeh H, Mousavi SH, Jalili-Nik M, Sahebkar A, Afshari AR. The Current State of Potential Therapeutic Modalities for Glioblastoma Multiforme: A Clinical Review. Curr Drug Metab 2021; 21:564-578. [PMID: 32664839 DOI: 10.2174/1389200221666200714101038] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
Glioblastoma multiforme (GBM), as the most lethal brain tumor, continues to be incurable. Considering the high mortality rate of GBM, it is crucial to develop new treatment approaches. Conventional therapies, including maximal surgical resection, radiation therapy, and chemotherapy (typically temozolomide), have not led to significant changes in the survival rates of GBM patients. However, emerging modalities, such as the use of tyrosine kinase inhibitors, mTOR inhibitors, NF-κB modulators, nitrosoureas, and immunotherapeutic agents have shown promising in improving GBM outcomes. In this context, we reviewed the current status of GBM treatment, the efficacy of existing standard therapies in improving disease outcomes, and future therapeutic directions.
Collapse
Affiliation(s)
- Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Shafaei-Bajestani
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Hadi Mousavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
23
|
Kayabolen A, Yilmaz E, Bagci-Onder T. IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications? Biomedicines 2021; 9:799. [PMID: 34356864 PMCID: PMC8301439 DOI: 10.3390/biomedicines9070799] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Discovery of point mutations in the genes encoding isocitrate dehydrogenases (IDH) in gliomas about a decade ago has challenged our view of the role of metabolism in tumor progression and provided a new stratification strategy for malignant gliomas. IDH enzymes catalyze the conversion of isocitrate to alpha-ketoglutarate (α-KG), an intermediate in the citric acid cycle. Specific mutations in the genes encoding IDHs cause neomorphic enzymatic activity that produces D-2-hydroxyglutarate (2-HG) and result in the inhibition of α-KG-dependent enzymes such as histone and DNA demethylases. Thus, chromatin structure and gene expression profiles in IDH-mutant gliomas appear to be different from those in IDH-wildtype gliomas. IDH mutations are highly common in lower grade gliomas (LGG) and secondary glioblastomas, and they are among the earliest genetic events driving tumorigenesis. Therefore, inhibition of mutant IDH enzymes in LGGs is widely accepted as an attractive therapeutic strategy. On the other hand, the metabolic consequences derived from IDH mutations lead to selective vulnerabilities within tumor cells, making them more sensitive to several therapeutic interventions. Therefore, instead of shutting down mutant IDH enzymes, exploiting the selective vulnerabilities caused by them might be another attractive and promising strategy. Here, we review therapeutic options and summarize current preclinical and clinical studies on IDH-mutant gliomas.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Ebru Yilmaz
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| |
Collapse
|
24
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
25
|
Zhang Q, Liu XJ, Li Y, Ying XW, Chen L. Prognostic Value of Immune-Related lncRNA SBF2-AS1 in Diffuse Lower-Grade Glioma. Technol Cancer Res Treat 2021; 20:15330338211011966. [PMID: 34159865 PMCID: PMC8226362 DOI: 10.1177/15330338211011966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
LncRNA SET-binding factor 2 (SBF2) antisense RNA1 (SBF2-AS1) has been proven to
play an oncogenic role in various types of tumors, but the prognostic role of
SBF2-AS1 in tumors, especially in diffuse lower-grade glioma (LGG), is still
unclear. Here, we aimed to investigate the prognostic value of SBF2-AS1 in LGG.
