1
|
Novelle MG, Naranjo-Martínez B, López-Cánovas JL, Díaz-Ruiz A. Fecal microbiota transplantation, a tool to transfer healthy longevity. Ageing Res Rev 2025; 103:102585. [PMID: 39586550 DOI: 10.1016/j.arr.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The complex gut microbiome influences host aging and plays an important role in the manifestation of age-related diseases. Restoring a healthy gut microbiome via Fecal Microbiota Transplantation (FMT) is receiving extensive consideration to therapeutically transfer healthy longevity. Herein, we comprehensively review the benefits of gut microbial rejuvenation - via FMT - to promote healthy aging, with few studies documenting life length properties. This review explores how preconditioning donors via standard - lifestyle and pharmacological - antiaging interventions reshape gut microbiome, with the resulting benefits being also FMT-transferable. Finally, we expose the current clinical uses of FMT in the context of aging therapy and address FMT challenges - regulatory landscape, protocol standardization, and health risks - that require refinement to effectively utilize microbiome interventions in the elderly.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain.
| |
Collapse
|
2
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2024:10.1038/s41582-024-01046-7. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Luo J, Liang S, Jin F. Gut microbiota and healthy longevity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2590-2602. [PMID: 39110402 DOI: 10.1007/s11427-023-2595-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 12/18/2024]
Abstract
Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.
Collapse
Affiliation(s)
- Jia Luo
- College of Psychology, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Favero F, Re A, Dason MS, Gravina T, Gagliardi M, Mellai M, Corazzari M, Corà D. Characterization of gut microbiota dynamics in an Alzheimer's disease mouse model through clade-specific marker-based analysis of shotgun metagenomic data. Biol Direct 2024; 19:100. [PMID: 39478626 PMCID: PMC11524029 DOI: 10.1186/s13062-024-00541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder significantly impairing cognitive faculties, memory, and physical abilities. To characterize the modulation of the gut microbiota in an in vivo AD model, we performed shotgun metagenomics sequencing on 3xTgAD mice at key time points (i.e., 2, 6, and 12 months) of AD progression. Fecal samples from both 3xTgAD and wild-type mice were collected, DNA extracted, and sequenced. Quantitative taxon abundance assessment using MetaPhlAn 4 ensured precise microbial community representation. The analysis focused on species-level genome bins (SGBs) including both known and unknown SGBs (kSGBs and uSGBs, respectively) and also comprised higher taxonomic categories such as family-level genome bins (FGBs), class-level genome bins (CGBs), and order-level genome bins (OGBs). Our bioinformatic results pinpointed the presence of extensive gut microbial diversity in AD mice and showed that the largest proportion of AD- and aging-associated microbiome changes in 3xTgAD mice concern SGBs that belong to the Bacteroidota and Firmicutes phyla, along with a large set of uncharacterized SGBs. Our findings emphasize the need for further advanced bioinformatic studies for accurate classification and functional analysis of these elusive microbial species in relation to their potential bridging role in the gut-brain axis and AD pathogenesis.
Collapse
Affiliation(s)
- Francesco Favero
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
| | - Angela Re
- Department of Applied Science and Technology (DISAT) - Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy
| | - Mohammed Salim Dason
- Department of Applied Science and Technology (DISAT) - Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy
| | - Teresa Gravina
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
| | - Mara Gagliardi
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy
| | - Marta Mellai
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy
| | - Marco Corazzari
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy.
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy.
| | - Davide Corà
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy.
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy.
| |
Collapse
|
5
|
Cheng LH, Wu CC, Wei YH, Wen PJ, Hsu CC, Tsai YC, Wang S. Anti-aging effects of Lacticaseibacillus paracasei PS117 on cognitive and intestinal health in naturally-aged mice: A focus on senescence-related proteins and microbiota composition. Exp Gerontol 2024; 195:112529. [PMID: 39079652 DOI: 10.1016/j.exger.2024.112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The rising global aging population underscores the urgency of maintaining the health and well-being of the elderly while reducing the healthcare burden. Anti-aging probiotics have emerged as a promising strategy. This study identified a novel anti-senescence probiotic, Lacticaseibacillus paracasei PS117 (PS117). The effects of PS117 and heat-treated PS117 (HT-PS117) supplementation on cognitive function of naturally-aged male mice were investigated. It was found that PS117 supplementation improved the cognitive performance of aged mice in the Y-maze test. Furthermore, the level of senescence-related protein p16INK4a (p16) were reduced, while anti-senescence protein sirtuin 1 (Sirt1) were increased in the hippocampus. In addition, there was an overall improvement in the intestinal function. Distinct changes in the gut microbiota were also identified, suggesting a potential contribution to the beneficial effects of PS117 supplementation. In conclusion, these results suggest that PS117 supplements could improve cognitive and intestinal functions in naturally-aged mice, while HT-117 improves only intestinal function, possibly by improving the gut microbiota composition.
Collapse
Affiliation(s)
- Li-Hao Cheng
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan, ROC
| | - Chien-Chen Wu
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan, ROC
| | - Yu-Hsuan Wei
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan, ROC
| | - Pei-Jun Wen
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan, ROC
| | | | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chial Tung University, Taipei, Taiwan, ROC
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| |
Collapse
|
6
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Ginsberg SD, Blaser MJ. Alzheimer's Disease Has Its Origins in Early Life via a Perturbed Microbiome. J Infect Dis 2024; 230:S141-S149. [PMID: 39255394 PMCID: PMC11385592 DOI: 10.1093/infdis/jiae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with limited therapeutic options. Accordingly, new approaches for prevention and treatment are needed. One focus is the human microbiome, the consortium of microorganisms that live in and on us, which contributes to human immune, metabolic, and cognitive development and that may have mechanistic roles in neurodegeneration. AD and Alzheimer's disease-related dementias (ADRD) are recognized as spectrum disorders with complex pathobiology. AD/ADRD onset begins before overt clinical signs, but initiation triggers remain undefined. We posit that disruption of the normal gut microbiome in early life leads to a pathological cascade within septohippocampal and cortical brain circuits. We propose investigation to understand how early-life microbiota changes may lead to hallmark AD pathology in established AD/ADRD models. Specifically, we hypothesize that antibiotic exposure in early life leads to exacerbated AD-like disease endophenotypes that may be amenable to specific microbiological interventions. We propose suitable models for testing these hypotheses.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York
- Department of Psychiatry
- Neuroscience and Physiology
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, New York
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
8
|
Sproten R, Nohr D, Guseva D. Nutritional strategies modulating the gut microbiome as a preventative and therapeutic approach in normal and pathological age-related cognitive decline: a systematic review of preclinical and clinical findings. Nutr Neurosci 2024; 27:1042-1057. [PMID: 38165747 DOI: 10.1080/1028415x.2023.2296727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
CONTEXT The proportion of the elderly population is on the rise across the globe, and with it the prevalence of age-related neurodegenerative diseases. The gut microbiota, whose composition is highly regulated by dietary intake, has emerged as an exciting research field in neurology due to its pivotal role in modulating brain functions via the gut-brain axis. OBJECTIVES We aimed at conducting a systematic review of preclinical and clinical studies investigating the effects of dietary interventions on cognitive ageing in conjunction with changes in gut microbiota composition and functionality. METHODS PubMed and Scopus were searched using terms related to ageing, cognition, gut microbiota and dietary interventions. Studies were screened, selected based on previously determined inclusion and exclusion criteria, and evaluated for methodological quality using recommended risk of bias assessment tools. RESULTS A total of 32 studies (18 preclinical and 14 clinical) were selected for inclusion. We found that most of the animal studies showed significant positive intervention effects on cognitive behavior, while outcomes on cognition, microbiome features, and health parameters in humans were less pronounced. The effectiveness of dietary interventions depended markedly on the age, gender, degree of cognitive decline and baseline microbiome composition of participants. CONCLUSION To harness the full potential of microbiome-inspired nutrition for cognitive health, one of the main challenges remains to better understand the interplay between host, his microbiome, dietary exposures, whilst also taking into account environmental influences. Future research should aim toward making use of host-specific microbiome data to guide the development of personalized therapies.
