1
|
Valdivia-Garcia MA, Bi Y, Abaakil K, V Li J. Derivatization to reduce background interferences for simultaneous quantitation of trimethylamine (TMA) and trimethylamine-N-oxide (TMAO) using liquid chromatography with tandem mass spectrometry. J Pharm Biomed Anal 2025; 252:116480. [PMID: 39326376 DOI: 10.1016/j.jpba.2024.116480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Trimethylamine (TMA) and trimethylamine-N-oxide (TMAO) play a crucial role in many biochemical processes within diverse organisms including animals, plants, fungi and bacteria. Studies have linked these metabolites with cardiovascular and kidney diseases; however, emerging evidence demonstrates their protective properties. Owing to these controversies and co-existence of these metabolites in biological samples, it is crucial to accurately quantify these metabolites to associate their concentrations with various physiological and pathophysiological conditions to elucidate their potential roles. We reported interferences on TMA quantification without derivatizing the analyte. A combined sample preparation method, including sample derivatization with ethyl bromoacetate and use of ion pairing reagent (sodium heptanesulfonate), minimized these interferences and provided improved accuracy and precision for simultaneous quantification of TMA and TMAO. The linearity for TMAO ranged from 0.01 µM to 300 µM and 0.1 µM - 300 µM for TMA. With the application of this method, we reported that the circulating concentrations of TMA was 4 times higher in male mice (33.1 ± 5.9 µmol/L) compared to females (8.3 ± 1.39 µmol/L), whereas TMAO levels were 6 times lower in male (7.2 ± 0.4 µmol/L) than female mice (42.1 ± 4.5 µmol/L). In contrast, concentrations of TMA and TMAO in the colonic tissue did not differ significantly between males and females. The robust analytical method for simultaneously quantifying TMA and TMAO presents a significant value in facilitating investigations on TMA and TMAO biology.
Collapse
Affiliation(s)
- Maria A Valdivia-Garcia
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building, Du Cane Road, London W12 0NN, United Kingdom
| | - Yang Bi
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building, Du Cane Road, London W12 0NN, United Kingdom
| | - Kaoutar Abaakil
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building, Du Cane Road, London W12 0NN, United Kingdom
| | - Jia V Li
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building, Du Cane Road, London W12 0NN, United Kingdom.
| |
Collapse
|
2
|
Stepanyan A, Brojakowska A, Zakharyan R, Hakobyan S, Davitavyan S, Sirunyan T, Khachatryan G, Khlgatian MK, Bisserier M, Zhang S, Sahoo S, Hadri L, Rai A, Garikipati VNS, Arakelyan A, Goukassian DA. Evaluating sex-specific responses to western diet across the lifespan: impact on cardiac function and transcriptomic signatures in C57BL/6J mice at 530 and 640/750 days of age. Cardiovasc Diabetol 2024; 23:454. [PMID: 39732652 DOI: 10.1186/s12933-024-02565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia.
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Roksana Zakharyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Tamara Sirunyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Gisane Khachatryan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Mary K Khlgatian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Lahouaria Hadri
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amit Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - David A Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
| |
Collapse
|
3
|
Parpex G, Chassaing B, Bourdon M, Santulli P, Doridot L, Thomas M, Batteux F, Chouzenoux S, Chapron C, Nicco C, Marcellin L. Western diet promotes endometriotic lesion growth in mice and induces depletion of Akkermansia muciniphila in intestinal microbiota. BMC Med 2024; 22:513. [PMID: 39501247 PMCID: PMC11539706 DOI: 10.1186/s12916-024-03738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Endometriosis, affecting 10% of women in their reproductive years, remains poorly understood. Both individual and environmental unexplained factors are implicated in this heterogenous condition. This study aims to examine the influence of a Western diet on endometriosis lesion development in mice and to uncover the mechanisms involved. METHODS Mice were fed either a control diet or a Western diet (high in fatty acids and low in fiber) for 4 weeks. Endometriosis was then surgically induced, and lesion development was monitored by ultrasound. After 7 weeks, the mice were sacrificed for analysis of lesion characteristics through RT-qPCR, immunohistochemistry, and flow cytometry. Additionally, the intestinal microbiota was assessed using 16S rRNA gene sequencing. RESULTS Mice on the Western diet developed lesions that were significantly twice as large compared to those on the control diet. These lesions exhibited greater fibrosis and proliferation, alongside enhanced macrophage activity and leptin pathway expression. Changes in the intestinal microbiota were significantly noted after endometriosis induction, regardless of diet. Notably, mice on the Western diet with the most substantial lesions showed a loss of Akkermansia Muciniphila in their intestinal microbiota. CONCLUSIONS A Western diet significantly exacerbates lesion size in a mouse model of endometriosis, accompanied by metabolic and immune alterations. The onset of endometriosis also leads to substantial shifts in intestinal microbiota, suggesting a potential link between diet, intestinal health, and endometriosis development.
Collapse
Affiliation(s)
- Guillaume Parpex
- Department of Gynecology Obstetrics II and Reproductive Medicine (Professor Chapron), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 123 boulevard de Port-Royal, Paris, 75014, France.
- Université Paris Cité, CNRS, Institut Cochin, Paris, Inserm, France.
| | - Benoît Chassaing
- Institut Pasteur, Université Paris Cité, Microbiome-Host Interaction Group, INSERM U1306, Paris, France
| | - Mathilde Bourdon
- Department of Gynecology Obstetrics II and Reproductive Medicine (Professor Chapron), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 123 boulevard de Port-Royal, Paris, 75014, France
- Université Paris Cité, CNRS, Institut Cochin, Paris, Inserm, France
| | - Pietro Santulli
- Department of Gynecology Obstetrics II and Reproductive Medicine (Professor Chapron), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 123 boulevard de Port-Royal, Paris, 75014, France
- Université Paris Cité, CNRS, Institut Cochin, Paris, Inserm, France
| | - Ludivine Doridot
- Université Paris Cité, CNRS, Institut Cochin, Paris, Inserm, France
| | - Marine Thomas
- Université Paris Cité, CNRS, Institut Cochin, Paris, Inserm, France
| | - Frédéric Batteux
- Université Paris Cité, CNRS, Institut Cochin, Paris, Inserm, France
| | | | - Charles Chapron
- Department of Gynecology Obstetrics II and Reproductive Medicine (Professor Chapron), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 123 boulevard de Port-Royal, Paris, 75014, France
- Université Paris Cité, CNRS, Institut Cochin, Paris, Inserm, France
| | - Carole Nicco
- Université Paris Cité, CNRS, Institut Cochin, Paris, Inserm, France
| | - Louis Marcellin
- Department of Gynecology Obstetrics II and Reproductive Medicine (Professor Chapron), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, 123 boulevard de Port-Royal, Paris, 75014, France
- Université Paris Cité, CNRS, Institut Cochin, Paris, Inserm, France
| |
Collapse
|
4
|
Shafer C, Di Lucente J, Mendiola UR, Maezawa I, Jin LW, Neumann EK. Effects of Sex and Western Diet on Spatial Lipidomic Profiles for the Hippocampus, Cortex, and Corpus Callosum in Mice Using MALDI MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2554-2563. [PMID: 38456419 PMCID: PMC11544704 DOI: 10.1021/jasms.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Diet is inextricably linked to human health and biological functionality. Reduced cognitive function among other health issues has been correlated with a western diet (WD) in mouse models, indicating that increases in neurodegeneration could be fueled in part by a poor diet. In this study, we use matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) to spatially map the lipidomic profiles of male and female mice that were fed a high-fat, high-sucrose WD for a period of 7 weeks. Our findings concluded that the cortex and corpus callosum showed significant lipid variation by WD in female mice, while there was little to no variation in the hippocampus, regardless of sex. On the other hand, lipid profiles were significantly affected by sex in all regions. Overall, 83 lipids were putatively identified in the mouse brain; among them, HexCer(40:1;O3) and PE(34:0) were found to have the largest statistical difference based on diet for female mice in the cortex and corpus callosum, respectively. Additional lipid changes are noted and can serve as a metric for understanding the brain's metabolomic response to changes in diet, particularly as it relates to disease.
