1
|
Deo L, Osborne JW, Benjamin LK. Harnessing microbes for heavy metal remediation: mechanisms and prospects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:116. [PMID: 39738768 DOI: 10.1007/s10661-024-13516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Contamination by heavy metals (HMs) poses a significant threat to the ecosystem and its associated micro and macroorganisms, leading to ill effects on humans which necessitate the requirement of effective remediation strategies. Microbial remediation leverages the natural metabolic abilities of microbes to overcome heavy metal pollution effectively. Some of the mechanisms that aids in the removal of heavy metals includes bioaccumulation, biosorption, and biomineralization. Metals such as Cd, Pb, As, Hg, and Cr are passively adsorbed by energy independent process onto the surface by exopolysaccharide sequestration or utilizing energy to transfer metals into the cell and interact with the biomolecules to be sequestered, or being converted into its various valencies, thereby reducing the toxicity. Application of hyperaccumulators has shown to be effective in the removal of HMs especially while augmented with microbes to the rhizosphere region. Omics studies which include metabolomics and metagenomics provide significant information about the microbial diversities and metabolic processes involved in heavy metal remediation, allowing the development of more reliable and sustainable bioremediation approaches. This review also summarizes the recent advancements in microbial remediation, including genetic engineering and nanotechnology that has revolutionized and offered an unprecedented control and precision in the removal of HMs. These innovations hold a promising stand for enhancing remediation efficiency, scalability, and cost-effectiveness.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Sommaggio LRD, Mazzeo DEC, Malvestiti JA, Dantas RF, Marin-Morales MA. Influence of ozonation and UV/H 2O 2 on the genotoxicity of secondary wastewater effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170883. [PMID: 38354810 DOI: 10.1016/j.scitotenv.2024.170883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The implementation of novel wastewater treatment technologies, including Advanced Oxidation Processes (AOPs) such as ozonation and ultraviolet radiation (UV) combined with hydrogen peroxide (H2O2), can be a promising strategy for enhancing the quality of these effluents. However, during effluent oxidation AOPs may produce toxic compounds that can compromise the water reuse and the receiving water body. Given this possibility, the aim of this study was to evaluate the genotoxic potential of secondary effluents from two different Wastewater Treatment Plants (WWTP) that were subjected to ozonation or UV/H2O2 for periods of 20 (T1) and 40 (T2) minutes. The genotoxic potential was carried out with the Comet assay (for clastogenic damage) and the Micronucleus assay (for clastogenic and aneugenic damage) in HepG2/C3A cell culture (metabolizing cell line). The results of the comet assay revealed a significant increase in tail intensity in the Municipal WWTP (dry period) effluents treated with UV/H2O2 (T1 and T2). MN occurrence was noted across all treatments in both Pilot and Municipal WWTP (dry period) effluents, whereas nuclear buds (NBs) were noted for all Pilot WWTP treatments and UV/H2O2 treatments of Municipal WWTP (dry period). Moreover, the UV/H2O2 (T1) treatment of Municipal WWTP (dry period) exhibited a noteworthy incidence of multiple alterations per cell (MN + NBs). These findings imply that UV/H2O2 treatment demonstrates higher genotoxic potential compared to ozonation. Furthermore, seasonal variations can have an impact on the genotoxicity of the samples. Results of the study emphasize the importance of conducting genotoxicological tests using human cell cultures, such as HepG2/C3A, to assess the final effluent quality from WWTP before its discharge or reuse. This precaution is essential to safeguard the integrity of the receiving water body and, by extension, the biotic components it contains.
Collapse
Affiliation(s)
- Laís Roberta Deroldo Sommaggio
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Dânia Elisa Christofoletti Mazzeo
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Universidade Federal de São Carlos (UFSCar), Araras, SP, Brazil.
| | - Jacqueline Aparecida Malvestiti
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303, Piracicaba, SP, 13400-970, Brazil
| | - Renato Falcão Dantas
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil.
