1
|
Sandoval-Castellanos AM, Ke Y, Dam TM, Maverakis E, Mannis MJ, Wang XJ, Zhao M. A Practical and Safe Model of Nitrogen Mustard Injury in Cornea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619116. [PMID: 39484372 PMCID: PMC11527019 DOI: 10.1101/2024.10.18.619116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Purpose Sulfur mustard (SM) is an alkylating agent used in warfare and terrorism that inflicts devastating ocular injuries. Although the clinical symptoms are well described, the underlying mechanisms are not fully understood, hindering the development of effective treatments. One major roadblock is the lack of a suitable model due to the extremely hazardous nature of SM, which requires strict safety measures. As a safe and practical alternative, we report a novel model that uses mechlorethamine (nitrogen mustard) gel, an FDA-approved topical chemotherapeutic administered by patients at home. Here we demonstrate its suitability to induce mustard corneal injury in any laboratory. Methods Ex vivo porcine corneas were injured with mechlorethamine gel. Hematoxylineosin staining, and immunohistochemistry were performed to evaluate histopathology of SM-like corneal injuries: epithelium thickness and stromal separation, keratocyte and inflammatory cell counts, and expression of inflammation and fibrosis markers. Results This model showed the characteristic histopathology and expression of cyclooxygenase-2 (inflammation) and fibronectin-1 (fibrosis), which were consistent with other well-established SM-like corneal injury models. Conclusion Given its ease of implementation and safety, this mechlorethamine model could be used to study the full course of mustard corneal injuries. This model would greatly facilitate mustard injury research, shedding light on new knowledge that would increase our understanding of mustard ocular injuries while investigating novel therapeutics. Translational relevance this model will allow safe evaluation of SM-like corneal injuries within 24 hours, facilitating the identification of early/new molecules that might help to develop novel treatments which could be readily translated into the clinic.
Collapse
Affiliation(s)
- Ana M. Sandoval-Castellanos
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California, 95616, USA
| | - Yao Ke
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, California, 95616, USA
| | - Tiffany M. Dam
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California, 95616, USA
| | - Emanual Maverakis
- Department of Dermatology, Institute for Regenerative Cures, School of Medicine, University of California, Davis, California, 95817, USA
| | - Mark J. Mannis
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California, 95616, USA
| | - Xiao-Jing Wang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, California, 95616, USA
| | - Min Zhao
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, California, 95616, USA
- Department of Dermatology, Institute for Regenerative Cures, School of Medicine, University of California, Davis, California, 95817, USA
| |
Collapse
|
2
|
Materozzi M, Resnati M, Facchi C, Trudu M, Orfanelli U, Perini T, Gennari L, Milan E, Cenci S. A novel proteomic signature of osteoclast differentiation unveils the deubiquitinase UCHL1 as a necessary osteoclastogenic driver. Sci Rep 2024; 14:7290. [PMID: 38538704 PMCID: PMC10973525 DOI: 10.1038/s41598-024-57898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Bone destruction, a major source of morbidity, is mediated by heightened differentiation and activity of osteoclasts (OC), highly specialized multinucleated myeloid cells endowed with unique bone-resorptive capacity. The molecular mechanisms regulating OC differentiation in the bone marrow are still partly elusive. Here, we aimed to identify new regulatory circuits and actionable targets by comprehensive proteomic characterization of OCgenesis from mouse bone marrow monocytes, adopting two parallel unbiased comparative proteomic approaches. This work disclosed an unanticipated protein signature of OCgenesis, with most gene products currently unannotated in bone-related functions, revealing broad structural and functional cellular reorganization and divergence from macrophagic immune activity. Moreover, we identified the deubiquitinase UCHL1 as the most upregulated cytosolic protein in differentiating OCs. Functional studies proved it essential, as UCHL1 genetic and pharmacologic inhibition potently suppressed OCgenesis. Furthermore, proteomics and mechanistic dissection showed that UCHL1 supports OC differentiation by restricting the anti-OCgenic activity of NRF2, the transcriptional activator of the canonical antioxidant response, through redox-independent stabilization of the NRF2 inhibitor, KEAP1. Besides offering a valuable experimental framework to dissect OC differentiation, our study discloses the essential role of UCHL1, exerted through KEAP1-dependent containment of NRF2 anti-OCgenic activity, yielding a novel potential actionable pathway against bone loss.