Collapse
Affiliation(s)
- Catelynn
C. Shafer
- Department
of Chemistry, University of California,
Davis. Davis, California 95616, United States
| | - Jacopo Di Lucente
- Department
of Pathology and Laboratory Medicine, University
of California Davis, Sacramento, California 95817, United States
| | - Ulises Ruiz Mendiola
- Department
of Pathology and Laboratory Medicine, University
of California Davis, Sacramento, California 95817, United States
| | - Izumi Maezawa
- Department
of Pathology and Laboratory Medicine, University
of California Davis, Sacramento, California 95817, United States
| | - Lee-Way Jin
- Department
of Pathology and Laboratory Medicine, University
of California Davis, Sacramento, California 95817, United States
| | - Elizabeth K. Neumann
- Department
of Chemistry, University of California,
Davis. Davis, California 95616, United States
| |
Collapse
|
5
|
Yagoub S, Chesters RA, Ott J, Zhu J, Cantacorps L, Ritter K, Lippert RN. Acute elevated dietary fat alone is not sufficient to decrease AgRP projections in the paraventricular nucleus of the hypothalamus in mice. Sci Rep 2024; 14:20043. [PMID: 39209992 PMCID: PMC11362280 DOI: 10.1038/s41598-024-70870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Within the brain, the connections between neurons are constantly changing in response to environmental stimuli. A prime environmental regulator of neuronal activity is diet, and previous work has highlighted changes in hypothalamic connections in response to diets high in dietary fat and elevated sucrose. We sought to determine if the change in hypothalamic neuronal connections was driven primarily by an elevation in dietary fat alone. Analysis was performed in both male and female animals. We measured Agouti-related peptide (AgRP) neuropeptide and Synaptophysin markers in the paraventricular nucleus of the hypothalamus (PVH) in response to an acute 48 h high fat diet challenge. Using two image analysis methods described in previous studies, an effect of a high fat diet on AgRP neuronal projections in the PVH of male or female mice was not identified. These results suggest that it may not be dietary fat alone that is responsible for the previously published alterations in hypothalamic connections. Future work should focus on deciphering the role of individual macronutrients on neuroanatomical and functional changes.
Collapse
Affiliation(s)
- Selma Yagoub
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- University of Potsdam, Potsdam, Germany
| | - Robert A Chesters
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Ott
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- University of Potsdam, Potsdam, Germany
| | - Jiajie Zhu
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- University of Potsdam, Potsdam, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lídia Cantacorps
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Katrin Ritter
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Rachel N Lippert
- German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Roslund KJ, Ramsey JJ, Rutkowsky JM, Zhou Z, Slupsky CM. Two-month ketogenic diet alters systemic and brain metabolism in middle-aged female mice. GeroScience 2024:10.1007/s11357-024-01314-w. [PMID: 39180613 DOI: 10.1007/s11357-024-01314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
The ketogenic diet (KD) is a very low-carbohydrate, high-fat diet that reduces glucose catabolism and enhances β-oxidation and ketogenesis. While research in female rodents is limited, research in male rodents suggests that ketogenic interventions initiated at midlife may slow age-related cognitive decline, as well as preserve muscle mass and physical function later in life. This study aimed to investigate the effects of a KD on global metabolic changes in middle-aged females to inform potential mechanisms behind the anti-aging effects of this diet in an understudied sex. Targeted 1H-NMR metabolomics was conducted on serum, the liver, the kidney, and the gastrocnemius muscle, as well as the cortex and the hippocampal brain regions in 16-month-old female mice after a 2-month KD. Analysis of the serum and liver metabolome revealed that the 2-month KD resulted in increased concentrations of fatty acid catabolism metabolites, as well as system-wide elevations in ketones, consistent with the ketogenic phenotype. Metabolites involved in the glucose-alanine cycle were altered in the gastrocnemius muscle, serum and the liver. Other tissue-specific alterations were detected, including distinct effects on hepatic and renal one-carbon metabolism, as well as region specific differences in metabolism across hippocampal and cortical parts of the brain. Alterations to hippocampal metabolites involved in myelinogenesis could relate to the potential beneficial effects of a KD on memory.
Collapse
Affiliation(s)
- Kirsten J Roslund
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Jennifer M Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Zeyu Zhou
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California Davis, Davis, CA, USA.
- Department of Food Science & Technology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Abdollahi A, Szramowski M, Tomoo K, Henderson GC. Metabolic responses to albumin deficiency differ distinctly between partial and full ablation of albumin expression in mice. Lipids Health Dis 2024; 23:242. [PMID: 39123208 PMCID: PMC11312229 DOI: 10.1186/s12944-024-02229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
It had been observed that homozygous albumin knockout mice (Alb-/-) exhibit low plasma free fatty acid (FFA) concentration and improved blood glucose regulation. However, it was not yet known to what extent heterozygous albumin knockout (Alb+/-) mice would display a similar phenotype. Alb-/-, Alb+/-, and wild-type (WT) female mice were studied on a low-fat diet (LFD) or high-fat diet (HFD). On both diets, decreased plasma FFA concentration, and improved glucose tolerance test were observed in Alb-/-, but not in Alb+/-, compared to WT. Plasma adiponectin concentration showed greater elevation in Alb-/- than Alb+/-. Consistent with that, adiponectin gene expression was significantly higher in Alb-/- mice than in Alb+/- and WT mice. A dose-dependent response was observed for hepatic Acadl gene expression showing higher Acadl gene expression in Alb-/- mice than in Alb+/- and WT mice. In conclusion, although female Alb+/- mice exhibited some slight differences from WT mice (e.g., increased plasma adiponectin and hepatic Acadl gene expression), Alb+/- mice did not exhibit improved glucoregulation in comparison to WT mice, indicating that a minor suppression of albumin expression is not sufficient to improve glucoregulation. Furthermore, it is now clear that although the response of female mice to HFD might be unique from how males generally respond, still the complete albumin deficiency in Alb-/- mice and the associated FFA reduction is capable of improving glucoregulation in females on this diet. The present results have implications for the role of albumin and FFA in the regulation of metabolism.
