1
|
Patel DK, Won SY, Han SS. Banana peels-derived shape-regulated nanocellulose for effective adsorption of Nile blue A dye. Int J Biol Macromol 2024; 293:139384. [PMID: 39743095 DOI: 10.1016/j.ijbiomac.2024.139384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Industrial wastes, including dyes and other chemicals, are significant sources of water pollution. The adsorption process is often explored in water purification. However, developing low-cost, sustainable adsorbents with good dye removal capacity remains challenging. We developed shape-regulated nanocellulose from waste banana peels through chemical treatment and examined their Nile blue A dye removal efficiency to address these limitations. The average diameter and length spherical (s-NC) and rod-shaped nanocellulose (CNCs) were 43.29 ± 5.97 and 137.61 ± 3.86, respectively. The zeta potential of the s-NC and CNCs was -34.5 ± 0.14 and - 27.6 ± 0.21 mV, respectively. The s-NC demonstrated improved thermal stability and cytocompatibility vis-à-vis CNCs. The s-NC exhibited enhanced dye removal potential compared to CNCs. Nearly 63.75 % and 87.32 % of dye were removed with 10 mg of CNCs and s-NC within 10 min of contact time, respectively. The adsorption isotherm was best fitted with Freundlich isotherm with a maximum adsorption capacity (qm) of 54.37 mg/g. Furthermore, the adsorbent demonstrated good recyclability and maintained ~68 % removal efficiency until six cycles. The adsorbent exhibited prolonged periods of stability under dye solution. These findings open a new direction in developing cost-effective and sustainable adsorbents/composite membranes by selecting suitable nanomaterial for water purification.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Kaur M, Rohilla D, Chauhan M, Kumar V, Singh K. Synthesis and application of natural clam shell derived adsorbents for removal of azo dyes from wastewater. CLEANER ENGINEERING AND TECHNOLOGY 2024; 23:100854. [DOI: 10.1016/j.clet.2024.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Knežević N, Vuksanović MM, Banjanac K, Pantić K, Veličković Z, Cvijetić I, Marinković A, Milošević M. Cationic waste hemp fibers-based membrane: Case study of anionic pollutants removal through environmentally friendly processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123174. [PMID: 39504666 DOI: 10.1016/j.jenvman.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In this study, waste hemp fibers were transformed into cationically modified lignocellulosic adsorbent through a three-step process. First, a delignification/defibrillation pretreatment was performed, followed by quaternization of fibers using the synthesized ionic liquid chlorocholine chloride-urea (CCC-U). Pressure-assisted cross-linking of modified fibres, using a citric acid, produced new membrane (CCC-UHM). The removal of anionic dyes (Acid Yellow 36 (AY36), Congo Red (CR), Acid Green 25 (AG25), and Acid Blue 92 (AB92)), and oxyanions (As(V) and Cr(VI)) was tested in batch and column system. The structural characteristics and chemical properties of the syntesised materials were investigated by SEM, FTIR, Raman, XPS, XRD, specific density, porosity and point of zero charges analysis. The endothermic and spontaneous equilibration of the system resulted in high capacity (qm), i.e., 302.9 mg g-1 (AY36), 456.8 mg g-1 (CR), 812.8 mg g-1 (AG25), 587.6 mg g-1 (AB92), 107.9 mg g-1 (As(V)), and 67.84 mg g-1 (Cr(VI)) at 25 °C, using the Langmuir model. The optimum pH for the adsorption process was 7. The multi-cycle adsorption/desorption process was followed by either decolorization, using laccase from M. thermophile expressed in Aspergillus oryzae (Novozym 51,003® laccase) immobilized on amino-modified fibers as biocatalyst, or photocatalytic degradation, in the presence of zinc oxide. The high decolorization efficiency (96%) observed for AG25 and AB92 underscores the considerable potential of laccase immobilized preparations as sustainable and eco-friendly approach for treating dye-contaminated wastewater. Photodegradation process provided low environmental threat of processed water, and biodegradabilty of exhausted membrane confirmed the circularity of the developed technology with implemented principles of sustainability.
Collapse
Affiliation(s)
- Nataša Knežević
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, 11351, Belgrade, Serbia.
| | - Marija M Vuksanović
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, 11351, Belgrade, Serbia.
| | - Katarina Banjanac
- Innovation Center of Faculty of Technology and Metallurgy Ltd, Karnegijeva 4, 11120, Belgrade, Serbia.
| | - Krstimir Pantić
- University of Priština, Faculty of Technical Sciences, Knjaza Miloša 7, 38220, Kosovska Mitrovica, Serbia.
| | - Zlate Veličković
- University of Defence, Military Academy, Veljka Lukica Kurjaka 33, 11042, Belgrade, Serbia.
| | - Ilija Cvijetić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia.
| | - Aleksandar Marinković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120, Belgrade, Serbia.
| | - Milena Milošević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia.
| |
Collapse
|
4
|
Sargazi S, Ghaneian MT, Rahmani M, Ebrahimi AA. Application of cloud point extraction coupled with derivative spectrophotometry to remove binary mixture of Cresol Red and Methyl Orange dyes from aqueous solutions: Box-behnken design optimization. Heliyon 2024; 10:e39628. [PMID: 39553627 PMCID: PMC11566683 DOI: 10.1016/j.heliyon.2024.e39628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Cloud point extraction (CPE) was employed to eliminate Cresol Red (CR) and Methyl Orange (MO), as anionic dyes in a binary mixture from aqueous solutions. To remove these dyes Triton X-100 and NaCl at pH 5.7 were utilized. In this vein, wavelengths of 365 nm and 520 nm were respectively selected for CR and MO using the derivative spectrophotometer and first-order derivatives. According to based on the first-order derivative spectrophotometry, the recoveries rised from 94.3 to 99.5 % for CR and from 94.6 to 99.1 % for MO. In the following, the response surface methodology was administered to investigate the effect of surfactant concentration, temperature, and time on the dyes' elimination process. The quadratic mathematical model was obtained from the Box-Behnken design (BBD) matrix and developed to estimate the impact of each variable and its relationship with the elimination parameters. Later, coefficients of determination (R2) ≥0.97 were obtained using model equations and comparison between predicted and empirical values. Analysis of variance estimated the models' significance and anticipation while processing the study variables. Based on the results, the model of pseudo-first-order in kinetic modelling can best describe dyes adsorption among the studied models. The analyzed dyes adhere to the Langmuir model with correlation values of 0.86 for CR and 0.87 for MO. The monolayer capacity (Qmax) was determined as 0.77 mol/mol for CR and 26.41 mol/mol for MO.
Collapse
Affiliation(s)
- Shahnaz Sargazi
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Health Promotion Research Center, Department of Environmental Health Engineering, School of Public Health, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Taghi Ghaneian
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mashaallah Rahmani
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran
| | - Ali Asghar Ebrahimi
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
5
|
Akinyemi A, Agboola O, Alagbe E, Igbokwe E. The role of catalyst in the adsorption of dye: Homogeneous catalyst, heterogeneous catalyst, and advanced catalytic activated carbon, critical review. DESALINATION AND WATER TREATMENT 2024; 320:100780. [DOI: 10.1016/j.dwt.2024.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Nawaz S, Salman SM, Ali A, Ali B, Shah SN, Rahman LU. Kinetics and thermodynamics investigations of efficient and eco-friendly removal of alizarin red S from water via acid-activated Dalbergia sissoo leaf powder and its magnetic iron oxide nanocomposite. Front Chem 2024; 12:1457265. [PMID: 39385963 PMCID: PMC11462623 DOI: 10.3389/fchem.2024.1457265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
The present work aimed to highlight an efficient, readily accessible, and cost-effective adsorbent derived from Dalbergia sissoo (DS) leaf powder for removing the environmentally hazardous dye "alizarin red S" (ARS) from hydrous medium. A variant of the adsorbent is activated via sulfuric acid and composited with magnetic iron oxide nanoparticles (DSMNC). Both adsorbents are thoroughly characterized using techniques such as Fourier transform infrared spectroscopy, point of zero charge, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, which show that they have a porous structure rich in active sites. Different adsorption conditions are optimized with the maximum removal efficiency of 76.63% for DS and 97.89% for DSMNC. The study was highlighted via the application of various adsorption isotherms, including Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich, to adsorption data. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were utilized to investigate the kinetics and mechanism of adsorption. The Freundlich model and pseudo-second-order kinetics exhibited the best fit, suggesting a combination of physical interactions, as confirmed by the D-R and Temkin models. The dominant adsorbate-adsorbent interactive interactions responsible for ARS removal were hydrogen bonding, dispersion forces, and noncovalent aromatic ring adsorbent pi-interactions. Thermodynamic parameters extracted from adsorption data indicated that the removal of the mutagenic dye "ARS" was exothermic and spontaneous on both DS and DSMNC, with DSMNC exhibiting higher removal efficiency.
Collapse
Affiliation(s)
- Saleem Nawaz
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan
| | | | - Asad Ali
- Energy Engineering, Division of Energy Science, Lulea University of Technology, Lulea, Sweden
| | - Basit Ali
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan
| | - Syed Nusrat Shah
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan
| | - Latif Ur Rahman
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
7
|
Almahri A, El-Metwaly NM. Enhancing methyl violet 2B pollutant removal from wastewater using Al-MOF encapsulated with poly (itaconic acid) grafted crosslinked chitosan composite sponge: Synthesis, characterization, DFT calculation, adsorption optimization via Box-Behnken Design. Int J Biol Macromol 2024; 276:133909. [PMID: 39025186 DOI: 10.1016/j.ijbiomac.2024.133909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
In this research, aluminum metal-organic framework encapsulated with poly (itaconic acid) grafted crosslinked chitosan composite sponge (Al-MOF@PIC) was prepared. SEM, FTIR, XPS, XRD, and BET techniques were employed to thoroughly characterize the synthesized material and establish its structure and characteristics. The study discovered that the Al-MOF@PIC is an efficient way to remove dyes, which constitute a significant number of contaminants in industrial wastewater. Subsequently the adsorption of methyl violet 2B (MV-2B) dye, the surface area, pore size, and pore volume of the adsorbent decreased from 1860.68 m2/g, 1.62 nm, and 1.52 cc/g to 1426.45 m2/g, 1.11 nm, and 0.92 cc/g, individually. This modification suggested that a portion of the MV-2B dye had been removed by adsorption over the adsorbent's pores. The excellent adsorption capacity of the material was further confirmed by batch adsorption tests, which displayed a maximum adsorption capability of 646.76 mg/g for the elimination of MV-2B dye. The high adsorption energy of 26.8 kJ/mol designates that chemisorption is primarily responsible for MV-2B dye adsorption against the sponge adsorbent. The Al-MOF@PIC composite sponge demonstrated exceptional reusability over six cycles, demonstrating its strength and durability. The Al-MOF@PIC composite sponge successfully removes MV-2B from water by pore filling, π-π stacking, hydrogen bonding, and electrostatic interactions, which are the key mechanisms behind the adsorption of the dye pollutant. Its potential for practical applications is further demonstrated using Box Behnken-design (BBD) to optimize the adsorption consequences.