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil.
| |
Collapse
|
3
|
Kovacik A, Tvrda E, Tomka M, Revesz N, Arvay J, Fik M, Harangozo L, Hleba L, Kovacikova E, Jambor T, Hlebova M, Andreji J, Massanyi P. Seasonal assessment of selected trace elements in grass carp (Ctenopharyngodon idella) blood and their effects on the biochemistry and oxidative stress markers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1522. [PMID: 37995020 PMCID: PMC10667414 DOI: 10.1007/s10661-023-12152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Environmental pollution by anthropogenic activity is still a highly relevant global problem. Aquatic animals are a specifically endangered group of organisms due to their continuous direct contact with the contaminated environment. Concentrations of selected trace elements in the grass carp (Ctenopharyngodon idella) (n = 36) blood serum/clot were monitored. Possible effects of the elements on selected biochemical and oxidative markers were evaluated. The concentrations of trace elements (Al, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, Mn, Mo, Ni, Pb, Sr, Tl, and Zn) were analysed in the fish blood serum and blood clot by inductively coupled plasma optical emission spectrometry (ICP OES). A general scheme of decreasing concentrations of trace elements in the blood serum samples was: Zn ˃ Fe ˃ Sr ˃ Ba ˃ Ni ˃ Al ˃ Cu ˃ Be ˃ Co; < LOQ (below limit of quantification): Bi, Cd, Cr, Ga, Mn, Mo, Pb, Tl; and in the case of the blood clot, the scheme was as follows: Fe ˃ Zn ˃ Sr ˃ Al ˃ Ni ˃ Ba ˃ Cu ˃ Be ˃ Co ˃ Mn; < LOQ (below limit of quantification): Bi, Cd, Cr, Ga, Mo, Pb, Tl. Significant differences among the seasons were detected. The Spearman R correlation coefficients and linear or non-linear regression were used to evaluate direct relationships between trace elements and selected blood biomarkers. The correlation analysis between biochemical parameters (Na, K, P, Mg, AST, ALT, ALP, GGT, TAG, TP, urea, glucose) and trace elements (Al, Ba, Be, Cu, Fe, Ni, Sr, and Zn) concentrations confirmed statistically significant interactions in both seasons (summer and autumn). The regression analysis between oxidative stress markers (ROS, GPx, creatinine, uric acid, and bilirubin) and elements (Al, Ba, Co, Cu, Fe, Ni, and Sr) content confirmed statistically significant interactions. The results point to numerous connections between the observed elements and the physiological parameters of freshwater fish.
Collapse
Affiliation(s)
- Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia.
| | - Eva Tvrda
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marian Tomka
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Norbert Revesz
- DSM Nutritional Products Inc. Hungary Kft, Japán Fasor 4, 2367, Újhartyán, Hungary
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Martin Fik
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Lubos Harangozo
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Lukas Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Eva Kovacikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Miroslava Hlebova
- Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 917 01, Trnava, Slovakia
| | - Jaroslav Andreji
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
4
|
Ishaq S, Jabeen G, Arshad M, Kanwal Z, Un Nisa F, Zahra R, Shafiq Z, Ali H, Samreen KB, Manzoor F. Heavy metal toxicity arising from the industrial effluents repercussions on oxidative stress, liver enzymes and antioxidant activity in brain homogenates of Oreochromis niloticus. Sci Rep 2023; 13:19936. [PMID: 37968305 PMCID: PMC10652000 DOI: 10.1038/s41598-023-47366-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023] Open
Abstract
Industrial effluents reaching to the aquatic ecosystem is one of the major causes of environmental pollution and exposure to industrial effluents containing harmful substances may be a serious threat to human health. Therefore, the present study aimed to determine the sub-lethal (1/5th of predetermined LC50) impact of industrial effluents from Sundar Industrial Estate on Oreochromis niloticus with proper negative control. The physicochemical analysis of industrial effluents showed enormous loads of inorganic pollutants and exhibited high mean levels of heavy metals, Mn, Fe, Pb, Ni, Cr, Hg, As, Zn and Fe with statistically significant differences at p < 0.05. Highest level of Mn and Fe was detected in effluent's samples as 147.36 ± 80.91 mg/L and 90.52 ± 32.08 mg/L, respectively. Exposure led to increase in serum biochemical parameters alanine aminotransferase + 25%, aspartate aminotransferase + 20% and alkaline phosphatase + 7% over control although superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione significantly increased as 3.42, 2.44, 4.8 and 8 folds, respectively in metabolically active tissue brain which indicated stress caused by industrial effluents. The results concluded that industrial effluent has potent oxidative stress inducers on one hand whereas histoarchitectural and physiological toxicity causing contaminants on the other. This condition may adversely affect the health of aquatic organisms, the fish and ultimately the human beings.
