1
|
Wojas-Krawczyk K, Krawczyk P, Błach J, Kucharczyk T, Grenda A, Krzyżanowska N, Szklener K, Horaczyńska-Wojtaś A, Wójcik-Superczyńska M, Chmielewska I, Milanowski J. Immunological insights: assessing immune parameters in medical professionals exposed to SARS-CoV-2. BMC Infect Dis 2024; 24:865. [PMID: 39187767 PMCID: PMC11348584 DOI: 10.1186/s12879-024-09772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND The immunological background responsible for the severe course of COVID-19 and the immune factors that protect against SARS-CoV-2 infection are still unclear. The aim of this study was to investigate immune system status in persons with high exposure to SARS-CoV-2 infection. METHODS Seventy-one persons employed in the observation and infectious diseases unit were qualified for the study between November 2020 and October 2021. Symptomatic COVID-19 was diagnosed in 35 persons. Anti-SARS-CoV-2 antibodies were also found in 8 persons. Peripheral blood mononuclear cells subpopulations were analyzed by flow cytometry, and the concentrations of cytokines and anti-SARS-CoV-2 antibodies were determined by ELISA. RESULTS The percentages of cytotoxic T lymphocytes (CTLs), CD28+ and T helper (Th) cells with invariant T-cell receptors were significantly higher in persons with symptomatic COVID-19 than in those who did not develop COVID-19' symptoms. Conversely, symptomatic COVID-19 persons had significantly lower percentages of: a) CTLs in the late stage of activation (CD8+/CD95+), b) NK cells, c) regulatory-like Th cells (CD4+/CTLA-4+), and d) Th17-like cells (CD4+/CD161+) compared to asymptomatic COVID-19' persons. Additionally, persons with anti-SARS-CoV-2 antibodies had a significantly higher lymphocyte count and IL-6 concentration than persons without these antibodies. CONCLUSION Numerous lymphocyte populations are permanently altered by SARS-CoV-2 infection. High percentages of both populations: NK cells-as a part of the non-specific response, and T helper cells' as those regulating the immune response, could protect against the acute COVID-19 symptoms development. Understanding the immune background of COVID-19 may improve the prevention of this disease by identifying people at risk of a severe course of infection. TRIAL REGISTRATION This is a retrospective observational study without a trial registration number.
Collapse
Affiliation(s)
- Kamila Wojas-Krawczyk
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland.
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Justyna Błach
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
- Department of Clinical Immunology Medical University of Lublin, Lublin, Poland
| | - Tomasz Kucharczyk
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy Medical University of Lublin, Lublin, Poland
| | - Anna Horaczyńska-Wojtaś
- Department of Pediatric Otolaryngology, Phoniatrics and Audiology, University Children's Hospital, Lublin, Poland
| | - Magdalena Wójcik-Superczyńska
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| |
Collapse
|
2
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
3
|
Xu Y, Sang L, Wang Y, Li Z, Wu H, Deng X, Zhong N, Liu X, Li S, Li Y. Impact of diabetes on COVID-19 and glucocorticoids on patients with COVID-19 and diabetes during the Omicron variant epidemic: a multicenter retrospective cohort study in South China. BMC Infect Dis 2024; 24:706. [PMID: 39026159 PMCID: PMC11256567 DOI: 10.1186/s12879-024-09287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND To explore the impact of diabetes on the clinical features and prognosis of COVID-19 and assess the influence of glucocorticoid use on the prognosis of patients with COVID-19 and diabetes. METHODS This retrospective multicenter cohort study included patients admitted between December 2022 and January 2023. The patients were grouped according to diabetes and glucocorticoid use. The primary outcome was in-hospital mortality. RESULTS Among 400 patients with glucocorticoid data, 109 (27.3%) had diabetes. The inflammatory cytokines were higher in patients with diabetes, manifested by higher IL-6 (25.33 vs. 11.29 ng/L, p = 0.011), CRP (26.55 vs. 8.62 mg/L, p = 0.003), and PCT (0.07 vs. 0.04 ng/ml, p = 0.010), while CD4+ (319 vs. 506 /mL, p = 0.004) and CD8+ (141 vs. 261 /mL, p < 0.001) T lymphocytes were lower. The overall mortality rate of hospitalized COVID-19 patients with diabetes was 13.46%. The diabetic patients who received glucocorticoids vs. those who did not receive glucocorticoids had a similar mortality (15.00% vs. 11.39%, p = 0.591). CONCLUSIONS Patients with COVID-19 and diabetes are more likely to experience hyperinflammatory response and T cell reduction, especially those with severe/critical disease. Glucocorticoid use was not associated with the prognosis of COVID-19 in patients with diabetes. Still, glucocorticoids should be used cautiously in diabetic patients with severe/critical COVID-19.
Collapse
Affiliation(s)
- Yonghao Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ling Sang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Ya Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhentu Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xilong Deng
- Department of Critical Care Medicine, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510040, China
| | - Nanshan Zhong
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Shiyue Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yimin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Martín-Martín C, del Riego ES, Castiñeira JRV, Zapico-Gonzalez MS, Rodríguez-Pérez M, Corte-Iglesias V, Saiz ML, Diaz-Bulnes P, Escudero D, Suárez-Alvarez B, López-Larrea C. Assessing Predictive Value of SARS-CoV-2 Epitope-Specific CD8 + T-Cell Response in Patients with Severe Symptoms. Vaccines (Basel) 2024; 12:679. [PMID: 38932408 PMCID: PMC11209605 DOI: 10.3390/vaccines12060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Specific T cell responses against SARS-CoV-2 provided an overview of acquired immunity during the pandemic. Anti-SARS-CoV-2 immunity determines the severity of acute illness, but also might be related to the possible persistence of symptoms (long COVID). We retrospectively analyzed ex vivo longitudinal CD8+ T cell responses in 26 COVID-19 patients diagnosed with severe disease, initially (1 month) and long-term (10 months), and in a cohort of 32 vaccinated healthcare workers without previous SARS-CoV-2 infection. We used peptide-human leukocyte antigen (pHLA) dextramers recognizing 26 SARS-CoV-2-derived epitopes of viral and other non-structural proteins. Most patients responded to at least one of the peptides studied, mainly derived from non-structural ORF1ab proteins. After 10 months follow-up, CD8+ T cell responses were maintained at long term and reaction against certain epitopes (A*01:01-ORF1ab1637) was still detected and functional, showing a memory-like phenotype (CD127+ PD-1+). The total number of SARS-CoV-2-specific CD8+ T cells was significantly associated with protection against long COVID in these patients. Compared with vaccination, infected patients showed a less effective immune response to spike protein-derived peptides restricted by HLA. So, the A*01:01-S865 and A*24:02-S1208 dextramers were only recognized in vaccinated individuals. We conclude that initial SARS-CoV-2-specific CD8+ T cell response could be used as a marker to understand the evolution of severe disease and post-acute sequelae after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cristina Martín-Martín
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Estefanía Salgado del Riego
- Service of Intensive Medicine, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (E.S.d.R.); (D.E.)
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain
| | - Jose R. Vidal Castiñeira
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
- Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Mercedes Rodríguez-Pérez
- Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (M.S.Z.-G.); (M.R.-P.)
- Translational Microbiology, Health Research Institute of Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
- Immunology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Maria Laura Saiz
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Paula Diaz-Bulnes
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Dolores Escudero
- Service of Intensive Medicine, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (E.S.d.R.); (D.E.)
- Translational Microbiology, Health Research Institute of Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Beatriz Suárez-Alvarez
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| | - Carlos López-Larrea
- Translational Immunology, Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011 Oviedo, Spain; (C.M.-M.); (J.R.V.C.); (V.C.-I.); (M.L.S.); (P.D.-B.)
| |
Collapse
|
5
|
Lu X, Song CY, Wang P, Li L, Lin LY, Jiang S, Zhou JN, Feng MX, Yang YM, Lu YQ. The clinical trajectory of peripheral blood immune cell subsets, T-cell activation, and cytokines in septic patients. Inflamm Res 2024; 73:145-155. [PMID: 38085279 DOI: 10.1007/s00011-023-01825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE AND DESIGN Changes in the immune status of patients with sepsis may have a major impact on their prognosis. Our research focused on changes in various immune cell subsets and T-cell activation during the progression of sepsis. METHODS AND SUBJECTS We collected data from 188 sepsis patients at the First Affiliated Hospital of Zhejiang University School of Medicine. The main focus was on the patient's immunocyte subset typing, T-cell activation/Treg cell analysis, and cytokine assay, which can indicate the immune status of the patient. RESULTS The study found that the number of CD4+ T cells, CD8+ T cells, NK cells, and B cells decreased early in the disease, and the decrease in CD4+ and CD8+ T cells was more pronounced in the death group. T lymphocyte activation was inhibited, and the number of Treg cells increased as the disease progressed. T lymphocyte inhibition was more significant in the death group, and the increase in IL-10 was more significant in the death group. Finally, we used patients' baseline conditions and immunological detection indicators for modeling and found that IL-10, CD4+ Treg cells, CD3+HLA-DR+ T cells, and CD3+CD69+ T cells could predict patients' prognosis well. CONCLUSION Our study found that immunosuppression occurs in patients early in sepsis. Early monitoring of the patient's immune status may provide a timely warning of the disease.
Collapse
Affiliation(s)
- Xuan Lu
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Cong-Ying Song
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Ping Wang
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Li Li
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Li-Ying Lin
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Shuai Jiang
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jia-Ning Zhou
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Meng-Xiao Feng
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Yun-Mei Yang
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Yuan-Qiang Lu
- Department of Geriatric and Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China.
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Li D, Wang P, Lu Y. Successful extracorporeal membrane oxygenation-assisted treatment for a kidney transplant recipient infected with severe COVID-19. World J Emerg Med 2024; 15:416-418. [PMID: 39290614 PMCID: PMC11402874 DOI: 10.5847/wjem.j.1920-8642.2024.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Dongdong Li
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory for Diagnosis and Treatment of Physicochemical and Aging Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Ping Wang
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory for Diagnosis and Treatment of Physicochemical and Aging Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Yuanqiang Lu
- Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory for Diagnosis and Treatment of Physicochemical and Aging Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
7
|
Reyes-Ruiz JM, García-Hernández O, Martínez-Mier G, Osuna-Ramos JF, De Jesús-González LA, Farfan-Morales CN, Palacios-Rápalo SN, Cordero-Rivera CD, Ordoñez-Rodríguez T, del Ángel RM. The Role of Aspartate Aminotransferase-to-Lymphocyte Ratio Index (ALRI) in Predicting Mortality in SARS-CoV-2 Infection. Microorganisms 2023; 11:2894. [PMID: 38138038 PMCID: PMC10745537 DOI: 10.3390/microorganisms11122894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 12/24/2023] Open
Abstract
COVID-19 has a mortality rate exceeding 5.4 million worldwide. The early identification of patients at a high risk of mortality is essential to save their lives. The AST-to-lymphocyte ratio index (ALRI) is a novel biomarker of survival in patients with hepatocellular carcinoma, an organ susceptible to SARS-CoV-2 infection. For this study, the prognostic value of ALRI as a marker of COVID-19 mortality was evaluated. For this purpose, ALRI was compared with the main biomarkers for COVID-19 mortality (neutrophil-to-lymphocyte ratio [NLR], systemic immune-inflammation index [SII], platelet-to-lymphocyte ratio [PLR], lactate dehydrogenase (LDH)/lymphocyte ratio [LDH/LR]). A retrospective cohort of 225 patients with SARS-CoV-2 infection and without chronic liver disease was evaluated. In the non-survival group, the ALRI, NLR, SII, and LDH/LR were significantly higher than in the survival group (pcorrected < 0.05). ALRI had an area under the curve (AUC) of 0.81, a sensitivity of 70.37%, and a specificity of 75%, with a best cut-off value >42.42. COVID-19 patients with high ALRI levels had a mean survival time of 7.8 days. Multivariate Cox regression revealed that ALRI > 42.42 (HR = 2.32, 95% CI: 1.35-3.97; pcorrected = 0.01) was a prognostic factor of COVID-19 mortality. These findings prove that ALRI is an independent predictor of COVID-19 mortality and that it may help identify high-risk subjects with SARS-CoV-2 infection upon admission.
Collapse
Affiliation(s)
- José Manuel Reyes-Ruiz
- Department of Research, Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
| | - Omar García-Hernández
- Department of Internal Medicine, Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico; (O.G.-H.); (T.O.-R.)
| | - Gustavo Martínez-Mier
- Department of Research, Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
| | | | | | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Unidad Cuajimalpa, Mexico City 05348, Mexico;
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.); (R.M.d.Á.)
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.); (R.M.d.Á.)
| | - Tatiana Ordoñez-Rodríguez
- Department of Internal Medicine, Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico; (O.G.-H.); (T.O.-R.)