Collapse
Affiliation(s)
- Albandary Almahri
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah 24230, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
8
|
El-Kholy SA. Environmentally Benign Freeze-dried Biopolymer-Based Cryogels for Textile Wastewater Treatments: A review. Int J Biol Macromol 2024; 276:133931. [PMID: 39032896 DOI: 10.1016/j.ijbiomac.2024.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Motivated by sustainability and environmental protection, great efforts have been paid towards water purification and attaining complete decolorization and detoxification of polluted water effluent. Textile effluent, the main participant in water pollution, is a complicated mixture of toxic pollutants which seriously impact human health and the entire ecosystem. Developing effective materials for potential removal of the water contaminants is urgent. Recently, cryogels have been applied in wastewater sectors due to their unique physiochemical attributes(e.g. high surface area, lightweight, porosity, swelling-deswelling, and high permeability). These features robustly affected the cryogel's performance, as adsorbent material, particularly in wastewater sectors. This review serves as a detailed reference to the cryogels derived from biopolymers and applied as adsorbents for the purification of textile drainage. We displayed an overview of: the existing contaminants in textile effluents (dyes and heavy metals), their sources, and toxicity; advantages and disadvantages of the most common treatment techniques (biodegradation, advanced chemical oxidation, membrane filtration, coagulation/flocculation, adsorption). A simple background about cryogels (definition, cryogelation technique, significant features as adsorbents, and the adsorption mechanisms) is also discussed. Finally, the bio-based cryogels dependent on biopolymers such as chitosan, xanthan, cellulose, PVA, and PVP, are fully discussed with evaluating their maximum adsorption capacity.
Collapse
Affiliation(s)
- Samar A El-Kholy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koom 32511, Egypt.
| |
Collapse
|
9
|
Sibera D, Pełech I, Staciwa P, Pełech R, Ekiert E, Kayalar GY, Narkiewicz U. Activated Iron-Porous Carbon Nanomaterials as Adsorbents for Methylene Blue and Congo Red. Molecules 2024; 29:4090. [PMID: 39274938 PMCID: PMC11397574 DOI: 10.3390/molecules29174090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The adsorption properties of microporous carbon materials modified with iron citrate were investigated. The carbon materials were produced based on resorcinol-formaldehyde resin, treated in a microwave assisted solvothermal reactor, and next carbonized in the tube furnace at a temperature of 700 °C under argon atmosphere. Iron citrate was applied as a modifier, added to the material precursor before the synthesis in the reactor, in the quantity enabling to obtain the nanocomposites with C:Fe mass ratio equal to 10:1. Some samples were additionally activated using potassium oxalate or potassium hydroxide. The phase composition of the produced nanocomposites was determined using the X-ray diffraction method. Scanning and transmission electron microscopy was applied to characterize the changes in samples' morphology resulting from the activation process and/or the introduction of iron into the carbon matrix. The adsorption of nitrogen from gas phase and dyes (methylene blue and congo red) from water solution on the obtained materials was investigated. In the case of methylene blue, the adsorption equilibrium isotherms followed the Langmuir isotherm model. However, in the case of congo red, a linear dependency of adsorption and concentration in a broad equilibrium concentration range was found and well-described using the Henry equation. The most efficient adsorption of methylene blue was noticed for the sample activated with potassium hydroxide and modified with iron citrate, and a maximum adsorption capacity of 696 mg/g was achieved. The highest congo red adsorption was noticed for the non-activated sample modified with iron citrate, and the partition coefficient for this material equaled 171 dm3/g.
Collapse
Affiliation(s)
- Daniel Sibera
- Department of General Civil Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 50a, 70-311 Szczecin, Poland
| | - Iwona Pełech
- Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego,10, 70-322 Szczecin, Poland
| | - Piotr Staciwa
- Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego,10, 70-322 Szczecin, Poland
| | - Robert Pełech
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
| | - Ewa Ekiert
- Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego,10, 70-322 Szczecin, Poland
| | - Gulsen Yagmur Kayalar
- Department of Chemical Engineering, Faculty of Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey
| | - Urszula Narkiewicz
- Department of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego,10, 70-322 Szczecin, Poland
| |
Collapse
|
10
|
Das T, Patel DK. Efficient removal of cationic dyes using lemon peel-chitosan hydrogel composite: RSM-CCD optimization and adsorption studies. Int J Biol Macromol 2024; 275:133561. [PMID: 38960260 DOI: 10.1016/j.ijbiomac.2024.133561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The most prominent and easily identifiable factor of water purity is its colour, which may be both physically undesirable, and act as an alert towards potential environmental contamination. The current study describes the optimum synthesis technique for Lemon Peel-Chitosan hydrogel using the Response Surface Methodology integrated Central composite Design (RSM-CCD). This adsorbent is both environmentally friendly and cost-effective. The hydrogel exhibited a maximal dye removal capacity of 24.984, 24.788, 24.862, 23.483, 24.409, and 24.726 mg g-1, for 10 mg L-1 aqueous medium of Safranin O, Methylene blue, Basic fuchsin, Toluidine blue, Brilliant green and Crystal violet, respectively. The adsorption kinetics and isotherm data suggest that the Pseudo second-order kinetic and Freundlich adsorption isotherm models precisely represent the respective behaviour of all the dyes. The thermodynamic viability of the process is determined by the values of ΔG, ΔH, and ΔS. The probable mechanism of adsorption was the electrostatic interaction between the dye molecules and the hydrogel. The regenerated hydrogel had removal efficiencies of over 80 % even after enduring six cycles. Hence, the exceptional recyclability and utility of the adsorbent show their sustainability for wastewater treatment in textile factories.
Collapse
Affiliation(s)
- Triparna Das
- Analytical Chemistry Division (ASSIST), CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra K Patel
- Analytical Chemistry Division (ASSIST), CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Komby Abdulla N, Alzahrani EA, Dwivedi P, Goel S, Hafeez S, Khulbe M, Ilahi Siddiqui S, Oh S. MnO 2 decoration onto the guava leaves: A sustainable and cost-effective material for methylene blue dye removal. Heliyon 2024; 10:e34267. [PMID: 39149003 PMCID: PMC11325273 DOI: 10.1016/j.heliyon.2024.e34267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 08/17/2024] Open
Abstract
Excessive number of dyes in water is becoming the main cause of water pollution, which is very important to remove because it is harmful. Dye contaminated water is being treated by various methods. Adsorption method can be considered best for the study of dye removal due to several technological reasons. The adsorption method has also been emphasized in this study. In the present work, a nano-bio-composite was fabricated by growing manganese oxide nanoparticles on abundant cellulosic guava leaf powder. This allows nanocomposite to be prepared in large quantities at nominal cost. The characterization technique confirmed the irregular growth of manganese oxide nanoparticles onto the guava leaf powder. The electrostatic and non-electrostatic interactions was confirmed in between manganese oxide nanoparticles and the carbon structure of guava leaf powder. The massive functional groups were found to be in the prepared nano-bio-composite. The grain size of prepared material was in nano range. The developed nano-bio-composite was used to remove methylene blue from water. This showed a very good adsorptive capacity for methylene blue. The analyzed adsorption data was modelled through isotherms, kinetics and thermodynamics models. The nature of the adsorption process was determined to be spontaneous and exothermic. The reusability test was carried out for five adsorption-desorption cycles. The reusability results suggested the better removal efficiency (%) in the first two cycles with only 20 % reduction in removal efficiency (%). The leaching test result revealed the good stability of MnO2/GL at neutral pH. It was a unique and cheap adsorbent of its kind, which had not been noticed anywhere before.
Collapse
Affiliation(s)
| | - Elham A Alzahrani
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Poonam Dwivedi
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Shruti Goel
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Sumbul Hafeez
- Department of Civil and Environmental Engineering, Villanova University, 800 E, Lancaster Ave, Villanova, PA, 19085, USA
| | - Mihir Khulbe
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Ramjas College, University of Delhi, Delhi-110007, India
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, South Korea
| |
Collapse
|
12
|
Hossain MT, Ormond RB. Assessing the Impact of Pre-Soaking to Enhance Laundering Efficacy of Firefighter Turnout Gear. TOXICS 2024; 12:544. [PMID: 39195646 PMCID: PMC11358897 DOI: 10.3390/toxics12080544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Firefighters are exposed to hazardous chemicals at fire scenes, including polycyclic aromatic hydrocarbons (PAHs) among many others, which pose significant health risks. Current laundering practices are ineffective at removing persistent contaminants from turnout gear, necessitating further research to optimize cleaning methods. This study explores the impact of presoaking prior to the laundering process and the factors that can affect its effectiveness, including the presoaking duration and detergent concentration, in PAH removal when laundering. For this, contaminated fabric swatches were subjected to various presoaking durations (1, 3, and 12 h) and detergent concentrations (99:1 and 90:10 water-to-detergent ratios) before undergoing bench-scale washing. The cleaning efficacy was assessed for 16 PAH compounds, including both low-molecular-weight (LMW) PAHs and high-molecular-weight (HMW) PAHs. Moreover, the removal mechanisms of PAHs from turnout gear were fundamentally explained using partition coefficients and standard affinities with different parameters during washing. The results demonstrate that 3 h and 12 h of presoaking lead to 2.8 and 4.3 times greater HMW PAH removal, respectively. After 12 h of presoaking in a 90:10 water-to-detergent ratio, 97% of the LMW PAHs and 78% of the HMW PAHs were removed, compared to only an 11% removal of the HMW PAHs with a 99:1 ratio. Additionally, direct washing with a 90:10 ratio achieved comparable efficacy to that of presoaking with the same water-to-detergent ratio, indicating the crucial role of detergent concentration during laundering. These findings offer valuable insights for optimizing firefighter safety practices, emphasizing the role of presoaking and the appropriate methods to perform presoaking to mitigate firefighters' occupational exposure risks to toxic substances and ensure gear reliability.