Collapse
Affiliation(s)
- Sarwat Ishaq
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Ghazala Jabeen
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan.
| | - Mateen Arshad
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Zakia Kanwal
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Fakhar Un Nisa
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Rida Zahra
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Zunaira Shafiq
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Hassan Ali
- Punjab Wildlife and Parks Department, Lahore, Pakistan
| | - Khush Bakht Samreen
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farkhanda Manzoor
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
5
|
Sayago UFC, Ballesteros Ballesteros V. Recent Advances in the Treatment of Industrial Wastewater from Different Celluloses in Continuous Systems. Polymers (Basel) 2023; 15:3996. [PMID: 37836045 PMCID: PMC10575443 DOI: 10.3390/polym15193996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
There are numerous studies on water care methods featured in various academic and research journals around the world. One research area is cellulose residue coupled with continuous systems to identify which are more efficient and easier to install. Investigations have included mathematical design models that provide methods for developing and commissioning industrial wastewater treatment plants, but nothing is provided on how to size and start these treatment systems. Therefore, the objective is to determine recent advances in the treatment of industrial wastewater from different celluloses in continuous systems. The dynamic behavior of the research results with cellulose biomasses was analyzed with the mass balance model and extra-particle and intraparticle dispersion, evaluating adsorption capacities, design variables, and removal constants, and making a size contribution for each cellulose analyzed using adsorption capacities. A mathematical model was also developed that feeds on cellulose reuse, determining new adsorption capacities and concluding that the implementation of cellulose waste treatment systems has a high feasibility due to low costs and high adsorption capacities. Furthermore, with the design equations, the companies themselves could design their systems for the treatment of water contaminated with heavy metals with cellulose.
Collapse
|
6
|
Alesci A, Di Paola D, Fumia A, Marino S, D’Iglio C, Famulari S, Albano M, Spanò N, Lauriano ER. Internal Defense System of Mytilus galloprovincialis (Lamarck, 1819): Ecological Role of Hemocytes as Biomarkers for Thiacloprid and Benzo[a]Pyrene Pollution. TOXICS 2023; 11:731. [PMID: 37755742 PMCID: PMC10537264 DOI: 10.3390/toxics11090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
The introduction of pollutants, such as thiacloprid and benzo[a]pyrene (B[a]P), into the waters of urbanized coastal and estuarine areas through fossil fuel spills, domestic and industrial waste discharges, atmospheric inputs, and continental runoff poses a major threat to the fauna and flora of the aquatic environment and can have a significant impact on the internal defense system of invertebrates such as mussels. Using monoclonal and polyclonal anti-Toll-like receptor 2 (TLR2) and anti-inducible nitric oxide synthetase (iNOS) antibodies for the first time, this work aims to examine hemocytes in the mantle and gills of M. galloprovincialis as biomarkers of thiacloprid and B[a]P pollution and analyze their potential synergistic effect. To pursue this objective, samples were exposed to the pollutants, both individually and simultaneously. Subsequently, oxidative stress biomarkers were evaluated by enzymatic analysis, while tissue changes and the number of hemocytes in the different contaminated groups were assessed via histomorphological and immunohistochemical analyses. Our findings revealed that in comparison to a single exposure, the two pollutants together significantly elevated oxidative stress. Moreover, our data may potentially enhance knowledge on how TLR2 and iNOS work as part of the internal defense system of bivalves. This would help in creating new technologies and strategies, such as biosensors, that are more suitable for managing water pollution, and garnering new details on the condition of the marine ecosystem.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, 98124 Messina, Italy;
| | - Sebastian Marino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Claudio D’Iglio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Sergio Famulari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Marco Albano
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Nunziacarla Spanò
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (D.D.P.); (S.M.); (C.D.); (S.F.)