Collapse
Affiliation(s)
- Rieke Sproten
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Donatus Nohr
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Daria Guseva
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| |
Collapse
|
9
|
Cocean AM, Vodnar DC. Exploring the gut-brain Axis: Potential therapeutic impact of Psychobiotics on mental health. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111073. [PMID: 38914414 DOI: 10.1016/j.pnpbp.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
One of the most challenging and controversial issues in microbiome research is related to gut microbial metabolism and neuropsychological disorders. Psychobiotics affect human behavior and central nervous system processes via the gut-brain axis, involving neuronal, immune, and metabolic pathways. They have therapeutic potential in the treatment of several neurodegenerative and neurodevelopmental disorders such as depression, anxiety, autism, attention deficit hyperactivity disorder, Alzheimer's disease, Parkinson's disease, schizophrenia, Huntington's disease, anorexia nervosa, and multiple sclerosis. However, the mechanisms underlying the interaction between psychobiotics and the abovementioned diseases need further exploration. This review focuses on the relationship between gut microbiota and its impact on neurological and neurodegenerative disorders, examining the potential of psychobiotics as a preventive and therapeutic approach, summarising recent research on the gut-brain axis and the potential beneficial effects of psychobiotics, highlighting the need for further research and investigation in this area.
Collapse
Affiliation(s)
- Ana-Maria Cocean
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| |
Collapse
|
10
|
Wieg L, Ciola JC, Wasén CC, Gaba F, Colletti BR, Schroeder MK, Hinshaw RG, Ekwudo MN, Holtzman DM, Saito T, Sasaguri H, Saido TC, Cox LM, Lemere CA. Cognitive Effects of Simulated Galactic Cosmic Radiation Are Mediated by ApoE Status, Sex, and Environment in APP Knock-In Mice. Int J Mol Sci 2024; 25:9379. [PMID: 39273325 PMCID: PMC11394682 DOI: 10.3390/ijms25179379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aβ in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer's disease phenotypes.
Collapse
Affiliation(s)
- Laura Wieg
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Jason C. Ciola
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Caroline C. Wasén
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Fidelia Gaba
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Brianna R. Colletti
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Maren K. Schroeder
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Robert G. Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Millicent N. Ekwudo
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Aichi, Japan;
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City 351-0198, Saitama, Japan; (H.S.); (T.C.S.)
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City 351-0198, Saitama, Japan; (H.S.); (T.C.S.)
| | - Laura M. Cox
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Cynthia A. Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Garcia-Villatoro EL, Ufondu A, Callaway ES, Allred KF, Safe SH, Chapkin RS, Jayaraman A, Allred CD. Aryl hydrocarbon receptor activity in intestinal epithelial cells in the formation of colonic tertiary lymphoid tissues. Am J Physiol Gastrointest Liver Physiol 2024; 327:G154-G174. [PMID: 38563893 PMCID: PMC11427098 DOI: 10.1152/ajpgi.00274.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
After birth, the development of secondary lymphoid tissues (SLTs) in the colon is dependent on the expression of the aryl hydrocarbon receptor (AhR) in immune cells as a response to the availability of AhR ligands. However, little is known about how AhR activity from intestinal epithelial cells (IECs) may influence the development of tertiary lymphoid tissues (TLTs). As organized structures that develop at sites of inflammation or infection during adulthood, TLTs serve as localized centers of adaptive immune responses, and their presence has been associated with the resolution of inflammation and tumorigenesis in the colon. Here, we investigated the effect of the conditional loss of AhR activity in IECs in the formation and immune cell composition of TLTs in a model of acute inflammation. In females, loss of AhR activity in IECs reduced the formation of TLTs without significantly changing disease outcomes or immune cell composition within TLTs. In males lacking AhR expression in IECs, increased disease activity index, lower expression of functional-IEC genes, increased number of TLTs, increased T-cell density, and lower B- to T-cell ratio were observed. These findings may represent an unfavorable prognosis when exposed to dextran sodium sulfate (DSS)-induced epithelial damage compared with females. Sex and loss of IEC AhR also resulted in changes in microbial populations in the gut. Collectively, these data suggest that the formation of TLTs in the colon is influenced by sex and AhR expression in IECs.NEW & NOTEWORTHY This is the first research of its kind to demonstrate a clear connection between biological sex and the development of tertiary lymphoid tissues (TLT) in the colon. In addition, the research finds that in a preclinical model of inflammatory bowel disease, the expression of the aryl hydrocarbon receptor (AhR) influences the development of these structures in a sex-specific manner.
Collapse
Affiliation(s)
- E L Garcia-Villatoro
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
| | - A Ufondu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - E S Callaway
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - K F Allred
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, North Carolina, United States
| | - S H Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, United States
| | - R S Chapkin
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, United States
| | - A Jayaraman
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - C D Allred
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, North Carolina, United States
| |
Collapse
|
12
|
Fettig NM, Pu A, Osborne LC, Gommerman JL. The influence of aging and the microbiome in multiple sclerosis and other neurologic diseases. Immunol Rev 2024; 325:166-189. [PMID: 38890777 DOI: 10.1111/imr.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
13
|
Chen J, Zou C, Guan H, Zhou X, Hou L, Cui Y, Xu J, Luan P, Zheng D. Caloric restriction leading to attenuation of experimental Alzheimer's disease results from alterations in gut microbiome. CNS Neurosci Ther 2024; 30:e14823. [PMID: 38992870 PMCID: PMC11239325 DOI: 10.1111/cns.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Caloric restriction (CR) might be effective for alleviating/preventing Alzheimer's disease (AD), but the biological mechanisms remain unclear. In the current study, we explored whether CR caused an alteration of gut microbiome and resulted in the attenuation of cognitive impairment of AD animal model. METHODS Thirty-week-old male APP/PS1 transgenic mice were used as AD models (AD mouse). CR was achieved by 30% reduction of daily free feeding (ad libitum, AL) amount. The mice were fed with CR protocol or AL protocol for six consecutive weeks. RESULTS We found that with CR treatment, AD mice showed improved ability of learning and spatial memory, and lower levels of Aβ40, Aβ42, IL-1β, TNF-α, and ROS in the brain. By sequencing 16S rDNA, we found that CR treatment resulted in significant diversity in composition and abundance of gut flora. At the phylum level, Deferribacteres (0.04%), Patescibacteria (0.14%), Tenericutes (0.03%), and Verrucomicrobia (0.5%) were significantly decreased in CR-treated AD mice; at the genus level, Dubosiella (10.04%), Faecalibaculum (0.04%), and Coriobacteriaceae UCG-002 (0.01%) were significantly increased in CR-treated AD mice by comparing with AL diet. CONCLUSIONS Our results demonstrate that the attenuation of AD following CR treatment in APP/PS1 mice may result from alterations in the gut microbiome. Thus, gut flora could be a new target for AD prevention and therapy.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Cong Zou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Hongbing Guan
- Guangdong Yunzhao Medical Technology Co., Ltd.GuangzhouChina
| | - Xiaoming Zhou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Le Hou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Yayong Cui
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Junhua Xu
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Ping Luan
- School of Basic Medical SciencesShenzhen UniversityShenzhenChina
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
14
|
Fabi JP. The connection between gut microbiota and its metabolites with neurodegenerative diseases in humans. Metab Brain Dis 2024; 39:967-984. [PMID: 38848023 DOI: 10.1007/s11011-024-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
The aging of populations is a global phenomenon that follows a possible increase in the incidence of neurodegenerative diseases. Alzheimer's, Parkinson's, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, and Huntington's diseases are some neurodegenerative disorders that aging could initiate or aggravate. Recent research has indicated that intestinal microbiota dysbiosis can trigger metabolism and brain functioning, contributing to the etiopathogenesis of those neurodegenerative diseases. The intestinal microbiota and its metabolites show significant functions in various aspects, such as the immune system modulation (development and maturation), the maintenance of the intestinal barrier integrity, the modulation of neuromuscular functions in the intestine, and the facilitation of essential metabolic processes for both the microbiota and humans. The primary evidence supporting the connection between intestinal microbiota and its metabolites with neurodegenerative diseases are epidemiological observations and animal models experimentation. This paper reviews up-to-date evidence on the correlation between the microbiota-gut-brain axis and neurodegenerative diseases, with a specially focus on gut metabolites. Dysbiosis can increase inflammatory cytokines and bacterial metabolites, altering intestinal and blood-brain barrier permeability and causing neuroinflammation, thus facilitating the pathogenesis of neurodegenerative diseases. Clinical data supporting this evidence still needs to be improved. Most of the works found are descriptive and associated with the presence of phyla or species of bacteria with neurodegenerative diseases. Despite the limitations of recent research, the potential for elucidating clinical questions that have thus far eluded clarification within prevailing pathophysiological frameworks of health and disease is promising through investigation of the interplay between the host and microbiota.
Collapse
Affiliation(s)
- João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508000, SP, Brazil.