Collapse
Affiliation(s)
- Afsoun Abdollahi
- Department of Nutrition Science, Purdue University, STON 208, 700 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
| | - Mirandia Szramowski
- Department of Nutrition Science, Purdue University, STON 208, 700 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
| | - Keigo Tomoo
- Department of Nutrition Science, Purdue University, STON 208, 700 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA
| | - Gregory C Henderson
- Department of Nutrition Science, Purdue University, STON 208, 700 Mitch Daniels Blvd, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. INT J VITAM NUTR RES 2024; 94:405-421. [PMID: 38009780 DOI: 10.1024/0300-9831/a000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intestinal permeability is a physiological property that allows necessary molecules to enter the organism. This property is regulated by tight junction proteins located between intestinal epithelial cells. However, various factors can increase intestinal permeability (IIP), including diet. Specific components in the Western diet (WD), such as monosaccharides, fat, gluten, salt, alcohol, and additives, can affect the tight junctions between enterocytes, leading to increased permeability. This review explains how these components promote IIP and outlines their potential implications for health. In addition, we describe how a reduction in WD consumption may help improve dietary treatment of diseases associated with IIP. Research has shown that some of these components can cause changes in the gut microbiota, leading to dysbiosis, which can promote greater intestinal permeability and displacement of endotoxins into the bloodstream. These endotoxins include lipopolysaccharides derived from gram-negative bacteria, and their presence has been associated with various diseases, such as autoimmune, neurological, and metabolic diseases like diabetes and cardiovascular disease. Therefore, nutrition professionals should promote the reduction of WD consumption and consider the inclusion of healthy diet components as part of the nutritional treatment for diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- Gilberto Jaquez-Durán
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| | - Ana Lidia Arellano-Ortiz
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| |
Collapse
|
9
|
Freire T, Pulpitel T, Clark X, Mackay F, Raubenheimer D, Simpson SJ, Solon-Biet SM, Crean AJ. The effects of paternal dietary fat versus sugar on offspring body composition and anxiety-related behavior. Physiol Behav 2024; 279:114533. [PMID: 38552707 DOI: 10.1016/j.physbeh.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Increasing evidence suggests that the pre-conception parental environment has long-term consequences for offspring health and disease susceptibility. Though much of the work in this field concentrates on maternal influences, there is growing understanding that fathers also play a significant role in affecting offspring phenotypes. In this study, we investigate effects of altering the proportion of dietary fats and carbohydrates on paternal and offspring body composition and anxiety-related behavior in C57Bl/6-JArc mice. We show that in an isocaloric context, greater dietary fat increased body fat and reduced anxiety-like behavior of studs, whereas increased dietary sucrose had no significant effect. These dietary effects were not reflected in offspring traits, rather, we found sex-specific effects that differed between offspring body composition and behavioral traits. This finding is consistent with past paternal effect studies, where transgenerational effects have been shown to be more prominent in one sex over the other. Here, male offspring of fathers fed high-fat diets were heavier at 10 weeks of age due to increased lean body mass, whereas paternal diet had no significant effect on female offspring body fat or lean mass. In contrast, paternal dietary sugar appeared to have the strongest effects on male offspring behavior, with male offspring of high-sucrose fathers spending less time in the closed arms of the elevated plus maze. Both high-fat and high-sugar paternal diets were found to reduce anxiety-like behavior of female offspring, although this effect was only evident when offspring were fed a control diet. This study provides new understanding of the ways in which diet can shape the behavior of fathers and their offspring and contribute to the development of dietary guidelines to improve obesity and mental health conditions, such as anxiety.
Collapse
Affiliation(s)
- Therese Freire
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney NSW, Australia.
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney NSW, Australia
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney NSW, Australia
| | - Flora Mackay
- Charles Perkins Centre, The University of Sydney NSW, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney NSW, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney NSW, Australia
| | - Angela J Crean
- Charles Perkins Centre, The University of Sydney NSW, Australia; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney NSW, Australia
| |
Collapse
|
10
|
Ortiz-Valladares M, Pedraza-Medina R, Rosales-Herrera S, Guzmán-Muñiz J. Maternal aerobic exercise decreases the effects of a perinatal Western diet on the short and long-term memory of CD1 mouse progeny. Neurosci Lett 2024; 824:137669. [PMID: 38360145 DOI: 10.1016/j.neulet.2024.137669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Maternal nutrition and physical activity during pregnancy and lactation can modify offspring development. Here, we investigated the effects of maternal aerobic exercise (AE) and Western diet (WD) on brain development, cognitive flexibility, and memory of progenies. Sixteen adult female mice were assigned to AE or sedentary groups (SED) and fed a balanced diet (BD) or WD. Offspring were categorized into four groups: WD + AE, WD + SED, BD + AE, and BD + SED. The AE group showed enhanced spontaneous alternation in the T-maze test, suggesting an improvement in working memory and tasks related to cognitive flexibility. The novel object recognition (NOR) test showed that the BD + AE pups improved their absolute discrimination and discrimination index at 24 h, which suggests a delay in memory consolidation without affecting evocation. WD + SED showed poorer discrimination and recognition memory. The pups of AE mothers had better efficiency in short-term memory, whereas WD offspring showed low performance in long-term memory. Interestingly, exercise improved tasks related to cognitive flexibility, regardless of the diet. These findings indicate that maternal diet and physical activity modify offspring development and suggest that maternal AE during pregnancy could be a beneficial intervention to counteract the adverse effects of WD by improving spatial memory and cognitive flexibility in offspring.
Collapse
Affiliation(s)
| | - Ricardo Pedraza-Medina
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, Mexico
| | - Salma Rosales-Herrera
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, Mexico
| | - Jorge Guzmán-Muñiz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, Mexico
| |
Collapse
|
11
|
Smiriglia A, Lorito N, Serra M, Perra A, Morandi A, Kowalik MA. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023; 26:108363. [PMID: 38034347 PMCID: PMC10682354 DOI: 10.1016/j.isci.2023.108363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Only a few preclinical findings are confirmed in the clinic, posing a critical issue for clinical development. Therefore, identifying the best preclinical models can help to dissect molecular and mechanistic insights into liver disease pathogenesis while being clinically relevant. In this context, the sex relevance of most preclinical models has been only partially considered. This is particularly significant in NAFLD and HCC, which have a higher prevalence in men when compared to pre-menopause women but not to those in post-menopausal status, suggesting a role for sex hormones in the pathogenesis of the diseases. This review gathers the sex-relevant findings and the available preclinical models focusing on both in vitro and in vivo studies and discusses the potential implications and perspectives of introducing the sex effect in the selection of the best preclinical model. This is a critical aspect that would help to tailor personalized therapies based on sex.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
12
|
Li X, Morel JD, Benegiamo G, Poisson J, Bachmann A, Rapin A, Sulc J, Williams E, Perino A, Schoonjans K, Bou Sleiman M, Auwerx J. Genetic and dietary modulators of the inflammatory response in the gastrointestinal tract of the BXD mouse genetic reference population. eLife 2023; 12:RP87569. [PMID: 37855835 PMCID: PMC10586803 DOI: 10.7554/elife.87569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Inflammatory gut disorders, including inflammatory bowel disease (IBD), can be impacted by dietary, environmental, and genetic factors. While the incidence of IBD is increasing worldwide, we still lack a complete understanding of the gene-by-environment interactions underlying inflammation and IBD. Here, we profiled the colon transcriptome of 52 BXD mouse strains fed with a chow or high-fat diet (HFD) and identified a subset of BXD strains that exhibit an IBD-like transcriptome signature on HFD, indicating that an interplay of genetics and diet can significantly affect intestinal inflammation. Using gene co-expression analyses, we identified modules that are enriched for IBD-dysregulated genes and found that these IBD-related modules share cis-regulatory elements that are responsive to the STAT2, SMAD3, and REL transcription factors. We used module quantitative trait locus analyses to identify genetic loci associated with the expression of these modules. Through a prioritization scheme involving systems genetics in the mouse and integration with external human datasets, we identified Muc4 and Epha6 as the top candidates mediating differences in HFD-driven intestinal inflammation. This work provides insights into the contribution of genetics and diet to IBD risk and identifies two candidate genes, MUC4 and EPHA6, that may mediate IBD susceptibility in humans.