Collapse
Affiliation(s)
- Maria Materozzi
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| | - Massimo Resnati
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cecilia Facchi
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Matteo Trudu
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Ugo Orfanelli
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tommaso Perini
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Enrico Milan
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| | - Simone Cenci
- Age Related Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
3
|
Yan X, Liu H, Huang M, Zhang Y, Zeng B. Integrative proteomics and metabolomics explore the effect and mechanism of Qiyin granules on improving nonalcoholic fatty liver disease. Heliyon 2024; 10:e27075. [PMID: 38444462 PMCID: PMC10912341 DOI: 10.1016/j.heliyon.2024.e27075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a prominent global health concern, representing a substantial burden within the spectrum of chronic liver diseases. Despite its escalating prevalence, a definitive therapeutic strategy or efficacious pharmacological intervention for NAFLD has yet to receive official approval to date. While Fu Fang Qiyin granules have exhibited efficacy in addressing NAFLD, the intricacies of their underlying mechanism of action remain inadequately elucidated. In this study, we substantiated the ameliorative impact of Qiyin on highfat diet (HFD)induced NAFLD in rat models. The results of metabonomics showed that 108 potential biomarkers in serum and urine related to amino acid metabolism, energy metabolism, and pyrimidine metabolism, have returned to normal levels compared to the model group. Hepatic transcriptomics further indicated that Qiyin potentially confers protective effects against NAFLD by mediating liver inflammation and fibrosis through lumican (LUM) and decorin (DCN). In summation, our investigation provides compelling evidence affirming the therapeutic promise of Qiyin for NAFLD. It elucidates the underlying mechanistic pathways, furnishing a compelling rationale for its prospective clinical application.
Collapse
Affiliation(s)
- Xuehua Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| | - Yujie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Binfang Zeng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, 830017, People's Republic of China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Urumqi, Xinjiang, 830017, People's Republic of China
| |
Collapse
|
4
|
Verma S, Ogata FT, Moreno IY, Prinholato da Silva C, Marforio TD, Calvaresi M, Sen M, Coulson-Thomas VJ, Gesteira TF. Rational design and synthesis of lumican stapled peptides for promoting corneal wound healing. Ocul Surf 2023; 30:168-178. [PMID: 37742739 PMCID: PMC11092926 DOI: 10.1016/j.jtos.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Lumican is a major extracellular matrix (ECM) component in the cornea that is upregulated after injury and promotes corneal wound healing. We have recently shown that peptides designed based on the 13 C-terminal amino acids of lumican (LumC13 and LumC13C-A) are able to recapitulate the effects of lumican on promoting corneal wound healing. Herein we used computational chemistry to develop peptide mimetics derived from LumC13C-A with increased stability and half-life that are biologically active and non-toxic, thereby promoting corneal wound healing with increased pharmacological potential. METHODS Different peptides staples were rationalized using LumC13C-A sequence by computational chemistry, docked to TGFβRI and the interface binding energies compared. Lowest scoring peptides were synthesized, and the toxicity of peptides tested using CCK8-based cell viability assay. The efficacy of the stapled peptides at promoting corneal wound healing was tested using a proliferation assay, an in vitro scratch assay using human corneal epithelial cells and an in vivo murine corneal debridement wound healing model. RESULTS Binding free energies were calculated using MMGBSA algorithm, and peptides LumC13C and LumC13S5 displayed superior binding to ALK5 compared to the non-stapled peptide LumC13C-A. The presence of the hydrocarbon staple in LumC13C enhances the stability of the α-helical conformation, thereby facilitating more optimal interactions with the ALK5 receptor. The stapled peptides do not present cytotoxic effects on human corneal epithelial cells at a 300 nM concentration. Similar to lumican and LumC13C-A, both C13C and LumC13S5 significantly promote corneal wound healing both in vitro and in vivo. CONCLUSIONS Highly stable and non-toxic stapled peptides designed based on LumC13, significantly promote corneal wound healing. As a proof of principle, our data shows that more stable and pharmacologically relevant peptides can be designed based on endogenous peptide sequences for treating various corneal pathologies.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, Houston, TX, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | | | - Isabel Y Moreno
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Tainah Dorina Marforio
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Italy
| | - Matteo Calvaresi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Italy
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | | |
Collapse
|
5