Collapse
Affiliation(s)
| | - R. Bryan Ormond
- Textile Protection and Comfort Center (TPACC), Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA;
| |
Collapse
|
13
|
Jayan A, Nizam A, Nagella P, Veerappa Lakshmaiah V. Acidified groundnut cake for enhanced bio adsorption of anionic textile dye Reactive Red 195. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1231-1242. [PMID: 38279798 DOI: 10.1080/15226514.2024.2305271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This study focuses on the improvement of bioremediation of textile dye Reactive Red 195 using agro-industrial waste, groundnut oil cake (GNOC) obtained after oil-pressing. The treatment of GNOC with 1 N H2SO4 had resulted in physiochemical changes on the insoluble porous adsorbent, which improved their adsorption efficiency. The dye removal efficiency increased from 55% to 94% on acidification of GNOC. The raw groundnut oil cake (RGNOC) and acid-treated groundnut oil cake (AGNOC) were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction, and zeta potential. The rate and efficiency of dye adsorption were examined using adsorption kinetics and isotherm models. The results confirm that acid-treated GNOC eliminates impurities, alter the surface functional groups, and significantly increase porous surface areas of RGNOC. The investigation of key factors such as contact time, initial concentration of dye, static/agitation impact, particle size, and adsorbent dose had significantly influenced adsorption capacity of GNOC. Adsorption of dye fits best into the Langmuir model and equilibrium data of dye on AGNOC was explained by psuedo-second-order reaction with maximum adsorption capacity of 12.65 mg/g. This emphasis AGNOC has a very excellent potential to remove the textile dye Reactive Red dye from industrial effluent.
Collapse
Affiliation(s)
- Arpita Jayan
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | - Aatika Nizam
- Deparment of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | | |
Collapse
|
14
|
Erjeno DD, Asequia DMA, Osorio CKF, Omisol CJM, Etom AE, Hisona RMR, Tilendo AC, Triana APG, Dumancas GG, Zoleta JB, Alguno AC, Malaluan RM, Lubguban AA. Facile Synthesis of Band Gap-Tunable Kappa-Carrageenan-Mediated C,S-Doped TiO 2 Nanoparticles for Enhanced Dye Degradation. ACS OMEGA 2024; 9:21245-21259. [PMID: 38764615 PMCID: PMC11097159 DOI: 10.1021/acsomega.4c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Semiconducting nanoparticles (SNPs) have garnered significant attention for their role in photocatalysis technology, offering a cost-effective and highly efficient method for breaking down organic dyes. Of particular significance within SNP-based photocatalysis are tunable band gap TiO2 nanoparticles (NPs), which demonstrate remarkable enhancement in photocatalytic efficiency. In the present work, we introduce an approach for the synthesis of TiO2 NPs using kappa-carrageenan (κ-carrageenan), not just as a reducing and stabilizing agent but as a dopant for the resulting TiO2 NPs. During the synthesis of TiO2 NPs in the presence of sulfate-rich carrageenan, the process predominantly leaves residual sulfur and carbon. The presence of residual carbon, in conjunction with sulfur doping, as indicated by fast FTIR spectra, XPS, and EDX, leads to a significant reduction in the band gap of the resulting composite to 2.71 eV. The reduction of composite band gap yields remarkable degradation of methylene blue (99.97%) and methyl orange (97.84%). This work presents an eco-friendly and highly effective solution for the swift removal of environmentally harmful organic dyes.
Collapse
Affiliation(s)
- Daisy
Jane D. Erjeno
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Dan Michael A. Asequia
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Carlo Kurt F. Osorio
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Christine Joy M. Omisol
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Andrei E. Etom
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Renzo Miguel R. Hisona
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Amierson C. Tilendo
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
- Chemical
Engineering Department, Mindanao State University
− Marawi, Marawi City 9700, Philippines
| | - Ann Pearl G. Triana
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Gerard G. Dumancas
- Department
of Chemistry, The University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Joshua B. Zoleta
- Department
of Materials Resources Engineering and Technology, Mindanao State University − Iligan Institute of Technology, Iligan City, 9200 Philippines
| | - Arnold C. Alguno
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
- Department
of Physics, Mindanao State University −
Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Roberto M. Malaluan
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
- Department
of Materials Resources Engineering and Technology, Mindanao State University − Iligan Institute of Technology, Iligan City, 9200 Philippines
| | - Arnold A. Lubguban
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
- Department
of Materials Resources Engineering and Technology, Mindanao State University − Iligan Institute of Technology, Iligan City, 9200 Philippines
| |
Collapse
|
15
|
Tan YY, Abdul Raman AA, Zainal Abidin MII, Buthiyappan A. A review on sustainable management of biomass: physicochemical modification and its application for the removal of recalcitrant pollutants-challenges, opportunities, and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36492-36531. [PMID: 38748350 DOI: 10.1007/s11356-024-33375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Adsorption is one of the most efficient methods for remediating industrial recalcitrant wastewater due to its simple design and low investment cost. However, the conventional adsorbents used in adsorption have several limitations, including high cost, low removal rates, secondary waste generation, and low regeneration ability. Hence, the focus of the research has shifted to developing alternative low-cost green adsorbents from renewable resources such as biomass. In this regard, the recent progress in the modification of biomass-derived adsorbents, which are rich in cellulosic content, through a variety of techniques, including chemical, physical, and thermal processes, has been critically reviewed in this paper. In addition, the practical applications of raw and modified biomass-based adsorbents for the treatment of industrial wastewater are discussed extensively. In a nutshell, the adsorption mechanism, particularly for real wastewater, and the effects of various modifications on biomass-based adsorbents have yet to be thoroughly studied, despite the extensive research efforts devoted to their innovation. Therefore, this review provides insight into future research needed in wastewater treatment utilizing biomass-based adsorbents, as well as the possibility of commercializing biomass-based adsorbents into viable products.
Collapse
Affiliation(s)
- Yan Ying Tan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdul Aziz Abdul Raman
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Izzudin Izzat Zainal Abidin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Archina Buthiyappan
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Olusegun SJ, Rodrigues GLS, Tiwari S, Krajewski M, Mohallem NDS, Sobczak K, Donten M, Krysinski P. Removal of doxorubicin hydrochloride and crystal violet from aqueous solutions using spray-dried niobium oxide coated with chitosan-activated carbon: Experimental and DFT calculations. Int J Biol Macromol 2024; 266:131158. [PMID: 38552682 DOI: 10.1016/j.ijbiomac.2024.131158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Spray-dried niobium oxide coated with chitosan-activated carbon (NIC) was synthesized and used to remove doxorubicin hydrochloride and crystal violet from aqueous solutions under different parameters such as solution pH (2, 4, 6, and 8), contact time (1 to 9 h), initial concentration (20 to 200 mg L-1), and competing ions (0.1 M of CaCl2 and NaCl). The addition of 5 % chitosan-activated carbon to the matrix of niobium oxide slightly increased the specific surface area from 26 to 30 m2 g-1, with the introduction of a carboxylic functional group. This led to an increase in the amount of adsorbed doxorubicin hydrochloride (DOH) from 30 to 44 mg g-1 and that of crystal violet (CV) from 15 to 32 mg g-1 from the initial respective 100 mg L-1 at pH 8. The data from the concentration study fitted into Liu isotherm having adsorption capacity of 128 and 57 mg g-1 for DOH and CV respectively, while pseudo first and second order are more suitable for adsorption kinetics. The additional functional groups on the IR spectrum of NIC after the adsorption of DOH and CV confirmed the interaction between NIC and the adsorbates' molecules. The mechanism of adsorption was supported by DFT calculations.
Collapse
Affiliation(s)
- Sunday J Olusegun
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland..
| | - Gabriel L S Rodrigues
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Santosh Tiwari
- Department of Chemistry, Nitte Mahalinga Adyanthaya Memorial Institute of Technology, Mangaluru, Karnataka 547110, India
| | | | - Nelcy D S Mohallem
- Universidade Federal de Minas Gerais, Departamento de Química, Laboratório de Materiais Nanoestruturados, Belo Horizonte, MG, Brazil
| | - Kamil Sobczak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Mikołaj Donten
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Pawel Krysinski
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland..
| |
Collapse
|
17
|
ÖZÇELİK G, ÇAVUŞOĞLU FCİVAN, BAYAZİT ŞS, AYDINOĞLU ŞÖZKARA. Photocatalytic degradation of methylene blue using a Cu 2+-modified bimetallic titanium-based metal organic framework (MIL-125) photocatalyst with enhanced visible light activity. Turk J Chem 2024; 48:756-769. [PMID: 39512743 PMCID: PMC11539909 DOI: 10.55730/1300-0527.3695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 10/24/2024] [Accepted: 04/30/2024] [Indexed: 11/15/2024] Open
Abstract
Cu-modified TiO2 nanoparticles derived from MIL-125 were prepared by solvothermal method for the photocatalytic degradation of methylene blue under visible light illumination. For boosting the photocatalytic performance as well as the physicochemical properties of bare sample, 2 wt % Cu2+ ions were integrated into the nodes of the MIL-125 framework. The results showed that incorporation of 2 wt % Cu2+ ions into the MOF framework had significant effects on the crystallographic structure and morphological and optical properties of photocatalytic samples, as well as catalytic activity for the methylene blue degradation reaction. The high activity profile of Cu-modified TiO2 nanoparticles derived from MIL-125 might be attributed to the increased thermal stability, lower band gap energy, and smaller crystallite size of the sample. Activity tests were carried out at five varying MB initial concentrations and four different pH values. According to the findings, an increase in initial dye concentration resulted in a decrease in degradation efficiency. It was observed that increasing the pH value in the range of 3-11 initially led to higher degradation rates until pH 7, after which the degradation rate began to decline.