Collapse
Affiliation(s)
- Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Johanne Poisson
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Alexis Bachmann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Alexis Rapin
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Evan Williams
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-AlzetteLuxembourg
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
13
|
Yang G, Liu R, Rezaei S, Liu X, Wan YJY. Uncovering the Gut-Liver Axis Biomarkers for Predicting Metabolic Burden in Mice. Nutrients 2023; 15:3406. [PMID: 37571345 PMCID: PMC10421148 DOI: 10.3390/nu15153406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Western diet (WD) intake, aging, and inactivation of farnesoid X receptor (FXR) are risk factors for metabolic and chronic inflammation-related health issues ranging from metabolic dysfunction-associated steatotic liver disease (MASLD) to dementia. The progression of MASLD can be escalated when those risks are combined. Inactivation of FXR, the receptor for bile acid (BA), is cancer prone in both humans and mice. The current study used multi-omics including hepatic transcripts, liver, serum, and urine metabolites, hepatic BAs, as well as gut microbiota from mouse models to classify those risks using machine learning. A linear support vector machine with K-fold cross-validation was used for classification and feature selection. We have identified that increased urine sucrose alone achieved 91% accuracy in predicting WD intake. Hepatic lithocholic acid and serum pyruvate had 100% and 95% accuracy, respectively, to classify age. Urine metabolites (decreased creatinine and taurine as well as increased succinate) or increased gut bacteria (Dorea, Dehalobacterium, and Oscillospira) could predict FXR deactivation with greater than 90% accuracy. Human disease relevance is partly revealed using the metabolite-disease interaction network. Transcriptomics data were also compared with the human liver disease datasets. WD-reduced hepatic Cyp39a1 (cytochrome P450 family 39 subfamily a member 1) and increased Gramd1b (GRAM domain containing 1B) were also changed in human liver cancer and metabolic liver disease, respectively. Together, our data contribute to the identification of noninvasive biomarkers within the gut-liver axis to predict metabolic status.
Collapse
Affiliation(s)
- Guiyan Yang
- Department of Medical Pathology, Laboratory Medicine in Sacramento, University of California, Davis, CA 95817, USA;
| | - Rex Liu
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Shahbaz Rezaei
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Xin Liu
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology, Laboratory Medicine in Sacramento, University of California, Davis, CA 95817, USA;
| |
Collapse
|
14
|
Kiernan K, Nichols AG, Alwarawrah Y, MacIver NJ. Effects of T cell leptin signaling on systemic glucose tolerance and T cell responses in obesity. PLoS One 2023; 18:e0286470. [PMID: 37276236 PMCID: PMC10241364 DOI: 10.1371/journal.pone.0286470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Leptin is an adipokine secreted in proportion to adipocyte mass and is therefore increased in obesity. Leptin signaling has been shown to directly promote inflammatory T helper 1 (Th1) and T helper 17 (Th17) cell number and function. Since T cells have a critical role in driving inflammation and systemic glucose intolerance in obesity, we sought to determine the role of leptin signaling in this context. METHODS Male and female T cell-specific leptin receptor knockout mice and littermate controls were placed on low-fat diet or high-fat diet to induce obesity for 18 weeks. Weight gain, serum glucose levels, systemic glucose tolerance, T cell metabolism, and T cell differentiation and cytokine production were examined. RESULTS In both male and female mice, T cell-specific leptin receptor deficiency did not reverse impaired glucose tolerance in obesity, although it did prevent impaired fasting glucose levels in obese mice compared to littermate controls, in a sex dependent manner. Despite these minimal effects on systemic metabolism, T cell-specific leptin signaling was required for changes in T cell metabolism, differentiation, and cytokine production observed in mice fed high-fat diet compared to low-fat diet. Specifically, we observed increased T cell oxidative metabolism, increased CD4+ T cell IFN-γ expression, and increased proportion of T regulatory (Treg) cells in control mice fed high-fat diet compared to low-fat diet, which were not observed in the leptin receptor conditional knockout mice, suggesting that leptin receptor signaling is required for some of the inflammatory changes observed in T cells in obesity. CONCLUSIONS T cell-specific deficiency of leptin signaling alters T cell metabolism and function in obesity but has minimal effects on obesity-associated systemic metabolism. These results suggest a redundancy in cytokine receptor signaling pathways in response to inflammatory signals in obesity.
Collapse
Affiliation(s)
- Kaitlin Kiernan
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Amanda G. Nichols
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Yazan Alwarawrah
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Nancie J. MacIver
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Nutrition, University of North Carolina School of Medicine and Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
15
|
MUHAMMAD M, MUCHIMAPURA S, WATTANATHORN J. Microbiota-gut-brain axis impairment in the pathogenesis of stroke: implication as a potent therapeutic target. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:143-151. [PMID: 37404572 PMCID: PMC10315190 DOI: 10.12938/bmfh.2022-067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/09/2023] [Indexed: 07/06/2023]
Abstract
The human microbiota-gut-brain axis has an enormous role in the maintenance of homeostasis and health. Over the last two decades, it has received concerted research attention and focus due to a rapidly emerging volume of evidence that has established that impairment within the microbiota-gut-brain axis contributes to the development and progression of various diseases. Stroke is one of the entities identified to be associated with microbiota-gut-brain axis impairment. Currently, there are still limitations in the clinical treatment of stroke, and the presence of a non-nervous factor from gut microbiota that can alter the course of stroke presents a novel strategy towards the search for a therapeutic silver bullet against stroke. Hence, the aim herein, was to focus on the involvement of microbiota-gut-brain axis impairment in the pathogenesis stroke as well as elucidate its implications as a potent therapeutic target against stroke. The findings of studies to date have revealed and extended the role microbiota-gut-brain axis impairment in the pathogenesis of stroke, and studies have identified from both clinical and pre-clinical perspectives targets within the microbiota-gut-brain axis and successfully modulated the outcome of stroke. It was concluded that the microbiota-gut-brain axis stands as potent target to salvage the neurons in the ischemic penumbra for the treatment of stroke. Assessment of the microbiota profile and its metabolites status holds enormous clinical potentials as a non-invasive indicator for the early diagnosis and prognosis of stroke.