| |
Collapse
|
7
|
Chatha AMM, Naz S, Mansouri B, Nawaz A. Accumulation and human health risk assessment of trace elements in two fish species, Cirrhinus mrigala and Oreochromis niloticus, at Tarukri Drain, District Rahimyar Khan, Punjab, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56522-56533. [PMID: 36920608 DOI: 10.1007/s11356-023-26337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The toxic discharge of heavy metals into the water affects the aquatic ecosystem as well as the human population interacting with it because of their toxicity, bioaccumulation, long persistence, and transfer through the food chain. Thus, it is very important to conduct studies to determine the level of heavy metal pollution in order to better control, manage, and preserve the pollution of aquatic ecosystems. This study assessed heavy metal contamination in fish and its associated health risk to the population around the Tarukri Drain, Punjab, Pakistan. Two fish species (Oreochromis niloticus and Cirrhinus mrigala) were collected from three different sites in two different seasons. Collected fish were analyzed for cadmium (Cd), iron (Fe), lead (Pb), nickel (Ni), and zinc (Zn) accumulation using atomic absorption spectrometer (AAS). Furthermore, the human health risks associated with the consumption of affected fish were also assessed. Target hazardous quotient for seasonal consumers was between 0.12, - 1.58 × 10-4, and 0.54 - 3.28 × 10-4 (mg/kg) in O. niloticus and C. mrigala, respectively. While for regular consumers it was between 0.28-3.71 × 10-4 and 1.27-7.68 × 10-4 (mg/kg) in O. niloticus and C. mrigala respectively for the studied heavy metals. Fish sampled from Sadiqabad contained the highest concentration of heavy metals. The analysis of fish organs (kidney, liver, and muscles) showed heavy metal accumulation in the order of kidney > liver > muscles (p < 0.00). The obtained results showed that heavy metal contaminations in both fish species were within the permissible limits recommended by the World Health Organization (WHO). Both sampling seasons (i.e., summer and winter) showed a non-significant difference in heavy metal concentration. The calculated total target hazardous quotient across all heavy metals remained < 1 with only one exception. The carcinogenic risk assessment of heavy metals showed a non-significant effect in both fish species.
Collapse
Affiliation(s)
- Ahmad Manan Mustafa Chatha
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Saima Naz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Amna Nawaz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, Pakistan
| |
Collapse
|
8
|
Janwery D, Memon FH, Memon AA, Iqbal M, Memon FN, Ali W, Choi KH, Thebo KH. Lamellar Graphene Oxide-Based Composite Membranes for Efficient Separation of Heavy Metal Ions and Desalination of Water. ACS OMEGA 2023; 8:7648-7656. [PMID: 36872981 PMCID: PMC9979334 DOI: 10.1021/acsomega.2c07243] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Sufficient efforts have been carried out to fabricate highly efficient graphene oxide (GO) lamellar membranes for heavy metal ion separation and desalination of water. However, selectivity for small ions remains a major problem. Herein, GO was modified by using onion extractive (OE) and a bioactive phenolic compound, i.e., quercetin. The as-prepared modified materials were fabricated into membranes and used for separation of heavy metal ions and water desalination. The GO/onion extract (GO/OE) composite membrane with a thickness of 350 nm shows an excellent rejection efficiency for several heavy metal ions such as Cr6+ (∼87.5%), As3+ (∼89.5%), Cd2+ (∼93.0%), and Pb2+ (∼99.5%) and a good water permeance of ∼460 ± 20 L m-2 h-1 bar-1. In addition, a GO/quercetin (GO/Q) composite membrane is also fabricated from quercetin for comparative studies. Quercetin is an active ingredient of onion extractives (2.1% w/w). The GO/Q composite membranes show good rejection up to ∼78.0, ∼80.5, ∼88.0, and 95.2% for Cr6+, As3+, Cd2+, and Pb2+, respectively, with a DI water permeance of ∼150 ± 10 L m-2 h-1 bar-1. Further, both membranes are used for water desalination by measuring rejection of small ions such as NaCl, Na2SO4, MgCl2, and MgSO4. The resulting membranes show >70% rejection for small ions. In addition, both membranes are used for filtration of Indus River water and the GO/Q membrane shows remarkably high separation efficiency and makes river water suitable for drinking purpose. Furthermore, the GO/QE composite membrane is highly stable up to ∼25 days under acidic, basic, and neutral environments as compared to GO/Q composite and pristine GO-based membranes.