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Sumioka T, Matsumoto KI, Reinach PS, Saika S. Tenascins and osteopontin in biological response in cornea. Ocul Surf 2023; 29:131-149. [PMID: 37209968 DOI: 10.1016/j.jtos.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The structural composition, integrity and regular curvature of the cornea contribute to the maintenance of its transparency and vision. Disruption of its integrity caused by injury results in scarring, inflammation and neovascularization followed by losses in transparency. These sight compromising effects is caused by dysfunctional corneal resident cell responses induced by the wound healing process. Upregulation of growth factors/cytokines and neuropeptides affect development of aberrant behavior. These factors trigger keratocytes to first transform into activated fibroblasts and then to myofibroblasts. Myofibroblasts express extracellular matrix components for tissue repair and contract the tissue to facilitate wound closure. Proper remodeling following primary repair is critical for restoration of transparency and visual function. Extracellular matrix components contributing to the healing process are divided into two groups; a group of classical tissue structural components and matrix macromolecules that modulate cell behaviors/activities besides being integrated into the matrix structure. The latter components are designated as matricellular proteins. Their functionality is elicited through mechanisms which modulate the scaffold integrity, cell behaviors, activation/inactivation of either growth factors or cytoplasmic signaling regulation. We discuss here the functional roles of matricellular proteins in mediating injury-induced corneal tissue repair. The roles are described of major matricellular proteins, which include tenascin C, tenascin X and osteopontin. Focus is directed towards dealing with their roles in modulating individual activities of wound healing-related growth factors, e. g., transforming growth factor β (TGF β). Modulation of matricellular protein functions could encompass a potential novel strategy to improve the outcome of injury-induced corneal wound healing.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Peter Sol Reinach
- Department of Biological. Sciences SUNY Optometry, New York, NY, 10036, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan
| |
Collapse
|
7
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
8
|
Joseph LB, Gordon MK, Zhou P, Hahn RA, Lababidi H, Croutch CR, Sinko PJ, Heck DE, Laskin DL, Laskin JD. Sulfur mustard corneal injury is associated with alterations in the epithelial basement membrane and stromal extracellular matrix. Exp Mol Pathol 2022; 128:104807. [PMID: 35798063 PMCID: PMC10044521 DOI: 10.1016/j.yexmp.2022.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
Abstract
Sulfur mustard (SM; bis(2-chloroethyl) sulfide) is a highly reactive bifunctional alkylating agent synthesized for chemical warfare. The eyes are particularly sensitive to SM where it causes irritation, pain, photophobia, and blepharitis, depending on the dose and duration of exposure. In these studies, we examined the effects of SM vapor on the corneas of New Zealand white male rabbits. Edema and hazing of the cornea, signs of acute injury, were observed within one day of exposure to SM, followed by neovascularization, a sign of chronic or late phase pathology, which persisted for at least 28 days. Significant epithelial-stromal separation ranging from ~8-17% of the epithelial surface was observed. In the stroma, there was a marked increase in CD45+ leukocytes and a decrease of keratocytes, along with areas of disorganization of collagen fibers. SM also disrupted the corneal basement membrane and altered the expression of perlecan, a heparan sulfate proteoglycan, and cellular fibronectin, an extracellular matrix glycoprotein. This was associated with an increase in basement membrane matrix metalloproteinases including ADAM17, which is important in remodeling of the basement membrane during wound healing. Tenascin-C, an extracellular matrix glycoprotein, was also upregulated in the stroma 14-28 d post SM, a finding consistent with its role in organizing structural components of the stroma necessary for corneal transparency. These data demonstrate that SM vapor causes persistent alterations in structural components of the cornea. Further characterization of SM-induced injury in rabbit cornea will be useful for the identification of targets for the development of ocular countermeasures.
Collapse
Affiliation(s)
- Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America.
| | - Marion K Gordon
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Rita A Hahn
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Hamdi Lababidi
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | | | - Patrick J Sinko
- Department of Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Diane E Heck
- Department of Public Health, New York Medical College, Valhalla, NY 10595, United States of America
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, United States of America
| |
Collapse
|
9
|
S1PR1 serves as a viable drug target against pulmonary fibrosis by increasing the integrity of the endothelial barrier of the lung. Acta Pharm Sin B 2022; 13:1110-1127. [PMID: 36970190 PMCID: PMC10031262 DOI: 10.1016/j.apsb.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with unclear etiology and limited treatment options. The median survival time for IPF patients is approximately 2-3 years and there is no effective intervention to treat IPF other than lung transplantation. As important components of lung tissue, endothelial cells (ECs) are associated with pulmonary diseases. However, the role of endothelial dysfunction in pulmonary fibrosis (PF) is incompletely understood. Sphingosine-1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor highly expressed in lung ECs. Its expression is markedly reduced in patients with IPF. Herein, we generated an endothelial-conditional S1pr1 knockout mouse model which exhibited inflammation and fibrosis with or without bleomycin (BLM) challenge. Selective activation of S1PR1 with an S1PR1 agonist, IMMH002, exerted a potent therapeutic effect in mice with bleomycin-induced fibrosis by protecting the integrity of the endothelial barrier. These results suggest that S1PR1 might be a promising drug target for IPF therapy.