The LGG expression profiles from The Cancer Genome Atlas (TCGA,
n = 524) and Chinese Glioma Genome Atlas (CGGA,
n = 431) were mined by Kaplan-Meier analysis, Cox
regression analysis, Chi-square test and GSEA analysis. Through Kaplan-Meier
analysis, we found the prognosis of LGG patients with high expression of
SBF2-AS1 were worse than that of patients with low expression (Log Rank
P < 0.001). Cox analysis showed SBF2-AS1 was an
independent prognostic factor for poorer overall survival in LGG
(P < 0.05). SBF2-AS1 was found to be significantly
related to IDH mutation status and SBF2-AS1 was highly expressed in IDH wildtype
group. GSEA analysis obtained a total of 126 GO terms and 6 KEGG pathways that
were significantly enriched in SBF2-AS1 high expression phenotype (NOM
P value < 0.05). We found these 126 GO terms and KEGG
pathways were mainly related to immunity. In conclusion, lncRNA SBF2-AS1
expression is an immune-related lncRNA associated with unfavorable overall
survival in LGG. SBF2-AS1 could be a reliable prognostic biomarker for patients
with LGG.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical laboratory, The People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Xiao-Jun Liu
- External Liaison Office, The Central Hospital of Lishui City, Lishui, Zhejiang, China
| | - Yang Li
- The Emergency Department, The Central Hospital of Lishui City, Lishui, Zhejiang, China
| | - Xiao-Wei Ying
- Department of Hepatopancreatobiliary Surgery, The People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Lu Chen
- Department of Hepatopancreatobiliary Surgery, The People's Hospital of Lishui, Lishui, Zhejiang, China
| |
Collapse
|
26
|
Di Gregorio E, Miolo G, Saorin A, Steffan A, Corona G. From Metabolism to Genetics and Vice Versa: The Rising Role of Oncometabolites in Cancer Development and Therapy. Int J Mol Sci 2021; 22:5574. [PMID: 34070384 PMCID: PMC8197491 DOI: 10.3390/ijms22115574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last decades, the study of cancer metabolism has returned to the forefront of cancer research and challenged the role of genetics in the understanding of cancer development. One of the major impulses of this new trend came from the discovery of oncometabolites, metabolic intermediates whose abnormal cellular accumulation triggers oncogenic signalling and tumorigenesis. These findings have led to reconsideration and support for the long-forgotten hypothesis of Warburg of altered metabolism as oncogenic driver of cancer and started a novel paradigm whereby mitochondrial metabolites play a pivotal role in malignant transformation. In this review, we describe the evolution of the cancer metabolism research from a historical perspective up to the oncometabolites discovery that spawned the new vision of cancer as a metabolic disease. The oncometabolites' mechanisms of cellular transformation and their contribution to the development of new targeted cancer therapies together with their drawbacks are further reviewed and discussed.
Collapse
Affiliation(s)
- Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| |
Collapse
|
27
|
Batsios G, Taglang C, Cao P, Gillespie AM, Najac C, Subramani E, Wilson DM, Flavell RR, Larson PEZ, Ronen SM, Viswanath P. Imaging 6-Phosphogluconolactonase Activity in Brain Tumors In Vivo Using Hyperpolarized δ-[1- 13C]gluconolactone. Front Oncol 2021; 11:589570. [PMID: 33937017 PMCID: PMC8082394 DOI: 10.3389/fonc.2021.589570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The pentose phosphate pathway (PPP) is essential for NADPH generation and redox homeostasis in cancer, including glioblastomas. However, the precise contribution to redox and tumor proliferation of the second PPP enzyme 6-phosphogluconolactonase (PGLS), which converts 6-phospho-δ-gluconolactone to 6-phosphogluconate (6PG), remains unclear. Furthermore, non-invasive methods of assessing PGLS activity are lacking. The goal of this study was to examine the role of PGLS in glioblastomas and assess the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive imaging. METHODS To interrogate the function of PGLS in redox, PGLS expression was silenced in U87, U251 and GS2 glioblastoma cells by RNA interference and levels of NADPH and reduced glutathione (GSH) measured. Clonogenicity assays were used to assess the effect of PGLS silencing on glioblastoma proliferation. Hyperpolarized δ-[1-13C]gluconolactone metabolism to 6PG was assessed in live cells treated with the chemotherapeutic agent temozolomide (TMZ) or with vehicle control. 