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.); (R.M.d.Á.)
| |
Collapse
|
8
|
Yu W, Li Y, Liu D, Wang Y, Li J, Du Y, Gao GF, Li Z, Xu Y, Wei J. Evaluation and Mechanistic Investigation of Human Milk Oligosaccharide against SARS-CoV-2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16102-16113. [PMID: 37856320 DOI: 10.1021/acs.jafc.3c04275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Four human milk oligosaccharides (HMOs), 3'-sialyllactose (3'-SL), 6'-sialyllactose (6'-SL), 2'-fucosyllactose (2'-FL), and 3-fucosyllactose (3-FL), were assessed for their possible antiviral activity against the SARS-CoV-2 spike receptor binding domain (RBD) in vitro. Among them, only 2'-FL/3-FL exhibited obvious antibinding activity against direct binding and trans-binding in competitive immunocytochemistry and enzyme-linked immunosorbent assays. The antiviral effects of 2'-FL/3-FL were further confirmed by pseudoviral assays with three SARS-Cov-2 mutants, with a stronger inhibition effect of 2'-FL than 3-FL. Then, 2'-FL/3-FL were studied with molecular docking and microscale thermophoresis analysis, showing that the binding sites of 2'-FL on RBD were involved in receptor binding, in addition to a tighter bond between them, thus enabling 2'-FL to be more effective than 3-FL. Moreover, the immunomodulation effect of 2'-FL was preliminary evaluated and confirmed in a human alveolus chip. These results would open up possible applications of 2'-FL for the prevention of SARS-CoV-2 infections by competitive binding inhibition.
Collapse
Affiliation(s)
- Weiyan Yu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang Economic and Technological Development Zone, Nanchang, Jiangxi 330045, People's Republic of China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of China
| | - Dongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| | - Yongliang Wang
- Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, People's Republic of China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang Economic and Technological Development Zone, Nanchang, Jiangxi 330045, People's Republic of China
| | - Yueqiang Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| | - Jinhua Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| |
Collapse
|
9
|
Sanhueza S, Vidal MA, Hernandez MA, Henriquez-Beltran ME, Cabrera C, Quiroga R, Antilef BE, Aguilar KP, Castillo DA, Llerena FJ, Fraga Figueroa M, Nazal M, Castro E, Lagos P, Moreno A, Lastra JJ, Gajardo J, Garcés P, Riffo B, Buchert J, Sanhueza R, Ormazába V, Saldivia P, Vargas C, Nourdin G, Koch E, Zuñiga FA, Lamperti L, Bustos P, Guzmán-Gutiérrez E, Tapia CA, Ferrada L, Cerda G, Woehlbier U, Riquelme E, Yuseff MI, Muñoz Ramirez BA, Lombardi G, De Gonzalo-Calvo D, Salomon C, Verdugo RA, Quiñones LA, Colombo A, Barría MI, Labarca G, Nova-Lamperti E. Clinical and pulmonary function analysis in long-COVID revealed that long-term pulmonary dysfunction is associated with vascular inflammation pathways and metabolic syndrome. Front Med (Lausanne) 2023; 10:1271863. [PMID: 37869162 PMCID: PMC10590130 DOI: 10.3389/fmed.2023.1271863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Long-term pulmonary dysfunction (L-TPD) is one of the most critical manifestations of long-COVID. This lung affection has been associated with disease severity during the acute phase and the presence of previous comorbidities, however, the clinical manifestations, the concomitant consequences and the molecular pathways supporting this clinical condition remain unknown. The aim of this study was to identify and characterize L-TPD in patients with long-COVID and elucidate the main pathways and long-term consequences attributed to this condition by analyzing clinical parameters and functional tests supported by machine learning and serum proteome profiling. Methods Patients with L-TPD were classified according to the results of their computer-tomography (CT) scan and diffusing capacity of the lungs for carbon monoxide adjusted for hemoglobin (DLCOc) tests at 4 and 12-months post-infection. Results Regarding the acute phase, our data showed that L-TPD was favored in elderly patients with hypertension or insulin resistance, supported by pathways associated with vascular inflammation and chemotaxis of phagocytes, according to computer proteomics. Then, at 4-months post-infection, clinical and functional tests revealed that L-TPD patients exhibited a restrictive lung condition, impaired aerobic capacity and reduced muscular strength. At this time point, high circulating levels of platelets and CXCL9, and an inhibited FCgamma-receptor-mediated-phagocytosis due to reduced FcγRIII (CD16) expression in CD14+ monocytes was observed in patients with L-TPD. Finally, 1-year post infection, patients with L-TPD worsened metabolic syndrome and augmented body mass index in comparison with other patient groups. Discussion Overall, our data demonstrated that CT scan and DLCOc identified patients with L-TPD after COVID-19. This condition was associated with vascular inflammation and impair phagocytosis of virus-antibody immune complexes by reduced FcγRIII expression. In addition, we conclude that COVID-19 survivors required a personalized follow-up and adequate intervention to reduce long-term sequelae and the appearance of further metabolic diseases.
Collapse
Affiliation(s)
- Sergio Sanhueza
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Mabel A. Vidal
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
- Facultad de Ingeniería, Diseño y Arquitectura, Universidad San Sebastián, Concepción, Chile
| | | | - Mario E. Henriquez-Beltran
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
- Núcleo de Investigación en Ciencias de la Salud, Universidad Adventista de Chile, Chillán, Chile
- Kinesiology School, Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, Chile
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Camilo Cabrera
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Romina Quiroga
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Bárbara E. Antilef
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Kevin P. Aguilar
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Daniela A. Castillo
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Faryd J. Llerena
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Marco Fraga Figueroa
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Mauricio Nazal
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Eritson Castro
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Paola Lagos
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Alexa Moreno
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Jaime J. Lastra
- Internal Medicine Department, Hospital Guillermo Grant Benavente and Medicine Faculty, University of Concepción, Concepción, Chile
| | - Jorge Gajardo
- Internal Medicine Department, Hospital Guillermo Grant Benavente and Medicine Faculty, University of Concepción, Concepción, Chile
| | - Pamela Garcés
- Internal Medicine Department, Hospital Guillermo Grant Benavente and Medicine Faculty, University of Concepción, Concepción, Chile
| | | | | | - Rocío Sanhueza
- Kinesiology School, Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, Chile
| | - Valeska Ormazába
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Pablo Saldivia
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Chile
| | - Cristian Vargas
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Chile
| | - Guillermo Nourdin
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Chile
| | - Elard Koch
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Chile
| | - Felipe A. Zuñiga
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Liliana Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Paula Bustos
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Enrique Guzmán-Gutiérrez
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Claudio A. Tapia
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| | - Luciano Ferrada
- CMA Bío-Bío - Advanced Microscopy Center, University of Concepción, Concepción, Chile
| | - Gustavo Cerda
- CMA Bío-Bío - Advanced Microscopy Center, University of Concepción, Concepción, Chile
| | - Ute Woehlbier
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Erick Riquelme
- Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Maria-Isabel Yuseff
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Braulio A. Muñoz Ramirez
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University Bloomington, Bloomington, IN, United States
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - David De Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Medicine and Biomedical Science Faculty, The University of Queensland, Brisbane, QLD, Australia
| | - Ricardo A. Verdugo
- Instituto de Investigación Interdisciplinaria y Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Luis A. Quiñones
- Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Pharmaceutical Sciences and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Alicia Colombo
- Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
- Servicio de Anatomía Patológica, Hospital Clínico, Universidad de Chile, Santiago, Chile
| | - Maria I. Barría
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Gonzalo Labarca
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
- Internal Medicine, Complejo Asistencial Dr. Víctor Ríos Ruiz, Los Ángeles, Chile
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepción, Concepción, Chile
| |
Collapse
|
10
|
Wang Z, Wang P, Lu X, Song C, Jiang S, Li L, Lu Y. Uncovering the potential pathological mechanism of acute pancreatitis in patients with COVID-19 by bioinformatics methods. World J Emerg Med 2023; 14:397-401. [PMID: 37908802 PMCID: PMC10613788 DOI: 10.5847/wjem.j.1920-8642.2023.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/02/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Zhaodi Wang
- Department of Nursing, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Geriatric and Emergency medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Ping Wang
- Department of Geriatric and Emergency medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Xuan Lu
- Department of Geriatric and Emergency medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Congying Song
- Department of Geriatric and Emergency medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Shuai Jiang
- Department of Geriatric and Emergency medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Li Li
- Department of Geriatric and Emergency medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Yuanqiang Lu
- Department of Geriatric and Emergency medicine, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
11
|
Mujalli A, Alghamdi KS, Nasser KK, Al-Rayes N, Banaganapalli B, Shaik NA, Elango R. Bioinformatics insights into the genes and pathways on severe COVID-19 pathology in patients with comorbidities. Front Physiol 2022; 13:1045469. [PMID: 36589459 PMCID: PMC9795193 DOI: 10.3389/fphys.2022.1045469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Coronavirus disease (COVID-19) infection is known for its severe clinical pathogenesis among individuals with pre-existing comorbidities. However, the molecular basis of this observation remains elusive. Thus, this study aimed to map key genes and pathway alterations in patients with COVID-19 and comorbidities using robust systems biology approaches. Methods: The publicly available genome-wide transcriptomic datasets from 120 COVID-19 patients, 281 patients suffering from different comorbidities (like cardiovascular diseases, atherosclerosis, diabetes, and obesity), and 252 patients with different infectious diseases of the lung (respiratory syncytial virus, influenza, and MERS) were studied using a range of systems biology approaches like differential gene expression, gene ontology (GO), pathway enrichment, functional similarity, mouse phenotypic analysis and drug target identification. Results: By cross-mapping the differentially expressed genes (DEGs) across different datasets, we mapped 274 shared genes to severe symptoms of COVID-19 patients or with comorbidities alone. GO terms and functional pathway analysis highlighted genes in dysregulated pathways of immune response, interleukin signaling, FCGR activation, regulation of cytokines, chemokines secretion, and leukocyte migration. Using network topology parameters, phenotype associations, and functional similarity analysis with ACE2 and TMPRSS2-two key receptors for this virus-we identified 17 genes with high connectivity (CXCL10, IDO1, LEPR, MME, PTAFR, PTGS2, MAOB, PDE4B, PLA2G2A, COL5A1, ICAM1, SERPINE1, ABCB1, IL1R1, ITGAL, NCAM1 and PRKD1) potentially contributing to the clinical severity of COVID-19 infection in patients with comorbidities. These genes are predicted to be tractable and/or with many existing approved inhibitors, modulators, and enzymes as drugs. Conclusion: By systemic implementation of computational methods, this study identified potential candidate genes and pathways likely to confer disease severity in COVID-19 patients with pre-existing comorbidities. Our findings pave the way to develop targeted repurposed therapies in COVID-19 patients.
Collapse
Affiliation(s)
- Abdulrahman Mujalli
- Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Abdulrahman Mujalli, ; Ramu Elango,
| | - Kawthar Saad Alghamdi
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia,Department of Biology, Faculty of Science, University of Hafr Al Batin, Hafar Al-Batin, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nuha Al-Rayes
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Abdulrahman Mujalli, ; Ramu Elango,
| |
Collapse
|
12
|
Che Y, Jiang D, Zhang Y, Zhang J, Xu T, Sun Y, Fan J, Wang J, Chang N, Wu Y, Yang S, Xu L, Ding J, Hu C, Huang Y, Zhang J, Yang K. Elevated ubiquitination contributes to protective immunity against severe SARS-CoV-2 infection. Clin Transl Med 2022; 12:e1103. [PMID: 36447039 PMCID: PMC9708907 DOI: 10.1002/ctm2.1103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The crosstalk between the ubiquitin-proteasome and the immune system plays an important role in the health and pathogenesis of viral infection. However, there have been few studies of ubiquitin activation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS We investigated the effect of ubiquitination on SARS-CoV-2 infection and patient prognosis by integrating published coronavirus disease 2019 (COVID-19) multi-transcriptome data and bioinformatics methods. RESULTS The differential expression of COVID-19 samples revealed changed ubiquitination in most solid and hollow organs, and it was activated in lymphatic and other immune tissues. In addition, in the respiratory system of COVID-19 patients, the immune response was mainly focused on the alveoli, and the expression of ubiquitination reflected increasing immune infiltration. Ubiquitination stratification could significantly differentiate patients' prognosis and inflammation levels through the general transcriptional analysis of the peripheral blood of patients with COVID-19. Moreover, high ubiquitination levels were associated with a favourable prognosis, low inflammatory response, and reduced mechanical ventilation and intensive care unit. Moreover, high ubiquitination promoted a beneficial immune response while inhibiting immune damage. Finally, prognostic stratification and biomarker screening based on ubiquitination traits played an important role in clinical management and drug development. CONCLUSION Ubiquitination characteristics provides new ideas for clinical intervention and prognostic guidance for COVID-19 patients.