Collapse
|
10
|
Shen T, Wu Y, Cai W, Jin H, Yu D, Yang Q, Zhu W, Yu J. LncRNA Meg3 knockdown reduces corneal neovascularization and VEGF-induced vascular endothelial angiogenesis via SDF-1/CXCR4 and Smad2/3 pathway. Exp Eye Res 2022; 222:109166. [PMID: 35820465 DOI: 10.1016/j.exer.2022.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
The crucial effect of vascular endothelial growth factor (VEGF)-induced vascular angiogenesis has been well known in corneal neovascularization (CNV). This research aimed to determine the underlying value and mechanism of Meg3 on CNV in vivo and in vitro. In an alkali-burned mouse model, length and area of new vessels were increased along with thinning of corneal epithelium, accompanied by the overexpression of Meg3. Notably, subconjunctival injection of shMeg3 suppressed the degree of injury in cornea, causing expression of the angiogenesis markers--VEGF-A and CD31 decreased. In VEGF-induced human umbilical vein endothelial cells (HUVECs), knockdown of Meg3 antagonized the enhancement of viability, proliferation, wound healing ability and angiogenesis by VEGF. The proteins expression of VEGF-A, CD31, SDF-1/CXCR4 as well as phosphoraylation-Smad2/3 pathways, which were related to angiogenesis, were reduced with Meg3 deficiency. Overall, knockdown of Meg3 alleviated formation of neovascularization in alkali-burned corneas and reduced VEGF-induced angiogenesis by inhibiting SDF-1/CXCR4 and Smad2/3 signaling in vitro.
Collapse
Affiliation(s)
- Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Qian Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China; Anhui Medical University, Hefei, China
| | - Wei Zhu
- Department of Ophthalmology, Changshu NO. 2 People's Hospital, Changshu, China.
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China; Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China.
| |
Collapse
|
11
|
Compagnoni C, Zelli V, Bianchi A, Di Marco A, Capelli R, Vecchiotti D, Brandolini L, Cimini AM, Zazzeroni F, Allegretti M, Alesse E, Tessitore A. MicroRNAs Expression in Response to rhNGF in Epithelial Corneal Cells: Focus on Neurotrophin Signaling Pathway. Int J Mol Sci 2022; 23:ijms23073597. [PMID: 35408969 PMCID: PMC8998691 DOI: 10.3390/ijms23073597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Nerve growth factor efficacy was demonstrated for corneal lesions treatment, and recombinant human NGF (rhNGF) was approved for neurotrophic keratitis therapy. However, NGF-induced molecular responses in cornea are still largely unknown. We analyzed microRNAs expression in human epithelial corneal cells after time-dependent rhNGF treatment. METHODS Nearly 700 microRNAs were analyzed by qRT-PCR. MicroRNAs showing significant expression differences were examined by DIANA-miRpath v.3.0 to identify target genes and pathways. Immunoblots were performed to preliminarily assess the strength of the in silico results. RESULTS Twenty-one microRNAs (miR-26a-1-3p, miR-30d-3p, miR-27b-5p, miR-146a-5p, miR-362-5p, mir-550a-5p, mir-34a-3p, mir-1227-3p, mir-27a-5p, mir-222-5p, mir-151a-5p, miR-449a, let7c-5p, miR-337-5p, mir-29b-3p, miR-200b-3p, miR-141-3p, miR-671-3p, miR-324-5p, mir-411-3p, and mir-425-3p) were significantly regulated in response to rhNGF. In silico analysis evidenced interesting target genes and pathways, including that of neurotrophin, when analyzed in depth. Almost 80 unique target genes (e.g., PI3K, AKT, MAPK, KRAS, BRAF, RhoA, Cdc42, Rac1, Bax, Bcl2, FasL) were identified as being among those most involved in neurotrophin signaling and in controlling cell proliferation, growth, and apoptosis. AKT and RhoA immunoblots demonstrated congruence with microRNA expression, providing preliminary validation of in silico data. CONCLUSIONS MicroRNA levels in response to rhNGF were for the first time analyzed in corneal cells. Novel insights about microRNAs, target genes, pathways modulation, and possible biological responses were provided. Importantly, given the putative role of microRNAs as biomarkers or therapeutic targets, our results make available data which might be potentially exploitable for clinical applications.
Collapse
Affiliation(s)
- Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Andrea Bianchi
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.B.); (A.D.M.)
| | - Antinisca Di Marco
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.B.); (A.D.M.)