13C 2D echo-planar spectroscopic imaging (EPSI) studies of hyperpolarized δ-[1-13C]gluconolactone metabolism were performed on rats bearing orthotopic glioblastoma tumors or tumor-free controls on a 3T spectrometer. Longitudinal 2D EPSI studies of hyperpolarized δ-[1-13C]gluconolactone metabolism and T2-weighted magnetic resonance imaging (MRI) were performed in rats bearing orthotopic U251 tumors following treatment with TMZ to examine the ability of hyperpolarized δ-[1-13C]gluconolactone to report on treatment response. RESULTS PGLS knockdown downregulated NADPH and GSH, elevated oxidative stress and inhibited clonogenicity in all models. Conversely, PGLS expression and activity and steady-state NADPH and GSH were higher in tumor tissues from rats bearing orthotopic glioblastoma xenografts relative to contralateral brain and tumor-free brain. Importantly, [1-13C]6PG production from hyperpolarized δ-[1-13C]gluconolactone was observed in live glioblastoma cells and was significantly reduced by treatment with TMZ. Furthermore, hyperpolarized δ-[1-13C]gluconolactone metabolism to [1-13C]6PG could differentiate tumor from contralateral normal brain in vivo. Notably, TMZ significantly reduced 6PG production from hyperpolarized δ-[1-13C]gluconolactone at an early timepoint prior to volumetric alterations as assessed by anatomical imaging. CONCLUSIONS Collectively, we have, for the first time, identified a role for PGLS activity in glioblastoma proliferation and validated the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive in vivo imaging of glioblastomas and their response to therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| |
Collapse
|
28
|
Radoul M, Hong D, Gillespie AM, Najac C, Viswanath P, Pieper RO, Costello JF, Luchman HA, Ronen SM. Early Noninvasive Metabolic Biomarkers of Mutant IDH Inhibition in Glioma. Metabolites 2021; 11:metabo11020109. [PMID: 33668509 PMCID: PMC7917625 DOI: 10.3390/metabo11020109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Approximately 80% of low-grade glioma (LGGs) harbor mutant isocitrate dehydrogenase 1/2 (IDH1/2) driver mutations leading to accumulation of the oncometabolite 2-hydroxyglutarate (2-HG). Thus, inhibition of mutant IDH is considered a potential therapeutic target. Several mutant IDH inhibitors are currently in clinical trials, including AG-881 and BAY-1436032. However, to date, early detection of response remains a challenge. In this study we used high resolution 1H magnetic resonance spectroscopy (1H-MRS) to identify early noninvasive MR (Magnetic Resonance)-detectable metabolic biomarkers of response to mutant IDH inhibition. In vivo 1H-MRS was performed on mice orthotopically-implanted with either genetically engineered (U87IDHmut) or patient-derived (BT257 and SF10417) mutant IDH1 cells. Treatment with either AG-881 or BAY-1436032 induced a significant reduction in 2-HG. Moreover, both inhibitors led to a significant early and sustained increase in glutamate and the sum of glutamate and glutamine (GLX) in all three models. A transient early increase in N-acetylaspartate (NAA) was also observed. Importantly, all models demonstrated enhanced animal survival following both treatments and the metabolic alterations were observed prior to any detectable differences in tumor volume between control and treated tumors. Our study therefore identifies potential translatable early metabolic biomarkers of drug delivery, mutant IDH inhibition and glioma response to treatment with emerging clinically relevant therapies.
Collapse
Affiliation(s)
- Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
| | - Russell O. Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California, San Francisco, CA 94158, USA; (R.O.P.); (J.F.C.)
- Brain Tumor Research Center, University of California, San Francisco, CA 94158, USA
| | - Joseph F. Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California, San Francisco, CA 94158, USA; (R.O.P.); (J.F.C.)
| | - Hema Artee Luchman
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (M.R.); (D.H.); (A.M.G.); (C.N.); (P.V.)