Collapse
Affiliation(s)
- Yinggang Che
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Dongbo Jiang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
- The Key Laboratory of Medicine for Bio‐Hazard Prevention and Treatment of People's Liberation ArmyBasic Medicine School, Air‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Yong Zhang
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Junqi Zhang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Tianqi Xu
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Yuanjie Sun
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Jiangjiang Fan
- Department of Thoracic SurgeryTangdu HospitalAir‐Force Medical UniversityXi'anShaanxiChina
| | - Jiawei Wang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Ning Chang
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Yingtong Wu
- First Sanatorium of Air Force Healthcare Center for Special ServicesHangzhouZhejiangChina
| | - Shuya Yang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Leidi Xu
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Jiaqi Ding
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Chenchen Hu
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Yinan Huang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Jian Zhang
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Kun Yang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
- The Key Laboratory of Medicine for Bio‐Hazard Prevention and Treatment of People's Liberation ArmyBasic Medicine School, Air‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
- Department of Rheumatology and ImmunologyTangdu HospitalAir‐Force Medical UniversityXi'anShaanxiChina
| |
Collapse
|
13
|
Villemonteix J, Cohen L, Guihot A, Guérin V, Moulin C, Caseris M, Carol A, Bonacorsi S, Carcelain G. Comparison between enzyme-linked immunospot assay and intracellular cytokine flow cytometry assays for the evaluation of T cell response to SARS-CoV-2 after symptomatic COVID-19. Immun Inflamm Dis 2022; 10:e617. [PMID: 36169252 PMCID: PMC9449588 DOI: 10.1002/iid3.617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Evaluation of different cell-based assays for the study of adaptive immune responses against SARS-CoV-2 is crucial for studying long-term and vaccine-induced immunity. METHODS Enzyme-linked immunospot assay (ELISpot) and intracellular cytokine staining (ICS) using peptide pools spanning the spike protein and nucleoprotein of SARS-CoV-2 were performed in 25 patients who recovered from paucisymptomatic (n = 19) or severe COVID-19 (n = 6). RESULTS The proportion of paucisymptomatic patients with detectable SARS-CoV-2 T cells was low, as only 44% exhibit a positive T cell response with the ICS and 67% with the ELISpot. The magnitude of SARS-CoV-2 T cell responses was low, both with ICS (median at 0.12% among total T cells) and ELISpot (median at 61 SFCs/million peripheral blood mononuclear cells [PBMC]) assays. Moreover, T cell responses in paucisymptomatic patients seemed lower than among patients with severe disease. In the paucisymptomatic patients, the two assays were well correlated with 76% of concordant responses and a Cohen's kappa of 55. Furthermore, in four patients SARS-CoV-2 T cells were detected by ELISpot but not with ICS. Short-term culture could improve the detection of specific T cells. CONCLUSIONS In patients who recovered from paucisymptomatic COVID-19, the proportion of detectable anti-SARS-CoV-2 responses and their magnitude seemed lower than in patients with more severe symptoms. The ELISpot appeared to be more sensitive than the ICS assay. Short-term culture revealed that paucisymptomatic patients had nonetheless few SARS-CoV-2 T cells at a very low rate in peripheral blood. These data indicate that various ex-vivo assays may lead to different conclusions about the presence or absence of SARS-CoV-2 T cell immunity.
Collapse
Affiliation(s)
| | - Laure Cohen
- General Pediatrics and Infectious Diseases DepartmentRobert Debré Hospital, APHPParisFrance
| | - Amélie Guihot
- Laboratory of Immunology, Pitié‐Salpétrière Hospital, APHPParis Sorbonne UniversitéParisFrance
| | - Valérie Guérin
- Laboratory of ImmunologyRobert Debré Hospital, APHPParisFrance
| | | | - Marion Caseris
- General Pediatrics and Infectious Diseases DepartmentRobert Debré Hospital, APHPParisFrance
| | - Agnès Carol
- Laboratory of MicrobiologyRobert Debré Hospital, APHPParisFrance
| | - Stéphane Bonacorsi
- Laboratory of Microbiology, Robert Debré Hospital, APHPUniversité Paris CitéParisFrance
| | - Guislaine Carcelain
- Laboratory of Immunology, Robert Debré Hospital, APHPUniversité de ParisParisFrance
- Unité Inserm U976Université Paris CitéParisFrance
| |
Collapse
|
14
|
Chavda VP, Patel AB, Pandya A, Vora LK, Patravale V, Tambuwala ZM, Aljabali AAA, Serrano-Aroca Á, Mishra V, Tambuwala MM. Co-infection associated with SARS-CoV-2 and their management. Future Sci OA 2022; 8:FSO819. [PMID: 36788985 PMCID: PMC9912272 DOI: 10.2144/fsoa-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/18/2022] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 was discovered in Wuhan, China and quickly spread throughout the world. This deadly virus moved from person to person, resulting in severe pneumonia, fever, chills and hypoxia. Patients are still experiencing problems after recovering from COVID-19. This review covers COVID-19 and associated issues following recovery from COVID-19, as well as multiorgan damage risk factors and treatment techniques. Several unusual illnesses, including mucormycosis, white fungus infection, happy hypoxia and other systemic abnormalities, have been reported in recovered individuals. In children, multisystem inflammatory syndrome with COVID-19 (MIS-C) is identified. The reasons for this might include uncontrollable steroid usage, reduced immunity, uncontrollable diabetes mellitus and inadequate care following COVID-19 recovery.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Aayushi B Patel
- Pharmacy Section, LM College of Pharmacy, Ahmedabad, Gujarat, 380058, India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Vandana Patravale
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Zara M Tambuwala
- College of Science, University of Lincoln, Brayford Campus, Lincoln, LN6 7TS, UK
| | - Alaa AA Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid, 566, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia, 46001, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Murtaza M Tambuwala
- Lincoln Medical School University of Lincoln, Brayford Campus, Lincoln, LN6 7TS, UK
| |
Collapse
|
15
|
Ramos-Hernández WM, Soto LF, Del Rosario-Trinidad M, Farfan-Morales CN, De Jesús-González LA, Martínez-Mier G, Osuna-Ramos JF, Bastida-González F, Bernal-Dolores V, Del Ángel RM, Reyes-Ruiz JM. Leukocyte glucose index as a novel biomarker for COVID-19 severity. Sci Rep 2022; 12:14956. [PMID: 36056114 PMCID: PMC9438363 DOI: 10.1038/s41598-022-18786-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
The severity of coronavirus disease 2019 (COVID-19) quickly progresses with unfavorable outcomes due to the host immune response and metabolism alteration. Hence, we hypothesized that leukocyte glucose index (LGI) is a biomarker for severe COVID-19. This study involved 109 patients and the usefulness of LGI was evaluated and compared with other risk factors to predict COVID 19 severity. LGI was identified as an independent risk factor (odds ratio [OR] = 1.727, 95% confidence interval [CI]: 1.026-3.048, P = 0.041), with an area under the curve (AUC) of 0.749 (95% CI: 0.642-0.857, P < 0.0001). Interestingly, LGI was a potential risk factor (OR = 2.694, 95% CI: 1.575-5.283, Pcorrected < 0.05) for severe COVID-19 in female but not in male patients. In addition, LGI proved to be a strong predictor of the severity in patients with diabetes (AUC = 0.915 (95% CI: 0.830-1), sensitivity = 0.833, and specificity = 0.931). The AUC of LGI, together with the respiratory rate (LGI + RR), showed a considerable improvement (AUC = 0.894, 95% CI: 0.835-0.954) compared to the other biochemical and respiratory parameters analyzed. Together, these findings indicate that LGI could potentially be used as a biomarker of severity in COVID-19 patients.
Collapse
Affiliation(s)
- Wendy Marilú Ramos-Hernández
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), 91897, Veracruz, México
| | - Luis F Soto
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, 15081, Perú
| | - Marcos Del Rosario-Trinidad
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), 91897, Veracruz, México
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Gustavo Martínez-Mier
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), 91897, Veracruz, México
| | - Juan Fidel Osuna-Ramos
- Escuela de Medicina, Universidad Autónoma de Durango Campus Culiacán, 80050, Culiacán Rosales, México
| | - Fernando Bastida-González
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, 50130, Mexico City, State of Mexico, Mexico
| | - Víctor Bernal-Dolores
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), 91897, Veracruz, México
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), 07360, Mexico City, Mexico.
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), 91897, Veracruz, México.
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana, 91700, Veracruz, Mexico.
| |
Collapse
|
16
|
Robinson JM, Aronson J, Daniels CB, Goodwin N, Liddicoat C, Orlando L, Phillips D, Stanhope J, Weinstein P, Cross AT, Breed MF. Ecosystem restoration is integral to humanity's recovery from COVID-19. Lancet Planet Health 2022; 6:e769-e773. [PMID: 36087607 PMCID: PMC9451495 DOI: 10.1016/s2542-5196(22)00171-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 05/19/2023]
Abstract
COVID-19 has devastated global communities and economies. The pandemic has exposed socioeconomic disparities and weaknesses in health systems worldwide. Long-term health effects and economic recovery are major concerns. Ecosystem restoration-ie, the repair of ecosystems that have been degraded-relates directly to tackling the health and socioeconomic burdens of COVID-19, because stable and resilient ecosystems are fundamental determinants of health and socioeconomic stability. Here, we use COVID-19 as a case study, showing how ecosystem restoration can reduce the risk of infection and adverse sequelae and have an integral role in humanity's recovery from COVID-19. The next decade will be crucial for humanity's recovery from COVID-19 and for ecosystem repair. Indeed, in the absence of effective, large-scale restoration, 95% of the Earth's land could be degraded by 2050. The UN Decade on Ecosystem Restoration (2021-30) declaration reflects the growing urgency and scale at which we should repair ecosystems. Importantly, ecosystem restoration could also help to combat the health and socioeconomic issues that are associated with COVID-19, yet it is poorly integrated into current responses to the disease. Ecosystem restoration can be a core public health intervention and assist in COVID-19 recovery if it is closely integrated with socioeconomic, health, and environmental policies.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - James Aronson
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, USA
| | | | - Neva Goodwin
- Economics in Context Initiative, Boston University, Boston, MA, USA
| | - Craig Liddicoat
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; School of Public Health, The University of Adelaide, Adelaide SA, Australia
| | - Laura Orlando
- School of Public Health, Boston University, Boston, MA, USA
| | - David Phillips
- Department of Medical Science and Public Health, Bournemouth University, Poole, UK
| | - Jessica Stanhope
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide SA, Australia
| | - Philip Weinstein
- School of Public Health, The University of Adelaide, Adelaide SA, Australia
| | - Adam T Cross
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
17
|
Nain M, Gupta A, Malhotra S, Sharma A. High-density lipoproteins may play a crucial role in COVID-19. Virol J 2022; 19:135. [PMID: 35999545 PMCID: PMC9395887 DOI: 10.1186/s12985-022-01865-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background Lipids play a central role in the virus life cycle and are a crucial target to develop antiviral therapeutics. Importantly, among the other lipoproteins, the ‘good cholesterol’ high-density lipoprotein (HDL) has been widely studied for its role in not only cardiovascular but several infectious diseases as well. Studies have suggested a role of serum lipids and lipoproteins including HDL, total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL) in several viral infections including COVID-19. This disease is currently a major public health problem and there is a need to explore the role of these host lipids/lipoproteins in virus pathogenesis. Methodology A total of 75 retrospective COVID-19 positive serum samples and 10 COVID-19 negative controls were studied for their lipid profiles including TC, HDL, LDL, and very-low-density lipoproteins (VLDL), and TG. Results Systematic literature search on dyslipidemia status in India shows that low HDL is the most common dyslipidemia. In this cohort, 65% (49) of COVID-19 patients had severely low HDL levels whereas 35% (26) had moderately low HDL and none had normal HDL levels. On the other hand, ~ 96% of samples had normal TC (72) and LDL (72) levels. VLDL and TG levels were also variable. In the controls, 100% of samples had moderately low HDL but none severely low HDL levels. Conclusion HDL likely plays a crucial role in COVID-19 infection and outcomes. The causal relationships between HDL levels and COVID-19 need to be studied extensively for an understanding of disease pathogenesis and management. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01865-4.
Collapse
Affiliation(s)
- Minu Nain
- National Institute of Malaria Research, New Delhi, 110 077, India
| | - Apoorv Gupta
- National Institute of Malaria Research, New Delhi, 110 077, India
| | - Sumit Malhotra
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Sharma
- National Institute of Malaria Research, New Delhi, 110 077, India. .,Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
18
|
Kandeel EZ, Refaat L, Bayoumi A, Nooh HA, Hammad R, Khafagy M, Abdellateif MS. The Role of Lymphocyte Subsets, PD-1, and FAS (CD95) in COVID-19 Cancer Patients. Viral Immunol 2022; 35:491-502. [PMID: 35930238 DOI: 10.1089/vim.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lymphocytes are the main orchestrators that regulate the immune response in SARS-COV-2 infection. The exhaustion of T lymphocytes is a contributing factor to lymphopenia, which is responsible for the COVID-19 adverse outcome. However, it is still not demonstrated on a large scale, including cancer patients. Peripheral blood samples were obtained from 83 SARS-CoV2 infected cancer patients, and 29 COVID-19 infected noncancer patients compared to 28 age-matched healthy controls. Lymphocyte subsets were assessed for CD3, CD4, CD8, CD56, PD-1, and CD95 using flow cytometry. The data were correlated to the patients' clinical features, COVID-19 severity and outcomes. Lymphopenia, and decreased CD4+ T cells and CD8+ T cells were significantly observed in COVID-19 cancer and noncancer patients compared to the control group (p < 0.001, for all). There was a significantly increased expression of CD95 and PD-1 on the NK cells, CD4+ T cells, and CD8+ T cells in COVID-19 cancer and noncancer patients in comparison to the control group. The increased expression of CD95 on CD8+ T cells, as well as the increased expression of PD-1 on CD8+ T cells and NK cells are significantly associated with the severity of COVID-19 infection in cancer patients. The increased expression of CD95 and PD-1 on the CD4+ T cells, CD8+ T cells, and NK cells was observed significantly in nonsurviving patients and those who were admitted to the intensive care unit in COVID-19 cancer and noncancer patients. The increased expression of PD-1 and CD95 could be possible prognostic factors for COVID-19 severity and adverse outcomes in COVID-19 cancer and noncancer patients.