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Laura Brandolini
- Dompé Farmaceutici Spa, via Campo di Pile, 1, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Anna Maria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, P.zza S. Tommasi, 67100 L’Aquila, Italy;
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Marcello Allegretti
- Dompé Farmaceutici Spa, via Campo di Pile, 1, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (C.C.); (V.Z.); (R.C.); (D.V.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-086-243-3518; Fax: +39-0862433131
| |
Collapse
|
12
|
Khoshdel AR, Emami Aleagha O, Shahriary A, Aghamollaei H, Najjar Asiabani F. Topical Effects of N-Acetyl Cysteine and Doxycycline on Inflammatory and Angiogenic Factors in the Rat Model of Alkali-Burned Cornea. J Interferon Cytokine Res 2022; 42:82-89. [PMID: 35029525 DOI: 10.1089/jir.2021.0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to analyze the single and combined effects of N-acetyl cysteine (NAC) and doxycycline (Dox) on the inflammatory and angiogenic factors in the rat model of alkali-burned cornea. Rats were treated with a single and combined 0.5% NAC and 12.5 μg/mL Dox eye drops and evaluated on days 3, 7, and 28. In the corneas of various groups, the activity of Catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) enzymes was assessed. The expression of inflammatory factors (TNF-α, Rel-a, and CXCL-1) and angiogenic factors (VEGF-a, MMP2, and MMP9) was measured using real-time polymerase chain reaction. The antioxidant enzyme activities decreased substantially 3 days after injury with sodium hydroxide (NaOH). NAC and combined NAC+ Dox topical treatments increased the SOD enzyme activity on day 28 (P < 0.05). The expression of TNF-α and Rel-a genes following single and combined treatment of NAC and Dox decreased significantly on days 7 and 28 (P < 0.05). The mRNA level of angiogenic factors and corneal neovascularization (CNV) level declined in NaOH-injured rats treated with Dox (P < 0.05). The topical treatment of Dox could attenuate inflammation and CNV complications. However, NAC treatment may not reduce the expression of angiogenic genes.
Collapse
Affiliation(s)
- Ali Reza Khoshdel
- Modern Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Omid Emami Aleagha
- Modern Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
13
|
Kim M, Hur S, Kim KH, Cho Y, Kim K, Kim HR, Nam KT, Lim KM. A New Murine Liver Fibrosis Model Induced by Polyhexamethylene Guanidine-Phosphate. Biomol Ther (Seoul) 2021; 30:126-136. [PMID: 34580237 PMCID: PMC8902451 DOI: 10.4062/biomolther.2021.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/05/2022] Open
Abstract
Liver fibrosis is part of the wound healing process to help the liver recover from the injuries caused by various liver-damaging insults. However, liver fibrosis often progresses to life-threatening cirrhosis and hepatocellular carcinoma. To overcome the limitations of current in vivo liver fibrosis models for studying the pathophysiology of liver fibrosis and establishing effective treatment strategies, we developed a new mouse model of liver fibrosis using polyhexamethylene guanidine phosphate (PHMG-p), a humidifier sterilizer known to induce lung fibrosis in humans. Male C57/BL6 mice were intraperitoneally injected with PHMG-p (0.03% and 0.1%) twice a week for 5 weeks. Subsequently, liver tissues were examined histologically and RNA-sequencing was performed to evaluate the expression of key genes and pathways affected by PHMG-p. PHMG-p injection resulted in body weight loss of ~15% and worsening of physical condition. Necropsy revealed diffuse fibrotic lesions in the liver with no effect on the lungs. Histology, collagen staining, immunohistochemistry for smooth muscle actin and collagen, and polymerase chain reaction analysis of fibrotic genes revealed that PHMG-p induced liver fibrosis in the peri-central, peri-portal, and capsule regions. RNA-sequencing revealed that PHMG-p affected several pathways associated with human liver fibrosis, especially with upregulation of lumican and IRAK3, and downregulation of GSTp1 and GSTp2, which are closely involved in liver fibrosis pathogenesis. Collectively we demonstrated that the PHMG-p-induced liver fibrosis model can be employed to study human liver fibrosis.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sumin Hur
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Keunyoung Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Daegu 38430, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
14
|
Sabzevare M, Yazdani F, Karami A, Haddadi M, Aghamollaei H, Shahriary A. The effect of N-acetyl cysteine and doxycycline on TNF-α-Rel-a inflammatory pathway and downstream angiogenesis factors in the cornea of rats injured by 2-chloroethyl-ethyl sulfide. Immunopharmacol Immunotoxicol 2021; 43:452-460. [PMID: 34167418 DOI: 10.1080/08923973.2021.1939370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cornea injury of sulfur mustard (SM) is considered as the most devastating injuries to the eye. This study aimed to evaluate the single and combined effects of N-acetyl cysteine (NAC) and doxycycline on the inflammatory pathway and cornea neovascularization (CNV) in the rat model of SM-injured cornea. MATERIALS AND METHODS The right cornea of male Sprague-Dawley rats was subjected to 2-chloroethyl-ethyl sulfide (CEES). Rats were topically treated with a single and combined of 0.5% NAC and 12.5 μg/ml doxycycline and examined at 3rd, 15th, and 21st days. The activity of three antioxidant enzymes was analyzed in the cornea of different groups. Real-time PCR was performed to measure gene expression of inflammatory factors (tnf-α, rel-a & cxcl-1) and angiogenesis factors (vegf-a, mmp2,9) in the cornea lysates. The histological and opacity assessments were also carried out. RESULTS The activity of antioxidant enzymes significantly declined 3 days after the CEES damage. NAC eye drop recovered the enzyme activity on the 21st day of treatment (p-value < .05). The expression of tnf-α and rel-a genes significantly increased after CEES cornea exposure, while NAC declined their expression on the 7th and 21st days. The CNV score and angiogenesis factor expression were decreased in the long term by single and combined treatments (p-value < .05), but the infiltration of inflammatory cells was not completely amended. CONCLUSION NAC and doxycycline eye drop could improve the CNV complication. Also, NAC was an effective treatment against the inflammatory pathway involved in CEES-injured cornea.