Collapse
Affiliation(s)
- Dahar Janwery
- National
Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh, Jamshoro 76060, Pakistan
| | - Fida Hussain Memon
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic of Korea
- Department
of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan
| | - Ayaz Ali Memon
- National
Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh, Jamshoro 76060, Pakistan
| | - Muzaffar Iqbal
- Department
of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur 22620, Pakistan
| | - Fakhar Nisa Memon
- Department
of Chemistry, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Wajid Ali
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic of Korea
| | - Kyung-Hyun Choi
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic of Korea
| | - Khalid Hussain Thebo
- Institute
of Metal Research, Chinese Academy of Sciences
(UCAS), Shenyang 110016, China
| |
Collapse
|
9
|
Bagarius bagarius, and Eichhornia crassipes are suitable bioindicators of heavy metal pollution, toxicity, and risk assessment. Sci Rep 2023; 13:1824. [PMID: 36725877 PMCID: PMC9892034 DOI: 10.1038/s41598-023-28313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Water quality index (WQI) of Narora channel and health of endemic fish Bagarius bagarius and plant Eichhornia crassipes, district Bulandshahar, Uttar Pradesh, India were studied. Among the physicochemical properties of water, pH, D.O, Cr, Fe, Ni, and Cd were above the recommended standards. These factors lead to high WQI (4124.83), indicating poor quality and not suitable for drinking and domestic usage. In fish tissues, the highest metal load was reported in the liver (58.29) and the lowest in the kidney (33.73). Heavy metals also cause a lowering of condition indices. As expected, decreased serum protein (- 63.41%) and liver glycogen (- 79.10%) were recorded in the exposed fish. However, blood glucose (47.22%) and serum glycogen (74.69%) showed elevation. In the plant, roots (21.50) contained the highest, and leaves (16.87) had the lowest heavy metal load. Bioaccumulation factor (BAF) > 1, indicates hyperaccumulation of all metals. E. crassipes roots showed the highest translocation factor (TF) > 1 for Ni (1.57) and Zn (1.30). The high mobility factor (MF) reflected the suitability of E. crassipes for phytoextraction of Mn, Cd, Zn, Fe, Ni, and Cu. Moreover, Bagarius sp. consumption could not pose any non-cancer risk. Although, lower cancer risk can be expected from Ni and Cr.
Collapse
|
10
|
Altwaijry N, Khan MS, Shaik GM, Tarique M, Javed M. Redox Status, Immune Alterations, Histopathology, and Micronuclei Induction in Labeo rohita Dwelling in Polluted River Water. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:179-187. [PMID: 36586095 DOI: 10.1007/s00244-022-00976-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
In this study, we measured various parameters of oxidative stress, immune response, and abnormalities in the erythrocyte nucleus of Labeo rohita inhabiting the polluted Kshipra River, India. The river water contains heavy metals in this order: Ni > Fe > Cd > Cr > Mn > Zn > Cu. Fe showed the highest accumulation in gills, liver, and gut, whereas Ni (gills and gut) and Cd (liver) were lowest accumulated. The superoxide dismutase (SOD) and catalase (CAT) were found to be increased significantly (p < 0.05) in the gills (SOD: 211%; CAT: 150%), liver (SOD: 447%; CAT: 304%), and gut (SOD: 98.11%; CAT: 58.69%) in comparison with the reference fish. However, glutathione S transferase (GST) showed significantly (p < 0.05) higher activity in the gills (25.5%) but lower activity in the liver (- 49.22%) and the gut (- 30.57%). Moreover, reduced glutathione (GSH) decreased significantly (p < 0.05) in the gills (- 46.66%), liver (- 33.20%), and gut (- 39.87%). Despite the active response of the antioxidant enzymes, the highest lipid peroxidation was observed in the liver (463%). The effect of heavy metals was also observed on the immunity of the fish, causing immunosuppression as evident by significantly (p < 0.05) lower values of acid phosphatase (- 50%), myeloperoxidase (- 48.33%), and nitric oxide synthase (- 50%) in serum. Histopathological findings showed gill lamellae shortening, hyperplasia, club-shaped lamellar tip in exposed gills and necrosis, vacuolization, and pyknosis in the exposed liver. Furthermore, polluted river water was also found to induce micronuclei (2.1%) and lobed nuclei (0.72%) in erythrocytes (0.65%). These results indicate the potential of heavy metal-induced oxidative stress and other forms of stress in inhabiting fish, highlighting the need to control the pollution of this river water.
Collapse
Affiliation(s)
- Nojood Altwaijry
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gouse M Shaik
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, USA
| | - Mehjbeen Javed
- Department of Science, T.R. Kanya Mahavidyalaya, Aligarh, India.