- Brain Tumor Research Center, University of California, San Francisco, CA 94158, USA
- Correspondence: ; Tel.: +1-415-514-4839
| |
Collapse
|
29
|
Ruiz-Rodado V, Brender JR, Cherukuri MK, Gilbert MR, Larion M. Magnetic resonance spectroscopy for the study of cns malignancies. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:23-41. [PMID: 33632416 PMCID: PMC7910526 DOI: 10.1016/j.pnmrs.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 05/04/2023]
Abstract
Despite intensive research, brain tumors are amongst the malignancies with the worst prognosis; therefore, a prompt diagnosis and thoughtful assessment of the disease is required. The resistance of brain tumors to most forms of conventional therapy has led researchers to explore the underlying biology in search of new vulnerabilities and biomarkers. The unique metabolism of brain tumors represents one potential vulnerability and the basis for a system of classification. Profiling this aberrant metabolism requires a method to accurately measure and report differences in metabolite concentrations. Magnetic resonance-based techniques provide a framework for examining tumor tissue and the evolution of disease. Nuclear Magnetic Resonance (NMR) analysis of biofluids collected from patients suffering from brain cancer can provide biological information about disease status. In particular, urine and plasma can serve to monitor the evolution of disease through the changes observed in the metabolic profiles. Moreover, cerebrospinal fluid can be utilized as a direct reporter of cerebral activity since it carries the chemicals exchanged with the brain tissue and the tumor mass. Metabolic reprogramming has recently been included as one of the hallmarks of cancer. Accordingly, the metabolic rewiring experienced by these tumors to sustain rapid growth and proliferation can also serve as a potential therapeutic target. The combination of 13C tracing approaches with the utilization of different NMR spectral modalities has allowed investigations of the upregulation of glycolysis in the aggressive forms of brain tumors, including glioblastomas, and the discovery of the utilization of acetate as an alternative cellular fuel in brain metastasis and gliomas. One of the major contributions of magnetic resonance to the assessment of brain tumors has been the non-invasive determination of 2-hydroxyglutarate (2HG) in tumors harboring a mutation in isocitrate dehydrogenase 1 (IDH1). The mutational status of this enzyme already serves as a key feature in the clinical classification of brain neoplasia in routine clinical practice and pilot studies have established the use of in vivo magnetic resonance spectroscopy (MRS) for monitoring disease progression and treatment response in IDH mutant gliomas. However, the development of bespoke methods for 2HG detection by MRS has been required, and this has prevented the wider implementation of MRS methodology into the clinic. One of the main challenges for improving the management of the disease is to obtain an accurate insight into the response to treatment, so that the patient can be promptly diverted into a new therapy if resistant or maintained on the original therapy if responsive. The implementation of 13C hyperpolarized magnetic resonance spectroscopic imaging (MRSI) has allowed detection of changes in tumor metabolism associated with a treatment, and as such has been revealed as a remarkable tool for monitoring response to therapeutic strategies. In summary, the application of magnetic resonance-based methodologies to the diagnosis and management of brain tumor patients, in addition to its utilization in the investigation of its tumor-associated metabolic rewiring, is helping to unravel the biological basis of malignancies of the central nervous system.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| | - Jeffery R Brender
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Murali K Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| |
Collapse
|
30
|
Duggan MR, Weaver M, Khalili K. PAM (PIK3/AKT/mTOR) signaling in glia: potential contributions to brain tumors in aging. Aging (Albany NY) 2021; 13:1510-1527. [PMID: 33472174 PMCID: PMC7835031 DOI: 10.18632/aging.202459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Despite a growing proportion of aged individuals at risk for developing cancer in the brain, the prognosis for these conditions remains abnormally poor due to limited knowledge of underlying mechanisms and minimal treatment options. While cancer metabolism in other organs is commonly associated with upregulated glycolysis (i.e. Warburg effect) and hyperactivation of PIK3/AKT/mTOR (PAM) pathways, the unique bioenergetic demands of the central nervous system may interact with these oncogenic processes to promote tumor progression in aging. Specifically, constitutive glycolysis and PIK3/AKT/mTOR signaling in glia may be dysregulated by age-dependent alterations in neurometabolic demands, ultimately contributing to pathological processes otherwise associated with PIK3/AKT/mTOR induction (e.g. cell cycle entry, impaired autophagy, dysregulated inflammation). Although several limitations to this theoretical model exist, the consideration of aberrant PIK3/AKT/mTOR signaling in glia during aging elucidates several therapeutic opportunities for brain tumors, including non-pharmacological interventions.