Collapse
Affiliation(s)
- Mubarak MUHAMMAD
- Graduate School (Neuroscience Program), Faculty of Medicine,
Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen
40002, Thailand
| | - Supaporn MUCHIMAPURA
- Department of Physiology, Faculty of Medicine, Khon Kaen
University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002,
Thailand
- Integrative Complementary Alternative Medicine Research and
Development Center in the Research Institute for Human High Performance and Health
Promotion, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District,
Khon Kaen 40002, Thailand
| | - Jintanaporn WATTANATHORN
- Department of Physiology, Faculty of Medicine, Khon Kaen
University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District, Khon Kaen 40002,
Thailand
- Integrative Complementary Alternative Medicine Research and
Development Center in the Research Institute for Human High Performance and Health
Promotion, Khon Kaen University, 123 Moo 16 Mittraphap Rd., Nai-Muang, Muang District,
Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Yang G, Jena PK, Hu Y, Sheng L, Chen SY, Slupsky CM, Davis R, Tepper CG, Wan YJY. The essential roles of FXR in diet and age influenced metabolic changes and liver disease development: a multi-omics study. Biomark Res 2023; 11:20. [PMID: 36803569 PMCID: PMC9938992 DOI: 10.1186/s40364-023-00458-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Aging and diet are risks for metabolic diseases. Bile acid receptor farnesoid X receptor (FXR) knockout (KO) mice develop metabolic liver diseases that progress into cancer as they age, which is accelerated by Western diet (WD) intake. The current study uncovers the molecular signatures for diet and age-linked metabolic liver disease development in an FXR-dependent manner. METHODS Wild-type (WT) and FXR KO male mice, either on a healthy control diet (CD) or a WD, were euthanized at the ages of 5, 10, or 15 months. Hepatic transcriptomics, liver, serum, and urine metabolomics as well as microbiota were profiled. RESULTS WD intake facilitated hepatic aging in WT mice. In an FXR-dependent manner, increased inflammation and reduced oxidative phosphorylation were the primary pathways affected by WD and aging. FXR has a role in modulating inflammation and B cell-mediated humoral immunity which was enhanced by aging. Moreover, FXR dictated neuron differentiation, muscle contraction, and cytoskeleton organization in addition to metabolism. There were 654 transcripts commonly altered by diets, ages, and FXR KO, and 76 of them were differentially expressed in human hepatocellular carcinoma (HCC) and healthy livers. Urine metabolites differentiated dietary effects in both genotypes, and serum metabolites clearly separated ages irrespective of diets. Aging and FXR KO commonly affected amino acid metabolism and TCA cycle. Moreover, FXR is essential for colonization of age-related gut microbes. Integrated analyses uncovered metabolites and bacteria linked with hepatic transcripts affected by WD intake, aging, and FXR KO as well as related to HCC patient survival. CONCLUSION FXR is a target to prevent diet or age-associated metabolic disease. The uncovered metabolites and microbes can be diagnostic markers for metabolic disease.
Collapse
Affiliation(s)
- Guiyan Yang
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Prasant K. Jena
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Ying Hu
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Lili Sheng
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Shin-Yu Chen
- grid.27860.3b0000 0004 1936 9684Department of Nutrition, University of California, Davis, CA USA
| | - Carolyn M. Slupsky
- grid.27860.3b0000 0004 1936 9684Department of Nutrition, University of California, Davis, CA USA
| | - Ryan Davis
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA 95817 USA
| | - Clifford G. Tepper
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA.
| |
Collapse
|
17
|
Zheng X, Li Z, Berg Sen J, Samarah L, Deacon CS, Bernardo J, Machin DR. Western diet augments metabolic and arterial dysfunction in a sex-specific manner in outbred, genetically diverse mice. Front Nutr 2023; 9:1090023. [PMID: 36687716 PMCID: PMC9853899 DOI: 10.3389/fnut.2022.1090023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023] Open
Abstract
Western diet (WD), characterized by excess saturated fat and sugar intake, is a major contributor to obesity and metabolic and arterial dysfunction in humans. However, these phenotypes are not consistently observed in traditional inbred, genetically identical mice. Therefore, we sought to determine the effects of WD on visceral adiposity and metabolic/arterial function in UM-HET3 mice, an outbred, genetically diverse strain of mice. Male and female UM-HET3 mice underwent normal chow (NC) or WD for 12 weeks. Body mass and visceral adiposity were higher in WD compared to NC (P < 0.05). Female WD mice had greater visceral adiposity than male WD mice (P < 0.05). The results of glucose and insulin tolerance tests demonstrated that metabolic function was lower in WD compared to NC mice (P < 0.05). Metabolic dysfunction in WD as was driven by male mice, as metabolic function in female WD mice was unchanged (P > 0.05). Systolic blood pressure (BP) and aortic stiffness were increased in WD after 2 weeks compared to baseline and continued to increase through week 12 (P < 0.05). Systolic BP and aortic stiffness were higher from weeks 2-12 in WD compared to NC (P < 0.05). Aortic collagen content was higher in WD compared to NC (P < 0.05). Carotid artery endothelium-dependent dilation was lower in WD compared to NC (P < 0.05). These data suggest sex-related differences in visceral adiposity and metabolic dysfunction in response to WD. Despite this, arterial dysfunction was similar in male and female WD mice, indicating this model may provide unique translational insight into similar sex-related observations in humans that consume WD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel R. Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
18
|
Gorusupudi A, Nwagbo U, Bernstein PS. Role of VLC-PUFAs in Retinal and Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:257-261. [PMID: 37440042 DOI: 10.1007/978-3-031-27681-1_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Very-long-chain polyunsaturated fatty acids (VLC-PUFAs) are a special class of fatty acids that are present in the retina and a few other human tissues. They cannot be synthesized de novo and are rarely present in dietary sources. Structurally, these lipids are composed of a proximal end with a typical saturated fatty acid character and a distal end more characteristic of common PUFAs. They have not been studied in detail until recently due to their low abundance in these tissues and technical difficulties in assaying these lipids by conventional chromatography. This unique class of lipids has chain lengths greater than 24 carbons, with the longest typically 38 carbons long. There is increasing interest in understanding their roles in the maintenance of retinal membrane integrity and the prevention of macular degeneration and inherited retinal diseases.