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, 05508080, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, 05508080, SP, Brazil.
| |
Collapse
|
15
|
Wasén C, Beauchamp LC, Vincentini J, Li S, LeServe DS, Gauthier C, Lopes JR, Moreira TG, Ekwudo MN, Yin Z, da Silva P, Krishnan RK, Butovsky O, Cox LM, Weiner HL. Bacteroidota inhibit microglia clearance of amyloid-beta and promote plaque deposition in Alzheimer's disease mouse models. Nat Commun 2024; 15:3872. [PMID: 38719797 PMCID: PMC11078963 DOI: 10.1038/s41467-024-47683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
The gut microbiota and microglia play critical roles in Alzheimer's disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-β (Aβ) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aβ plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aβ1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aβ clearance and accumulation of amyloid plaques.
Collapse
Affiliation(s)
- Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Leah C Beauchamp
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia Vincentini
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuqi Li
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Gauthier
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Millicent N Ekwudo
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Patrick da Silva
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajesh K Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2024:S2090-1232(24)00124-3. [PMID: 38579985 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
17
|
Li Z, Sang R, Feng G, Feng Y, Zhang R, Yan X. Microbiological and metabolic pathways analysing the mechanisms of alfalfa polysaccharide and sulfated alfalfa polysaccharide in alleviating obesity. Int J Biol Macromol 2024; 263:130334. [PMID: 38387635 DOI: 10.1016/j.ijbiomac.2024.130334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Alfalfa polysaccharide (AP) and sulfated alfalfa polysaccharide (SAP) exhibit potential for alleviating obesity. This study aimed to analyze the mechanism of action of AP and SAP in alleviating obesity through combined microbiomics and metabolomics. The research selected validated optimal AP and SAP concentration for experiment. The results showed that AP and SAP down-regulated colonic inflammatory gene expression, regulated intestinal pH to normal, and restored intestinal growth. Microbial sequencing showed that AP and SAP altered the microbial composition ratio. AP increased the relative abundance of Muribaculaceae and Romboutsia. SAP increased the relative abundance of Dubosiella, Fecalibaculum and Desulfovibrionaceae. Metabolomic analysis showed that AP regulated steroid hormone biosynthesis, neuroactive ligand-receptor interactions and bile secretion pathways. SAP focuses more on pathways related to amino acid metabolism. Meanwhile, AP and SAP down-regulated the mRNA expression of colonic COX-2, PepT-1 and HK2 and up-regulated the mRNA expression of TPH1. Correlation analysis showed a strong correlation between metabolites and gut bacteria. Dubosiella, Faecalibaculum may be the critical marker flora for polysaccharides to alleviate obesity. This study indicates that AP and SAP alleviate obesity through different pathways and that specific polysaccharide modifications affect characteristic microbial and metabolic pathways, providing new insights into polysaccharide modifications.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ruxue Sang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Guilan Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ran Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
18
|
Cox LM, Tatematsu BK, Guo L, LeServe DS, Mayrink J, Oliveira MG, Donnelly D, Fonseca RC, Lemos L, Lanser TB, Rosa AC, Lopes JR, Schwerdtfeger LA, Ribeiro GFC, Lobo ELC, Moreira TG, Oliveira AG, Weiner HL, Rezende RM. Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice. Brain Behav Immun 2024; 117:242-254. [PMID: 38281671 DOI: 10.1016/j.bbi.2024.01.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024] Open
Abstract
Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Mayrink
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marilia G Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dustin Donnelly
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Roberta C Fonseca
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luisa Lemos
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toby B Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Rosa
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luke A Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela F C Ribeiro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo L C Lobo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre G Oliveira
- Department of Biophysics and Physiology, Biologic Institutes of Sciences, Federal University of Minas Gerais, Brazil
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Luan Y, Zhu X, Jiao Y, Liu H, Huang Z, Pei J, Xu Y, Yang Y, Ren K. Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets. Cell Death Discov 2024; 10:78. [PMID: 38355681 PMCID: PMC10866973 DOI: 10.1038/s41420-023-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Cardiac aging, particularly cardiac cell senescence, is a natural process that occurs as we age. Heart function gradually declines in old age, leading to continuous heart failure, even in people without a prior history of heart disease. To address this issue and improve cardiac cell function, it is crucial to investigate the molecular mechanisms underlying cardiac senescence. This review summarizes the main mechanisms and key proteins involved in cardiac cell senescence. This review further discusses the molecular modulators of cellular senescence in aging hearts. Furthermore, the discussion will encompass comprehensive descriptions of the key drugs, modes of action and potential targets for intervention in cardiac senescence. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of cardiac senescence, this review seeks to provide a fresh perspective and important theoretical foundations for the development of drugs targeting this condition.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaofan Zhu
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People's Hospital, Zhengzhou, 450052, P. R. China
| | - Yawei Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
20
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
21
|
Liang C, Pereira R, Zhang Y, Rojas OL. Gut Microbiome in Alzheimer's Disease: from Mice to Humans. Curr Neuropharmacol 2024; 22:2314-2329. [PMID: 39403057 PMCID: PMC11451315 DOI: 10.2174/1570159x22666240308090741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 02/23/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, but its etiopathogenesis is not yet fully understood. Recent preclinical studies and clinical evidence indicate that changes in the gut microbiome could potentially play a role in the accumulation of amyloid beta. However, the relationship between gut dysbiosis and AD is still elusive. In this review, the potential impact of the gut microbiome on AD development and progression is discussed. Pre-clinical and clinical literature exploring changes in gut microbiome composition is assessed, which can contribute to AD pathology including increased amyloid beta deposition and cognitive impairment. The gut-brain axis and the potential involvement of metabolites produced by the gut microbiome in AD are also highlighted. Furthermore, the potential of antibiotics, prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions as complementary therapies for the management of AD is summarized. This review provides valuable insights into potential therapeutic strategies to modulate the gut microbiome in AD.
Collapse
Affiliation(s)
- Chang Liang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Resel Pereira
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yan Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Olga L. Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
22
|
Fang H, Yao T, Li W, Pan N, Xu H, Zhao Q, Su Y, Xiong K, Wang J. Efficacy and safety of fecal microbiota transplantation for chronic insomnia in adults: a real world study. Front Microbiol 2023; 14:1299816. [PMID: 38088972 PMCID: PMC10712199 DOI: 10.3389/fmicb.2023.1299816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/08/2023] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE To assess the efficacy and safety of fecal microbiota transplantation (FMT) for adult chronic insomnia. METHODS Patients treated with FMT for chronic diseases were divided into chronic insomnia and non-insomnia group. The primary endpoint was the efficacy of FMT for insomnia 4 weeks after treatment, the secondary endpoints included the impacts of FMT on anxiety, depression, health-related quality of life, gut microbiota, and adverse events associated with FMT. Insomnia Severity Index (ISI) and Pittsburgh Sleep Quality Index (PSQI) were utilized to assess the efficacy of FMT on insomnia, self-rating anxiety/depression scale [Zung Self-Rating Anxiety Scale (SAS), Zung Self-Rating Depression Scale (SDS)] was employed to evaluate anxiety and depression. Quality of life was evaluated by SF-36. 16S rRNA sequencing was employed to analyze the gut microbiota and correlation analysis was performed. RESULTS Forty patients met the inclusion criteria and seven were excluded. 33 patients were enrolled and stratified into chronic insomnia group (N = 17) and non-insomnia group (N = 16). Compared to baseline, FMT significantly ameliorated the ISI (17.31 ± 5.12 vs. 5.38 ± 5.99), PSQI (14.56 ± 2.13 vs. 6.63 ± 4.67), SAS (54.25 ± 8.90 vs. 43.68 ± 10.64) and SDS (57.43 ± 10.96 vs. 50.68 ± 15.27) score and quality of life of chronic insomnia patients. 76.47% (13/17) of insomnia patients achieved the primary endpoints. In chronic insomnia patients, the relative abundance of Eggerthella marked enhanced at baseline, while the relative abundance of Lactobacillus, Bifidobacterium, Turicibacter, Anaerostipes, and Eisenbergiella significantly increased after FMT treatment, the latter positive correlated with the efficacy of FMT. Encouragingly, FMT also improved the sleep quality of non-insomnia patients. CONCLUSION Eggerthella may potentially serve as a distinctive genus associated with chronic insomnia. FMT maybe a novel treatment option for adults with chronic insomnia and provide an alternative to traditional treatments for insomnia. The effects were positive correlated with the augmentation of probiotics, such as Bifidobacterium, Lactobacillus, Turicibacter, and Fusobacterium.