Collapse
Affiliation(s)
- Gülsüm ÖZÇELİK
- Department of Chemical Engineering, Faculty of Engineering and Architecture, İstanbul Beykent University, İstanbul, Turkiye
| | - Ferda CİVAN ÇAVUŞOĞLU
- Department of Chemical Engineering, Faculty of Engineering and Architecture, İstanbul Beykent University, İstanbul, Turkiye
| | - Şahika Sena BAYAZİT
- Institute of Nanotechnology and Biotechnology, İstanbul University-Cerrahpaşa, İstanbul, Turkiye
| | - Şeyma ÖZKARA AYDINOĞLU
- Department of Chemical Engineering, Faculty of Engineering and Architecture, İstanbul Beykent University, İstanbul, Turkiye
| |
Collapse
|
18
|
Xu Y, Wang Q, Wang Y, Hu F, Sun B, Gao T, Zhou G. One-Step Synthesis of Polyethyleneimine-Grafted Styrene-Maleic Anhydride Copolymer Adsorbents for Effective Adsorption of Anionic Dyes. Molecules 2024; 29:1887. [PMID: 38675707 PMCID: PMC11054579 DOI: 10.3390/molecules29081887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Wastewater containing organic dyes has become one of the important challenges in water treatment due to its high salt content and resistance to natural degradation. In this work, a novelty adsorbent, PEI-SMA, was prepared by grafting polyethyleneimine (PEI) onto styrene-maleic anhydride copolymer (SMA) through an amidation reaction. The various factors, such as pH, adsorbent dosage, contact time, dye concentration, and temperature, which may affect the adsorption of PEI-SMA for Reactive Black 5 (RB5), were systematically investigated by static adsorption experiments. The adsorption process of PEI-SMA for RB5 was more consistent with the Langmuir isotherm model and the pseudo-second-order model, suggesting a single-layer chemisorption. PEI-SMA exhibits excellent adsorption performance for RB5 dye, with a maximum adsorption capacity of 1749.19 mg g-1 at pH = 2. Additionally, PEI-SMA exhibited highly efficient RB5 competitive adsorption against coexisting Cl- and SO42- ions and cationic dyes. The adsorption mechanism was explored, and it can be explained as the synergistic effect of electrostatic interaction, hydrogen bonding and π-π interaction. This study demonstrates that PEI-SMA could act as a high performance and promising candidate for the effective adsorption of anionic dyes from aqueous solutions.
Collapse
Affiliation(s)
- Yao Xu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
| | - Qinwen Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
| | - Yuanbo Wang
- Shandong Land and Space Ecological Restoration Center, Jinan 250014, China;
| | - Falu Hu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
| | - Bin Sun
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Tingting Gao
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.X.); (Q.W.); (B.S.); (G.Z.)
| |
Collapse
|
19
|
Sayed NSM, Ahmed ASA, Abdallah MH, Gouda GA. ZnO@ activated carbon derived from wood sawdust as adsorbent for removal of methyl red and methyl orange from aqueous solutions. Sci Rep 2024; 14:5384. [PMID: 38443380 PMCID: PMC10915167 DOI: 10.1038/s41598-024-55158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Activated carbon (AC) and ZnO@AC composite derived from wood sawdust were prepared to be utilized as adsorbents for methyl red (MR) and methyl orange (MO) anionic dyes from the aqueous solutions. The maximum adsorption capacity of the AC and ZnO@AC composite toward both dyes was achieved in the strong acidic medium (pH = 3), and under stirring for 60 min. The kinetic studies revealed that the adsorption of MR and MO dyes onto the AC and ZnO@AC composite fitted well with the pseudo-second-order model. Furthermore, the intraparticle diffusion and Elovich kinetic models confirmed the adsorption is controlled by external surfaces, and the adsorption is chemisorption process. The isotherm results indicated that the MR and MO dye adsorption occurred via monolayer adsorption, and the estimated maximum adsorption capacities of both dyes onto the ZnO@AC composite were higher than those achieved by AC. Thermodynamic analysis suggested that the adsorption is endothermic and spontaneous. The mechanism for MR, and MO dyes adsorption onto the AC and ZnO@AC composite is proposed to be controlled by electrostatic bonding, π-π interactions, and ion exchange, while H-bonding and n-π interactions were minor contributors. This study reveals the potential use of carbon-based adsorbents derived from wood sawdust for the removal of anionic dyes from wastewater.
Collapse
Affiliation(s)
- Nessma S M Sayed
- Chemistry Department, Faculty of Science, Al-Azhar University, Asyût, 71524, Egypt
| | - Abdelaal S A Ahmed
- Chemistry Department, Faculty of Science, Al-Azhar University, Asyût, 71524, Egypt.
| | - Mohamed H Abdallah
- Chemistry Department, Faculty of Science, Al-Azhar University, Asyût, 71524, Egypt
| | - Gamal A Gouda
- Chemistry Department, Faculty of Science, Al-Azhar University, Asyût, 71524, Egypt
| |
Collapse
|
20
|
Saravanakumar R, Sathiyamoorthi E, Rajkumar S, Lee J, Kottaisamy M. Synergistic effect of adsorption and photo-catalysis on the removal of hazardous dyes using steam exploded banana fiber derived micro-cellulose. Int J Biol Macromol 2024; 258:128970. [PMID: 38154723 DOI: 10.1016/j.ijbiomac.2023.128970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/23/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
The utilization of banana fiber derived from micro-cellulose (MC) was exploited as a supporting material for advanced oxidation process (AOP) on the degradation of methylene blue and methyl violet dyes in the presence of H2O2-UV in aqueous medium for the first time using green chemistry protocols. Additionally, it was also effectively utilized for the adsorption of methylene blue dye using addition of H2O2 in the presence of sunlight. The MC powder was fabricated using an acid alkali process from the pseudo-stem of a banana tree. The as-fabricated MC powder was systematically characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometer (EDX), and zero point charge (pHzpc). The AOP assisted degradation of dye molecules was monitored by using calorimetric techniques as a function of dye concentration and pH in a batch reactor. In a short period of time, the maximum degradation efficiency of 98 % of methylene blue was achieved using MC powder assisted H2O2 under UV irradiation at a minimum irradiation time of 120 min at pH 7.0 using dosage of 0.2 g/L. However, in the absence of UV light, the degradation efficiency of MC powder assisted H2O2 was only about 5-10 % without UV light irradiation. The dye removal was studied as a function of various operational parameters such as pH (3-11), catalyst dose (0.2-0.6 g/L), and initial dye concentration (100-400 mg/L). In the presence of H2O2-sunlight and 0.2 g/L of dosage at pH 7.0 at a minimum contact time of 120 min, MC fiber showed maximum adsorption capacities of 98% and 85% for 100 mg/L and 400 mg/L of methylene blue concentrations. According to the obtained data, the adsorption of methylene blue dye on MC follows the Freundlich isotherm model (R2 = 0.9886) and pseudo-first-order kinetic model (R2 = 0.9596) due to the higher regression coefficients. This process of dye degradation and adsorption process is a novel one and environmentally benign for an effective removal of hazardous dyes.
Collapse
Affiliation(s)
- Rajagopal Saravanakumar
- Sethu Institute of Technology, Department of Chemistry, Kariapatti, Virthunagar District, Tamil Nadu, India
| | | | - Subramanium Rajkumar
- Department of Chemistry, SRM Madurai College for Engineering and Technology, Pottapalayam, Tamil Nadu 630611, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Muniasamy Kottaisamy
- Department of Chemistry, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India.
| |
Collapse
|
21
|
Islam MA, Nazal MK, Angove MJ, Morton DW, Hoque KA, Reaz AH, Islam MT, Karim SMA, Chowdhury AN. Emerging iron-based mesoporous materials for adsorptive removal of pollutants: Mechanism, optimization, challenges, and future perspective. CHEMOSPHERE 2024; 349:140846. [PMID: 38043616 DOI: 10.1016/j.chemosphere.2023.140846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Iron-based materials (IBMs) have shown promise as adsorbents due to their unique physicochemical properties. This review provides an overview of the different types of IBMs, their synthesis methods, and their properties. Results found in the adsorption of emerging contaminants to a wide range of IBMs are discussed. The IBMs used were evaluated in terms of their maximum uptake capacity, with special consideration given to environmental conditions such as contact time, solution pH, initial pollutant concentration, etc. The adsorption mechanisms of pollutants are discussed taking into account the results of kinetic, isotherm, thermodynamic studies, surface complexation modelling (SCM), and available spectroscopic data. A current overview of molecular modeling and simulation studies related to density functional theory (DFT), surface response methodology (RSM), and artificial neural network (ANN) is presented. In addition, the reusability and suitability of IBMs in real wastewater treatment is shown. The review concludes with the strengths and weaknesses of current research and suggests ideas for future research that will improve our ability to remove contaminants from real wastewater streams.
Collapse
Affiliation(s)
- Md Aminul Islam
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh.
| | - Mazen K Nazal
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Michael J Angove
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia.
| | - David W Morton
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia
| | - Khondaker Afrina Hoque
- Department of Chemistry, Faculty of Science, Comilla University, Cumilla, 3506, Bangladesh; Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Akter Hossain Reaz
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Mohammad Tajul Islam
- Department of Textile Engineering, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - S M Abdul Karim
- Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - Al-Nakib Chowdhury
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh.
| |
Collapse
|
22
|
Hamri S, Bouzi B, Lerari D, Dergal F, Bouchaour T, Bachari K, Bouberka Z, Maschke U. Removal of Malachite Green by Poly(acrylamide-co-acrylic acid) Hydrogels: Analysis of Coulombic and Hydrogen Bond Donor-Acceptor Interactions. Gels 2023; 9:946. [PMID: 38131932 PMCID: PMC10742954 DOI: 10.3390/gels9120946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Water pollution caused by dyes poses a significant threat to life on earth. Poly(acrylamide-co-acrylic acid) hydrogels are widely used to treat wastewater from various pollutants. This study aims to examine the removal of malachite green (MG), a harmful and persistent dye that could cause extensive environmental damage, from an aqueous solution by adjusting the initial concentration of acrylamide (AM) and the degree of copolymer crosslinking. The copolymer hydrogels efficiently eliminate MG in a brief timeframe. The most successful hydrogel accomplished a removal rate exceeding 96%. The copolymer of 4 wt % 1,6-hexanediol diacrylate and a concentration of 100 mg/mL AM was effective. The degree of swelling was affected by crosslinking density as expected, with low crosslinking ratios resulting in significant swelling and high ratios resulting in less swelling. To evaluate the results, a docking approach was used which presented three crosslinked models: low, medium, and high. The copolymer-dye hydrogel system displayed robust hydrogen bonding interactions, as confirmed by the high quantities of both donors and acceptors. It was determined that MG contains six rotatable bonds, enabling it to adapt and interact with the copolymer chains. The dye and copolymer enhance H-bond formation by providing two hydrogen bond donors and 16 hydrogen bond acceptors, respectively. Through capitalizing on cationic and anionic effects, the ionic MG/copolymer hydrogel system improves retention efficiency by enhancing attraction between opposing charges. It is interesting to note that the synthesized copolymer is able to remove 96.4% of MG from aqueous media within one hour of contact time.