Collapse
Affiliation(s)
- Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Uzoamaka Nwagbo
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Chen CY, Leu HB, Wang SC, Tsai SH, Chou RH, Lu YW, Tsai YL, Kuo CS, Huang PH, Chen JW, Lin SJ. Inhibition of Trimethylamine N-Oxide Attenuates Neointimal Formation Through Reduction of Inflammasome and Oxidative Stress in a Mouse Model of Carotid Artery Ligation. Antioxid Redox Signal 2023; 38:215-233. [PMID: 35713239 DOI: 10.1089/ars.2021.0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aims: Trimethylamine-N-oxide (TMAO) is a metabolite generated from dietary choline, betaine, and l-carnitine, after their oxidization in the liver. TMAO has been identified as a novel independent risk factor for atherosclerosis through the induction of vascular inflammation. However, the effect of TMAO on neointimal formation in response to vascular injury remains unclear. Results: This study was conducted using a murine model of acutely disturbed flow-induced atherosclerosis induced by partial carotid artery ligation. 3,3-Dimethyl-1-butanol (DMB) was used to reduce TMAO concentrations. Wild-type mice were divided into four groups [regular diet, high-TMAO diet, high-choline diet, and high-choline diet+DMB] to investigate the effects of TMAO elevation and its inhibition by DMB. Mice fed high-TMAO and high-choline diets had significantly enhanced neointimal hyperplasia and advanced plaques, elevated arterial elastin fragmentation, increased macrophage infiltration and inflammatory cytokine secretion, and enhanced activation of nuclear factor (NF)-κB, the NLRP3 inflammasome, and endoplasmic reticulum (ER) stress relative to the control group. Mice fed high-choline diets with DMB treatment exhibited attenuated flow-induced atherosclerosis, inflammasome expression, ER stress, and reactive oxygen species expression. Human aortic smooth muscle cells (HASMCs) were used to investigate the mechanism of TMAO-induced injury. The HASMCs were treated with TMAO with or without an ER stress inhibitor to determine whether inhibition of ER stress modulates the TMAO-induced inflammatory response. Innovation: This study demonstrates that TMAO regulates vascular remodeling via ER stress. Conclusion: Our findings demonstrate that TMAO elevation promotes disturbed flow-induced atherosclerosis and that DMB administration mitigates vascular remodeling, suggesting a rationale for a TMAO-targeted strategy for the treatment of atherosclerosis. Antioxid. Redox Signal. 38, 215-233.
Collapse
Affiliation(s)
- Chi-Yu Chen
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Bang Leu
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shen-Chih Wang
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hung Tsai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ruey-Hsing Chou
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Wen Lu
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Lin Tsai
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Sung Kuo
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Nutrition Patterns of Polish Esports Players. Nutrients 2022; 15:nu15010149. [PMID: 36615806 PMCID: PMC9824454 DOI: 10.3390/nu15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to quantify the dietary patterns (DPs) of Polish esports players aged 18-26 years. Data were obtained via questionnaires that assessed dietary habits and frequency of food consumption. Dietary patterns were derived using Principal Component Analysis (PCA) and Factor Analysis (FA). In total, nine distinct DPs were identified. Eight DPs were considered unhealthy; 'fast food', 'High-processed food, meat and confectionery', 'Sweet', 'Fat-diary products', 'Vegetable-fruit', 'Spices and additives', 'Fats' and 'Cereal'; and only one was deemed healthy. E-athletes presented mostly poor dietary habits, which included: irregular eating of meals, frequent snacking, at least three meals a day and composition of snacks, frying of meat dishes and sweetening of hot drinks. Healthy dietary habits included proper hydration during the day and consumption of mainly non-sparkling water. The unbalanced and largely unhealthy dietary habits of esports players raise health concerns for these e-athletes, particularly when combined with a sedentary lifestyle. Future research could assess the nutritional knowledge of this group as it relates to national guidelines, investigate interventions designed to introduce healthier eating options into their lifestyle and examine the relationship between DPs and health or cognitive performance.
Collapse
|
21
|
Costa MADC, Dias Moreira LDP, Duarte VDS, Cardoso RR, de São José VPB, da Silva BP, Grancieri M, Corich V, Giacomini A, Bressan J, Martino HSD, de Barros FAR. Kombuchas from Green and Black Tea Modulate the Gut Microbiota and Improve the Intestinal Health of Wistar Rats Fed a High-Fat High-Fructose Diet. Nutrients 2022; 14:5234. [PMID: 36558393 PMCID: PMC9787585 DOI: 10.3390/nu14245234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The Western diet can negatively affect the gut microbiota and is associated with metabolic disorders. Kombucha, a tea fermented by a symbiotic culture of bacteria and yeast (SCOBY), is known for its bioactive properties and has become popular in the last years. In this study, we evaluated the effects of regular kombucha consumption on the gut microbiota and on outcomes related to the intestinal health of Wistar rats fed a high-fat high-fructose diet. After eight weeks receiving a standard diet (AIN-93M) (n = 10) or a high-fat and high-fructose diet (HFHF) (n = 30) to induce metabolic disorders, the animals were subdivided into four groups: AIN-93M (n = 10); HFHF (n = 10); GTK (HFHF + green tea kombucha (n = 10); and BTK (HFHF + black tea kombucha; n = 10) for 10 weeks. Although body composition did not differ among the groups, the HFHF diet was associated with metabolic alterations, and stimulated the growth of gram-negative bacteria such as Proteobacteria and Bacteroides. Kombucha ingestion could somewhat modulate the gut microbiota, attenuating the effects of a Western diet by increasing propionate production and favoring the growth of beneficial bacteria, such as Adlercreutzia in the GTK group. Our results suggest that regular kombucha consumption may be beneficial to intestinal health, which can be mostly attributed to its high content and diversity of phenolic compounds.
Collapse
Affiliation(s)
| | - Luiza de Paula Dias Moreira
- Department of Agronomy, Food Natural Resources, Animals, and Environment (DAFNAE), Università degli Studi di Padova, Via dell’Università 16, 35020 Legnaro, PD, Italy
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Rodrigo Rezende Cardoso
- Department of Food Technology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, MG, Brazil
| | | | - Bárbara Pereira da Silva
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | - Mariana Grancieri
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, Animals, and Environment (DAFNAE), Università degli Studi di Padova, Via dell’Università 16, 35020 Legnaro, PD, Italy
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, Animals, and Environment (DAFNAE), Università degli Studi di Padova, Via dell’Università 16, 35020 Legnaro, PD, Italy
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | | |
Collapse
|
22
|
Tiedemann K, Muthu ML, Reinhardt DP, Komarova SV. Male Marfan mice are predisposed to high fat diet induced obesity, diabetes, and fatty liver. Am J Physiol Cell Physiol 2022; 323:C354-C366. [PMID: 35759435 DOI: 10.1152/ajpcell.00062.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene mutations in the extracellular matrix protein fibrillin-1 cause connective tissue disorders including Marfan syndrome (MFS) with clinical symptoms in the cardiovascular, skeletal, and ocular systems. MFS patients also exhibit alterations in adipose tissues, which in some individuals leads to lipodystrophy, whereas in others to obesity. We have recently demonstrated that fibrillin-1 regulates adipose tissue homeostasis. Here, we examined how fibrillin-1 abnormality affects metabolic adaptation to different diets. We used two MFS mouse models: Hypomorph Fbn1mgR/mgR mice and Fbn1C1041G/+ mice with a fibrillin-1 missense mutation. When Fbn1mgR/mgR mice were fed with high fat diet (HFD) for 12 weeks, male mice were heavier than littermate controls (LC), whereas female mice gained less weight compared to LC. Female Fbn1C1041G/+ mice on a HFD for 24 weeks were similarly protected from weight gain. Male Fbn1C1041G/+ mice on HFD demonstrated higher insulin levels, insulin intolerance, circulating levels of cholesterol and high-density lipoproteins. Moreover, male HFD-fed Fbn1C1041G/+ mice showed a higher liver weight and a fatty liver phenotype, which was reduced to LC levels after orchiectomy. Phosphorylation of protein kinase-like endoplasmic reticulum kinase (PERK) as well as the expression of sterol regulatory element-binding protein 1 (Srebp1) in livers of HFD-fed male Fbn1C1041G/+ mice were elevated. In conclusion, the data demonstrate that male mice of both MFS models are susceptible to HFD-induced obesity and diabetes. Moreover, male Fbn1C1041G/+ mice develop a fatty liver phenotype, likely mediated by a baseline increased endoplasmic reticulum stress. In contrast, female MFS mice were protected from the consequence of HFD.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Canada.,Shriners Hospital for Children - Canada, Montréal, Canada