Collapse
Affiliation(s)
- Michael R. Duggan
- Department of Neuroscience Lewis Katz School of Medicine at Temple University Philadelphia, PA 19140, USA
| | - Michael Weaver
- Department of Neurosurgery Temple University Hospital Philadelphia, PA 19140, USA
| | - Kamel Khalili
- Department of Neuroscience Lewis Katz School of Medicine at Temple University Philadelphia, PA 19140, USA
| |
Collapse
|
31
|
Mehrjardi NZ, Hänggi D, Kahlert UD. Current biomarker-associated procedures of cancer modeling-a reference in the context of IDH1 mutant glioma. Cell Death Dis 2020; 11:998. [PMID: 33221817 PMCID: PMC7680457 DOI: 10.1038/s41419-020-03196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Isocitrate dehydrogenases (IDH1/2) are central molecular markers for glioblastoma. Providing in vitro or in vivo models with mutated IDH1/2 can help prepare facilities to understand the biology of these mutated genes as glioma markers, as well as help, improve therapeutic strategies. In this review, we first summarize the biology principles of IDH and its mutations and outline the core primary findings in the clinical context of neuro-oncology. Given the extensive research interest and exciting developments in current stem cell biology and genome editing, the central part of the manuscript is dedicated to introducing various routes of disease modeling strategies of IDH mutation (IDHMut) glioma and comparing the scientific-technological findings from the field using different engineering methods. Lastly, by giving our perspective on the benefits and limitations of patient-derived and donor-derived disease modeling respectively, we aim to propose leading research questions to be answered in the context of IDH1 and glioma.
Collapse
Affiliation(s)
- Narges Zare Mehrjardi
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Ulf Dietrich Kahlert
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
32
|
Subramani E, Radoul M, Najac C, Batsios G, Molloy AR, Hong D, Gillespie AM, Santos RD, Viswanath P, Costello JF, Pieper RO, Ronen SM. Glutamate Is a Noninvasive Metabolic Biomarker of IDH1-Mutant Glioma Response to Temozolomide Treatment. Cancer Res 2020; 80:5098-5108. [PMID: 32958546 PMCID: PMC7669718 DOI: 10.1158/0008-5472.can-20-1314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023]
Abstract
Although lower grade gliomas are driven by mutations in the isocitrate dehydrogenase 1 (IDH1) gene and are less aggressive than primary glioblastoma, they nonetheless generally recur. IDH1-mutant patients are increasingly being treated with temozolomide, but early detection of response remains a challenge and there is a need for complementary imaging methods to assess response to therapy prior to tumor shrinkage. The goal of this study was to determine the value of magnetic resonance spectroscopy (MRS)-based metabolic changes for detection of response to temozolomide in both genetically engineered and patient-derived mutant IDH1 models. Using 1H MRS in combination with chemometrics identified several metabolic alterations in temozolomide-treated cells, including a significant increase in steady-state glutamate levels. This was confirmed in vivo, where the observed 1H MRS increase in glutamate/glutamine occurred prior to tumor shrinkage. Cells labeled with [1-13C]glucose and [3-13C]glutamine, the principal sources of cellular glutamate, showed that flux to glutamate both from glucose via the tricarboxylic acid cycle and from glutamine were increased following temozolomide treatment. In line with these results, hyperpolarized [5-13C]glutamate produced from [2-13C]pyruvate and hyperpolarized [1-13C]glutamate produced from [1-13C]α-ketoglutarate were significantly higher in temozolomide-treated cells compared with controls. Collectively, our findings identify 1H MRS-detectable elevation of glutamate and hyperpolarized 13C MRS-detectable glutamate production from either pyruvate or α-ketoglutarate as potential translatable metabolic biomarkers of response to temozolomide treatment in mutant IDH1 glioma. SIGNIFICANCE: These findings show that glutamate can be used as a noninvasive, imageable metabolic marker for early assessment of tumor response to temozolomide, with the potential to improve treatment strategies for mutant IDH1 patients.