Collapse
Affiliation(s)
- Salah Hamri
- Center for Scientific and Technical Research in Physico-Chemical Analysis (CRAPC), BP 384, Industrial Zone, 42004 BouIsmaïl, Algeria
- Macromolecular Research Laboratory (LRM), Faculty of Sciences, Abou Bekr Belkaid University, BP 119, 13000 Tlemcen, Algeria
| | - Bouchra Bouzi
- Macromolecular Research Laboratory (LRM), Faculty of Sciences, Abou Bekr Belkaid University, BP 119, 13000 Tlemcen, Algeria
| | - Djahida Lerari
- Center for Scientific and Technical Research in Physico-Chemical Analysis (CRAPC), BP 384, Industrial Zone, 42004 BouIsmaïl, Algeria
| | - Fayçal Dergal
- Center for Scientific and Technical Research in Physico-Chemical Analysis (CRAPC), BP 384, Industrial Zone, 42004 BouIsmaïl, Algeria
| | - Tewfik Bouchaour
- Macromolecular Research Laboratory (LRM), Faculty of Sciences, Abou Bekr Belkaid University, BP 119, 13000 Tlemcen, Algeria
| | - Khaldoun Bachari
- Center for Scientific and Technical Research in Physico-Chemical Analysis (CRAPC), BP 384, Industrial Zone, 42004 BouIsmaïl, Algeria
| | - Zohra Bouberka
- Laboratoire Physico-Chimie des Matériaux-Catalyse et Environnement (LPCMCE), Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTOMB), BP 1505, 31000 Oran, Algeria
| | - Ulrich Maschke
- Unité Matériaux et Transformations—UMET, UMR 8207, Université de Lille, CNRS, INRAE, Centrale Lille, 59000 Lille, France
| |
Collapse
|
23
|
Islam MS, Roy H, Ahmed T, Firoz SH, Chang SX. Surface-modified graphene oxide-based composites for advanced sequestration of basic blue 41 from aqueous solution. CHEMOSPHERE 2023; 340:139827. [PMID: 37586493 DOI: 10.1016/j.chemosphere.2023.139827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Advanced materials for the efficient treatment of textile wastewater need to be developed for the sustainable growth of the textile industry. In this study, graphene oxide (GO) was modified by the incorporation of natural clay (bentonite) and mixed metal oxide (copper-cobalt oxide) to produce GO-based binary and ternary composites. Two binary composites, GO/bentonite and GO/Cu-Co Ox (oxide), and one ternary composite, GO/bentonite/Cu-Co Ox, were characterized by Fourier transform-infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and Brunauer-Emmett-Teller (BET) analysis. The adsorption efficiency of these composites was evaluated against a cationic dye, Basic Blue 41 (BB41). The composites had several surface functional groups, and the ternary composite had tubular porous structures formed by the cross-linking of the bentonite and GO planes. The BET surface area of the ternary composite was 50% higher than that of the GO. The BB41 removals were 92, 89, 80, and 69% for GO/bentonite/Cu-Co oxide, GO/bentonite, GO and GO/Cu-Co oxide, respectively. The pseudo-2nd-order and intraparticle diffusion models best describe the kinetics results, indicating chemisorption and slow pore diffusion-controlled adsorption processes. The Langmuir isotherm-derived adsorption capacity of GO/bentonite/Cu-Co oxide was 351.1 mg/g, which was very close to the measured value. After five consecutive cycles, the ternary composite retained 90% BB41 removal efficiency compared to its 1st cycle. Electrostatic interaction and pore diffusion were predicted to be the controlling mechanisms for the adsorption of the BB41. The GO-based ternary composite can be a feasible and scalable adsorbent for BB41 in wastewater treatment.
Collapse
Affiliation(s)
- Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.
| | - Hridoy Roy
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Tasnim Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shakhawat H Firoz
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
24
|
Asif I, Rafique U. Synthesis & fabrication of O-linked polymeric hybrids for recovery of textile dyes: Closed loop economy. ENVIRONMENTAL RESEARCH 2023; 236:116780. [PMID: 37527750 DOI: 10.1016/j.envres.2023.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Dyes are an important resource employed for the production systems in textile, paper, paint and leather industry. An estimate of 200,000 tons of dyes are discharged as textile effluent each year worldwide. It becomes imperative to recover these dyes by treating the effluents using economically viable routes. The present research was undertaken with the objective to attain zero emission and zero waste through development of novel polymeric hybrids as adsorbents. For this purpose, metal moieties (Al3+, Si4+, Ti4+ and Zr4+) were hybridized with polyacrylic acid, and cellulose acetate for the uptake of selected dyes under optimized parameters. The structural elucidation of four synthesized hybrids (MP-Al, MP-Si, MP-Ti and MP-Zr) by FTIR, EDX and TGA confirmed O-linked grafting of metal moieties with polymers and thermally stable porous materials. SEM micrographic images displayed void spaces providing channels for effective adsorption. The batch experiments demonstrated removal of malachite green (77-96%) and congo red (70-82%) upon contact of initial 45 min on polymeric hybrids On the other hand, pristine polyacrylic acid and cellulose acetate showed remarkably low removal of dyes. The adsorption mechanism is proposed as physical in nature following type II isotherm. Further, Langmuir and Ho's pseudo second order fitness was evaluated. In order to determine the economic viability of the present research, the real textile dyes were recovered in three consecutive cycles of adsorption and chemical treatment of hybrids. The results propose a system with positive impact on economy by maximum utilization of hybrids as adsorbents and recovery of textile dyes for reuse in textile processing.
Collapse
Affiliation(s)
- Irum Asif
- Department of Environmental Sciences, Applied Chemistry Lab, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan.
| | - Uzaira Rafique
- Faculty of Science & Technology, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan.
| |
Collapse
|
25
|
Albrektienė-Plačakė R, Bazienė K, Gargasas J. Investigation on Applying Biodegradable Material for Removal of Various Substances (Fluorides, Nitrates and Lead) from Water. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6519. [PMID: 37834656 PMCID: PMC10573546 DOI: 10.3390/ma16196519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Sapropel was used as a biodegradable material for water treatment. Sapropel is a sedimentary layer of a mix of organic and inorganic substances accumulated in the bottoms of lakes for thousands of years. It is a jelly-like homogeneous mass and has properties of sorption. Sapropel is used as a biosorbent and an environment-friendly fertiliser, and it is used in building materials and in the beauty industry as well. In water, there are abundant various solutes that may cause a risk to human health. Such substances include fluorides, nitrates and lead in different sources of water. The goal of this investigation is to explore and compare the efficiencies of removal of different pollutants (fluorides, nitrates and lead) from aqueous solutions upon using sapropel as a sorbent. In this research, various doses of sapropel (0.1, 0.5, 1, 5, 10, 20, 50, 100 and 200 g/L) and various mixing times (15, 30, 60, 90 and 120 min) were used for removal of fluorides, nitrates and lead from aqueous solutions. It was found that the maximum efficiency (up to 98.57%) of lead removal from aqueous solutions by sapropel was achieved when the minimum doses of it (0.1 and 0.5 g/L) were used. The most efficient removal of fluorides (64.67%) was achieved by using 200 g/L of sapropel and mixing for 120 min. However, sapropel does not adsorb nitrates from aqueous solutions.
Collapse
Affiliation(s)
- Ramunė Albrektienė-Plačakė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Kristina Bazienė
- Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Justinas Gargasas
- Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
26
|
Merah M, Boudoukha C, Avalos Ramirez A, Haroun MF, Maane S. High biosorption of cationic dye onto a novel material based on paper mill sludge. Sci Rep 2023; 13:15926. [PMID: 37741916 PMCID: PMC10518001 DOI: 10.1038/s41598-023-43032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023] Open
Abstract
The valorization of paper mill sludge (PMS) is the main goal of this study. The emissions of PMS continue to increase at global scale, especially from packaging paper and board sectors. The raw sludge was used to prepare an adsorbent to remove toxic pollutants from wastewater, the methylene blue (MB), an organic dye. Firstly, the physico-chemical characterization of PMS was done determining the crystalline phases of PMS fibers, the content of main elements, and the pH zero point charge, which was determined at around pH 7. The adsorption of MB on PMS powder was studied at 18 °C with an agitation of 200 rpm, being the best operating conditions 30 min of contact time, 250 mg L-1 of initial MB concentration and 0.05 g in 25 mL of adsorbent dose. Experimental data of MB adsorption was fitted to Langmuir and Freundlich isotherm equations. The Langmuir model was more accurate for the equilibrium data of MB adsorption at pH 5.1. The PFOM and PSOM were adjusted to experimental adsorption kinetics data, being PSOM, which describes better the MB adsorption by PMS powder. This was confirmed by calculating the maximum adsorption capacity with PSOM, which was 42.7 mg g-1, being nearly similar of the experimental value of 43.5 mg g-1. The analysis of adsorption thermodynamics showed that the MB was adsorbed exothermically with a ΔH0 = - 20.78 kJ mol-1, and spontaneously with ΔG0 from - 0.99 to - 6.38 kJ mol-1 in the range of temperature from 291 to 363 K, respectively. These results confirm that the sludge from paper industry can be used as biosorbent with remarkable adsorption capacity and low cost for the treatment of wastewater. PMS can be applied in the future for the depollution of the effluents from the textile industry, which are highly charged with dyes.