Collapse
Affiliation(s)
- Haiming Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center for Gut Microbiota Diagnosis and Treatment, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tingting Yao
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center for Gut Microbiota Diagnosis and Treatment, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wanli Li
- Department of Pharmacology, School of Basic Medical Sciences of Anhui Medical University, Hefei, Anhui, China
| | - Na Pan
- Department of Pharmacology, School of Basic Medical Sciences of Anhui Medical University, Hefei, Anhui, China
| | - Hang Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Qian Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center for Gut Microbiota Diagnosis and Treatment, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Su
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center for Gut Microbiota Diagnosis and Treatment, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kangwei Xiong
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center for Gut Microbiota Diagnosis and Treatment, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
23
|
Petrisko TJ, Gargus M, Chu SH, Selvan P, Whiteson KL, Tenner AJ. Influence of complement protein C1q or complement receptor C5aR1 on gut microbiota composition in wildtype and Alzheimer's mouse models. J Neuroinflammation 2023; 20:211. [PMID: 37726739 PMCID: PMC10507976 DOI: 10.1186/s12974-023-02885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The contribution of the gut microbiome to neuroinflammation, cognition, and Alzheimer's disease progression has been highlighted over the past few years. Additionally, inhibition of various components of the complement system has repeatedly been demonstrated to reduce neuroinflammation and improve cognitive performance in AD mouse models. Whether the deletion of these complement components is associated with distinct microbiome composition, which could impact neuroinflammation and cognitive performance in mouse models has not yet been examined. Here, we provide a comprehensive analysis of conditional and constitutive knockouts, pharmacological inhibitors, and various housing paradigms for the animal models and wild-type controls at various ages. We aimed to determine the impact of C1q or C5aR1 inhibition on the microbiome in the Arctic and Tg2576 mouse models of AD, which develop amyloid plaques at different ages and locations. Analysis of fecal samples from WT and Arctic mice following global deletion of C1q demonstrated significant alterations to the microbiomes of Arctic but not WT mice, with substantial differences in abundances of Erysipelotrichales, Clostridiales and Alistipes. While no differences in microbiome diversity were detected between cohoused wildtype and Arctic mice with or without the constitutive deletion of the downstream complement receptor, C5aR1, a difference was detected between the C5aR1 sufficient (WT and Arctic) and deficient (C5ar1KO and ArcticC5aR1KO) mice, when the mice were housed segregated by C5aR1 genotype. However, cohousing of C5aR1 sufficient and deficient wildtype and Arctic mice resulted in a convergence of the microbiomes and equalized abundances of each identified order and genus across all genotypes. Similarly, pharmacologic treatment with the C5aR1 antagonist, PMX205, beginning at the onset of beta-amyloid plaque deposition in the Arctic and Tg2576 mice, demonstrated no impact of C5aR1 inhibition on the microbiome. This study demonstrates the importance of C1q in microbiota homeostasis in neurodegenerative disease. In addition, while demonstrating that constitutive deletion of C5aR1 can significantly alter the composition of the fecal microbiome, these differences are not present when C5aR1-deficient mice are cohoused with C5aR1-sufficient animals with or without the AD phenotype and suggests limited if any contribution of the microbiome to the previously observed prevention of cognitive and neuronal loss in the C5aR1-deficient AD models.
Collapse
Affiliation(s)
- Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA
| | - Matthew Gargus
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA
| | - Purnika Selvan
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA
| | - Katrine L Whiteson
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA.
| |
Collapse
|
24
|
Boyanova L, Markovska R, Yordanov D, Gergova R, Hadzhiyski P. Anaerobes in specific infectious and noninfectious diseases: new developments. Anaerobe 2023; 81:102714. [PMID: 37349047 DOI: 10.1016/j.anaerobe.2023.102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 06/24/2023]
Abstract
With the buildup of new research data, newer associations between anaerobic bacteria and diseases/conditions were evaluated. The aim of the mini-review was to draw attention and to encourage further multidisciplinary studies of the associations. We considered microbiome-disease correlations such as a decrease of fecal Faecalibacterium prausnitzii abundance in inflammatory bowel disease (IBD) and IBD recurrence, suggesting that F. prausnitzii could be a good biomarker for IBD. A link of subgingival Porphyromonas gingivalis with cardiovascular diseases was reported. Decreased Roseburia abundance was observed in the gut of Alzheimer's and Parkinson's disease patients. Akkermansia muciniphila was found to improve adipose/glucose metabolism, however, its intestinal abundance was observed in neurodegenerative diseases as well. Severe Clostridioides difficile infections have been reported in neonates and young children. Carcinogenic potential of anaerobes has been suggested. Fusobacterium nucleatum was implicated in the development of oral and colorectal cancer, Porphyromonas gingivalis and Tannerella forsythia were linked to esophageal cancer and Cutibacterium acnes subsp. defendens was associated with prostate cancer. However, there are some controversies about the results. In a Swedish longitudinal study, neither P. gingivalis nor T. forsythia exhibited oncogenic potential. The present data can enrich knowledge of anaerobic bacteria and their multifaceted significance for health and disease and can draw future research directions. However, more studies on large numbers of patients over prolonged periods are needed, taking into account the possible changes in the microbiota over time.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria.
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Daniel Yordanov
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Petyo Hadzhiyski
- Specialized Hospital for Active Pediatric Treatment, Medical University of Sofia, "Acad. Ivan Evstatiev Geshov" Blvd, 1606, Sofia, Bulgaria
| |
Collapse
|
25
|
Susmitha G, Kumar R. Role of microbial dysbiosis in the pathogenesis of Alzheimer's disease. Neuropharmacology 2023; 229:109478. [PMID: 36871788 DOI: 10.1016/j.neuropharm.2023.109478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly and detected during the advanced stages where the chances of reversal are minimum. The gut-brain axis mediates a bidirectional communication between the gut and brain, which is dependent on bacterial products such as short chain fatty acids (SCFA) and neurotransmitters. Accumulating lines of evidence suggests that AD is associated with significant alteration in the composition of gut microbiota. Furthermore, transfer of gut microbiota from healthy individuals to patients can reshape the gut microbiota structure and thus holds the potential to be exploited for the treatment of various neurodegenerative disease. Moreover, AD-associated gut dysbiosis can be partially reversed by using probiotics, prebiotics, natural compounds and dietary modifications, but need further validations. Reversal of AD associated gut dysbiosis alleviate AD-associated pathological feature and therefore can be explored as a therapeutic approach in the future. The current review article will describe various studies suggesting that AD dysbiosis occurs with AD and highlights the causal role by focussing on the interventions that hold the potential to reverse the gut dysbiosis partially.
Collapse
Affiliation(s)
- Gudimetla Susmitha
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India.
| |
Collapse
|
26
|
Jin Y, Kim T, Kang H. Forced treadmill running modifies gut microbiota with alleviations of cognitive impairment and Alzheimer's disease pathology in 3xTg-AD mice. Physiol Behav 2023; 264:114145. [PMID: 36889489 DOI: 10.1016/j.physbeh.2023.114145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Physical exercise has been recommended as a non-pharmacologic treatment for delaying the onset or slowing the progression of Alzheimer's disease (AD). The therapeutic potential of exercise training-induced changes in symbiotic gut microbiota against AD neuropathology is not well understood, yet. This study investigated the effects of a 20-week forced treadmill exercise program on the makeup of the gut microbiota, the integrity of the blood-brain barrier (BBB), and the development of AD-like cognitive deficits and neuropathology in triple transgenic AD mice. Our findings show that forced treadmill running causes symbiotic changes in the gut microbiota, such as increased Akkermansia muciniphila and decreased Bacteroides species, as well as increased BBB-related protein expression and reduced AD-like cognitive impairments and neuropathology progression. The current findings of this animal study suggest that the interaction between the gut microbiota and the brain, possibly via the BBB, is responsible for exercise training-induced cognitive benefits and alleviation of AD pathology.