Collapse
Affiliation(s)
- Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Abigail R Molloy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
33
|
Molloy AR, Najac C, Viswanath P, Lakhani A, Subramani E, Batsios G, Radoul M, Gillespie AM, Pieper RO, Ronen SM. MR-detectable metabolic biomarkers of response to mutant IDH inhibition in low-grade glioma. Theranostics 2020; 10:8757-8770. [PMID: 32754276 PMCID: PMC7392019 DOI: 10.7150/thno.47317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1mut) are reported in 70-90% of low-grade gliomas and secondary glioblastomas. IDH1mut catalyzes the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), an oncometabolite which drives tumorigenesis. Inhibition of IDH1mut is therefore an emerging therapeutic approach, and inhibitors such as AG-120 and AG-881 have shown promising results in phase 1 and 2 clinical studies. However, detection of response to these therapies prior to changes in tumor growth can be challenging. The goal of this study was to identify non-invasive clinically translatable metabolic imaging biomarkers of IDH1mut inhibition that can serve to assess response. Methods: IDH1mut inhibition was confirmed using an enzyme assay and 1H- and 13C- magnetic resonance spectroscopy (MRS) were used to investigate the metabolic effects of AG-120 and AG-881 on two genetically engineered IDH1mut-expressing cell lines, NHAIDH1mut and U87IDH1mut. Results:1H-MRS indicated a significant decrease in steady-state 2-HG following treatment, as expected. This was accompanied by a significant 1H-MRS-detectable increase in glutamate. However, other metabolites previously linked to 2-HG were not altered. 13C-MRS also showed that the steady-state changes in glutamate were associated with a modulation in the flux of glutamine to both glutamate and 2-HG. Finally, hyperpolarized 13C-MRS was used to show that the flux of α-KG to both glutamate and 2-HG was modulated by treatment. Conclusion: In this study, we identified potential 1H- and 13C-MRS-detectable biomarkers of response to IDH1mut inhibition in gliomas. Although further studies are needed to evaluate the utility of these biomarkers in vivo, we expect that in addition to a 1H-MRS-detectable drop in 2-HG, a 1H-MRS-detectable increase in glutamate, as well as a hyperpolarized 13C-MRS-detectable change in [1-13C] α-KG flux, could serve as metabolic imaging biomarkers of response to treatment.
Collapse
Affiliation(s)
- Abigail R Molloy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Aliya Lakhani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
mTOR complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Lett 2020; 478:1-7. [PMID: 32145344 DOI: 10.1016/j.canlet.2020.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is a central hallmark of cancer and is driven by abnormalites of oncogenes and tumor suppressors. This enables tumor cells to obtain the macromolecular precursors and energy needed for rapid tumor growth. Accelerated metabolism also translates into cancer cell aggression through epigenetic changes. The aberrant signaling cascades activated by oncogenes coordinate metabolic reprogramming with epigenetic shifts and subsequent global transcriptional changes through the dysregulation of rate-limiting metabolic enzymes as well as by facilitating the production of intermediary metabolites. As the landscape of cancer cell metabolism has been elucidated, it is now time for this knowledge to be translated into benefit for patients. Here we review the recently identified central regulatory role for mechanistic/mammalian target of rapamycin complex 2 (mTORC2), a downstream effector of many cancer-causing mutations, in reprogramming the metabolic and epigenetic landscape. This leads to tumor cell survival and cancer drug resistance.