Collapse
Affiliation(s)
- Meriem Merah
- Department of Chemistry, Faculty of Sciences, University of Ferhat ABBAS Setif 1, 19000, El Bez, Algeria
- Centre National en Électrochimie et en Technologies Environnementales, 2263 Avenue du College, Shawinigan, QC, G9N 6V8, Canada
| | - Chahra Boudoukha
- Department of Biochemistry, Faculty of Life Sciences, University of Ferhat ABBAS Setif 1, 19000, El Bez, Algeria
| | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologies Environnementales, 2263 Avenue du College, Shawinigan, QC, G9N 6V8, Canada.
- Département de Génie Chimique et Génie Biotechnologique, Faculté de Génie, Université de Sherbrooke, 2500, Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| | - Mohamed Fahim Haroun
- Department of Chemistry, Faculty of Sciences, University of Ferhat ABBAS Setif 1, 19000, El Bez, Algeria
- Laboratoire de Physique Quantique et Systèmes Dynamiques (LPQSD), University of Ferhat ABBAS Setif 1, 19000, El Bez Setif, Algeria
| | - Samira Maane
- Department of Chemistry, Faculty of Sciences, University of Ferhat ABBAS Setif 1, 19000, El Bez, Algeria.
| |
Collapse
|
27
|
Yulizar Y, Abdullah I, Surya RM, Alifa NL. Green synthesis of novel YMnO 3-doped TiO 2 for enhanced visible-light- driven photocatalytic degradation of malachite green. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118139. [PMID: 37285771 DOI: 10.1016/j.jenvman.2023.118139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023]
Abstract
Recently, new methods of utilizing chemistry materials to overcome environmental issues worldwide, for instance, water purification have widely evolved since it is well-aligned with the sustainable development goals 6: clean water and sanitation. These issues have become a vital research topic for researchers in the last decade, particularly, the use of green photocatalyst due to the limitation of renewable resources. Herein, we report the modification of titanium dioxide with yttrium manganite (TiO2/YMnO3) by a novel high-speed stirring technique in n-hexane-water utilizing Annona muricata L. leaf extracts (AMLE). The YMnO3 incorporation in the presence of TiO2 was introduced to accelerate the photocatalytic performance for the degradation of malachite green in aqueous media. TiO2 modification with YMnO3 presented a drastic decline of bandgap energy from 3.34 to 2.38 eV and the highest rate constant (kapp) of 2.275 × 10-2 min-1. Surprisingly, TiO2/YMnO3 exhibited an extraordinary photodegradation efficiency of 95.34%, which was 1.9-fold higher than that of TiO2 under visible light illumination. The enhanced photocatalytic activity is ascribed to the formation of a TiO2/YMnO3 heterojunction, narrower optical band gap, excellent charge carrier separation. H+ and .O2- were the major scavenger species that play a significant role in the photodegradation of malachite green. Additionally, TiO2/YMnO3 shows outstanding stability over five cycles of photocatalytic reaction without significant loss of its effectiveness. This work presents a recent understanding of the green construction of a novel TiO2-based YMnO3 photocatalyst with excellent efficiency in the visible region for environmental technology application in water purification specifically in degrading organic dyes.
Collapse
Affiliation(s)
- Yoki Yulizar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
| | - Iman Abdullah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Rizki Marcony Surya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Naya Luvy Alifa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| |
Collapse
|
28
|
K AK, Panwar J, Gupta S. One-pot synthesis of metal oxide-clay composite for the evaluation of dye removal studies: Taguchi optimization of parameters and environmental toxicity studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61541-61561. [PMID: 36280640 DOI: 10.1007/s11356-022-23752-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 05/10/2023]
Abstract
The present study demonstrates the synthesis of eco-friendly metal oxide-clay composites (MgO-clay and CaO-clay) with phytochemical functionalization. The physical and chemical properties of prepared composites were characterized using standard techniques viz. scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The effect of pH on the dye adsorption capability of the synthesized composites was studied. The adsorption of an anionic dye methyl orange (MO) and a cationic due methylene blue (MB) was favored in the acidic and basic regions, respectively. The Taguchi design approach was adopted for the removal of MO and MB from wastewater using the synthesized composites. The obtained results suggest that initial dye concentration and composite dosage were the most influential parameters in dye removal among all the studied parameters. The adsorption experiments were carried out using MgO-clay and CaO-clay composites with the optimum conditions obtained from Taguchi optimization to validate the predicted response. The experimental parameters viz. the effect of contact time, initial dye concentration, and solution temperature were studied for screened composite (CaO-clay) with optimized conditions. The obtained results were interpreted using standard isotherms and kinetic models. A maximum adsorption capacity of 571 ± 10 and 859 ± 14 mg g-1 was obtained from the Langmuir adsorption isotherm for MO and MB, respectively. Regeneration studies suggested that the CaO-clay composite can be utilized up to 3 cycles with reduced adsorption capacity of the dyes over cycles due to the solid binding nature of dyes on the CaO-clay composite. The fresh and utilized CaO-clay composite were tested for their environmental toxicity analysis using ecologically important soil microorganisms. The obtained results suggested no detrimental effects on soil microbe's functionality, indicating their threat-free disposal in the soil environment.
Collapse
Affiliation(s)
- Anil Kumar K
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333 031, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333 031, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333 031, India.
| |
Collapse
|
29
|
Saharan P, Kumar V, Kaushal I, Mittal A, Shukla SK, Kumar D, Sharma AK, Om H. A comprehensive review on the metal-based green valorized nanocomposite for the remediation of emerging colored organic waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45677-45700. [PMID: 36826768 DOI: 10.1007/s11356-023-25998-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/14/2023] [Indexed: 04/15/2023]
Abstract
In today's era, "green" synthesis is an emerging research trend. It has gained widespread attention owing to its dynamic behavior, reliability, simplicity, sustainability, and environment friendly approach for fabricating various nanomaterials. Green fabrication of metal/metal oxides nanomaterials, hybrid materials, and other metal-based nanocomposite can be utilized to remove toxic colored aqueous pollutants. Nanomaterials synthesized by using green approach is considered to be the significant tool to minimize unwanted or harmful by-products otherwise released from traditional synthesis methods. Various kinds of biosynthesized nanomaterials, such as animal waste and plant-based, have been successfully applied and well documented in the literature. However, their application part, especially for the cure of colored organic polluted water, has not been reported as a single review article. Therefore, the current work aims to assemble reports on using novel biosynthesized green metal-based nanomaterials to exclude harmful dyes from polluted water.
Collapse
Affiliation(s)
- Priya Saharan
- Centre of Excellence for Energy and Environment, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Vinit Kumar
- Central Instrumentation Laboratory, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Indu Kaushal
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Alok Mittal
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, India
| | - Saroj K Shukla
- Department of Polymer Science, Bhaskaryacharya College of Applied Sciences, Delhi, India
| | - Dharmender Kumar
- Department of Biotechnology, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Ashok K Sharma
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India.
| | - Hari Om
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| |
Collapse
|
30
|
Yu X, Mu N, Liu X, Shang Y, Wang D, Li F. A green method for decolorization of polysaccharides from alfalfa by S-8 macroporous resin and their characterization and antioxidant activity. RSC Adv 2023; 13:9642-9653. [PMID: 36968038 PMCID: PMC10037299 DOI: 10.1039/d3ra00756a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
In this study, the decolorization conditions of polysaccharides extracted from alfalfa by S-8 macroporous adsorption resin were optimized through the response surface method, and the physicochemical properties and antioxidant activity of decolorized polysaccharides were investigated. The optimal decolorization conditions were determined to be as follows: the amount of S-8 macroporous adsorption resin was 1.4 g, the adsorption time was 2 h, and the adsorption temperature was 58 °C. Under these optimal conditions, a decolorization ratio of 71.43 ± 0.23% was achieved, which was consistent with the model hypothesis. The adsorption curve showed that S-8 macroporous adsorption resin adsorption of pigment molecules in alfalfa polysaccharides (APS) agreed with the Freundlich and pseudo-second-order equations, and the adsorption was a spontaneous endothermic process. High-performance liquid chromatography (HPLC) analysis of monosaccharide composition showed that APS was composed of mannose, glucose, galactose, arabinose and glucuronic acid in a molar ratio of 1.18 : 8.04 : 1.22 : 0.92 : 1. The results of antioxidant activity studies showed that APS had strong scavenging activity against ABTS, DPPH and hydroxyl radicals. This study will help to further understand the adsorption mechanism of macroporous resin on polysaccharide pigment molecules and lay a basis for evaluating their physiological activity.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Na Mu
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Xiaochen Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology Yancheng 224051 China
| |
Collapse
|
31
|
Adsorptive Removal of Direct Azo Dyes from Textile Wastewaters Using Weakly Basic Anion Exchange Resin. Int J Mol Sci 2023; 24:ijms24054886. [PMID: 36902317 PMCID: PMC10003106 DOI: 10.3390/ijms24054886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Direct dyes are still widely used for coloring a variety of materials due to their ease of use and the wide range of colors available at a moderate cost of production. In the aquatic environment, some direct dyes, especially the azo type and their biotransformation products, are toxic, carcinogenic and mutagenic. Hence the need for their careful removal from industrial effluents. It was proposed adsorptive retention of C.I. Direct Red 23 (DR23), C.I. Direct Orange 26 (DO26) and C.I. Direct Black 22 (DB22) from effluents using anion exchange resin of tertiary amine functionalities Amberlyst A21 (A21). Applying the Langmuir isotherm model, the monolayer capacities were calculated as 285.6 mg/g for DO26 and 271.1 mg/g for DO23. The Freundlich isotherm model seems to be the better one for the description of DB22 uptake by A21, and the isotherm constant was found to be 0.609 mg1-1/n L1/n/g. The kinetic parameters revealed that the pseudo-second-order model could be used for the description of experimental data rather than the pseudo-first-order model or intraparticle diffusion model. The dye adsorption decreased in the presence of anionic and non-ionic surfactants, while their uptake was enhanced in the presence of Na2SO4 and Na2CO3. Regeneration of the A21 resin was difficult; a slight increase in its efficiency was observed using 1M HCl, 1 M NaOH and 1 M NaCl solutions in 50% v/v methanol.