| | - Muthu L Muthu
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Dieter P Reinhardt
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Canada.,Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Svetlana V Komarova
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Canada.,Shriners Hospital for Children - Canada, Montréal, Canada
| |
Collapse
|
23
|
Beneficial metabolic effects of probiotic supplementation in dams and offspring following hypercaloric diet during pregnancy. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Bodden C, Pang TY, Feng Y, Mridha F, Kong G, Li S, Watt MJ, Reichelt AC, Hannan AJ. Intergenerational effects of a paternal Western diet during adolescence on offspring gut microbiota, stress reactivity, and social behavior. FASEB J 2021; 36:e21981. [PMID: 34907601 DOI: 10.1096/fj.202100920rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022]
Abstract
The global consumption of highly processed, calorie-dense foods has contributed to an epidemic of overweight and obesity, along with negative consequences for metabolic dysfunction and disease susceptibility. As it becomes apparent that overweight and obesity have ripple effects through generations, understanding of the processes involved is required, in both maternal and paternal epigenetic inheritance. We focused on the patrilineal effects of a Western-style high-fat (21%) and high-sugar (34%) diet (WD) compared to control diet (CD) during adolescence and investigated F0 and F1 mice for physiological and behavioral changes. F0 males (fathers) showed increased body weight, impaired glycemic control, and decreased attractiveness to females. Paternal WD caused significant phenotypic changes in F1 offspring, including higher body weights of pups, increased Actinobacteria abundance in the gut microbiota (ascertained using 16S microbiome profiling), a food preference for WD pellets, increased male dominance and attractiveness to females, as well as decreased behavioral despair. These results collectively demonstrate the long-term intergenerational effects of a Western-style diet during paternal adolescence. The behavioral and physiological alterations in F1 offspring provide evidence of adaptive paternal programming via epigenetic inheritance. These findings have important implications for understanding paternally mediated intergenerational inheritance, and its relevance to offspring health and disease susceptibility.
Collapse
Affiliation(s)
- Carina Bodden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Yingshi Feng
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Faria Mridha
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Geraldine Kong
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Shanshan Li
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Amy C Reichelt
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Papoutsis D, da Rocha SDC, Herfindal AM, Bøhn SK, Carlsen H. A High-Fat Western Diet Attenuates Intestinal Changes in Mice with DSS-Induced Low-Grade Inflammation. J Nutr 2021; 152:758-769. [PMID: 34865102 PMCID: PMC8891187 DOI: 10.1093/jn/nxab401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A Western diet (WD) is associated with increased inflammation in the large intestine, which is often ascribed to the high dietary fat content. Intestinal inflammation in rodents can be induced by oral administration of dextran sodium sulfate (DSS). However, most studies investigating effects of WD and DSS have not used appropriate low-fat diets (LFDs) as control. OBJECTIVES To compare the effects of a WD with those of an LFD on colon health in a DSS-induced low-grade colonic inflammation mouse model. METHODS Six-week-old male C57BL/6JRj mice were fed an LFD (fat = 10.3% energy, n = 24) or a WD (fat = 41.2% energy, n = 24) for 15 wk [Experiment 1 (Exp.1)]. Half the mice on each diet (n = 12) then received 1% DSS in water for 6 d with the remainder (n = 12 in each diet) administered water. Disease activity, proinflammatory genes, inflammatory biomarkers, and fecal microbiota (16S rRNA) were assessed (Exp.1). Follow-up experiments (Exp.2 and Exp.3) were performed to investigate whether fat source (milk or lard; Exp.2) affected outcomes and whether a shift from LFD to WD 1 d prior to 1% DSS exposure caused an immediate effect on DSS-induced inflammation (Exp.3). RESULTS In Exp.1, 1% DSS treatment significantly increased disease score in the LFD group compared with the WD group (2.7 compared with 0.8; P < 0.001). Higher concentrations of fecal lipocalin (11-fold; P < 0.001), proinflammatory gene expression (≤82-fold), and Proteobacteria were observed in LFD-fed mice compared with the WD group. The 2 fat sources in WDs (Exp.2) revealed the same low inflammation in WD+DSS mice compared with LFD+DSS mice. Finally, the switch from LFD to WD just before DSS exposure resulted in reduced colonic inflammation (Exp.3). CONCLUSIONS Herein, WDs (with milk or lard) protected mice against DSS-induced colonic inflammation compared with LFD-fed mice. Whether fat intake induces protective mechanisms against DSS-mediated inflammation or inhibits establishment of the DSS-induced colitis model is unclear.
Collapse
Affiliation(s)
- Dimitrios Papoutsis
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Siv Kjølsrud Bøhn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
26
|
Breuer S, Kasper P, Vohlen C, Janoschek R, Hoffmann T, Appel S, Müller-Limberger E, Mesaros A, Rose-John S, Garbers C, Müller S, Lackmann JW, Mahabir E, Dötsch J, Hucklenbruch-Rother E, Bae-Gartz I. Brain-Restricted Inhibition of IL-6 Trans-Signaling Mildly Affects Metabolic Consequences of Maternal Obesity in Male Offspring. Nutrients 2021; 13:3735. [PMID: 34835991 PMCID: PMC8618896 DOI: 10.3390/nu13113735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal obesity greatly affects next generations, elevating obesity risk in the offspring through perinatal programming and flawed maternal and newborn nutrition. The exact underlying mechanisms are poorly understood. Interleukin-6 (IL-6) mediates its effects through a membrane-bound receptor or by trans-signaling (tS), which can be inhibited by the soluble form of the co-receptor gp130 (sgp130). As IL-6 tS mediates western-style diet (WSD) effects via chronic low-grade inflammation (LGI) and LGI is an important mediator in brain-adipose tissue communication, this study aims at determining the effects of maternal obesity in a transgenic mouse model of brain-restricted IL-6tS inhibition (GFAPsgp130) on offspring's short- and long-term body composition and epigonadal white adipose tissue (egWAT) metabolism. Female wild type (WT) or transgenic mice were fed either standard diet (SD) or WSD pregestationally, during gestation, and lactation. Male offspring received SD from postnatal day (P)21 to P56 and were metabolically challenged with WSD from P56 to P120. At P21, offspring from WT and transgenic dams that were fed WSD displayed increased body weight and egWAT mass, while glucose tolerance testing showed the strongest impairment in GFAPsgp130WSD offspring. Simultaneously, egWAT proteome reveals a characteristic egWAT expression pattern in offspring as a result of maternal conditions. IL-6tS inhibition in transgenic mice was in tendency associated with lower body weight in dams on SD and their respective offspring but blunted by the WSD. In conclusion, maternal nutrition affects offspring's body weight and egWAT metabolism predominantly independent of IL-6tS inhibition, emphasizing the importance of maternal and newborn nutrition for long-term offspring health.