Collapse
Affiliation(s)
- Eman Z Kandeel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lobna Refaat
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed Bayoumi
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hend A Nooh
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Reham Hammad
- Department of Clinical Pathology, Al-Azhar University, Cairo, Egypt
| | - Medhat Khafagy
- Department of Surgical Oncology, Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S Abdellateif
- Department of Medical Biochemistry and Molecular Biology, Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Therapeutic anticoagulation using heparin in early phase severe coronavirus disease 2019: A retrospective study. Am J Emerg Med 2022; 58:84-88. [PMID: 35640454 PMCID: PMC9135498 DOI: 10.1016/j.ajem.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Background Although several reports recommend the use of systemic anticoagulation therapy in patients with severe coronavirus disease 2019 (COVID-19) pneumonia, appropriate target population and timing of administration are unknown. We assessed association between therapeutic anticoagulation administration with unfractionated heparin and outcomes in patients with severe COVID-19 pneumonia, assuming that anticoagulant administration effects are influenced by therapy timing. Methods This retrospective observational study included severe COVID-19 patients requiring mechanical ventilation in a tertiary emergency critical care hospital intensive care unit (ICU) in Japan from May 1, 2020 to September 30, 2021. All included patients were divided into early and late-phase administration groups based on therapeutic anticoagulant administration timing (≤5 and >5 days, respectively, after commencing oxygen therapy). Primary outcomes (in-hospital mortality and adverse events related to anticoagulation therapy) and secondary outcomes [veno-venous extracorporeal membrane oxygenation (ECMO), ventilator-free days (VFD), and ICU-free days] were compared between groups using univariate and multivariate models. Results Of 198 included patients 104 (52.5%) and 94 (47.5%) were in early-phase and late-phase administration groups, respectively. Although background characteristics were similar between the groups, the early-phase administration group had a significantly lower in-hospital mortality rate (3.8% vs. 27.7%; p < 0.001), lower adverse event rates (1.9% vs. 12.8%; p < 0.001), significantly longer VFD and ICU-free days, and lower ECMO rates, than the late-phase administration group, in the multivariate model. Conclusions Late administration of therapeutic-dose anticoagulation in patients with severe COVID-19 pneumonia was significantly associated with worse outcomes than early administration.
Collapse
|
20
|
Kumar D, Rostad CA, Jaggi P, Villacis Nunez DS, Prince C, Lu A, Hussaini L, Nguyen TH, Malik S, Ponder LA, Shenoy SPV, Anderson EJ, Briones M, Sanz I, Prahalad S, Chandrakasan S. Distinguishing immune activation and inflammatory signatures of multisystem inflammatory syndrome in children (MIS-C) versus hemophagocytic lymphohistiocytosis (HLH). J Allergy Clin Immunol 2022; 149:1592-1606.e16. [PMID: 35304157 PMCID: PMC8923010 DOI: 10.1016/j.jaci.2022.02.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a potentially life-threatening sequela of severe acute respiratory syndrome coronavirus 2 infection characterized by hyperinflammation and multiorgan dysfunction. Although hyperinflammation is a prominent manifestation of MIS-C, there is limited understanding of how the inflammatory state of MIS-C differs from that of well-characterized hyperinflammatory syndromes such as hemophagocytic lymphohistiocytosis (HLH). OBJECTIVES We sought to compare the qualitative and quantitative inflammatory profile differences between patients with MIS-C, coronavirus disease 2019, and HLH. METHODS Clinical data abstraction from patient charts, T-cell immunophenotyping, and multiplex cytokine and chemokine profiling were performed for patients with MIS-C, patients with coronavirus disease 2019, and patients with HLH. RESULTS We found that both patients with MIS-C and patients with HLH showed robust T-cell activation, markers of senescence, and exhaustion along with elevated TH1 and proinflammatory cytokines such as IFN-γ, C-X-C motif chemokine ligand 9, and C-X-C motif chemokine ligand 10. In comparison, the amplitude of T-cell activation and the levels of cytokines/chemokines were higher in patients with HLH when compared with patients with MIS-C. Distinguishing inflammatory features of MIS-C included elevation in TH2 inflammatory cytokines such as IL-4 and IL-13 and cytokine mediators of angiogenesis, vascular injury, and tissue repair such as vascular endothelial growth factor A and platelet-derived growth factor. Immune activation and hypercytokinemia in MIS-C resolved at follow-up. In addition, when these immune parameters were correlated with clinical parameters, CD8+ T-cell activation correlated with cardiac dysfunction parameters such as B-type natriuretic peptide and troponin and inversely correlated with platelet count. CONCLUSIONS Overall, this study characterizes unique and overlapping immunologic features that help to define the hyperinflammation associated with MIS-C versus HLH.
Collapse
Affiliation(s)
- Deepak Kumar
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Christina A Rostad
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Preeti Jaggi
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - D Sofia Villacis Nunez
- Division of Pediatric Rheumatology, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Chengyu Prince
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Austin Lu
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Laila Hussaini
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Thinh H Nguyen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Sakshi Malik
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Ga; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Ga
| | | | - Sreekala P V Shenoy
- Division of Pediatric Rheumatology, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Evan J Anderson
- Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga; Department of Medicine, Emory University School of Medicine, Atlanta, Ga
| | - Michael Briones
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, Ga; Lowance Center for Human Immunology, Emory University, Atlanta, Ga
| | - Sampath Prahalad
- Division of Pediatric Rheumatology, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga; Department of Human Genetics, Emory University School of Medicine, Atlanta, Ga
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga.
| |
Collapse
|
21
|
Halawa S, Pullamsetti SS, Bangham CRM, Stenmark KR, Dorfmüller P, Frid MG, Butrous G, Morrell NW, de Jesus Perez VA, Stuart DI, O'Gallagher K, Shah AM, Aguib Y, Yacoub MH. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: a global perspective. Nat Rev Cardiol 2022; 19:314-331. [PMID: 34873286 PMCID: PMC8647069 DOI: 10.1038/s41569-021-00640-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
The lungs are the primary target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, with severe hypoxia being the cause of death in the most critical cases. Coronavirus disease 2019 (COVID-19) is extremely heterogeneous in terms of severity, clinical phenotype and, importantly, global distribution. Although the majority of affected patients recover from the acute infection, many continue to suffer from late sequelae affecting various organs, including the lungs. The role of the pulmonary vascular system during the acute and chronic stages of COVID-19 has not been adequately studied. A thorough understanding of the origins and dynamic behaviour of the SARS-CoV-2 virus and the potential causes of heterogeneity in COVID-19 is essential for anticipating and treating the disease, in both the acute and the chronic stages, including the development of chronic pulmonary hypertension. Both COVID-19 and chronic pulmonary hypertension have assumed global dimensions, with potential complex interactions. In this Review, we present an update on the origins and behaviour of the SARS-CoV-2 virus and discuss the potential causes of the heterogeneity of COVID-19. In addition, we summarize the pathobiology of COVID-19, with an emphasis on the role of the pulmonary vasculature, both in the acute stage and in terms of the potential for developing chronic pulmonary hypertension. We hope that the information presented in this Review will help in the development of strategies for the prevention and treatment of the continuing COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Charles R M Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Kurt R Stenmark
- Divisions of Paediatric Critical Care Medicine and Cardiovascular Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Giessen, Germany
| | - Maria G Frid
- Divisions of Paediatric Critical Care Medicine and Cardiovascular Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent at Canterbury, Canterbury, UK
| | - Nick W Morrell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David I Stuart
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin O'Gallagher
- King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan, Egypt
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Magdi H Yacoub
- Aswan Heart Centre, Aswan, Egypt.
- National Heart & Lung Institute, Imperial College London, London, UK.
- Harefield Heart Science Centre, London, UK.
| |
Collapse
|
22
|
Exploring the Utility of NK Cells in COVID-19. Biomedicines 2022; 10:biomedicines10051002. [PMID: 35625739 PMCID: PMC9138257 DOI: 10.3390/biomedicines10051002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) can manifest as acute respiratory distress syndrome and is associated with substantial morbidity and mortality. Extensive data now indicate that immune responses to SARS-CoV-2 infection determine the COVID-19 disease course. A wide range of immunomodulatory agents have been tested for the treatment of COVID-19. Natural killer (NK) cells play an important role in antiviral innate immunity, and anti-SARS-CoV-2 activity and antifibrotic activity are particularly critical for COVID-19 control. Notably, SARS-CoV-2 clearance rate, antibody response, and disease progression in COVID-19 correlate with NK cell status, and NK cell dysfunction is linked with increased SARS-CoV-2 susceptibility. Thus, NK cells function as the key element in the switch from effective to harmful immune responses in COVID-19. However, dysregulation of NK cells has been observed in COVID-19 patients, exhibiting depletion and dysfunction, which correlate with COVID-19 severity; this dysregulation perhaps contributes to disease progression. Given these findings, NK-cell-based therapies with anti-SARS-CoV-2 activity, antifibrotic activity, and strong safety profiles for cancers may encourage the rapid application of functional NK cells as a potential therapeutic strategy to eliminate SARS-CoV-2-infected cells at an early stage, facilitate immune–immune cell interactions, and favor inflammatory processes that prevent and/or reverse over-inflammation and inhibit fibrosis progression, thereby helping in the fight against COVID-19. However, our understanding of the role of NK cells in COVID-19 remains incomplete, and further research on the involvement of NK cells in the pathogenesis of COVID-19 is needed. The rationale of NK-cell-based therapies for COVID-19 has to be based on the timing of therapeutic interventions and disease severity, which may be determined by the balance between beneficial antiviral and potential detrimental pathologic actions. NK cells would be more effective early in SARS-CoV-2 infection and prevent the progression of COVID-19. Immunomodulation by NK cells towards regulatory functions could be useful as an adjunct therapy to prevent the progression of COVID-19.
Collapse
|
23
|
Elahi R, Karami P, Heidary AH, Esmaeilzadeh A. An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19). Int Immunopharmacol 2022; 105:108536. [PMID: 35074571 PMCID: PMC8747952 DOI: 10.1016/j.intimp.2022.108536] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Since 2019, COVID-19 has become the most important health dilemma around the world. The dysregulated immune response which results in ARDS and cytokine storm has an outstanding role in the progression of pulmonary damage in COVID-19. IL-6, through induction of pro-inflammatory chemokines and cytokines, is the pioneer of the hyperinflammatory condition and cytokine storm in severe COVID-19. Therefore, IL-6 pathway blockade is considered an emerging approach with high efficacy to reduce lung damage in COVID-19. This article aims to review the pleiotropic roles of the IL-6 pathway in lung damage and ARDS in severe COVID-19, and the rationale for IL-6 signaling blockade at different levels, including IL-6 soluble and membrane receptor pathways, IL-6 downstream signaling (such as JAK-STAT) inhibition, and non-specific anti-inflammatory therapeutic approaches. Recent clinical data of each method, with specific concentration on tocilizumab, along with other new drugs, such as sarilumab and siltuximab, have been discussed. Challenges of IL-6 signaling inhibition, such as the risk of superinfection and hepatic injury, and possible solutions have also been explained. Moreover, to achieve the highest efficacy, ongoing clinical trials and special clinical considerations of using different IL-6 inhibitors have been discussed in detail. Special considerations, including the appropriate timing and dosage, monotherapy or combination therapy, and proper side effect managment must be noticed regarding the clinical administration of these drugs. Future studies are still necessary to improve the productivity and unknown aspects of IL-6 signaling blockade for personalized treatment of severe COVID-19.
Collapse
Affiliation(s)
- Reza Elahi
- Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Karami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
24
|
Sendo F, Yoshitake H, Araki Y. Targeting of neutrophil activation in the early phase of the disease for prevention of Coronavirus disease-19 severity. Microbiol Immunol 2022; 66:264-276. [PMID: 35348252 PMCID: PMC9111295 DOI: 10.1111/1348-0421.12978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
The prevention of the disease severity seems critical for reducing the mortality of Coronavirus (CoV) disease‐19. The neutrophils play a key role in the induction of severity. It is proposed here that inhibition of neutrophil activation and/or cascade reactions of complement, leading to this cell activation at the early phase of the disease, is a potential tool to inhibit aggravation of the disease. The need for appropriate timing in intervention is emphasized as follows. (1) Intervention at the very early stage of severe acute respiratory syndrome‐CoV‐2 infection may harm the defensive host response to the infection because of the critical function of neutrophils in this response, and (2) intervention at too late a stage will not stop the infiltration of fully activated neutrophils that produce large amounts of toxic substances.