Collapse
|
32
|
Vijayakumar N, Venkatraman SK, Imthiaz S, Drweesh EA, Elnagar MM, Koppala S, Swamiappan S. Synthesis and characterization of calcium and magnesium based oxides and titanates for photocatalytic degradation of rhodamine B: a comparative study. Sci Rep 2023; 13:3615. [PMID: 36869055 PMCID: PMC9984380 DOI: 10.1038/s41598-023-30013-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
The current investigation deals with the simple and ecological synthesis of CaO, MgO, CaTiO3, and MgTiO3 for the photocatalytic dilapidation of rhodamine B dye. CaO was procured from chicken eggshell waste by calcination process, while MgO was produced by solution combustion method using urea as a fuel source. Furthermore, CaTiO3 and MgTiO3 were synthesized through an easy and simple solid-state method by mixing thoroughly the synthesized CaO or MgO with TiO2 before calcination at 900 °C. XRD and EDX investigations confirmed the phase formation of the materials. Moreover, FTIR spectra revealed the existence of Ca-Ti-O, Mg-Ti-O, and Ti-O which resembles the chemical composition of the proposed materials. SEM micrographs revealed that the surface of CaTiO3 is rougher with relatively dispersed particles compared to MgTiO3, reflecting a higher surface area of CaTiO3. Diffuse reflectance spectroscopy investigations indicated that the synthesized materials can act as photocatalysts under UV illumination. Accordingly, CaO and CaTiO3 effectively degraded rhodamine B dye within 120 min with a photodegradation activity of 63% and 72%, respectively. In contrast, the photocatalytic degradation activity of MgO and MgTiO3 was much lower, since only 21.39 and 29.44% of the dye were degraded, respectively after 120 min of irradiation. Furtheremore, the photocatalytic activity of the mixture from both Ca and Mg titanates was 64.63%. These findings might be valuable for designing potential and affordable photocatalysts for wastewater purification.
Collapse
Affiliation(s)
- Naveensubramaniam Vijayakumar
- grid.412813.d0000 0001 0687 4946Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Senthil Kumar Venkatraman
- grid.412813.d0000 0001 0687 4946Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Syed Imthiaz
- grid.412813.d0000 0001 0687 4946Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Elsayed A. Drweesh
- grid.419725.c0000 0001 2151 8157Department of Inorganic Chemistry, National Research Centre, 33 El Bohouth St. (Former EltahrirSt.), Dokki, Giza, 12622 Egypt
| | - Mohamed M. Elnagar
- grid.419725.c0000 0001 2151 8157Department of Inorganic Chemistry, National Research Centre, 33 El Bohouth St. (Former EltahrirSt.), Dokki, Giza, 12622 Egypt
| | - Sivasankar Koppala
- grid.218292.20000 0000 8571 108XFaculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 China
| | - Sasikumar Swamiappan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
33
|
Prebiotic potential of carbohydrates from defatted rice bran – Effect of physical extraction methods. Food Chem 2023; 404:134539. [DOI: 10.1016/j.foodchem.2022.134539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
|
34
|
Parra-Arroyo L, González-González RB, Chavez-Santoscoy RA, Flores-Contreras EA, Parra-Saldívar R, Martínez EMM, Iqbal HM. Magnetic nanomaterials assisted nanobiocatalysis to abate groundwater pollution. MethodsX 2023; 10:102161. [PMID: 37077891 PMCID: PMC10106955 DOI: 10.1016/j.mex.2023.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Magnetic nanoparticles are of great interest for research as they have a wide range of applications in biotechnology, environmental science, and biomedicine. Magnetic nanoparticles are ideal for magnetic separation, improving catalysis's speed and reusability by immobilizing enzymes. Nanobiocatalysis allows the removal of persistent pollutants in a viable, cost-effective and eco-friendly manner, transforming several hazardous compounds in water into less toxic derivatives. Iron oxide and graphene oxide are the preferred materials used to confer nanomaterials their magnetic properties for this purpose as they pair well with enzymes due to their biocompatibility and functional properties. This review describes the most common synthesis methods for magnetic nanoparticles and their performance of nanobiocatalysis for the degradation of pollutants in water.•Magnetic nanomaterials have been synthesized for their application in nanobiocatalysis and treating groundwater.•The most used method for magnetic nanoparticle preparation is the co-precipitation technique.•Peroxidase and oxidase enzymes have great potential in the remotion of multiple contaminants from groundwater.
Collapse
Affiliation(s)
- Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | | | - Elda A. Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda M. Melchor Martínez
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Corresponding authors at: Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico.
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Corresponding authors at: Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico.
| |
Collapse
|
35
|
Lee H, Kim DI, Kim Y, Jang A. Efficient one-pot synthesis of magnetic MIL-100(Fe) using nitric acid without additional Fe ion addition and adsorption behavior of charged organic compounds. CHEMOSPHERE 2023; 314:137696. [PMID: 36586448 DOI: 10.1016/j.chemosphere.2022.137696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Metal organic frameworks (MOFs) are attracting attention as high-performance adsorbents because of their high specific surface area and porosity. In particular, magnetic MIL-100(Fe) has the both characteristics of Fe3O4 and MIL-100(Fe), which are magnetic characteristics, high specific surface area and open metal sites. However, multiple synthetic steps are required for synthesis of magnetic MOF, and there is limitation that the residual organic linker and unreacted Fe center ions can be discharged, and they cause water pollution. In this study, magnetic MIL-100(Fe) was synthesized within 4 h without the addition of Fe ions by using nitric acid for the surface modification of Fe3O4. Magnetic MIL-100(Fe) was confirmed through XRD, FTIR, and TEM surface analysis, and the optimal conditions for nitric acid addition were selected through magnetization measurements and BET analysis of synthesized magnetic MIL-100(Fe). Thereafter, adsorption evaluation was performed using MB and MO, which are representative cationic and anionic dyes, respectively. The pseudo-second-order Langmuir model showed a relatively high correlation compared to the other models. This shows that the adsorption mechanism depends on both the amount of adsorbent and adsorbate, and Fe3O4 modification with nitric acid does not cause any change in the adsorption mechanism. In the case of adsorption selectivity between the MB and MO, removal rates of 93.27% and 58.73% were obtained, respectively. The above results can contribute to the simplification of the manufacturing of magnetic metal organic frameworks for removing ionic organic compounds and the minimization of water pollution in the manufacturing process.
Collapse
Affiliation(s)
- Hyeonho Lee
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - David Inhyuk Kim
- EHS Research Center, Samsung Electronics Co., Ltd., Samsungjeonja-ro 1, Hwasung-si, Gyeonggi-do, 18448, Republic of Korea.
| | - Youjin Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
36
|
Vignesh V, Shanmugam G. Removal and recovery of hazardous congo red from aqueous environment by selective natural amino acids in simple processes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
37
|
Domestic microwave-assisted synthesis of Pd doped-BiVO4 photocatalysts. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Naghdi S, Shahrestani MM, Zendehbad M, Djahaniani H, Kazemian H, Eder D. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130127. [PMID: 36303355 DOI: 10.1016/j.jhazmat.2022.130127] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The presence of persistent organic pollutants (POPs) in the aquatic environment is causing widespread concern due to their bioaccumulation, toxicity, and possible environmental risk. These contaminants are produced daily in large quantities and released into water bodies. Traditional wastewater treatment plants are ineffective at degrading these pollutants. As a result, the development of long-term and effective POP removal techniques is critical. In water, adsorption removal and photocatalytic degradation of POPs have been identified as energy and cost-efficient solutions. Both technologies have received a lot of attention for their efforts to treat the world's wastewater. Photocatalytic removal of POPs is a promising, effective, and long-lasting method, while adsorption removal of persistent POPs represents a simple, practical method, particularly in decentralized systems and isolated areas. It is critical to develop new adsorbents/photocatalysts with the desired structure, tunable chemistry, and maximum adsorption sites for highly efficient removal of POPs. As a class of recently created multifunctional porous materials, Metal-organic frameworks (MOFs) offer tremendous prospects in adsorptive removal and photocatalytic degradation of POPs for water remediation. This review defines POPs and discusses current research on adsorptive and photocatalytic POP removal using emerging MOFs for each type of POPs.
Collapse
Affiliation(s)
- Shaghayegh Naghdi
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| | - Masoumeh Moheb Shahrestani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Mohammad Zendehbad
- Institute of Soil Physics and Rural Water Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hoorieh Djahaniani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| | - Dominik Eder
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| |
Collapse
|
39
|
Sime T, Fito J, Nkambule TTI, Temesgen Y, Sergawie A. Adsorption of Congo Red from Textile Wastewater Using Activated Carbon Developed from Corn Cobs: The Studies of Isotherms and Kinetics. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Sustainable recycling of café waste as natural bio resource and its value adding applications in green and effective dyeing/bio finishing of textile. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Valizadeh K, Bateni A, Sojoodi N, Ataabadi MR, Behroozi AH, Maleki A, You Z. Magnetized inulin by Fe 3O 4 as a bio-nano adsorbent for treating water contaminated with methyl orange and crystal violet dyes. Sci Rep 2022; 12:22034. [PMID: 36539589 PMCID: PMC9767922 DOI: 10.1038/s41598-022-26652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Current work focuses on fabricating a new bio-nano adsorbent of Fe3O4@inulin nanocomposite via an in-situ co-precipitation procedure to adsorb methyl orange (MO) and crystal violet (CV) dyes from aqueous solutions. Different physical characterization analyses verified the successful fabrication of the magnetic nanocomposite. The adsorbent performance in dye removal was evaluated by varying initial dye concentration, adsorbent dosage, pH and temperature in 5110 mg/L, 0.10.8 g/L, 111 and 283-338 K, respectively. Due to the pH of zero point of charge and intrinsic properties of dyes, the optimum pHs were 5 and 7 for MO and CV adsorption, respectively. The correlation of coefficient (R2) and reduced chi-squared value were the criteria in order to select the best isotherm and kinetics models. The Langmuir model illustrated a better fit for the adsorption data for both dyes, demonstrating the maximum adsorption capacity of 276.26 and 223.57 mg/g at 338 K for MO and CV, respectively. As well, the pseudo-second-order model showed a better fitness for kinetics data compared to the pseudo-first-order and Elovich models. The thermodynamic parameters exhibited that the dye adsorption process is endothermic and spontaneous, which supported the enhanced adsorption rate by increasing temperature. Moreover, the nanocomposite presented outstanding capacity and stability after 6 successive cycles by retaining more than 87% of its initial dye removal efficiency. Overall, the magnetized inulin with Fe3O4 could be a competent adsorbent for eliminating anionic and cationic dyes from water.