| |
Collapse
|
11
|
Tian X, Shan X, Ma L, Zhang C, Wang M, Zheng J, Lei R, He L, Yan J, Li X, Bai Y, Hu K, Li S, Niu J, Luo B. Mixed heavy metals exposure affects the renal function mediated by 8-OHG: A cross-sectional study in rural residents of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120727. [PMID: 36427825 DOI: 10.1016/j.envpol.2022.120727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals are important risk factors for kidney, but their co-exposure effect on kidney and related mechanism remain unclear. This study evaluated the relationship between heavy metals and renal function, and the feasible mediation effect of oxidative stress. Based on the Dongdagou-Xinglong cohort, participants were recruited and their information were collected through questionnaires and physical examinations. The urine concentration of heavy metals like Cobalt, Nickel, Molybdenum, Cadmium, Antimony, Copper, Zinc, Mercury, Lead, Manganese, and renal injury biomarkers like β2-microglobulin, β-N-Acetylglucosaminidase, retinol-binding protein, 8-hydroxyguanine (8-OHG) were measured and corrected by creatinine. Linear regression was conducted to analyze the relationship between metals and renal biomarkers. Bayesian kernel machine regression, weighted quantile sum and quantile-based g-computation were applied to analyze the association between metal mixtures and renal biomarkers. Finally, the mediating effect of 8-OHG was analyzed through the mediation model. We found that these metals were positively related with renal biomarkers, where copper showed the strongest relationship. The co-exposure models showed that renal biomarkers increased with the concentration of mixtures, particularly for cadmium, copper, mercury, manganese. In addition, the proportion of 8-OHG in mediating effect of metals on renal function ranged from 2.6% to 86.9%. Accordingly, the renal function damage is positively associated with metals, and 8-OHG may play an important mediating role.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaobing Shan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Li Ma
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Chenyang Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Mei Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jie Zheng
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yanjun Bai
- Silong Township Health Center in Baiyin City, Baiyin, Gansu, 730910, China
| | - Keqin Hu
- Mapo Township Health Center in Lanzhou City, Lanzhou, Gansu, 730115, China
| | - Sheng Li
- Public Health Department, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, 730050, China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
12
|
Zhao Z, Lu Y, Mi Y, Meng J, Wang X, Cao X, Wang N. Adaptive Triboelectric Nanogenerators for Long-Term Self-Treatment: A Review. BIOSENSORS 2022; 12:1127. [PMID: 36551094 PMCID: PMC9775114 DOI: 10.3390/bios12121127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 05/27/2023]
Abstract
Triboelectric nanogenerators (TENGs) were initially invented as an innovative energy-harvesting technology for scavenging mechanical energy from our bodies or the ambient environment. Through adaptive customization design, TENGs have also become a promising player in the self-powered wearable medical market for improving physical fitness and sustaining a healthy lifestyle. In addition to simultaneously harvesting our body's mechanical energy and actively detecting our physiological parameters and metabolic status, TENGs can also provide personalized medical treatment solutions in a self-powered modality. This review aims to cover the recent advances in TENG-based electronics in clinical applications, beginning from the basic working principles of TENGs and their general operation modes, continuing to the harvesting of bioenergy from the human body, and arriving at their adaptive design toward applications in chronic disease diagnosis and long-term clinical treatment. Considering the highly personalized usage scenarios, special attention is paid to customized modules that are based on TENGs and support complex medical treatments, where sustainability, biodegradability, compliance, and bio-friendliness may be critical for the operation of clinical systems. While this review provides a comprehensive understanding of TENG-based clinical devices that aims to reach a high level of technological readiness, the challenges and shortcomings of TENG-based clinical devices are also highlighted, with the expectation of providing a useful reference for the further development of such customized healthcare systems and the transfer of their technical capabilities into real-life patient care.
Collapse
Affiliation(s)
- Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiajing Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xueqing Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
13
|
Bertucci A, Hoede C, Dassié E, Gourves PY, Suin A, Le Menach K, Budzinski H, Daverat F. Impact of environmental micropollutants and diet composition on the gut microbiota of wild european eels (Anguilla anguilla). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120207. [PMID: 36165828 DOI: 10.1016/j.envpol.2022.120207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/22/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In fish, the gut microbiome plays a crucial role in homeostasis and health and is affected by several organic and inorganic environmental contaminants. Amphidromous fish are sentinel species, particularly exposed to these stressors. We used whole metagenome sequencing to characterize the gut microbiome of wild European eels (Anguilla anguilla) at a juvenile stage captured from three sites with contrasted pollution levels in term of heavy metals and persistent organic pollutants. The objectives were to identify what parameters could alter the gut microbiome of this catadromous fish and to explore the potential use of microbiota as bioindicators of environment quality. We identified a total of 1079 microbial genera. Overall, gut microbiome was dominated by Proteobacteria, Firmicutes and Actinobacteria. Alpha and beta diversity were different amongst sites and could be explained by a reduced number of environmental and biological factors, specifically the relative abundance of fish preys in eels' diet, PCB101, γHCH (lindane), transnonachlor and arsenic. Furthermore, we identified a series of indicator taxa with differential abundance between the three sites. Changes in the microbial communities in the gut caused by environmental pollutants were previously undocumented in European eels. Our results indicate that microbiota might represent another route by which pollutants affect the health of these aquatic sentinel organisms.