Collapse
Affiliation(s)
- Melad Sabzevare
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farshad Yazdani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Karami
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohaddese Haddadi
- Department of Biology, Islamic Azad University of Branch Parand, Student of M.S of Molecular Genetics, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
An intact complement system dampens cornea inflammation during acute primary HSV-1 infection. Sci Rep 2021; 11:10247. [PMID: 33986436 PMCID: PMC8119410 DOI: 10.1038/s41598-021-89818-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Corneal transparency is an essential characteristic necessary for normal vision. In response to microbial infection, the integrity of the cornea can become compromised as a result of the inflammatory response and the ensuing tissue pathology including neovascularization (NV) and collagen lamellae destruction. We have previously found complement activation contributes to cornea pathology-specifically, denervation in response to HSV-1 infection. Therefore, we investigated whether the complement system also played a role in HSV-1-mediated neovascularization. Using wild type (WT) and complement component 3 deficient (C3 KO) mice infected with HSV-1, we found corneal NV was accelerated associated with an increase in inflammatory monocytes (CD11b+CCR2+CD115+/-Ly6G-Ly6Chigh), macrophages (CD11b+CCR2+CD115+Ly6G-Ly6Chigh) and a subpopulation of granulocytes/neutrophils (CD11b+CCR2-CD115+Ly6G+Ly6Clow). There were also increases in select pro-inflammatory and pro-angiogenic factors including IL-1α, matrix metalloproteinases (MMP)-2, MMP-3, MMP-8, CXCL1, CCL2, and VEGF-A that coincided with increased inflammation, neovascularization, and corneal opacity in the C3 KO mice. The difference in inflammation between WT and C3 KO mice was not driven by changes in virus titer. However, viral antigen clearance was hindered in C3 KO mouse corneas suggesting the complement system has a dynamic regulatory role within the cornea once an inflammatory cascade is initiated by HSV-1.
Collapse
|
16
|
The Interaction of the Tumor Suppressor FAM46C with p62 and FNDC3 Proteins Integrates Protein and Secretory Homeostasis. Cell Rep 2021; 32:108162. [PMID: 32966780 DOI: 10.1016/j.celrep.2020.108162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
FAM46C is a non-canonical poly(A) polymerase uniquely mutated in up to 20% of multiple myeloma (MM) patients, implying a tissue-specific tumor suppressor function. Here, we report that FAM46C selectively stabilizes mRNAs encoding endoplasmic reticulum (ER)-targeted proteins, thereby concertedly enhancing the expression of proteins that control ER protein import, folding, N-glycosylation, and trafficking and boosting protein secretion. This role requires the interaction with the ER membrane resident proteins FNDC3A and FNDC3B. In MM cells, FAM46C expression raises secretory capacity beyond sustainability, inducing ROS accumulation, ATP shortage, and cell death. FAM46C activity is regulated through rapid proteasomal degradation or the inhibitory interaction with the ZZ domain of the autophagic receptor p62 that hinders its association with FNDC3 proteins via sequestration in p62+ aggregates. Altogether, our data disclose a p62/FAM46C/FNDC3 circuit coordinating sustainable secretory activity and survival, providing an explanation for the MM-specific oncosuppressive role of FAM46C and uncovering potential therapeutic opportunities against cancer.
Collapse
|
17
|
Shahriary A, Sabzevari M, Jadidi K, Yazdani F, Aghamollaei H. The Role of Inflammatory Cytokines in Neovascularization of Chemical Ocular Injury. Ocul Immunol Inflamm 2021; 30:1149-1161. [PMID: 33734925 DOI: 10.1080/09273948.2020.1870148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aim: Chemical injuries can potentially lead to the necrosis anterior segment of the eye, and cornea in particular. Inflammatory cytokines are the first factors produced after chemical ocular injuries. Inflammation via promoting the angiogenesis factor tries to implement the wound healing mechanism in the epithelial and stromal layer of the cornea. Methods: Narrative review.Results: In our review, we described the patterns of chemical injuries in the cornea and their molecular mechanisms associated with the expression of inflammatory cytokines. Moreover, the effects of inflammation signals on angiogenesis factors and CNV were explained. Conclusion: The contribution of inflammation and angiogenesis causes de novo formation of blood vessels that is known as the corneal neovascularization (CNV). The new vascularity interrupts cornea clarity and visual acuity. Inflammation also depleted the Limbal stem cells (LSCs) in the limbus causing the failure of normal corneal epithelial healing and conjunctivalization of the cornea.