Collapse
Affiliation(s)
- Kamran Valizadeh
- grid.411463.50000 0001 0706 2472Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Bateni
- grid.411463.50000 0001 0706 2472Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Sojoodi
- grid.411463.50000 0001 0706 2472Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Rostami Ataabadi
- grid.411748.f0000 0001 0387 0587School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amir Hossein Behroozi
- grid.411748.f0000 0001 0387 0587School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- grid.411748.f0000 0001 0387 0587Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Zhenjiang You
- grid.1038.a0000 0004 0389 4302Center for Sustainable Energy and Resources, Edith Cowan University, Joondalup, WA 6027 Australia ,grid.1003.20000 0000 9320 7537School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
42
|
Fekri R, Mirbagheri SA, Fataei E, Ebrahimzadeh-Rajaei G, Taghavi L. Green synthesis of CuO nanoparticles using Peganum harmala extract for photocatalytic and sonocatalytic degradation of reactive dye and organic compounds. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study was performed to evaluate the effectiveness of photocatalytic and sonocatalytic processes for the removal of reactive blue 5 dye and organic compounds of textile effluent in the presence of copper oxide nanoparticles (CuO NPs). CuO NPs were synthesized using Peganum harmala seed extract. The structure of NPs was confirmed using SEM, TEM, XRD, EDX, and FTIR techniques. The tests were carried out in a batch system to assess factors affecting the dye removal efficiency, including contact time, pH, NPs dosage, and initial dye concentration. The experimental results showed that the photocatalytic process (98.42%) produced a higher degradation percentage than the sonocatalytic process (76.16%). While, the dye removal efficiency was not significant in the dark conditions (without UV or US waves). The maximum removal of reactive blue 5 dye under photocatalytic and sonocatalytic conditions occurred at the presence of 0.15 g of CuO NPs and dye concentration of 40 and 60 mg/L, respectively. The kinetic data followed a pseudo-second-order model in both photocatalytic and sonocatalytic processes with a correlation coefficient higher than 0.99. Isotherm studies showed that the Langmuir model was the best isothermal model to describe the adsorptive behavior of CuO NPs in a dark condition. The results obtained from GC-MS showed that the photocatalytic process had a degradation efficiency of over 87% in the removal of organic compounds.
Collapse
Affiliation(s)
- Reza Fekri
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed-Ahmad Mirbagheri
- Department of Environmental Engineering, Faculty of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Ebrahim Fataei
- Department of Environmental Science, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | | | - Lobat Taghavi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
43
|
Solanki S, Sinha S, Bisaria K, Singh R, Saxena R. Accurate data prediction by fuzzy inference model for adsorption of hazardous azo dyes by novel algal doped magnetic chitosan bionanocomposite. ENVIRONMENTAL RESEARCH 2022; 214:113844. [PMID: 35843281 DOI: 10.1016/j.envres.2022.113844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
A bionanocomposite comprising of magnetic chitosan doped with algae isolated from native habitat was fabricated and utilized as an efficient adsorbent for the removal of hazardous azo dyes, namely, Direct Red 31 (DR31) and Direct Red 28 (DR28). The algal doped magnetic chitosan (Alg@mCS) was comprehensively characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction analysis (XRD), and Brunauer-Emmett-Teller (BET). On the sorption of dyes, the influence of various process variables such as pH, adsorbent dosage, contact time, temperature, and initial dyes concentration were addressed. The adsorbent demonstrated maximal removal of DR31 and DR28 at pH 5 and 3, respectively. The maximum adsorption capacity of DR31 and DR28 was observed at Alg@mCS dose of 0.6 g L-1 and 7 g L-1 in 10 and 20 min, respectively. The Redlich Peterson isotherm model was shown to be appropriate for dye adsorption, indicating monolayer coverage of the dyes on the adsorbent surface (R2 > 0.99). The adsorption process followed pseudo-second-order kinetics (R2 > 0.99). Based on 320 experimental datasets from batch studies and interpolated data, adaptive neuro-fuzzy inference system (ANFIS) models were utilized to estimate dye elimination (percent). A number of parameters were calculated to validate the model's applicability. The Alg@mCS was proven to be a useful adsorbent for eliminating toxic and harmful azo dyes from aqueous solutions.
Collapse
Affiliation(s)
- Swati Solanki
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Reena Saxena
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
| |
Collapse
|
44
|
Ye X, Wu L, Zhu M, Wang Z, Huang ZH, Wang MX. Lotus pollen-derived hierarchically porous carbons with exceptional adsorption performance toward Reactive Black 5: Isotherms, kinetics and thermodynamics investigations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Güngör Z, Ozay H. Use of cationic p[2-(acryloyloxy)ethyl] trimethylammonium chloride in hydrogel synthesis and adsorption of methyl orange with jeffamine based crosslinker. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2129676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zeynep Güngör
- School of Graduate Studies, Department of Chemistry, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Hava Ozay
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
46
|
Kord Mostafapour F, Zolghadr R, Khodadadi Saloot M, Mahvi AH, Balarak D, Safari E. Removal of Acid blue 113 from aqueous medium using a novel magnetic adsorbent derived from activated carbon fiber. INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY 2022. [DOI: 10.1080/03067319.2022.2130061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Ferdos Kord Mostafapour
- Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Razieh Zolghadr
- Department of Public Health, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Morteza Khodadadi Saloot
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Davoud Balarak
- Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elham Safari
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
47
|
Low-cost treated lignocellulosic biomass waste supported with FeCl 3/Zn(NO 3) 2 for water decolorization. Sci Rep 2022; 12:16442. [PMID: 36180518 PMCID: PMC9525308 DOI: 10.1038/s41598-022-20883-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Dye pollution has always been a serious concern globally, threatening the lives of humans and the ecosystem. In the current study, treated lignocellulosic biomass waste supported with FeCl3/Zn(NO3)2 was utilized as an effective composite for removing Reactive Orange 16 (RO16). SEM/EDAX, FTIR, and XRD analyses exhibited that the prepared material was successfully synthesized. The removal efficiency of 99.1% was found at an equilibrium time of 110 min and dye concentration of 5 mg L-1 Adsorbent mass of 30 mg resulted in the maximum dye elimination, and the efficiency of the process decreased by increasing the temperature from 25 to 40 °C. The effect of pH revealed that optimum pH was occurred at acidic media, having the maximum dye removal of greater than 90%. The kinetic and isotherm models revealed that RO16 elimination followed pseudo-second-order (R2 = 0.9982) and Freundlich (R2 = 0.9758) assumptions. Surprisingly, the performance of modified sawdust was 15.5 times better than the raw sawdust for the dye removal. In conclusion, lignocellulosic sawdust-Fe/Zn composite is promising for dye removal.
Collapse
|
48
|
Facile synthesis of magnetic photo-responsive nanoparticles based on 1,3-diazabicyclo[3.1.0]hex-3-en: An enhanced adsorption of toxic dyes from aqueous solution under sunlight. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Ordonez D, Valencia A, Pereira B, Chang NB. Color removal for large-scale interbasin water transfer: Experimental comparison of five sorption media. ENVIRONMENTAL RESEARCH 2022; 212:113208. [PMID: 35367430 DOI: 10.1016/j.envres.2022.113208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The increasing needs of drinking water due to population growth requires seeking for new tap water sources. However, these large-scale tap water sources are oftentimes abundant with dissolved natural organic matter (NOM), such as tannic acid issue causing color in water. If not removed at the source locations beforehand, NOM would impact coagulation and flocculation unit, and/or become precursors to prompt the production of disinfectant by-products after chlorination in drinking water treatment. This study focuses on developing and testing a suite of cost-effective, scalable, adaptable, and sustainable sorption media that can be implemented near the source locations of tap water as a pretreatment option to remove color for a long-distance interbasin transfer. Within the five tested sorption media, a media recipe of Zero-valent-Iron and Perlite based Green Sorption Media (ZIPGEM) with ingredients of 85% sand, 5% clay, 6% zero-valent-iron (ZVI) and 4% perlite by volume stood out as the best option for color removal. Findings showed that ZIPGEM can maintain a color removal of ∼77% for about 14,080 min, maintaining the effluent concentration below 40 Pt-Co units given the influent condition of 175 ± 10 Pt-Co units. A recovery on the adsorption capacity of ZIPGEM was observed around 40,000 min due to synergetic effects among several different ingredients of recycled ZVI, clay, sand, and perlites. ZIPGEM can be applied to industrial wastewater treatment for dye removal as well.
Collapse
Affiliation(s)
- Diana Ordonez
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Andrea Valencia
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Bianca Pereira
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Ni-Bin Chang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
50
|
Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Kaviyarasu K, Selvaraj R. Green synthesized hydroxyapatite nanoadsorbent for the adsorptive removal of AB113 dye for environmental applications. ENVIRONMENTAL RESEARCH 2022; 212:113274. [PMID: 35461848 DOI: 10.1016/j.envres.2022.113274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The present work reports the synthesis of hydroxyapatite (HAp) via the green chemistry approach by using the leaf extract of copper pod tree and its adsorptive potential to remove Acid blue 113 (AB113) dye. FESEM-EDS characterization of the synthesized HAp confirmed rod-shaped HAp with prominent Ca and P elements. The crystallinity of HAp was ascertained by XRD and thermal stability was analyzed by TGA. The colloidal suspension stability was determined as - 17.7 mV by Zeta potential analyzer. The mesoporous structure was affirmed via BET studies with a high magnitude of specific surface area. TEM studies substantiated the rod-shaped HAp as observed in FESEM. The signals specific to HAp were observed in XPS studies. Adsorption of AB113 on the synthesized HAp was examined by varying the process parameters. Batch experiments resulted in an optimum dye removal of 92.72% at a pH of 8, 1 g/L of CP-HAp nps dosage, 20 ppm AB113 concentration, 120 min contact time, 150 rpm agitation speed and at room temperature. The maximum adsorption capacity reached 120.48 mg/g. Multifarious isotherms characterized the adsorption with Freundlich isotherm (R2 > 0.968) dominating Langmuir indicating multilayer adsorption. The experimental data reasonably matched pseudo-second-order kinetics with R2 exceeding 0.99. Thermodynamic investigations underlined the spontaneity and exothermicity of the processes. Results showed the suitability of the HAp nanoadsorbent to remove AB113 from wastestreams.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), IThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape, South Africa.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|