Collapse
Affiliation(s)
| | - Claire Hoede
- Université de Toulouse, INRAE, UR MIAT, PF GenoToul Bioinfo, 31320, Castanet-Tolosan, France; Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31326, Castanet-Tolosan, France
| | - Emilie Dassié
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, 33600, Pessac, France
| | | | - Amandine Suin
- Genome & Transcriptome - Plateforme GeT-PlaGe, INRAE, 31326, Castanet-Tolosan, France
| | - Karine Le Menach
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, 33600, Pessac, France
| | - Hélène Budzinski
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, 33600, Pessac, France
| | | |
Collapse
|
14
|
Response surface methodology for removal of copper (II) ions from aqueous solutions by DMSA@SiO2@Fe3O4 nanocomposite. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Lakra KC, Mistri A, Banerjee TK, Lal B. Analyses of the health status, risk assessment and recovery response of the nutritionally important catfish Clarias batrachus reared in coal mine effluent-fed pond water: a biochemical, haematological and histopathological investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47462-47487. [PMID: 35182337 DOI: 10.1007/s11356-022-18971-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The present field study evaluates the health status of the catfish Clarias batrachus reared in coal mine effluent (CME)-fed pond water at Rajrappa mining complex using biochemical, haematological and histopathological parameters. Simultaneously, risk assessment along with recovery response of the CME intoxicated fish following their treatment with CME-free freshwater was also studied. The CME-fed pond water fish revealed significant decrease in biomolecules concentrations and considerable increase in activities of several enzymes along with metallothionein level as compared to control. The impaired regulation of metabolic function was also revealed by blood parameters showing significant decrease in haemoglobin content (8.78 ± 0.344 g/100 mL) and red blood cells count (1.77 ± 0.12 × 106 mm3) while substantial elevation in white blood cells (187.13 ± 9.78 × 103 mm3). The histopathological study also confirmed the changes including hypertrophy of club cells of skin, swelling of secondary lamella of gills, extensive fibrosis in liver and glomerular shrinkage with increased Bowman's space in kidney. Potential health risk assessments based on estimated daily intake and target hazard quotient indicated health risks associated with the consumption of such fishes. The CME-contaminated fish when transferred to CME-free freshwater exhibited decreased metal content accompanied by eventual recovery response as evident by retrieval in biochemical and haematological parameters. Withdrawal study also revealed restoration in the activity of different marker enzymes in fish tissues including blood as well as recovery in their cellular architecture. The results of the present study validate the depuration process as an effective practice for detoxification of fish contaminated with effluent.
Collapse
Affiliation(s)
- Kalpana Chhaya Lakra
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arup Mistri
- Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Tarun Kumar Banerjee
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Bechan Lal
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
16
|
Alesci A, Cicero N, Fumia A, Petrarca C, Mangifesta R, Nava V, Lo Cascio P, Gangemi S, Di Gioacchino M, Lauriano ER. Histological and Chemical Analysis of Heavy Metals in Kidney and Gills of Boops boops: Melanomacrophages Centers and Rodlet Cells as Environmental Biomarkers. TOXICS 2022; 10:toxics10050218. [PMID: 35622632 PMCID: PMC9147125 DOI: 10.3390/toxics10050218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022]
Abstract
Industrialization has resulted in a massive increase in garbage output, which is frequently discharged or stored in waterways like rivers and seas. Due to their toxicity, durability, bioaccumulation, and biomagnification, heavy metals (such as mercury, cadmium, and lead) have been identified as strong biological poisons. Their presence in the aquatic environment has the potential to affect water quality parameters and aquatic life in general. Teleosts’ histopathology provides a sensitive indicator of pollutant-induced stress, because their organs have a central role in the transformation of different active chemical compounds in the aquatic environment. In particular, the gills, kidneys, and liver are placed at the center of toxicological studies. The purpose of this study is to examine the morphological changes caused by heavy metals in the kidney and gills of Boops boops, with a focus on melanomacrophages centers (MMCs) and rodlet cells (RCs) as environmental biomarkers, using histological and histochemical stainings (hematoxylin/eosin, Van Gieson trichrome, Periodic Acid Schiff reaction, and Alcian Blue/PAS 2.5), and immunoperoxidase methods. Our findings show an increase of MMCs and RCs linked to higher exposure to heavy metals, confirming the role of these aggregates and cells as reliable biomarkers of potential aquatic environmental changes reflected in fish fauna. The cytological study of RCs and MMCs could be important in gaining a better understanding of the complicated immune systems of teleosts.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (P.L.C.); (E.R.L.)