Collapse
Affiliation(s)
- Youngyun Jin
- College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taewan Kim
- College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunsik Kang
- College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
27
|
Wang L, Wang F, Xiong L, Song H, Ren B, Shen X. A nexus of dietary restriction and gut microbiota: Recent insights into metabolic health. Crit Rev Food Sci Nutr 2023; 64:8649-8671. [PMID: 37154021 DOI: 10.1080/10408398.2023.2202750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent times, dietary restriction (DR) has received considerable attention for its promising effects on metabolism and longevity. Previous studies on DR have mainly focused on the health benefits produced by different restriction patterns, whereas comprehensive reviews of the role of gut microbiota during DR are limited. In this review, we discuss the effects of caloric restriction, fasting, protein restriction, and amino acid restriction from a microbiome perspective. Furthermore, the underlying mechanisms by which DR affects metabolic health by regulating intestinal homeostasis are summarized. Specifically, we reviewed the impacts of different DRs on specific gut microbiota. Additionally, we put forward the limitations of the current research and suggest the development of personalized microbes-directed DR for different populations and corresponding next-generation sequencing technologies for accurate microbiological analysis. DR effectively modulates the composition of the gut microbiota and microbial metabolites. In particular, DR markedly affects the rhythmic oscillation of microbes which may be related to the circadian clock system. Moreover, increasing evidence supports that DR profoundly improves metabolic syndrome, inflammatory bowel disease, and cognitive impairment. To summarize, DR may be an effective and executable dietary manipulation strategy for maintaining metabolic health, however, further investigation is needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
28
|
Han ZZ, Fleet A, Larrieu D. Can accelerated ageing models inform us on age-related tauopathies? Aging Cell 2023; 22:e13830. [PMID: 37013265 PMCID: PMC10186612 DOI: 10.1111/acel.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Ageing is the greatest risk factor of late-onset neurodegenerative diseases. In the realm of sporadic tauopathies, modelling the process of biological ageing in experimental animals forms the foundation of searching for the molecular origin of pathogenic tau and developing potential therapeutic interventions. Although prior research into transgenic tau models offers valuable lessons for studying how tau mutations and overexpression can drive tau pathologies, the underlying mechanisms by which ageing leads to abnormal tau accumulation remains poorly understood. Mutations associated with human progeroid syndromes have been proposed to be able to mimic an aged environment in animal models. Here, we summarise recent attempts in modelling ageing in relation to tauopathies using animal models that carry mutations associated with human progeroid syndromes, or genetic elements unrelated to human progeroid syndromes, or have exceptional natural lifespans, or a remarkable resistance to ageing-related disorders.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Alex Fleet
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Delphine Larrieu
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| |
Collapse
|
29
|
Li J, Zhang F, Zhao L, Dong C. Microbiota-gut-brain axis and related therapeutics in Alzheimer's disease: prospects for multitherapy and inflammation control. Rev Neurosci 2023:revneuro-2023-0006. [PMID: 37076953 DOI: 10.1515/revneuro-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota-gut-brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. "MGBA-based multitherapy" is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient's condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. "MGBA-based multitherapy" offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Feng Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li Zhao
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Chunbo Dong
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| |
Collapse
|
30
|
Borsom EM, Conn K, Keefe CR, Herman C, Orsini GM, Hirsch AH, Palma Avila M, Testo G, Jaramillo SA, Bolyen E, Lee K, Caporaso JG, Cope EK. Predicting Neurodegenerative Disease Using Prepathology Gut Microbiota Composition: a Longitudinal Study in Mice Modeling Alzheimer's Disease Pathologies. Microbiol Spectr 2023; 11:e0345822. [PMID: 36877047 PMCID: PMC10101110 DOI: 10.1128/spectrum.03458-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/12/2023] [Indexed: 03/07/2023] Open
Abstract
The gut microbiota-brain axis is suspected to contribute to the development of Alzheimer's disease (AD), a neurodegenerative disease characterized by amyloid-β plaque deposition, neurofibrillary tangles, and neuroinflammation. To evaluate the role of the gut microbiota-brain axis in AD, we characterized the gut microbiota of female 3xTg-AD mice modeling amyloidosis and tauopathy and wild-type (WT) genetic controls. Fecal samples were collected fortnightly from 4 to 52 weeks, and the V4 region of the 16S rRNA gene was amplified and sequenced on an Illumina MiSeq. RNA was extracted from the colon and hippocampus, converted to cDNA, and used to measure immune gene expression using reverse transcriptase quantitative PCR (RT-qPCR). Diversity metrics were calculated using QIIME2, and a random forest classifier was applied to predict bacterial features that are important in predicting mouse genotype. Gene expression of glial fibrillary acidic protein (GFAP; indicating astrocytosis) was elevated in the colon at 24 weeks. Markers of Th1 inflammation (il6) and microgliosis (mrc1) were elevated in the hippocampus. Gut microbiota were compositionally distinct early in life between 3xTg-AD mice and WT mice (permutational multivariate analysis of variance [PERMANOVA], 8 weeks, P = 0.001, 24 weeks, P = 0.039, and 52 weeks, P = 0.058). Mouse genotypes were correctly predicted 90 to 100% of the time using fecal microbiome composition. Finally, we show that the relative abundance of Bacteroides species increased over time in 3xTg-AD mice. Taken together, we demonstrate that changes in bacterial gut microbiota composition at prepathology time points are predictive of the development of AD pathologies. IMPORTANCE Recent studies have demonstrated alterations in the gut microbiota composition in mice modeling Alzheimer's disease (AD) pathologies; however, these studies have only included up to 4 time points. Our study is the first of its kind to characterize the gut microbiota of a transgenic AD mouse model, fortnightly, from 4 weeks of age to 52 weeks of age, to quantify the temporal dynamics in the microbial composition that correlate with the development of disease pathologies and host immune gene expression. In this study, we observed temporal changes in the relative abundances of specific microbial taxa, including the genus Bacteroides, that may play a central role in disease progression and the severity of pathologies. The ability to use features of the microbiota to discriminate between mice modeling AD and wild-type mice at prepathology time points indicates a potential role of the gut microbiota as a risk or protective factor in AD.
Collapse
Affiliation(s)
- Emily M. Borsom
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kathryn Conn
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Christopher R. Keefe
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Chloe Herman
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Gabrielle M. Orsini
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Allyson H. Hirsch
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Melanie Palma Avila
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - George Testo
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Sierra A. Jaramillo
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Evan Bolyen
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Keehoon Lee
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - J. Gregory Caporaso
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Emily K. Cope
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
31
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
32
|
Impact of caloric restriction on the gut microbiota. Curr Opin Microbiol 2023; 73:102287. [PMID: 36868081 DOI: 10.1016/j.mib.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Caloric restriction (CR) and related time-restricted diets have been popularized as means of preventing metabolic disease while improving general well-being. However, evidence as to their long-term efficacy, adverse effects, and mechanisms of activity remains incompletely understood. The gut microbiota is modulated by such dietary approaches, yet causal evidence to its possible downstream impacts on host metabolism remains elusive. Herein, we discuss the positive and adverse influences of restrictive dietary interventions on gut microbiota composition and function, and their collective impacts on host health and disease risk. We highlight known mechanisms of microbiota influences on the host, such as modulation of bioactive metabolites, while discussing challenges in achieving mechanistic dietary-microbiota insights, including interindividual variability in dietary responses as well as other methodological and conceptual challenges. In all, causally understanding the impact of CR approaches on the gut microbiota may enable to better decode their overall influences on human physiology and disease.
Collapse
|
33
|
Rezende RM, Cox LM, Moreira TG, Liu S, Boulenouar S, Dhang F, LeServe DS, Nakagaki BN, Lopes JR, Tatematsu BK, Lemos L, Mayrink J, Lobo ELC, Guo L, Oliveira MG, Kuhn C, Weiner HL. Gamma-delta T cells modulate the microbiota and fecal micro-RNAs to maintain mucosal tolerance. MICROBIOME 2023; 11:32. [PMID: 36814316 PMCID: PMC9948450 DOI: 10.1186/s40168-023-01478-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gamma-delta (γδ) T cells are a major cell population in the intestinal mucosa and are key mediators of mucosal tolerance and microbiota composition. Little is known about the mechanisms by which intestinal γδ T cells interact with the gut microbiota to maintain tolerance. RESULTS We found that antibiotic treatment impaired oral tolerance and depleted intestinal γδ T cells, suggesting that the gut microbiota is necessary to maintain γδ T cells. We also found that mice deficient for γδ T cells (γδ-/-) had an altered microbiota composition that led to small intestine (SI) immune dysregulation and impaired tolerance. Accordingly, colonizing WT mice with γδ-/- microbiota resulted in SI immune dysregulation and loss of tolerance whereas colonizing γδ-/- mice with WT microbiota normalized mucosal immune responses and restored mucosal tolerance. Moreover, we found that SI γδ T cells shaped the gut microbiota and regulated intestinal homeostasis by secreting the fecal micro-RNA let-7f. Importantly, oral administration of let-7f to γδ-/- mice rescued mucosal tolerance by promoting the growth of the γδ-/--microbiota-depleted microbe Ruminococcus gnavus. CONCLUSIONS Taken together, we demonstrate that γδ T cell-selected microbiota is necessary and sufficient to promote mucosal tolerance, is mediated in part by γδ T cell secretion of fecal micro-RNAs, and is mechanistically linked to restoration of mucosal immune responses. Video Abstract.