Collapse
|
35
|
Xiao K, Liu Q, Peng G, Su J, Qin CY, Wang XY. Identification and validation of a three-gene signature as a candidate prognostic biomarker for lower grade glioma. PeerJ 2020; 8:e8312. [PMID: 31921517 PMCID: PMC6944128 DOI: 10.7717/peerj.8312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background Lower grade glioma (LGG) are a heterogeneous tumor that may develop into high-grade malignant glioma seriously shortens patient survival time. The clinical prognostic biomarker of lower-grade glioma is still lacking. The aim of our study is to explore novel biomarkers for LGG that contribute to distinguish potential malignancy in low-grade glioma, to guide clinical adoption of more rational and effective treatments. Methods The RNA-seq data for LGG was downloaded from UCSC Xena and the Chinese Glioma Genome Atlas (CGGA). By a robust likelihood-based survival model, least absolute shrinkage and selection operator regression and multivariate Cox regression analysis, we developed a three-gene signature and established a risk score to predict the prognosis of patient with LGG. The three-gene signature was an independent survival predictor compared to other clinical parameters. Based on the signature related risk score system, stratified survival analysis was performed in patients with different age group, gender and pathologic grade. The prognostic signature was validated in the CGGA dataset. Finally, weighted gene co-expression network analysis (WGCNA) was carried out to find the co-expression genes related to the member of the signature and enrichment analysis of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were conducted for those co-expression network. To prove the efficiency of the model, time-dependent receiver operating characteristic curves of our model and other models are constructed. Results In this study, a three-gene signature (WEE1, CRTAC1, SEMA4G) was constructed. Based on the model, the risk score of each patient was calculated with LGG (low-risk vs. high-risk, hazard ratio (HR) = 0.198 (95% CI [0.120-0.325])) and patients in the high-risk group had significantly poorer survival results than those in the low-risk group. Furthermore, the model was validated in the CGGA dataset. Lastly, by WGCNA, we constructed the co-expression network of the three genes and conducted the enrichment of GO and KEGG. Our study identified a three-gene model that showed satisfactory performance in predicting the 1-, 3- and 5-year survival of LGG patients compared to other models and may be a promising independent biomarker of LGG.
Collapse
Affiliation(s)
- Kai Xiao
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jun Su
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chao-Ying Qin
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Yu Wang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|
37
|
Magnetic Resonance Spectroscopy for Identification of Isocitrate Dehydrogenase Mutation in Gliomas. World Neurosurg 2019; 134:193-195. [PMID: 31669686 DOI: 10.1016/j.wneu.2019.10.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/22/2022]
|
38
|
de la Cruz López KG, Toledo Guzmán ME, Sánchez EO, García Carrancá A. mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer. Front Oncol 2019; 9:1373. [PMID: 31921637 PMCID: PMC6923780 DOI: 10.3389/fonc.2019.01373] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023] Open
Abstract
Continuous proliferation of tumor cells requires constant adaptations of energy metabolism to rapidly fuel cell growth and division. This energetic adaptation often comprises deregulated glucose uptake and lactate production in the presence of oxygen, a process known as the "Warburg effect." For many years it was thought that the Warburg effect was a result of mitochondrial damage, however, unlike this proposal tumor cell mitochondria maintain their functionality, and is essential for integrating a variety of signals and adapting the metabolic activity of the tumor cell. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of numerous cellular processes implicated in proliferation, metabolism, and cell growth. mTORC1 controls cellular metabolism mainly by regulating the translation and transcription of metabolic genes, such as peroxisome proliferator activated receptor γ coactivator-1 α (PGC-1α), sterol regulatory element-binding protein 1/2 (SREBP1/2), and hypoxia inducible factor-1 α (HIF-1α). Interestingly it has been shown that mTORC1 regulates mitochondrial metabolism, thus representing an important regulator in mitochondrial function. Here we present an overview on the role of mTORC1 in the regulation of mitochondrial functions in cancer, considering new evidences showing that mTORC1 regulates the translation of nucleus-encoded mitochondrial mRNAs that result in an increased ATP mitochondrial production. Moreover, we discuss the relationship between mTORC1 and glutaminolysis, as well as mitochondrial metabolites. In addition, mitochondrial fission processes regulated by mTORC1 and its impact on cancer are discussed. Finally, we also review the therapeutic efficacy of mTORC1 inhibitors in cancer treatments, considering its use in combination with other drugs, with particular focus on cellular metabolism inhibitors, that could help improve their anti neoplastic effect and eliminate cancer cells in patients.
Collapse
Affiliation(s)
- Karen Griselda de la Cruz López
- Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Alejandro García Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- *Correspondence: Alejandro García Carrancá
| |
Collapse
|