Collapse
Affiliation(s)
| | - Hiroshi Yoshitake
- Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Yoshihiko Araki
- Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan.,Division of Microbiology, Department of Pathology & Microbiology, Nihon University School of Medicine, Itabashi, Tokyo, Japan
| |
Collapse
|
25
|
Rajamanickam A, Pavan Kumar N, Pandiaraj AN, Selvaraj N, Munisankar S, Renji RM, Venkataramani V, Murhekar M, Thangaraj JWV, Muthusamy SK, Chethrapilly Purushothaman GK, Bhatnagar T, Ponnaiah M, Ramasamy S, Velusamy S, Babu S. Characterization of memory T cell subsets and common γ-chain cytokines in convalescent COVID-19 individuals. J Leukoc Biol 2022; 112:201-212. [PMID: 35258122 PMCID: PMC9088480 DOI: 10.1002/jlb.5cova0721-392rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/30/2021] [Accepted: 01/21/2022] [Indexed: 01/08/2023] Open
Abstract
T cells are thought to be an important correlates of protection against SARS‐CoV2 infection. However, the composition of T cell subsets in convalescent individuals of SARS‐CoV2 infection has not been well studied. The authors determined the lymphocyte absolute counts, the frequency of memory T cell subsets, and the plasma levels of common γ−chain in 7 groups of COVID‐19 individuals, based on days since RT‐PCR confirmation of SARS‐CoV‐2 infection. The data show that both absolute counts and frequencies of lymphocytes as well as, the frequencies of CD4+ central and effector memory cells increased, and the frequencies of CD4+ naïve T cells, transitional memory, stem cell memory T cells, and regulatory cells decreased from Days 15–30 to Days 61–90 and plateaued thereafter. In addition, the frequencies of CD8+ central memory, effector, and terminal effector memory T cells increased, and the frequencies of CD8+ naïve cells, transitional memory, and stem cell memory T cells decreased from Days 15–30 to Days 61–90 and plateaued thereafter. The plasma levels of IL‐2, IL‐7, IL‐15, and IL‐21—common γc cytokines started decreasing from Days 15–30 till Days 151–180. Severe COVID‐19 patients exhibit decreased levels of lymphocyte counts and frequencies, higher frequencies of naïve cells, regulatory T cells, lower frequencies of central memory, effector memory, and stem cell memory, and elevated plasma levels of IL‐2, IL‐7, IL‐15, and IL‐21. Finally, there was a significant correlation between memory T cell subsets and common γc cytokines. Thus, the study provides evidence of alterations in lymphocyte counts, memory T cell subset frequencies, and common γ−chain cytokines in convalescent COVID‐19 individuals.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | | | - Arul Nancy Pandiaraj
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Nandhini Selvaraj
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Saravanan Munisankar
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Rachel Mariam Renji
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Vijayalakshmi Venkataramani
- ICMR-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - Manoj Murhekar
- National Institute of Epidemiology (ICMR), Near Ambattur, Ayapakkam, Chennai, India
| | | | | | | | - Tarun Bhatnagar
- National Institute of Epidemiology (ICMR), Near Ambattur, Ayapakkam, Chennai, India
| | - Manickam Ponnaiah
- National Institute of Epidemiology (ICMR), Near Ambattur, Ayapakkam, Chennai, India
| | | | | | - Subash Babu
- ICMR-NIRT-International Center for Excellence in Research, Chennai, India
| |
Collapse
|
26
|
Xu Z, Su C, Xiao Y, Wang F. Artificial intelligence for COVID-19: battling the pandemic with computational intelligence. INTELLIGENT MEDICINE 2022; 2:13-29. [PMID: 34697578 PMCID: PMC8529224 DOI: 10.1016/j.imed.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
The new coronavirus disease 2019 (COVID-19) has become a global pandemic leading to over 180 million confirmed cases and nearly 4 million deaths until June 2021, according to the World Health Organization. Since the initial report in December 2019 , COVID-19 has demonstrated a high transmission rate (with an R0 > 2), a diverse set of clinical characteristics (e.g., high rate of hospital and intensive care unit admission rates, multi-organ dysfunction for critically ill patients due to hyperinflammation, thrombosis, etc.), and a tremendous burden on health care systems around the world. To understand the serious and complex diseases and develop effective control, treatment, and prevention strategies, researchers from different disciplines have been making significant efforts from different aspects including epidemiology and public health, biology and genomic medicine, as well as clinical care and patient management. In recent years, artificial intelligence (AI) has been introduced into the healthcare field to aid clinical decision-making for disease diagnosis and treatment such as detecting cancer based on medical images, and has achieved superior performance in multiple data-rich application scenarios. In the COVID-19 pandemic, AI techniques have also been used as a powerful tool to overcome the complex diseases. In this context, the goal of this study is to review existing studies on applications of AI techniques in combating the COVID-19 pandemic. Specifically, these efforts can be grouped into the fields of epidemiology, therapeutics, clinical research, social and behavioral studies and are summarized. Potential challenges, directions, and open questions are discussed accordingly, which may provide new insights into addressing the COVID-19 pandemic and would be helpful for researchers to explore more related topics in the post-pandemic era.
Collapse
Affiliation(s)
- Zhenxing Xu
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York 10065, United States
| | - Chang Su
- Department of Health Service Administration and Policy, Temple University, Philadelphia 19122, United States
| | - Yunyu Xiao
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York 10065, United States
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York 10065, United States
| |
Collapse
|
27
|
Chutipongtanate S, Morrow AL, Newburg DS. Human Milk Oligosaccharides: Potential Applications in COVID-19. Biomedicines 2022; 10:biomedicines10020346. [PMID: 35203555 PMCID: PMC8961778 DOI: 10.3390/biomedicines10020346] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has become a global health crisis with more than four million deaths worldwide. A substantial number of COVID-19 survivors continue suffering from long-COVID syndrome, a long-term complication exhibiting chronic inflammation and gut dysbiosis. Much effort is being expended to improve therapeutic outcomes. Human milk oligosaccharides (hMOS) are non-digestible carbohydrates known to exert health benefits in breastfed infants by preventing infection, maintaining immune homeostasis and nurturing healthy gut microbiota. These beneficial effects suggest the hypothesis that hMOS might have applications in COVID-19 as receptor decoys, immunomodulators, mucosal signaling agents, and prebiotics. This review summarizes hMOS biogenesis and classification, describes the possible mechanisms of action of hMOS upon different phases of SARS-CoV-2 infection, and discusses the challenges and opportunities of hMOS research for clinical applications in COVID-19.
Collapse
Affiliation(s)
- Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Mahidol University, Samut Prakan 10540, Thailand
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Ardythe L. Morrow
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children′s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - David S. Newburg
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Correspondence: or
| |
Collapse
|
28
|
Gopikrishnan GS, Kuttippurath J, Raj S, Singh A, Abbhishek K. Air Quality during the COVID–19 Lockdown and Unlock Periods in India Analyzed Using Satellite and Ground-based Measurements. ENVIRONMENTAL PROCESSES 2022; 9:28. [PMCID: PMC9059918 DOI: 10.1007/s40710-022-00585-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Abstract A nationwide lockdown was imposed in India from 24 March 2020 to 31 May 2020 to contain the spread of COVID-19. The lockdown has changed the atmospheric pollution across the continents. Here, we analyze the changes in two most important air quality related trace gases, nitrogen dioxide (NO2) and tropospheric ozone (O3) from satellite and surface observations, during the lockdown (April–May 2020) and unlock periods (June–September 2020) in India, to examine the baseline emissions when anthropogenic sources were significantly reduced. We use the Bayesian statistics to find the changes in these trace gas concentrations in different time periods. There is a strong reduction in NO2 during the lockdown as public transport and industries were shut during that period. The largest changes are found in IGP (Indo-Gangetic Plain), and industrial and mining areas in Eastern India. The changes are small in the hilly regions, where the concentrations of these trace gases are also very small (0–1 × 1015 molec./cm2). In addition, a corresponding increase in the concentrations of tropospheric O3 is observed during the period. The analyses over cities show that there is a large decrease in NO2 in Delhi (36%), Bangalore (21%) and Ahmedabad (21%). As the lockdown restrictions were eased during the unlock period, the concentrations of NO2 gradually increased and ozone deceased in most regions. Therefore, this study suggests that pollution control measures should be prioritized, ensuring strict regulations to control the source of anthropogenic pollutants, particularly from the transport and industrial sectors. Highlights • Most cities show a reduction up to 15% of NO2 during the lockdown • The unlock periods show again an increase of about 40–50% in NO2 • An increase in tropospheric O3 is observed together with the decrease in NO2 Supplementary Information The online version contains supplementary material available at 10.1007/s40710-022-00585-9.
Collapse
Affiliation(s)
- G. S. Gopikrishnan
- CORAL, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal India
| | - J. Kuttippurath
- CORAL, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal India
| | - S. Raj
- CORAL, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal India
| | - A. Singh
- CORAL, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal India
| | - K. Abbhishek
- CORAL, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal India
| |
Collapse
|
29
|
Mizurini DM, Hottz ED, Bozza PT, Monteiro RQ. Fundamentals in Covid-19-Associated Thrombosis: Molecular and Cellular Aspects. Front Cardiovasc Med 2021; 8:785738. [PMID: 34977191 PMCID: PMC8718518 DOI: 10.3389/fcvm.2021.785738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease (COVID-19) is associated with a high incidence of coagulopathy and venous thromboembolism that may contribute to the worsening of the clinical outcome in affected patients. Marked increased D-dimer levels are the most common laboratory finding and have been repeatedly reported in critically ill COVID-19 patients. The infection caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is followed by a massive release of pro-inflammatory cytokines, which mediate the activation of endothelial cells, platelets, monocytes, and neutrophils in the vasculature. In this context, COVID-19-associated thrombosis is a complex process that seems to engage vascular cells along with soluble plasma factors, including the coagulation cascade, and complement system that contribute to the establishment of the prothrombotic state. In this review, we summarize the main findings concerning the cellular mechanisms proposed for the establishment of COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Daniella M. Mizurini
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Patrícia T. Bozza
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Goudman L, De Smedt A, Noppen M, Moens M. Is Central Sensitisation the Missing Link of Persisting Symptoms after COVID-19 Infection? J Clin Med 2021; 10:jcm10235594. [PMID: 34884296 PMCID: PMC8658135 DOI: 10.3390/jcm10235594] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
Patients recovered from a COVID-19 infection often report vague symptoms of fatigue or dyspnoea, comparable to the manifestations in patients with central sensitisation. The hypothesis was that central sensitisation could be the underlying common aetiology in both patient populations. This study explored the presence of symptoms of central sensitisation, and the association with functional status and health-related quality of life, in patients post COVID-19 infection. Patients who were previously infected with COVID-19 filled out the Central Sensitisation Inventory (CSI), the Post-COVID-19 Functional Status (PCFS) Scale and the EuroQol with five dimensions, through an online survey. Eventually, 567 persons completed the survey. In total, 29.73% of the persons had a score of <40/100 on the CSI and 70.26% had a score of ≥40/100. Regarding functional status, 7.34% had no functional limitations, 9.13% had negligible functional limitations, 37.30% reported slight functional limitations, 42.86% indicated moderate functional limitations and 3.37% reported severe functional limitations. Based on a one-way ANOVA test, there was a significant effect of PCFS Scale group level on the total CSI score (F(4,486) = 46.17, p < 0.001). This survey indicated the presence of symptoms of central sensitisation in more than 70% of patients post COVID-19 infection, suggesting towards the need for patient education and multimodal rehabilitation, to target nociplastic pain.
Collapse
Affiliation(s)
- Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium;
- STIMULUS Research Group (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Research Foundation—Flanders (FWO), 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-2477-5514
| | - Ann De Smedt
- STIMULUS Research Group (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Department of Physical Medicine and Rehabilitation, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Marc Noppen
- Chief Executive Officer, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium;
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium;
- STIMULUS Research Group (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
31
|
Bortolotti D, Simioni C, Neri LM, Rizzo R, Semprini CM, Occhionorelli S, Laface I, Sanz JM, Schiuma G, Rizzo S, Varano G, Beltrami S, Gentili V, Gafà R, Passaro A. Relevance of VEGF and CD147 in different SARS-CoV-2 positive digestive tracts characterized by thrombotic damage. FASEB J 2021; 35:e21969. [PMID: 34822202 DOI: 10.1096/fj.202100821rrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022]
Abstract
Several evidence suggests that, in addition to the respiratory tract, also the gastrointestinal tract is a main site of severe acute respiratory syndrome CoronaVirus 2 (SARS-CoV-2) infection, as an example of a multi-organ vascular damage, likely associated with poor prognosis. To assess mechanisms SARS-CoV-2 responsible of tissue infection and vascular injury, correlating with thrombotic damage, specimens of the digestive tract positive for SARS-CoV-2 nucleocapsid protein were analyzed deriving from three patients, negative to naso-oro-pharyngeal swab for SARS-CoV-2. These COVID-19-negative patients came to clinical observation due to urgent abdominal surgery that removed different sections of the digestive tract after thrombotic events. Immunohistochemical for the expression of SARS-CoV-2 combined with a panel of SARS-CoV-2 related proteins angiotensin-converting enzyme 2 receptor, cluster of differentiation 147 (CD147), human leukocyte antigen-G (HLA-G), vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 was performed. Tissue samples were also evaluated by electron microscopy for ultrastructural virus localization and cell characterization. The damage of the tissue was assessed by ultrastructural analysis. It has been observed that CD147 expression levels correlate with SARS-CoV-2 infection extent, vascular damage and an increased expression of VEGF and thrombosis. The confirmation of CD147 co-localization with SARS-CoV-2 Spike protein binding on gastrointestinal tissues and the reduction of the infection level in intestinal epithelial cells after CD147 neutralization, suggest CD147 as a possible key factor for viral susceptibility of gastrointestinal tissue. The presence of SARS-CoV-2 infection of gastrointestinal tissue might be consequently implicated in abdominal thrombosis, where VEGF might mediate the vascular damage.