Collapse
Affiliation(s)
- Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shirong Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Selma Boulenouar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Fyonn Dhang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Brenda N Nakagaki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Luisa Lemos
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Julia Mayrink
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Eduardo L C Lobo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marilia G Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chantal Kuhn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
34
|
Amin AM, Mostafa H, Khojah HMJ. Insulin resistance in Alzheimer's disease: The genetics and metabolomics links. Clin Chim Acta 2023; 539:215-236. [PMID: 36566957 DOI: 10.1016/j.cca.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with significant socioeconomic burden worldwide. Although genetics and environmental factors play a role, AD is highly associated with insulin resistance (IR) disorders such as metabolic syndrome (MS), obesity, and type two diabetes mellitus (T2DM). These findings highlight a shared pathogenesis. The use of metabolomics as a downstream systems' biology (omics) approach can help to identify these shared metabolic traits and assist in the early identification of at-risk groups and potentially guide therapy. Targeting the shared AD-IR metabolic trait with lifestyle interventions and pharmacological treatments may offer promising AD therapeutic approach. In this narrative review, we reviewed the literature on the AD-IR pathogenic link, the shared genetics and metabolomics biomarkers between AD and IR disorders, as well as the lifestyle interventions and pharmacological treatments which target this pathogenic link.
Collapse
Affiliation(s)
- Arwa M Amin
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah, Saudi Arabia.
| | - Hamza Mostafa
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Hani M J Khojah
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
35
|
Huang L, Lu Z, Zhang H, Wen H, Li Z, Liu Q, Wang R. A Novel Strategy for Alzheimer's Disease Based on the Regulatory Effect of Amyloid-β on Gut Flora. J Alzheimers Dis 2023; 94:S227-S239. [PMID: 36336932 PMCID: PMC10473151 DOI: 10.3233/jad-220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The accumulation of amyloid-β (Aβ) protein and plaque formation in the brain are two major causes of AD. Interestingly, growing evidence demonstrates that the gut flora can alleviate AD by affecting amyloid production and metabolism. However, the underlying mechanism remains largely unknown. This review will discuss the possible association between the gut flora and Aβ in an attempt to provide novel therapeutic directions for AD treatment based on the regulatory effect of Aβ on the gut flora.
Collapse
Affiliation(s)
- Li Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhaogang Lu
- Department of Pharmacy, People’s Hospital of Ningxia /First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Hexin Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hongyong Wen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zongji Li
- Laboratory Department, Clinical College of Ningxia Medical University, Yinchuan, China
| | - Qibing Liu
- Department of Pharmacology, Hainan Medical University, Haikou, China
| | - Rui Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
36
|
Boehme M, Guzzetta KE, Wasén C, Cox LM. The gut microbiota is an emerging target for improving brain health during ageing. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 4:E2. [PMID: 37179659 PMCID: PMC10174391 DOI: 10.1017/gmb.2022.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The gut microbiota plays crucial roles in maintaining the health and homeostasis of its host throughout lifespan, including through its ability to impact brain function and regulate behaviour during ageing. Studies have shown that there are disparate rates of biologic ageing despite equivalencies in chronologic age, including in the development of neurodegenerative diseases, which suggests that environmental factors may play an important role in determining health outcomes in ageing. Recent evidence demonstrates that the gut microbiota may be a potential novel target to ameliorate symptoms of brain ageing and promote healthy cognition. This review highlights the current knowledge around the relationships between the gut microbiota and host brain ageing, including potential contributions to age-related neurodegenerative diseases. Furthermore, we assess key areas for which gut microbiota-based strategies may present as opportunities for intervention.
Collapse
Affiliation(s)
- Marcus Boehme
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Katherine Elizabeth Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Laura Michelle Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
37
|
Dai CL, Liu F, Iqbal K, Gong CX. Gut Microbiota and Immunotherapy for Alzheimer's Disease. Int J Mol Sci 2022; 23:15230. [PMID: 36499564 PMCID: PMC9741026 DOI: 10.3390/ijms232315230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that eventually leads to dementia and death of the patient. Currently, no effective treatment is available that can slow or halt the progression of the disease. The gut microbiota can modulate the host immune system in the peripheral and central nervous system through the microbiota-gut-brain axis. Growing evidence indicates that gut microbiota dysbiosis plays an important role in the pathogenesis of AD, and modulation of the gut microbiota may represent a new avenue for treating AD. Immunotherapy targeting Aβ and tau has emerged as the most promising disease-modifying therapy for the treatment of AD. However, the underlying mechanism of AD immunotherapy is not known. Importantly, preclinical and clinical studies have highlighted that the gut microbiota exerts a major influence on the efficacy of cancer immunotherapy. However, the role of the gut microbiota in AD immunotherapy has not been explored. We found that immunotherapy targeting tau can modulate the gut microbiota in an AD mouse model. In this article, we focused on the crosstalk between the gut microbiota, immunity, and AD immunotherapy. We speculate that modulation of the gut microbiota induced by AD immunotherapy may partially underlie the efficacy of the treatment.
Collapse
Affiliation(s)
| | | | | | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY 10314, USA
| |
Collapse
|
38
|
Kim JE, Roh YJ, Choi YJ, Lee SJ, Jin YJ, Song HJ, Seol AY, Son HJ, Hong JT, Hwang DY. Dysbiosis of Fecal Microbiota in Tg2576 Mice for Alzheimer's Disease during Pathological Constipation. Int J Mol Sci 2022; 23:ijms232314928. [PMID: 36499254 PMCID: PMC9736912 DOI: 10.3390/ijms232314928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Tg2576 transgenic mice for Alzheimer's disease (AD) exhibited significant phenotypes for neuropathological constipation, but no research has been conducted on the association of the fecal microbiota with dysbiosis. The correlation between fecal microbiota composition and neuropathological constipation in Tg2576 mice was investigated by examining the profile of fecal microbiota and fecal microbiota transplantation (FMT) in 9-10-month-old Tg2576 mice with the AD phenotypes and constipation. Several constipation phenotypes, including stool parameters, colon length, and histopathological structures, were observed prominently in Tg2576 mice compared to the wild-type (WT) mice. The fecal microbiota of Tg2576 mice showed decreases in Bacteroidetes and increases in the Firmicutes and Proteobacteria populations at the phylum level. The FMT study showed that stool parameters, including weight, water content, and morphology, decreased remarkably in the FMT group transplanted with a fecal suspension of Tg2576 mice (TgFMT) compared to the FMT group transplanted with a fecal suspension of WT mice (WFMT). The distribution of myenteric neurons and the interstitial cells of Cajal (ICC), as well as the enteric nervous system (ENS) function, remained lower in the TgFMT group. These results suggest that the neuropathological constipation phenotypes of Tg2576 mice may be tightly linked to the dysbiosis of the fecal microbiota.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu-Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yun-Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Su-Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You-Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee-Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - A-Yun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hong-Joo Son
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Jin-Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju 28644, Republic of Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
- Correspondence: ; Tel.: +82-55-350-5388
| |
Collapse
|
39
|
Li ZL, Ma HT, Wang M, Qian YH. Research trend of microbiota-gut-brain axis in Alzheimer’s disease based on CiteSpace (2012–2021): A bibliometrics analysis of 608 articles. Front Aging Neurosci 2022; 14:1036120. [DOI: 10.3389/fnagi.2022.1036120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
BackgroundRecently, research on the microbiota-gut-brain axis (MGBA) has received increasing attention, and the number of studies related to Alzheimer’s disease (AD) has increased rapidly, but there is currently a lack of summary of MGBA in AD.ObjectiveTo capture research hotspots, grasp the context of disciplinary research, and explore future research development directions.MethodsIn the core dataset of Web of Science, documents are searched according to specific subject words. CiteSpace software is used to perform statistical analysis on measurement indicators such as the number of published papers, publishing countries, institutions, subject areas, authors, cocited journals, and keywords, and to visualize of a network of relevant content elements.ResultsThe research of MGBA in AD has shown an upward trend year by year, and the cooperation between countries is relatively close, and mainly involves the intersection of neuroscience, pharmacy, and microbiology. This research focuses on the relationship between MGBA and AD symptoms. Keyword hotspots are closely related to new technologies. Alzheimer’s disease, anterior cingulate cortex, inflammatory degeneration, dysbiosis, and other research are the focus of this field.ConclusionThe study revealed that the research and development of MGBA in AD rapidly progressed, but no breakthrough has been made in the past decade, it still needs to be closely combined with multidisciplinary technology to grasp the frontier hotspots. Countries should further strengthen cooperation, improve the disciplinary system, and increase the proportion of empirical research in all research.