Collapse
Affiliation(s)
- Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Milad Sabzevari
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Farshad Yazdani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
19
|
Chang Y, He J, Xiang X, Li H. LUM is the hub gene of advanced fibrosis in nonalcoholic fatty liver disease patients. Clin Res Hepatol Gastroenterol 2021; 45:101435. [PMID: 32386798 DOI: 10.1016/j.clinre.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) is associated with a poor prognosis. The genetic factors contributing to fibrosis in NAFLD have been described. However, the genetic mechanism and hub genes of advanced fibrosis have not been elucidated to date. In this study, we performed a weighted gene coexpression network analysis (WGCNA) to identify the hub genes related to advanced fibrosis in NAFLD. MATERIALS AND METHODS The datasets GSE89632 and GSE31803 of NAFLD patients were selected from the Gene Expression Omnibus (GEO) database of NCBI and analyzed by WGCNA. The hub genes were selected in the GSE31803 dataset and verified in the GSE31803 dataset. Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the dataset were also performed. RESULTS The gene LUM was identified as the hub gene in the datasets GSE89632 and GSE31803 according to three different algorithms (gene significance and module membership, the pathways of the genes, and protein expressed by the genes). The functional enrichment analysis shows that the identified module is related to the extracellular matrix, regulation of cell proliferation, and the inflammatory response. The metabolic pathway analysis identified metabolic pathways and focal adhesion as the most important pathways. CONCLUSION By a variety of methods, LUM was identified as the hub gene of advanced fibrosis in patients with NAFLD. Therefore, further research on the LUM gene is warranted.
Collapse
Affiliation(s)
- Yue Chang
- Graduate School, Logistics University of People's Armed Ploce Force, 300162 Tianjin, China; Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, No. 403 Xiqing Road, Xiqing District, 300380 Tianjin, China
| | - Jiange He
- Graduate School, Logistics University of People's Armed Ploce Force, 300162 Tianjin, China
| | - Xiaohui Xiang
- Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, No. 403 Xiqing Road, Xiqing District, 300380 Tianjin, China
| | - Hai Li
- Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, No. 403 Xiqing Road, Xiqing District, 300380 Tianjin, China.
| |
Collapse
|
20
|
Urwin L, Okurowska K, Crowther G, Roy S, Garg P, Karunakaran E, MacNeil S, Partridge LJ, Green LR, Monk PN. Corneal Infection Models: Tools to Investigate the Role of Biofilms in Bacterial Keratitis. Cells 2020; 9:E2450. [PMID: 33182687 PMCID: PMC7696224 DOI: 10.3390/cells9112450] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host immune response. Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a highly multifactorial and rapidly expanding field that warrants further research. Progression in this field is dependent on the development of suitable biofilm models that acknowledge the complexity of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on non-living surfaces) currently dominate the literature, but co-culture infection models are beginning to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use a variety of different experimental techniques and animal models. In this review, we will discuss existing corneal infection models and their application in the study of biofilms and host-pathogen interactions at the corneal surface.
Collapse
Affiliation(s)
- Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Katarzyna Okurowska
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Grace Crowther
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Prashant Garg
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sheila MacNeil
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Lynda J. Partridge
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| |
Collapse
|
21
|
Filiberti A, Gmyrek GB, Montgomery ML, Sallack R, Carr DJJ. Loss of Osteopontin Expression Reduces HSV-1-Induced Corneal Opacity. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 32785676 PMCID: PMC7441335 DOI: 10.1167/iovs.61.10.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Corneal opacity and neovascularization (NV) are often described as outcomes of severe herpes simplex virus type 1 (HSV-1) infection. The current study investigated the role of colony-stimulating factor 1 receptor (CSF1R)+ cells and soluble factors in the progression of HSV-1-induced corneal NV and opacity. Methods MaFIA mice were infected with 500 plaque-forming units of HSV-1 in the cornea following scarification. From day 10 to day 13 post-infection (pi), mice were treated with 40 µg/day of AP20187 (macrophage ablation) or vehicle intraperitoneally. For osteopontin (OPN) neutralization experiments, C57BL/6 mice were infected as above and treated with 2 µg of goat anti-mouse OPN or isotypic control IgG subconjunctivally every 2 days from day 4 to day 12 pi. Mice were euthanized on day 14 pi, and tissue was processed for immunohistochemistry to quantify NV and opacity by confocal microscopy and absorbance or detection of pro- and anti-angiogenic and inflammatory factors and cells by suspension array analysis and flow cytometry, respectively. Results In the absence of CSF1R+ cells, HSV-1-induced blood and lymphatic vessel growth was muted. These results correlated with a loss in fibroblast growth factor type 2 (FGF-2) and an increase in OPN expression in the infected cornea. However, a reduction in OPN expression in mice did not alter corneal NV but significantly reduced opacity. Conclusions Our data suggest that CSF1R+ cell depletion results in a significant reduction in HSV-1-induced corneal NV that correlates with the loss of FGF-2 expression. A reduction in OPN expression was aligned with a significant drop in opacity associated with reduced corneal collagen disruption.