Collapse
Affiliation(s)
- Daria Bortolotti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Luca Maria Neri
- Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy.,Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Marina Semprini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Medical Department, University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Italy
| | - Savino Occhionorelli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Surgery Department, University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Italy
| | - Ilaria Laface
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Juana Maria Sanz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Silvia Beltrami
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Oncological and Medical Department, University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Medical Department, University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Italy
| |
Collapse
|
32
|
Zinellu A, Paliogiannis P, Carru C, Mangoni AA. Serum hydroxybutyrate dehydrogenase and COVID-19 severity and mortality: a systematic review and meta-analysis with meta-regression. Clin Exp Med 2021; 22:499-508. [PMID: 34799779 PMCID: PMC8603904 DOI: 10.1007/s10238-021-00777-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Alterations in cardiac and renal biomarkers have been reported in coronavirus disease 19 (COVID-19). We conducted a systematic review and meta-analysis to investigate serum concentrations of hydroxybutyrate dehydrogenase (HBDH), a combined marker of myocardial and renal injury, in hospitalized COVID-19 patients with different disease severity and survival status. We searched PubMed, Web of Science and Scopus, between December 2019 and April 2021, for studies reporting HBDH in COVID-19. Risk of bias was assessed using the Newcastle–Ottawa scale, publication bias was assessed with the Begg’s and Egger’s tests, and certainty of evidence was assessed using GRADE. In 22 studies in 15,019 COVID-19 patients, serum HBDH concentrations on admission were significantly higher in patients with high disease severity or non-survivor status when compared to patients with low severity or survivor status (standardized mean difference, SMD = 0.90, 95% CI 0.74 to 1.07, p < 0.001; moderate certainty of evidence). Extreme between-study heterogeneity was observed (I2 = 93.5%, p < 0.001). Sensitivity analysis, performed by sequentially removing each study and re-assessing the pooled estimates, showed that the magnitude and the direction of the effect size were not substantially modified. A significant publication bias was observed. In meta-regression, the SMD of HBDH concentrations was significantly associated with markers of inflammation, sepsis, liver damage, non-specific tissue damage, myocardial injury, and renal function. Higher HBDH concentrations were significantly associated with higher COVID-19 severity and mortality. This biomarker of cardiac and renal injury might be useful for risk stratification in COVID-19. (PROSPERO registration number: CRD42021258123).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia.
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
33
|
Hasenkrug KJ, Feldmann F, Myers L, Santiago ML, Guo K, Barrett BS, Mickens KL, Carmody A, Okumura A, Rao D, Collins MM, Messer RJ, Lovaglio J, Shaia C, Rosenke R, van Doremalen N, Clancy C, Saturday G, Hanley P, Smith BJ, Meade-White K, Shupert WL, Hawman DW, Feldmann H. Recovery from Acute SARS-CoV-2 Infection and Development of Anamnestic Immune Responses in T Cell-Depleted Rhesus Macaques. mBio 2021; 12:e0150321. [PMID: 34311582 PMCID: PMC8406331 DOI: 10.1128/mbio.01503-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) has been associated with T cell lymphopenia, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we studied rhesus macaques that were depleted of either CD4+, CD8+, or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to that in controls. The T cell-depleted groups developed virus-neutralizing antibody responses and class switched to IgG. When reinfected 6 weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads, and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ nor CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory, or protection from a second infection. IMPORTANCE Patients with severe COVID-19 often have decreased numbers of T cells, a cell type important in fighting most viral infections. However, it is not known whether the loss of T cells contributes to severe COVID-19 or is a consequence of it. We studied rhesus macaques, which develop only mild COVID-19, similar to most humans. Experimental depletion of T cells slightly prolonged their clearance of virus, but there was no increase in disease severity. Furthermore, they were able to develop protection from a second infection and produced antibodies capable of neutralizing the virus. They also developed immunological memory, which allows a much stronger and more rapid response upon a second infection. These results suggest that T cells are not critical for recovery from acute SARS-CoV-2 infections in this model and point toward B cell responses and antibodies as the essential mediators of protection from re-exposure.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Lara Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mario L. Santiago
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kejun Guo
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Bradley S. Barrett
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kaylee L. Mickens
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Atsushi Okumura
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Deepashri Rao
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Madison M. Collins
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Chad Clancy
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patrick Hanley
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brian J. Smith
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - W. Lesley Shupert
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - David W. Hawman
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
34
|
Kaklamanos A, Belogiannis K, Skendros P, Gorgoulis VG, Vlachoyiannopoulos PG, Tzioufas AG. COVID-19 Immunobiology: Lessons Learned, New Questions Arise. Front Immunol 2021; 12:719023. [PMID: 34512643 PMCID: PMC8427766 DOI: 10.3389/fimmu.2021.719023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
There is strong evidence that COVID-19 pathophysiology is mainly driven by a spatiotemporal immune deregulation. Both its phenotypic heterogeneity, spanning from asymptomatic to severe disease/death, and its associated mortality, are dictated by and linked to maladaptive innate and adaptive immune responses against SARS-CoV-2, the etiologic factor of the disease. Deregulated interferon and cytokine responses, with the contribution of immune and cellular stress-response mediators (like cellular senescence or uncontrolled inflammatory cell death), result in innate and adaptive immune system malfunction, endothelial activation and inflammation (endothelitis), as well as immunothrombosis (with enhanced platelet activation, NET production/release and complement hyper-activation). All these factors play key roles in the development of severe COVID-19. Interestingly, another consequence of this immune deregulation, is the production of autoantibodies and the subsequent development of autoimmune phenomena observed in some COVID-19 patients with severe disease. These new aspects of the disease that are now emerging (like autoimmunity and cellular senescence), could offer us new opportunities in the field of disease prevention and treatment. Simultaneously, lessons already learned from the immunobiology of COVID-19 could offer new insights, not only for this disease, but also for a variety of chronic inflammatory responses observed in autoimmune and (auto)inflammatory diseases.
Collapse
Affiliation(s)
- Aimilios Kaklamanos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Skendros
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis G. Vlachoyiannopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| |
Collapse
|
35
|
Guo J, Wang S, Xia H, Shi D, Chen Y, Zheng S, Chen Y, Gao H, Guo F, Ji Z, Huang C, Luo R, Zhang Y, Zuo J, Chen Y, Xu Y, Xia J, Zhu C, Xu X, Qiu Y, Sheng J, Xu K, Li L. Cytokine Signature Associated With Disease Severity in COVID-19. Front Immunol 2021; 12:681516. [PMID: 34489933 PMCID: PMC8418386 DOI: 10.3389/fimmu.2021.681516] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) broke out and then became a global epidemic at the end of 2019. With the increasing number of deaths, early identification of disease severity and interpretation of pathogenesis are very important. Aiming to identify biomarkers for disease severity and progression of COVID-19, 75 COVID-19 patients, 34 healthy controls and 23 patients with pandemic influenza A(H1N1) were recruited in this study. Using liquid chip technology, 48 cytokines and chemokines were examined, among which 33 were significantly elevated in COVID-19 patients compared with healthy controls. HGF and IL-1β were strongly associated with APACHE II score in the first week after disease onset. IP-10, HGF and IL-10 were correlated positively with virus titers. Cytokines were significantly correlated with creatinine, troponin I, international normalized ratio and procalcitonin within two weeks after disease onset. Univariate analyses were carried out, and 6 cytokines including G-CSF, HGF, IL-10, IL-18, M-CSF and SCGF-β were found to be associated with the severity of COVID-19. 11 kinds of cytokines could predict the severity of COVID-19, among which IP-10 and M-CSF were excellent predictors for disease severity. In conclusion, the levels of cytokines in COVID-19 were significantly correlated with the severity of the disease in the early stage, and serum cytokines could be used as warning indicators of the severity and progression of COVID-19. Early stratification of disease and intervention to reduce hypercytokinaemia may improve the prognosis of COVID-19 patients.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shufa Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hainv Gao
- The Shulan (Hangzhou) Hospital, Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Feifei Guo
- The Shulan (Hangzhou) Hospital, Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenjie Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Rui Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Zuo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chunxia Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaowei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Shulan (Hangzhou) Hospital, Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
36
|
Mazzitelli I, Bleichmar L, Ludueña MG, Pisarevsky A, Labato M, Chiaradia V, Finocchieto P, Paulin F, Hormanstorfer M, Baretto MC, Adanza SP, Parodi MN, Ragusa M, Melucci C, Díaz FE, Paletta A, Di Diego F, Ceballos A, Geffner J. Immunoglobulin G Immune Complexes May Contribute to Neutrophil Activation in the Course of Severe Coronavirus Disease 2019. J Infect Dis 2021; 224:575-585. [PMID: 34398243 PMCID: PMC8083460 DOI: 10.1093/infdis/jiab174] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
Severe COVID-19 is associated with an overactive inflammatory response mediated by macrophages. Here, we analyzed the phenotype and function of neutrophils in COVID-19 patients. We found that neutrophils from severe COVID-19 patients express high levels of CD11b and CD66b, spontaneously produce CXCL8 and CCL2 and show a strong association with platelets. Production of CXCL8 correlated with plasmatic concentrations of LDH and D-dimer. Whole blood assays revealed that neutrophils from severe COVID-19 patients show a clear association with IgG immune complexes. Moreover, we found that sera from severe patients contain high levels of immune complexes and activate neutrophils through a mechanism partially dependent on FcγRII (CD32). Interestingly, when integrated in immune complexes, anti-SARS-CoV-2 IgG antibodies from severe patients displayed a higher pro-inflammatory profile compared with antibodies from mild patients. Our study suggests that IgG immune complexes might promote the acquisition of an inflammatory signature by neutrophils worsening the course of COVID-19.
Collapse
Affiliation(s)
- Ignacio Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Téchnicas, Buenos Aires, Argentina
| | - Lucia Bleichmar
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Téchnicas, Buenos Aires, Argentina
| | - María Guillermina Ludueña
- Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Pisarevsky
- Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Labato
- Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica Chiaradia
- Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paola Finocchieto
- Departamento de Medicina Interna, Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francisco Paulin
- Servicio de Clínica Médica, Hospital Fernández, Buenos Aires, Argentina
| | | | | | | | - María Noel Parodi
- Servicio de Clínica Médica, Hospital Fernández, Buenos Aires, Argentina
| | - Martín Ragusa
- Servicio de Clínica Médica, Hospital Fernández, Buenos Aires, Argentina
| | - Claudia Melucci
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Téchnicas, Buenos Aires, Argentina
| | - Fernando Erra Díaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Téchnicas, Buenos Aires, Argentina
| | - Ana Paletta
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Téchnicas, Buenos Aires, Argentina
| | - Facundo Di Diego
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Téchnicas, Buenos Aires, Argentina
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Téchnicas, Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Téchnicas, Buenos Aires, Argentina
| |
Collapse
|
37
|
Wang G, Deng J, Li J, Wu C, Dong H, Wu S, Zhong Y. The Role of High-Density Lipoprotein in COVID-19. Front Pharmacol 2021; 12:720283. [PMID: 34335279 PMCID: PMC8322438 DOI: 10.3389/fphar.2021.720283] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The current Coronavirus disease 2019 (COVID-19) pandemic has become a global challenge. Managing a large number of acutely ill patients in a short time, whilst reducing the fatality rate and dealing with complications, brings unique difficulties. The most striking pathophysiological features of patients with severe COVID-19 are dysregulated immune responses and abnormal coagulation function, which can result in multiple-organ failure and death. Normally metabolized high-density lipoprotein (HDL) performs several functions, including reverse cholesterol transport, direct binding to lipopolysaccharide (LPS) to neutralize LPS activity, regulation of inflammatory response, anti-thrombotic effects, antioxidant, and anti-apoptotic properties. Clinical data shows that significantly decreased HDL levels in patients with COVID-19 are correlated with both disease severity and mortality. However, the role of HDL in COVID-19 and its specific mechanism remain unclear. In this analysis, we review current evidence mainly in the following areas: firstly, the pathophysiological characteristics of COVID-19, secondly, the pleiotropic properties of HDL, thirdly, the changes and clinical significance of HDL in COVID-19, and fourthly the prospect of HDL-targeting therapy in COVID-19 to clarify the role of HDL in the pathogenesis of COVID-19 and discuss the potential of HDL therapy in COVID-19.
Collapse
Affiliation(s)
- Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyun Dong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shangjie Wu
- Department of Respiratory, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Codd AS, Hanna SJ, Compeer EB, Richter FC, Pring EJ, Gea-Mallorquí E, Borsa M, Moon OR, Scourfield DO, Gallimore AM, Milicic A. Neutrophilia, lymphopenia and myeloid dysfunction: a living review of the quantitative changes to innate and adaptive immune cells which define COVID-19 pathology. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab016. [PMID: 35593707 PMCID: PMC8371938 DOI: 10.1093/oxfimm/iqab016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Destabilization of balanced immune cell numbers and frequencies is a common feature of viral infections. This occurs due to, and further enhances, viral immune evasion and survival. Since the discovery of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which manifests in coronavirus disease 2019 (COVID-19), a great number of studies have described the association between this virus and pathologically increased or decreased immune cell counts. In this review, we consider the absolute and relative changes to innate and adaptive immune cell numbers, in COVID-19. In severe disease particularly, neutrophils are increased, which can lead to inflammation and tissue damage. Dysregulation of other granulocytes, basophils and eosinophils represents an unusual COVID-19 phenomenon. Contrastingly, the impact on the different types of monocytes leans more strongly to an altered phenotype, e.g. HLA-DR expression, rather than numerical changes. However, it is the adaptive immune response that bears the most profound impact of SARS-CoV-2 infection. T cell lymphopenia correlates with increased risk of intensive care unit admission and death; therefore, this parameter is particularly important for clinical decision-making. Mild and severe diseases differ in the rate of immune cell counts returning to normal levels post disease. Tracking the recovery trajectories of various immune cell counts may also have implications for long-term COVID-19 monitoring. This review represents a snapshot of our current knowledge, showing that much has been achieved in a short period of time. Alterations in counts of distinct immune cells represent an accessible metric to inform patient care decisions or predict disease outcomes.