Collapse
|
40
|
Hashim HM, Makpol S. A review of the preclinical and clinical studies on the role of the gut microbiome in aging and neurodegenerative diseases and its modulation. Front Cell Neurosci 2022; 16:1007166. [PMID: 36406749 PMCID: PMC9669379 DOI: 10.3389/fncel.2022.1007166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/03/2022] [Indexed: 12/06/2023] Open
Abstract
As the world population ages, the burden of age-related health problems grows, creating a greater demand for new novel interventions for healthy aging. Advancing aging is related to a loss of beneficial mutualistic microbes in the gut microbiota caused by extrinsic and intrinsic factors such as diet, sedentary lifestyle, sleep deprivation, circadian rhythms, and oxidative stress, which emerge as essential elements in controlling and prolonging life expectancy of healthy aging. This condition is known as gut dysbiosis, and it affects normal brain function via the brain-gut microbiota (BGM) axis, which is a bidirectional link between the gastrointestinal tract (GIT) and the central nervous system (CNS) that leads to the emergence of brain disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Here, we reviewed the role of the gut microbiome in aging and neurodegenerative diseases, as well as provided a comprehensive review of recent findings from preclinical and clinical studies to present an up-to-date overview of recent advances in developing strategies to modulate the intestinal microbiome by probiotic administration, dietary intervention, fecal microbiota transplantation (FMT), and physical activity to address the aging process and prevent neurodegenerative diseases. The findings of this review will provide researchers in the fields of aging and the gut microbiome design innovative studies that leverage results from preclinical and clinical studies to better understand the nuances of aging, gut microbiome, and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Sanmarco LM, Chao CC, Wang YC, Kenison JE, Li Z, Rone JM, Rejano-Gordillo CM, Polonio CM, Gutierrez-Vazquez C, Piester G, Plasencia A, Li L, Giovannoni F, Lee HG, Faust Akl C, Wheeler MA, Mascanfroni I, Jaronen M, Alsuwailm M, Hewson P, Yeste A, Andersen BM, Franks DG, Huang CJ, Ekwudo M, Tjon EC, Rothhammer V, Takenaka M, de Lima KA, Linnerbauer M, Guo L, Covacu R, Queva H, Fonseca-Castro PH, Bladi MA, Cox LM, Hodgetts KJ, Hahn ME, Mildner A, Korzenik J, Hauser R, Snapper SB, Quintana FJ. Identification of environmental factors that promote intestinal inflammation. Nature 2022; 611:801-809. [PMID: 36266581 PMCID: PMC9898826 DOI: 10.1038/s41586-022-05308-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies have identified risk loci linked to inflammatory bowel disease (IBD)1-a complex chronic inflammatory disorder of the gastrointestinal tract. The increasing prevalence of IBD in industrialized countries and the augmented disease risk observed in migrants who move into areas of higher disease prevalence suggest that environmental factors are also important determinants of IBD susceptibility and severity2. However, the identification of environmental factors relevant to IBD and the mechanisms by which they influence disease has been hampered by the lack of platforms for their systematic investigation. Here we describe an integrated systems approach, combining publicly available databases, zebrafish chemical screens, machine learning and mouse preclinical models to identify environmental factors that control intestinal inflammation. This approach established that the herbicide propyzamide increases inflammation in the small and large intestine. Moreover, we show that an AHR-NF-κB-C/EBPβ signalling axis operates in T cells and dendritic cells to promote intestinal inflammation, and is targeted by propyzamide. In conclusion, we developed a pipeline for the identification of environmental factors and mechanisms of pathogenesis in IBD and, potentially, other inflammatory diseases.
Collapse
Affiliation(s)
- Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph M Rone
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudia M Rejano-Gordillo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Gutierrez-Vazquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gavin Piester
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Agustin Plasencia
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucinda Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Federico Giovannoni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ivan Mascanfroni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Merja Jaronen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Moneera Alsuwailm
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick Hewson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ada Yeste
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Diana G Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Chien-Jung Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Millicent Ekwudo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maisa Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kalil Alves de Lima
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mathias Linnerbauer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruxandra Covacu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hugo Queva
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Maha Al Bladi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin J Hodgetts
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - Joshua Korzenik
- Department of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Russ Hauser
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Scott B Snapper
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
42
|
Arya JK, Kumar R, Tripathi SS, Rizvi SI. 3-Bromopyruvate, a caloric restriction mimetic, exerts a mitohormetic effect to provide neuroprotection through activation of autophagy in rats during aging. Biogerontology 2022; 23:641-652. [PMID: 36048311 DOI: 10.1007/s10522-022-09988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
In the present study, attempts have been made to evaluate the potential role of 3 Bromopyruvate (3-BP) a glycolytic inhibitor and a caloric restriction mimetic (CRM), to exert neuroprotection in rats during aging through modulation of autophagy. Young male rats (4 months), and naturally aged (22 months) male rats were supplemented with 3-BP (30 mg/kg b.w., orally) for 28 days. Our results demonstrate a significant increase in the antioxidant biomarkers (ferric reducing antioxidant potential level, total thiol, superoxide dismutase, and catalase activities) and a decrease in the level of pro-oxidant biomarkers such as protein carbonyl after 3-BP supplementation in brain tissues. A significant increase in reactive oxygen species (ROS) was observed due to the mitohormetic effect of 3-BP supplementation in the treated rats. Furthermore, the 3-BP treatment also enhanced the activities of electron transport chain complexes I and IV in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuroprotective and aging marker genes. RT-PCR data revealed that 3-BP up-regulated the expression of autophagy markers genes (Beclin-1 and LC3 β), sirtuin-1, and neuronal marker gene (NSE), respectively in the aging brain. The results suggest that 3-BP induces a mitohormetic effect through the elevation of ROS which reinforces defensive mechanism(s) targeted at regulating autophagy. These findings suggest that consistently low-dose 3-BP may be beneficial for neuroprotection during aging and age-related disorders.
Collapse
Affiliation(s)
- Jitendra Kumar Arya
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | | | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India.
| |
Collapse
|
43
|
Chen Y, Kim M, Paye S, Benayoun BA. Sex as a Biological Variable in Nutrition Research: From Human Studies to Animal Models. Annu Rev Nutr 2022; 42:227-250. [PMID: 35417195 PMCID: PMC9398923 DOI: 10.1146/annurev-nutr-062220-105852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biological sex is a fundamental source of phenotypic variability across species. Males and females have different nutritional needs and exhibit differences in nutrient digestion and utilization, leading to different health outcomes throughout life. With personalized nutrition gaining popularity in scientific research and clinical practice, it is important to understand the fundamentals of sex differences in nutrition research. Here, we review key studies that investigate sex dimorphism in nutrition research: sex differences in nutrient intake and metabolism, sex-dimorphic response in nutrient-restricted conditions, and sex differences in diet and gut microbiome interactions. Within each area above, factors from sex chromosomes, sex hormones, and sex-specific loci are highlighted.