Collapse
Affiliation(s)
- Saida Breuer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany;
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Thorben Hoffmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Elena Müller-Limberger
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Andrea Mesaros
- Department of Phenotyping, Max-Planck Institute for Biology of Aging, University of Cologne, D-50931 Cologne, Germany;
| | - Stefan Rose-John
- Department for Biochemistry, Christian-Albrechts-University zu Kiel, D-24098 Kiel, Germany;
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany;
| | - Stefan Müller
- Center for Molecular Medicine (CMMC), Proteomics Facility, University of Cologne, D-50931 Cologne, Germany;
| | - Jan-Wilm Lackmann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany;
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, D-50937 Cologne, Germany;
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| |
Collapse
|
27
|
Della Valle PG, Mosconi G, Nucci D, Vigezzi GP, Gentile L, Gianfredi V, Bonaccio M, Gianfagna F, Signorelli C, Iacoviello L, Odone A. Adherence to the Mediterranean Diet during the COVID-19 national lockdowns: a systematic review of observational studies. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021440. [PMID: 34739464 PMCID: PMC8851000 DOI: 10.23750/abm.v92is6.12233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM OF THE WORK During the COVID-19 pandemic, many countries adopted restrictive measures to mitigate infection spread, which might have influenced people's lifestyle and dietary habits. We conducted a systematic review to evaluate the impact of national lockdowns on adherence to the Mediterranean Diet (MD). METHODS Studies were identified searching Medline, Embase, Web of Science, and the Cochrane Library. Studies published until 4th May 2021 were included. We only considered studies reporting original data from quantitative analysis and assessing changes in adherence to the MD, using validated dietary scores, or in consumption of MD food items. Data extraction, pooling, and quality appraisal of included studies were conducted following the PRISMA guidelines. RESULTS Forty-two studies were retrieved. After screening, 12 studies met inclusion criteria and were included in the review, of which 4 (33%) were longitudinal studies. Six (85.7%) of the seven studies that measured changes in MD adherence before-during lockdown reported an increase (rate of change of high-adherence to MD ranged between +3.3% and +21.9%). Evidence indicates that consumption of MD food items increased during lockdown but is heterogeneous in study design, quality, and findings. CONCLUSIONS Our results suggest adherence to the MD during lockdown might have increased in some settings, while the determinants of such a trend are to be further explored. We raise awareness of the need to research further the impacts and long-term consequences of COVID-19 containment measures on dietary and lifestyle habits.
Collapse
Affiliation(s)
- Petra Giulia Della Valle
- Department of Public Health, Forensic and Experimental Medicine, University of Pavia, Pavia, Italy.
| | - Giansanto Mosconi
- Department of Public Health, Forensic and Experimental Medicine, University of Pavia, Pavia, Italy.
| | - Daniele Nucci
- Nutritional support Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy .
| | - Giacomo Pietro Vigezzi
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy .
| | - Leandro Gentile
- Department of Public Health, Forensic and Experimental Medicine, University of Pavia, Pavia, Italy..
| | - Vincenza Gianfredi
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy;.
| | | | - Francesco Gianfagna
- Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy; Mediterranea Cardiocentro, Napoli, Italy.
| | - Carlo Signorelli
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy .
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Anna Odone
- Department of Public Health, Forensic and Experimental Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
28
|
Sexual Dimorphism in Changes That Occur in Tissues, Organs and Plasma during the Early Stages of Obesity Development. BIOLOGY 2021; 10:biology10080717. [PMID: 34439950 PMCID: PMC8389333 DOI: 10.3390/biology10080717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Obesity is a global health concern with numerous associated comorbidities. This study aims to provide a qualitative assessment of changes that may occur in tissues, organs, and plasma during the early stages of obesity development and how it may differ between male and female using a mouse model of diet induced obesity. Notable changes, not previously reported, were observed in the lungs, liver, kidney, spleen, and heart, which may suggest early signs of developing an obesity associated comorbidity. Leptin levels with notable sexual dimorphisms changes significantly in early obesity and was observed to also correlate with insulin levels. Interestingly, males and females showed different inflammatory cytokine profiles with females exhibiting a more anti-inflammatory cytokine profile, notably the IL-6/IL-10 axis of cytokine regulation may account for their significantly lower weight gain compared to males. Thus, this study provides valuable information which may aid in understanding the development of some obesity associated diseases at the early stages and could assist in developing effective intervention strategies in males and females. Abstract Despite obesity being a major health concern, information on the early clinical changes that occur in plasma and tissues during obesity development and the influence of sexual dimorphism is lacking. This study investigated changes in tissue and organ histology, macrophage infiltration, plasma hormones, lipid, and chemokine and cytokine levels in mice fed on a high fat diet for 11-weeks. An increase in adiposity, accompanied by adipocyte hypertrophy and macrophage infiltration, was observed to be significantly greater in males than females. Important changes in cell morphology and histology were noted in the lungs, liver, kidney, spleen, and heart, which may indicate early signs for developing obesity associated comorbidities. Leptin, but not adiponectin, was significantly altered during weight gain. Additionally, leptin, but not adiposity, correlated with insulin levels. Interestingly, GM-CSF, TNFα, and IL-12 (p70) were not produced in the early stages of obesity development. Meanwhile, the production of MCP-1, IP-10, RANTES, IL-10, IL-6, KC, and IL-9 were greatly influenced by sexual dimorphism. Importantly, IL-6/IL-10 axis of anti-inflammatory cytokine regulation was observed only in females and may account for their significantly lower weight gain compared to males. This study provides new knowledge on how sexual dimorphism may influence the development of obesity and associated comorbidities.
Collapse
|
29
|
The role of the microbiome in gastrointestinal inflammation. Biosci Rep 2021; 41:228872. [PMID: 34076695 PMCID: PMC8201460 DOI: 10.1042/bsr20203850] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiome plays an important role in maintaining human health. Despite multiple factors being attributed to the shaping of the human microbiome, extrinsic factors such diet and use of medications including antibiotics appear to dominate. Mucosal surfaces, particularly in the gut, are highly adapted to be able to tolerate a large population of microorganisms whilst still being able to produce a rapid and effective immune response against infection. The intestinal microbiome is not functionally independent from the host mucosa and can, through presentation of microbe-associated molecular patterns (MAMPs) and generation of microbe-derived metabolites, fundamentally influence mucosal barrier integrity and modulate host immunity. In a healthy gut there is an abundance of beneficial bacteria that help to preserve intestinal homoeostasis, promote protective immune responses, and limit excessive inflammation. The importance of the microbiome is further highlighted during dysbiosis where a loss of this finely balanced microbial population can lead to mucosal barrier dysfunction, aberrant immune responses, and chronic inflammation that increases the risk of disease development. Improvements in our understanding of the microbiome are providing opportunities to harness members of a healthy microbiota to help reverse dysbiosis, reduce inflammation, and ultimately prevent disease progression.
Collapse
|