Collapse
Affiliation(s)
- Amy S Codd
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephanie J Hanna
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ewoud B Compeer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Felix C Richter
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Eleanor J Pring
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Ester Gea-Mallorquí
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mariana Borsa
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Owen R Moon
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - D Oliver Scourfield
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Anita Milicic
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Witika BA, Makoni PA, Matafwali SK, Mweetwa LL, Shandele GC, Walker RB. Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin. Molecules 2021; 26:4244. [PMID: 34299519 PMCID: PMC8303961 DOI: 10.3390/molecules26144244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- ApotheCom|A MEDiSTRAVA Company (Medical Division of Huntsworth), London WC2A 1AN, UK;
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, LSHTM, London WC1E 7HT, UK;
| | - Larry Lawrence Mweetwa
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Ginnethon Chaamba Shandele
- Department of Biochemistry, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, P.O. Box 33991, Lusaka 10101, Zambia;
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
40
|
Korompoki E, Gavriatopoulou M, Hicklen RS, Ntanasis-Stathopoulos I, Kastritis E, Fotiou D, Stamatelopoulos K, Terpos E, Kotanidou A, Hagberg CA, Dimopoulos MA, Kontoyiannis DP. Epidemiology and organ specific sequelae of post-acute COVID19: A narrative review. J Infect 2021; 83:1-16. [PMID: 33992686 PMCID: PMC8118709 DOI: 10.1016/j.jinf.2021.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES "Long COVID", a term coined by COVID-19 survivors, describes persistent or new symptoms in a subset of patients who have recovered from acute illness. Globally, the population of people infected with SARS-CoV-2 continues to expand rapidly, necessitating the need for a more thorough understanding of the array of potential sequelae of COVID-19. The multisystemic aspects of acute COVID-19 have been the subject of intense investigation, but the long-term complications remain poorly understood. Emerging data from lay press, social media, commentaries, and emerging scientific reports suggest that some COVID-19 survivors experience organ impairment and/or debilitating chronic symptoms, at times protean in nature, which impact their quality of life. METHODS/RESULTS In this review, by addressing separately each body system, we describe the pleiotropic manifestations reported post COVID-19, their putative pathophysiology and risk factors, and attempt to offer guidance regarding work-up, follow-up and management strategies. Long term sequelae involve all systems with a negative impact on mental health, well-being and quality of life, while a subset of patients, report debilitating chronic fatigue, with or without other fluctuating or persistent symptoms, such as pain or cognitive dysfunction. Although the pathogenesis is unclear, residual damage from acute infection, persistent immune activation, mental factors, or unmasking of underlying co-morbidities are considered as drivers. Comparing long COVID with other post viral chronic syndromes may help to contextualize the complex somatic and emotional sequalae of acute COVID-19. The pace of recovery of different aspects of the syndrome remains unclear as the pandemic began only a year ago. CONCLUSIONS Early recognition of long-term effects and thorough follow-up through dedicated multidisciplinary outpatient clinics with a carefully integrated research agenda are essential for treating COVID-19 survivors holistically.
Collapse
Affiliation(s)
- Eleni Korompoki
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece; Divison of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Rachel S Hicklen
- Research Medical Library, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1460, Houston TX 77030, United States.
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece.
| | - Anastasia Kotanidou
- Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens 11528, Greece.
| | - Carin A Hagberg
- Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece.
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
41
|
Al Balushi A, AlShekaili J, Al Kindi M, Ansari Z, Al-Khabori M, Khamis F, Ambusaidi Z, Al Balushi A, Al Huraizi A, Al Sulaimi S, Al Fahdi F, Al Balushi I, Pandak N, Fletcher T, Nasr I. Immunological predictors of disease severity in patients with COVID-19. Int J Infect Dis 2021; 110:83-92. [PMID: 34216735 PMCID: PMC8245310 DOI: 10.1016/j.ijid.2021.06.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Background Identifying the immune cells involved in coronavirus disease 2019 (COVID-19) disease progression and the predictors of poor outcomes is important to manage patients adequately. Methods This prospective observational cohort study enrolled 48 patients with COVID-19 hospitalized in a tertiary hospital in Oman and 53 non-hospitalized patients with confirmed mild COVID-19. Results Hospitalized patients were older (58 years vs 36 years, P < 0.001) and had more comorbid conditions such as diabetes (65% vs 21% P < 0.001). Hospitalized patients had significantly higher inflammatory markers (P < 0.001): C-reactive protein (114 vs 4 mg/l), interleukin 6 (IL-6) (33 vs 3.71 pg/ml), lactate dehydrogenase (417 vs 214 U/l), ferritin (760 vs 196 ng/ml), fibrinogen (6 vs 3 g/l), D-dimer (1.0 vs 0.3 μg/ml), disseminated intravascular coagulopathy score (2 vs 0), and neutrophil/lymphocyte ratio (4 vs 1.1) (P < 0.001). On multivariate regression analysis, statistically significant independent early predictors of intensive care unit admission or death were higher levels of IL-6 (odds ratio 1.03, P = 0.03), frequency of large inflammatory monocytes (CD14+CD16+) (odds ratio 1.117, P = 0.010), and frequency of circulating naïve CD4+ T cells (CD27+CD28+CD45RA+CCR7+) (odds ratio 0.476, P = 0.03). Conclusion IL-6, the frequency of large inflammatory monocytes, and the frequency of circulating naïve CD4 T cells can be used as independent immunological predictors of poor outcomes in COVID-19 patients to prioritize critical care and resources.
Collapse
Affiliation(s)
- Asma Al Balushi
- Tropical and Infectious Diseases Unit, The Royal Liverpool University Hospital, Liverpool, UK; Internal Medicine Department, Suhar Hospital, Suhar, Oman.
| | - Jalila AlShekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Seeb, Oman.
| | - Mahmood Al Kindi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Seeb, Oman.
| | - Zainab Ansari
- Internal Medicine Department, Royal Hospital, Muscat, Oman.
| | | | - Faryal Khamis
- Internal Medicine Department, Royal Hospital, Muscat, Oman.
| | | | | | | | | | - Fatma Al Fahdi
- Internal Medicine Department, Royal Hospital, Muscat, Oman.
| | | | - Nenad Pandak
- Internal Medicine Department, Royal Hospital, Muscat, Oman.
| | - Tom Fletcher
- Tropical and Infectious Diseases Unit, The Royal Liverpool University Hospital, Liverpool, UK.
| | - Iman Nasr
- Internal Medicine Department, Royal Hospital, Muscat, Oman.
| |
Collapse
|
42
|
Hazeldine J, Lord JM. Neutrophils and COVID-19: Active Participants and Rational Therapeutic Targets. Front Immunol 2021; 12:680134. [PMID: 34149717 PMCID: PMC8206563 DOI: 10.3389/fimmu.2021.680134] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
Whilst the majority of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, experience mild to moderate symptoms, approximately 20% develop severe respiratory complications that may progress to acute respiratory distress syndrome, pulmonary failure and death. To date, single cell and high-throughput systems based analyses of the peripheral and pulmonary immune responses to SARS-CoV-2 suggest that a hyperactive and dysregulated immune response underpins the development of severe disease, with a prominent role assigned to neutrophils. Characterised in part by robust generation of neutrophil extracellular traps (NETs), the presence of immature, immunosuppressive and activated neutrophil subsets in the circulation, and neutrophilic infiltrates in the lung, a granulocytic signature is emerging as a defining feature of severe COVID-19. Furthermore, an assessment of the number, maturity status and/or function of circulating neutrophils at the time of hospital admission has shown promise as a prognostic tool for the early identification of patients at risk of clinical deterioration. Here, by summarising the results of studies that have examined the peripheral and pulmonary immune response to SARS-CoV-2, we provide a comprehensive overview of the changes that occur in the composition, phenotype and function of the neutrophil pool in COVID-19 patients of differing disease severities and discuss potential mediators of SARS-CoV-2-induced neutrophil dysfunction. With few specific treatments currently approved for COVID-19, we conclude the review by discussing whether neutrophils represent a potential therapeutic target for the treatment of patients with severe COVID-19.
Collapse
Affiliation(s)
- Jon Hazeldine
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Birmingham Biomedical Research Centre, University Hospital Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
Alunno A, Najm A, Machado PM, Bertheussen H, Burmester GR, Carubbi F, De Marco G, Giacomelli R, Hermine O, Isaacs JD, Koné-Paut I, Magro-Checa C, McInnes I, Meroni PL, Quartuccio L, Ramanan AV, Ramos-Casals M, Rodríguez Carrio J, Schulze-Koops H, Stamm TA, Tas SW, Terrier B, McGonagle DG, Mariette X. EULAR points to consider on pathophysiology and use of immunomodulatory therapies in COVID-19. Ann Rheum Dis 2021; 80:698-706. [PMID: 33547062 PMCID: PMC7871226 DOI: 10.1136/annrheumdis-2020-219724] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Severe systemic inflammation associated with some stages of COVID-19 and in fatal cases led therapeutic agents developed or used frequently in Rheumatology being at the vanguard of experimental therapeutics strategies. The aim of this project was to elaborate EULAR Points to consider (PtCs) on COVID-19 pathophysiology and immunomodulatory therapies. METHODS PtCs were developed in accordance with EULAR standard operating procedures for endorsed recommendations, led by an international multidisciplinary Task Force, including rheumatologists, translational immunologists, haematologists, paediatricians, patients and health professionals, based on a systemic literature review up to 15 December 2020. Overarching principles (OPs) and PtCs were formulated and consolidated by formal voting. RESULTS Two OPs and fourteen PtCs were developed. OPs highlight the heterogeneous clinical spectrum of SARS-CoV-2 infection and the need of a multifaceted approach to target the different pathophysiological mechanisms. PtCs 1-6 encompass the pathophysiology of SARS-CoV-2 including immune response, endothelial dysfunction and biomarkers. PtCs 7-14 focus on the management of SARS-CoV-2 infection with immunomodulators. There was evidence supporting the use of glucocorticoids, especially dexamethasone, in COVID-19 cases requiring oxygen therapy. No other immunomodulator demonstrated efficacy on mortality to date, with however inconsistent results for tocilizumab. Immunomodulatory therapy was not associated with higher infection rates. CONCLUSIONS Multifactorial pathophysiological mechanisms, including immune abnormalities, play a key role in COVID-19. The efficacy of glucocorticoids in cases requiring oxygen therapy suggests that immunomodulatory treatment might be effective in COVID-19 subsets. Involvement of rheumatologists, as systemic inflammatory diseases experts, should continue in ongoing clinical trials delineating optimal immunomodulatory therapy utilisation in COVID-19.
Collapse
Affiliation(s)
- Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Aurélie Najm
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pedro M Machado
- Centre for Rheumatology & Department of Neuromuscular Diseases, University College London, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), University College London Hospitals NHS Foundation Trust, London, UK
- Department of Rheumatology, Northwick Park Hospital, London North West University Healthcare NHS Trust, London, UK
| | | | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Freie Universität und Humboldt-Universität Berlin, Berlin, Germany
| | - Francesco Carubbi
- Department of Medicine, ASL 1 Avezzano-Sulmona-L'Aquila, Internal Medicine and Nephrology Unit, Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gabriele De Marco
- The Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Roberto Giacomelli
- Rheumatology and Clinical Immunology Unit, University of Rome "Campus Biomedico" School of Medicine Rome, Rome, Italy
| | - Olivier Hermine
- Department of Haematology, Hôpital Necker, Assistance Publique - Hôpitaux de Paris, Paris, France
- INSERM UMR1183, Institut Imagine, Université de Paris, Paris, France
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Isabelle Koné-Paut
- Service de Rhumatologie Pédiatrique, Centre de Référence des Maladies Auto-Inflammatoires de l'enfant, Hôpital Bicêtre, AP HP, Université Paris Sud, Bicètre, France
| | - César Magro-Checa
- Department of Rheumatology, Zuyderland Medical Centre Heerlen, Heerlen, The Netherlands
| | - Iain McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Luca Quartuccio
- Department of Medicine, Rheumatology Clinic, University of Udine, ASUFC Udine, Udine, Italy
| | - Athimalaipet V Ramanan
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
- University of Bristol Translational Health Sciences, Bristol, UK
| | - Manuel Ramos-Casals
- Department of Autoimmune Diseases, ICMiD, Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Department of Autoimmune Diseases, ICMiD, University of Barcelona, Hospital Clínic, Barcelona, Spain
| | - Javier Rodríguez Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Ludwig-Maximilians University of Munich, Munchen, Germany
| | - Tanja A Stamm
- Section for Outcomes Research, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna and Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Wien, Austria
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Benjamin Terrier
- Department of Internal Medicine, Cochin University Hospital, Paris, France; National Referral Centre for Systemic and Autoimmune Diseases, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dennis G McGonagle
- The Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Xavier Mariette
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, INSERM UMR1184, Department of Rheumatology, Université Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
44
|
Dettorre GM, Patel M, Gennari A, Pentheroudakis G, Romano E, Cortellini A, Pinato DJ. The systemic pro-inflammatory response: targeting the dangerous liaison between COVID-19 and cancer. ESMO Open 2021; 6:100123. [PMID: 33932622 PMCID: PMC8026271 DOI: 10.1016/j.esmoop.2021.100123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is an established driver of severe SARS-CoV-2 infection and a mechanism linked to the increased susceptibility to fatal COVID-19 demonstrated by patients with cancer. As patients with cancer exhibit a higher level of inflammation compared with the general patient population, patients with cancer and COVID-19 may uniquely benefit from strategies targeted at overcoming the unrestrained pro-inflammatory response. Targeted and non-targeted anti-inflammatory therapies may prevent end-organ damage in SARS-CoV-2-infected patients with cancer and decrease mortality. Here, we review the clinical role of selective inhibition of pro-inflammatory interleukins, tyrosine kinase modulation, anti-tumor necrosis factor agents, and other non-targeted approaches including corticosteroids in their roles as disease-modulating agents in patients with COVID-19 and cancer. Investigation of these therapeutics in this highly vulnerable patient group is posited to facilitate the development of tailored therapeutics for this patient population, aiding the transition of systemic inflammation from a prognostic domain to a source of therapeutic targets.