Collapse
Affiliation(s)
- Yilin Chen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA;
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA;
| | - Sanjana Paye
- Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA;
- Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Epigenetics and Gene Regulation Program, USC Norris Comprehensive Cancer Center, Los Angeles, California, USA
- USC Stem Cell Initiative, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
44
|
Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L, Chen F, Ling Z. Gut Microbiota: A Novel Therapeutic Target for Parkinson’s Disease. Front Immunol 2022; 13:937555. [PMID: 35812394 PMCID: PMC9263276 DOI: 10.3389/fimmu.2022.937555] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease characterized by motor dysfunction. Growing evidence has demonstrated that gut dysbiosis is involved in the occurrence, development and progression of PD. Numerous clinical trials have identified the characteristics of the changed gut microbiota profiles, and preclinical studies in PD animal models have indicated that gut dysbiosis can influence the progression and onset of PD via increasing intestinal permeability, aggravating neuroinflammation, aggregating abnormal levels of α-synuclein fibrils, increasing oxidative stress, and decreasing neurotransmitter production. The gut microbiota can be considered promising diagnostic and therapeutic targets for PD, which can be regulated by probiotics, psychobiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, diet modifications, and Chinese medicine. This review summarizes the recent studies in PD-associated gut microbiota profiles and functions, the potential roles, and mechanisms of gut microbiota in PD, and gut microbiota-targeted interventions for PD. Deciphering the underlying roles and mechanisms of the PD-associated gut microbiota will help interpret the pathogenesis of PD from new perspectives and elucidate novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Manlian Zhu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiru Ye
- Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Xiumei Yan
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| | - Yiwen Cheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| | - Feng Chen
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Zongxin Ling, ; ; Feng Chen,
| | - Zongxin Ling
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Zongxin Ling, ; ; Feng Chen,
| |
Collapse
|
45
|
Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI promotes neuronal rejuvenation in aged mice. Biochem Biophys Res Commun 2022; 603:41-48. [DOI: 10.1016/j.bbrc.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022]
|
46
|
Choi H, Lee D, Mook-Jung I. Gut Microbiota as a Hidden Player in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1501-1526. [PMID: 35213369 DOI: 10.3233/jad-215235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is accompanied by cognitive impairment and shows representative pathological features, including senile plaques and neurofibrillary tangles in the brain. Recent evidence suggests that several systemic changes outside the brain are associated with AD and may contribute to its pathogenesis. Among the factors that induce systemic changes in AD, the gut microbiota is increasingly drawing attention. Modulation of gut microbiome, along with continuous attempts to remove pathogenic proteins directly from the brain, is a viable strategy to cure AD. Seeking a holistic understanding of the pathways throughout the body that can affect the pathogenesis, rather than regarding AD solely as a brain disease, may be key to successful therapy. In this review, we focus on the role of the gut microbiota in causing systemic manifestations of AD. The review integrates recently emerging concepts and provides potential mechanisms about the involvement of the gut-brain axis in AD, ranging from gut permeability and inflammation to bacterial translocation and cross-seeding.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
47
|
Korf JM, Ganesh BP, McCullough LD. Gut dysbiosis and age-related neurological diseases in females. Neurobiol Dis 2022; 168:105695. [PMID: 35307514 PMCID: PMC9631958 DOI: 10.1016/j.nbd.2022.105695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022] Open
Abstract
Historically, females have been underrepresented in biological research. With increased interest in the gut microbiome and the gut-brain axis, it is important for researchers to pursue studies that consider sex as a biological variable. The composition of the gut microbiome is influenced by environmental factors, disease, diet, and varies with age and by sex. Detrimental changes in the gut microbiome, referred to as dysbiosis, is believed to influence the development and progression of age-related neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and stroke. Many are investigating the changes in microbial populations in order or to better understand the role of the gut immunity and the microbiome in neurodegenerative diseases, many of which the exact etiology remains elusive, and no cures exist. Others are working to find diagnostic markers for earlier detection, or to therapeutically modulate microbial populations using probiotics. However, while all these diseases present in reproductively senescent females, most studies only use male animals for their experimental design. Reproductively senescent females have been shown to have differences in disease progression, inflammatory responses, and microbiota composition, therefore, for research to be translational to affected populations it is necessary for appropriate models to be used. This review discusses factors that influence the gut microbiome and the gut brain axis in females, and highlights studies that have investigated the role of dysbiosis in age-related neurodegenerative disorders that have included females in their study design.
Collapse
Affiliation(s)
- Janelle M Korf
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77370, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA.
| | - Bhanu P Ganesh
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77370, USA.
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77370, USA.
| |
Collapse
|
48
|
Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022; 182:206-218. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
Intermittent fasting (IF) has been studied for its effects on lifespan and the prevention or delay of age-related diseases upon the regulation of metabolic pathways. Mitochondria participate in key metabolic pathways and play important roles in maintaining intracellular signaling networks that modulate various cellular functions. Mitochondrial dysfunction has been described as an early feature of brain aging and neurodegeneration. Although IF has been shown to prevent brain aging and neurodegeneration, the mechanism is still unclear. This review focuses on the mechanisms by which IF improves mitochondrial function, which plays a central role in brain aging and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The cellular and molecular mechanisms of IF in brain aging and neurodegeneration involve activation of adaptive cellular stress responses and signaling- and transcriptional pathways, thereby enhancing mitochondrial function, by promoting energy metabolism and reducing oxidant production.
Collapse
Affiliation(s)
- Yihang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
| |
Collapse
|
49
|
Can dietary patterns prevent cognitive impairment and reduce Alzheimer's disease risk: exploring the underlying mechanisms of effects. Neurosci Biobehav Rev 2022; 135:104556. [PMID: 35122783 DOI: 10.1016/j.neubiorev.2022.104556] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the fastest growing cognitive decline-related neurological diseases. To date, effective curative strategies have remained elusive. A growing body of evidence indicates that dietary patterns have significant effects on cognitive function and the risk of developing AD. Previous studies on the association between diet and AD risk have mainly focused on individual food components and specific nutrients, and the mechanisms responsible for the beneficial effects of dietary patterns on AD are not well understood. This article provides a comprehensive overview of the effects of dietary patterns, including the Mediterranean diet (MedDiet), dietary approaches to stop hypertension (DASH) diet, Mediterranean-DASH diet intervention for neurological delay (MIND), ketogenic diet, caloric restriction, intermittent fasting, methionine restriction, and low-protein and high-carbohydrate diet, on cognitive impairment and summarizes the underlying mechanisms by which dietary patterns attenuate cognitive impairment, especially highlighting the modulation of dietary patterns on cognitive impairment through gut microbiota. Furthermore, considering the variability in individual metabolic responses to dietary intake, we put forward a framework to develop personalized dietary patterns for people with cognitive disorders or AD based on individual gut microbiome compositions.
Collapse
|
50
|
Verhaar BJH, Hendriksen HMA, de Leeuw FA, Doorduijn AS, van Leeuwenstijn M, Teunissen CE, Barkhof F, Scheltens P, Kraaij R, van Duijn CM, Nieuwdorp M, Muller M, van der Flier WM. Gut Microbiota Composition Is Related to AD Pathology. Front Immunol 2022; 12:794519. [PMID: 35173707 PMCID: PMC8843078 DOI: 10.3389/fimmu.2021.794519] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Several studies have reported alterations in gut microbiota composition of Alzheimer's disease (AD) patients. However, the observed differences are not consistent across studies. We aimed to investigate associations between gut microbiota composition and AD biomarkers using machine learning models in patients with AD dementia, mild cognitive impairment (MCI) and subjective cognitive decline (SCD). Materials and Methods We included 170 patients from the Amsterdam Dementia Cohort, comprising 33 with AD dementia (66 ± 8 years, 46%F, mini-mental state examination (MMSE) 21[19-24]), 21 with MCI (64 ± 8 years, 43%F, MMSE 27[25-29]) and 116 with SCD (62 ± 8 years, 44%F, MMSE 29[28-30]). Fecal samples were collected and gut microbiome composition was determined using 16S rRNA sequencing. Biomarkers of AD included cerebrospinal fluid (CSF) amyloid-beta 1-42 (amyloid) and phosphorylated tau (p-tau), and MRI visual scores (medial temporal atrophy, global cortical atrophy, white matter hyperintensities). Associations between gut microbiota composition and dichotomized AD biomarkers were assessed with machine learning classification models. The two models with the highest area under the curve (AUC) were selected for logistic regression, to assess associations between the 20 best predicting microbes and the outcome measures from these machine learning models while adjusting for age, sex, BMI, diabetes, medication use, and MMSE. Results The machine learning prediction for amyloid and p-tau from microbiota composition performed best with AUCs of 0.64 and 0.63. Highest ranked microbes included several short chain fatty acid (SCFA)-producing species. Higher abundance of [Clostridium] leptum and lower abundance of [Eubacterium] ventriosum group spp., Lachnospiraceae spp., Marvinbryantia spp., Monoglobus spp., [Ruminococcus] torques group spp., Roseburia hominis, and Christensenellaceae R-7 spp., was associated with higher odds of amyloid positivity. We found associations between lower abundance of Lachnospiraceae spp., Lachnoclostridium spp., Roseburia hominis and Bilophila wadsworthia and higher odds of positive p-tau status. Conclusions Gut microbiota composition was associated with amyloid and p-tau status. We extend on recent studies that observed associations between SCFA levels and AD CSF biomarkers by showing that lower abundances of SCFA-producing microbes were associated with higher odds of positive amyloid and p-tau status.
Collapse
Affiliation(s)
- Barbara J. H. Verhaar
- Department of Internal Medicine - Geriatrics, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Heleen M. A. Hendriksen
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Francisca A. de Leeuw
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Astrid S. Doorduijn
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Mardou van Leeuwenstijn
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Charlotte E. Teunissen
- Department of Clinical Chemistry, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- University College London (UCL) Institutes of Neurology, Faculty of Brain Sciences, London, United Kingdom
| | - Philip Scheltens
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus Medical Center (MC), Rotterdam, Netherlands
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam, Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Majon Muller
- Department of Internal Medicine - Geriatrics, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Department of Epidemiology and Data Science, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|