Collapse
Affiliation(s)
- Adrian Filiberti
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Grzegorz B Gmyrek
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Micaela L Montgomery
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Renee Sallack
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
22
|
Andreae EA, Warejcka DJ, Twining SS. Thrombin alters the synthesis and processing of CYR61/CCN1 in human corneal stromal fibroblasts and myofibroblasts through multiple distinct mechanisms. Mol Vis 2020; 26:540-562. [PMID: 32818017 PMCID: PMC7406864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/27/2020] [Indexed: 11/08/2022] Open
Abstract
Purpose Previous research in our laboratory indicated that prothrombin and other coagulation enzymes required to activate prothrombin to thrombin are synthesized by the cornea and that apoptotic human corneal stromal cells can provide a surface for prothrombin activation through the intrinsic and extrinsic coagulation pathways. The purpose of the work reported here is to study the role of thrombin activity in the regulation of matricellular protein Cyr61 (CCN1) produced by wounded phenotype human corneal stromal fibroblasts and myofibroblasts. Methods Stromal cells from human donor corneas were converted to defined wounded phenotype fibroblasts and myofibroblasts with fetal bovine serum, followed by basic fibroblast growth factor (bFGF) and transforming growth factor beta-1 (TGFβ-1), respectively, and stimulated with varying concentrations (0-10.0 units (U)/ml) of thrombin from 1-7 h. Cyr61 transcript levels were determined using reverse transcriptase-PCR (RT-PCR) and quantitative PCR (qPCR) while protein forms were analyzed using western blot data. Protease activities were characterized via protease class-specific inhibitors and western blot analysis. Thrombin activity was quantified using the fluorogenic peptide Phe-Pro-Arg-AFC. Protease-activated receptor (PAR) agonist peptides-1 and -4 were used to determine whether cells increased Cyr61 through PAR signaling pathways. The PAR-1 antagonist SCH 79797 was used to block the thrombin cleavage of the receptor. PCR data were analyzed using MxPro software and western blot data were analyzed using Image Lab™ and Image J software. Student t test and one- and two-way ANOVA (with or without ranking, depending on sample distribution), together with Dunnett's test or Tukey comparison tests for post-hoc analysis, were used to determine statistical significance. Results: Full-length Cyr61 is expressed by human corneal stromal fibroblasts and myofibroblasts and is significantly upregulated by active thrombin stimulation at the message (p<0.03) and protein (p<0.03) levels for fibroblasts and myofibroblasts. Inhibition by the allosteric thrombin-specific inhibitor hirudin prevented the thrombin-associated increase in the Cyr61 protein expression, indicating that the proteolytic activity of thrombin is required for the increase of the Cyr61 protein level. PAR-1 agonist stimulation of fibroblasts and myofibroblasts significantly increased cell-associated Cyr61 protein levels (p<0.04), and PAR-1 antagonist SCH 79797 significantly inhibited the thrombin stimulated increase of Cyr61 in fibroblasts but not in myofibroblasts. In the fibroblast and myofibroblast conditioned media, Cyr61 was detected as the full-length 40 kDa protein in the absence of thrombin, and mainly at 24 kDa in the presence of thrombin at ≥0.5 U/ml, using an antibody directed toward the internal linker region between the von Willebrand factor type C and thrombospondin type-1 domains. Although known to undergo alternative splicing, Cyr61 that is synthesized by corneal fibroblasts and myofibroblasts is not alternatively spliced in response to thrombin stimulation nor is Cyr61 directly cleaved by thrombin to generate its 24 kDa form; instead, Cyr61 is proteolytically processed into 24 kDa N- and 16 kDa C-terminal fragments by a thrombin activated leupeptin-sensitive protease present in conditioned media with activity distinct from the proteolytic activity of thrombin. Conclusions In cultured human corneal stromal fibroblasts and myofibroblasts, thrombin regulates Cyr61 through two mechanisms: 1) thrombin increases the Cyr61 expression at the message and protein levels, and 2) thrombin increases the activation of a leupeptin-sensitive protease that stimulates the cleavage of Cyr61 into N- and C-terminal domain populations in or near the thrombospondin type-1 domain. Generation of Cyr61 peptides during corneal injury stimulation may reveal additional functions of the protein, which modulate corneal wound healing activities or decrease activities of the full-length Cyr61 form.
Collapse
Affiliation(s)
- Emily A Andreae
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
- Marshfield Clinic Research Institute, Marshfield, WI
| | - Debra J Warejcka
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Sally S Twining
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|