Collapse
Affiliation(s)
- G M Dettorre
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - M Patel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - A Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, Novara, Italy
| | - G Pentheroudakis
- Department of Medical Oncology, University of Ioannina, Ioannina, Greece; Chief Medical Officer, European Society for Medical Oncology, Lugano, Switzerland
| | - E Romano
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - A Cortellini
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - D J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, Novara, Italy.
| |
Collapse
|
45
|
Krishna V, Morjaria J, Jalandari R, Omar F, Kaul S. Autoptic identification of disseminated mucormycosis in a young male presenting with cerebrovascular event, multi-organ dysfunction and COVID-19 infection. IDCases 2021; 25:e01172. [PMID: 34075329 PMCID: PMC8161734 DOI: 10.1016/j.idcr.2021.e01172] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Among the secondary fungal infections in Coronavirus-19 (COVID-19) infection, Aspergillosis has been reported more often than Mucormycosis. Disseminated mucormycosis is almost always a disease of severely immunosuppressed hosts. We report a young obese Asian male who was admitted with an acute anterior cerebral artery (ACA) territory infarct and severe COVID-19 pneumonitis to the intensive care unit (ICU). He had a complicated stay with recurrent episodes of vasoplegic shock and multi-organ dysfunction. At autopsy, he was confirmed to have disseminated mucormycosis. We believe this to be the first documented case of disseminated mucormycosis in an immunocompetent host with COVID-19 infection. The lack of sensitive non-invasive modalities and biomarkers to diagnose mucormycosis, along with the extremely high mortality in untreated cases, present a unique challenge to clinicians dealing with critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Vidya Krishna
- Department of Infectious Diseases, Immunology and BMT, Great Ormond Street Hospital, London, United Kingdom
| | - Jaymin Morjaria
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, Guy’s and St.Thomas Hospital NHS Foundation Trust, London, United Kingdom
| | - Rona Jalandari
- Department of Cardiology, Royal Brompton and Harefield Hospital, Guy’s and St.Thomas Hospital NHS Foundation Trust, London, United Kingdom
| | - Fatima Omar
- Department of Cardiology, Royal Brompton and Harefield Hospital, Guy’s and St.Thomas Hospital NHS Foundation Trust, London, United Kingdom
| | - Sundeep Kaul
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, Guy’s and St.Thomas Hospital NHS Foundation Trust, London, United Kingdom
- Department of Intensive Care, Royal Brompton and Harefield Hospital, Guy’s and St.Thomas Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
46
|
Andryukov BG, Besednova NN. Older adults: panoramic view on the COVID-19 vaccination. AIMS Public Health 2021; 8:388-415. [PMID: 34395690 PMCID: PMC8334630 DOI: 10.3934/publichealth.2021030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
In December 2020, COVID-19 vaccination started in many countries, with which the world community hopes to stop the further spread of the current pandemic. More than 90% of sick and deceased patients belong to the category of older adults (65 years and older). This category of the population is most vulnerable to infectious diseases, so vaccination is the most effective preventive strategy, the need for which for older adults is indisputable. Here we briefly summarize information about age-related changes in the immune system and present current data on their impact on the formation of the immune response to vaccination. Older age is accompanied by the process of biological aging accompanied by involution of the immune system with increased susceptibility to infections and a decrease in the effect of immunization. Therefore, in the ongoing mass COVID-19 vaccination, the older adults are a growing public health concern. The authors provide an overview of the various types of COVID-19 vaccines approved for mass immunization of the population by the end of 2020, including older adults, as well as an overview of strategies and platforms to improve the effectiveness of vaccination of this population. In the final part, the authors propose for discussion a system for assessing the safety and monitoring the effectiveness of COVID-19 vaccines for the older adults.
Collapse
Affiliation(s)
- Boris G Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087, Vladivostok, Russia
- Far Eastern Federal University (FEFU), 690091, Vladivostok, Russia
| | - Natalya N Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087, Vladivostok, Russia
| |
Collapse
|
47
|
Abdelrahman Z, Chen Z, Lyu H, Wang X. Comparisons of the immunological landscape between COVID-19, influenza, and respiratory syncytial virus patients by clustering analysis. Comput Struct Biotechnol J 2021; 19:2347-2355. [PMID: 33907612 PMCID: PMC8062909 DOI: 10.1016/j.csbj.2021.04.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND COVID-19 has stronger infectivity and a higher risk for severity than most other contagious respiratory illnesses. The mechanisms underlying this difference remain unclear. METHODS We compared the immunological landscape between COVID-19 and two other contagious respiratory illnesses (influenza and respiratory syncytial virus (RSV)) by clustering analysis of the three diseases based on 27 immune signatures' scores. RESULTS We identified three immune subtypes: Immunity-H, Immunity-M, and Immunity-L, which displayed high, medium, and low immune signatures, respectively. We found 20%, 35.5%, and 44.5% of COVID-19 cases included in Immunity-H, Immunity-M, and Immunity-L, respectively; all influenza cases were included in Immunity-H; 66.7% and 33.3% of RSV cases belonged to Immunity-H and Immunity-L, respectively. These data indicate that most COVID-19 patients have weaker immune signatures than influenza and RSV patients, as evidenced by 22 of the 27 immune signatures having lower enrichment scores in COVID-19 than in influenza and/or RSV. The Immunity-M COVID-19 patients had the highest expression levels of ACE2 and IL-6 and lowest viral loads and were the youngest. In contrast, the Immunity-H COVID-19 patients had the lowest expression levels of ACE2 and IL-6 and highest viral loads and were the oldest. Most immune signatures had lower enrichment levels in the intensive care unit (ICU) than in non-ICU patients. Gene ontology analysis showed that the innate and adaptive immune responses were significantly downregulated in COVID-19 versus healthy individuals. CONCLUSIONS Compared to influenza and RSV, COVID-19 displayed significantly different immunological profiles. Elevated immune signatures are associated with better prognosis in COVID-19 patients.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haoyu Lyu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
48
|
Mahmoudi S, Yaghmaei B, Sharifzadeh Ekbatani M, Pourakbari B, Navaeian A, Parvaneh N, Haghi Ashtiani MT, Mamishi S. Effects of Coronavirus Disease 2019 (COVID-19) on Peripheral Blood Lymphocytes and Their Subsets in Children: Imbalanced CD4 +/CD8 + T Cell Ratio and Disease Severity. Front Pediatr 2021; 9:643299. [PMID: 33937149 PMCID: PMC8081049 DOI: 10.3389/fped.2021.643299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction: While pathogenesis in COVID-19 is not fully known and the effects between SARS-CoV-2 and the immune system are complicated, it is known that lymphopenia, hyper-inflammatory responses, and cytokines play an important role in the pathology of COVID-19. While some hematological abnormalities have been described among the laboratory features of COVID-19, there have not been studies reported on lymphocyte subset analyses in children. The aim of this study was to describe lymphocyte subsets in pediatric patients with mild/moderate or severe COVID-19. Methods: The subjects in the study were children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia confirmed with the real-time RT-PCR. The subjects were admitted to the Children's Medical Center, affiliated with the Tehran University of Medical Sciences, between March 7th and June 10th of 2020. The complete blood counts and lymphocyte subpopulations were analyzed for each patient. Results: The study included 55 hospitalized patients with confirmed SARS-CoV-2 infection (34 patients (62%) with an observed mild/moderate case of the disease and 21 patients (38%) with severedisease). Lymphocyte counts were found to be lower in patients with a severe case (mean ± SD 1.6 ± 0.9 in the severe group vs. 2.3 ± 2.2 in the mild group). Compared to the group with mild/moderate pneumonia, children with severe pneumonia had an increased count of CD8+ T cell and a lower percentage of CD4+ T cell. However, the differences between the groups were negligible. Interestingly, the severe group had a lower CD4+/CD8+ T cell ratio compared to the mild group (1.1 ± 0.47 vs. 1.4 ± 0.8, p-value: 0.063). CD4+/CD8+ T cell ratio <2, 1.5, and 1 was found in 48 (87%), 40 (73%), and 19 cases (35%). All of the seven cases in which the subject passed (13%) had CD4+/CD8+ T cell ratio of <2, 86% had CD4+/CD8+ T cell ratio of <1.5, and 29% had CD4+/CD8+ T cell ratio of <1. Conclusion: The CD4+/CD8+ T cell ratio was lower in patients with severe COVID-19 compared to those with mild/moderate form of disease. However, although a decline in CD4+/CD8+ ratio may serve as a useful metric in analyzing of the derangement in immune responses in patients with severe COVID-19, further study with larger sample sizes is highly recommended.
Collapse
Affiliation(s)
- Shima Mahmoudi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Bahareh Yaghmaei
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Sharifzadeh Ekbatani
- Division of Pediatric Intensive Care Unit, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Amene Navaeian
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Haghi Ashtiani
- Department of Pathology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Science, Tehran, Iran
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Hasenkrug KJ, Feldmann F, Myers L, Santiago ML, Guo K, Barrett BS, Mickens KL, Carmody A, Okumura A, Rao D, Collins MM, Messer RJ, Lovaglio J, Shaia C, Rosenke R, van Doremalen N, Clancy C, Saturday G, Hanley P, Smith B, Meade-White K, Shupert WL, Hawman DW, Feldmann H. Recovery from acute SARS-CoV-2 infection and development of anamnestic immune responses in T cell-depleted rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.02.438262. [PMID: 33821272 PMCID: PMC8020972 DOI: 10.1101/2021.04.02.438262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Severe COVID-19 has been associated with T cell lymphopenia 1,2, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from SARS-CoV-2 infections we studied rhesus macaques that were depleted of either CD4+, CD8+ or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to controls. The T cell-depleted groups developed virus-neutralizing antibody responses and also class-switched to IgG. When re-infected six weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ or CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory or protection from a second infection.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lara Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mario L. Santiago
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kejun Guo
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Bradley S. Barrett
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kaylee L. Mickens
- Departments of Medicine, Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Deepashri Rao
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Madison M. Collins
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Chad Clancy
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick Hanley
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brian Smith
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - W. Lesley Shupert
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - David W. Hawman
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
50
|
Gil-Etayo FJ, Suàrez-Fernández P, Cabrera-Marante O, Arroyo D, Garcinuño S, Naranjo L, Pleguezuelo DE, Allende LM, Mancebo E, Lalueza A, Díaz-Simón R, Paz-Artal E, Serrano A. T-Helper Cell Subset Response Is a Determining Factor in COVID-19 Progression. Front Cell Infect Microbiol 2021; 11:624483. [PMID: 33718270 PMCID: PMC7952877 DOI: 10.3389/fcimb.2021.624483] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
The immune response type organized against viral infection is determinant in the prognosis of some infections. This work has aimed to study Th polarization in acute COVID-19 and its possible association with the outcome through an observational prospective study. Fifty-eight COVID-19 patients were recruited in the Medicine Department of the hospital “12 de Octubre,” 55 patients remaining after losses to follow-up. Four groups were established according to maximum degree of disease progression. T-helper cell percentages and phenotypes, analyzed by flow cytometer, and serum cytokines levels, analyzed by Luminex, were evaluated when the microbiological diagnosis (acute phase) of the disease was obtained. Our study found a significant reduction of %Th1 and %Th17 cells with higher activated %Th2 cells in the COVID-19 patients compared with reference population. A higher percent of senescent Th2 cells was found in the patients who died than in those who survived. Senescent Th2 cell percentage was an independent risk factor for death (OR: 13.88) accompanied by the numbers of total lymphocytes (OR: 0.15) with an AUC of 0.879. COVID-19 patients showed a profile of pro-inflammatory serum cytokines compared to controls, with higher levels of IL-2, IL-6, IL-15, and IP-10. IL-10 and IL-13 were also elevated in patients compared to controls. Patients who did not survive presented significantly higher levels of IL-15 than those who recovered. No significant differences were observed according to disease progression groups. The study has shown that increased levels of IL-15 and a high Th2 response are associated with a fatal outcome of the disease.
Collapse
Affiliation(s)
| | - Patricia Suàrez-Fernández
- Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Daniel Arroyo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara Garcinuño
- Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Naranjo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Luis M Allende
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Esther Mancebo
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Lalueza
- Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Díaz-Simón
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Departamento de Inmunología, Oftalmología y Otorrinolaringología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Serrano
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Inmunologá, Instituto de Investigación, Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Epidemiology, Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|