- Correspondence: (A.A.); (N.C.); (A.F.)
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
- Correspondence: (A.A.); (N.C.); (A.F.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy;
- Correspondence: (A.A.); (N.C.); (A.F.)
| | - Claudia Petrarca
- Center of Advanced Science and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy; (C.P.); (R.M.); (M.D.G.)
- YDA–Institute of Clinical Immunotherapy and Advanced Biological Treatments, 65121 Pescara, Italy
| | - Rocco Mangifesta
- Center of Advanced Science and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy; (C.P.); (R.M.); (M.D.G.)
| | - Vincenzo Nava
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (P.L.C.); (E.R.L.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy;
| | - Mario Di Gioacchino
- Center of Advanced Science and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy; (C.P.); (R.M.); (M.D.G.)
- YDA–Institute of Clinical Immunotherapy and Advanced Biological Treatments, 65121 Pescara, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (P.L.C.); (E.R.L.)
| |
Collapse
|
17
|
Water Hardness Can Reduce the Accumulation and Oxidative Stress of Zinc in Goldfish, Carassius auratus. Antioxidants (Basel) 2022; 11:antiox11040715. [PMID: 35453398 PMCID: PMC9029772 DOI: 10.3390/antiox11040715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/03/2022] Open
Abstract
We investigated the changes in toxicity stress in goldfish, Carassius auratus, under exposure to different concentrations of Zn and water hardness for 14 days. We analyzed the changes in water hardness and Zn accumulation after exposure. To investigate the stress levels, the expression of metallothionein, caspase-3 activity, NO activity, and total antioxidant capacity were detected. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were also performed to measure apoptosis in the liver. The results showed that compared to the control group, a more significant difference in the accumulation of Zn in body stress markers (metallothionein, caspase-3 activity, NO activity, and total antioxidant capacity) were observed with increasing Zn concentration and exposure time. Notably, at the same Zn concentration and exposure time, lower stress levels were discovered in the samples under harder water conditions. Finally, the TUNEL assay showed that Zn accumulation caused apoptosis and high water hardness could reduce the apoptosis. In conclusion, we found that high water hardness can influence the absorption of Zn, and alleviating the hardness levels can reduce the toxicity stress caused by Zn.
Collapse
|
18
|
Azeez L, Aremu HK, Olabode OA. Bioaccumulation of Silver and Impairment of Vital Organs in Clarias gariepinus from Co-Exposure to Silver Nanoparticles and Cow Dung Contamination. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:694-701. [PMID: 34724101 DOI: 10.1007/s00128-021-03403-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
This study reports the implications of silver nanoparticles (AgNPs) and cow-dung contamination on water quality and oxidative perturbations in antioxidant biomarkers in the exposed Clarias gariepinus. Sixteen samples of C. gariepinus were exposed to fresh-water, 0.75 mg/mL each of AgNPs, cow-dung and a mixture of AgNPs-cow dung dosed water for 10 days. Cow-dung significantly (p < 0.05) depleted dissolved oxygen (DO) and increased biochemical oxygen demand (BOD) by 14% and 75% respectively. The trends of abundance and bioaccumulation of Ag in C. gariepinus exposed to different treatments followed kidney > muscle > gill > liver, implying the kidney was the worst affected organ. The AgNPs significantly (p < 0.05) perturbed vital organs in C. gariepinus by altering activities of antioxidant biomarkers, whereas AgNPs-cow dung had reduced perturbations implying organic matter bound Ag+ to reduce toxicity. These results conclude that AgNPs posed a challenging environment for C. gariepinus to thrive.
Collapse
Affiliation(s)
- Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria.
| | - Harun K Aremu
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | - Olalekan A Olabode
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| |
Collapse
|
19
|
Liao J, Liu Y, Yi J, Li Y, Li Q, Li Y, Shang P, Guo J, Hu L, Pan J, Li Y, Chang YF, Tang Z, Zhang H. Gut microbiota disturbance exaggerates battery wastewater-induced hepatotoxicity through a gut-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152188. [PMID: 34875328 DOI: 10.1016/j.scitotenv.2021.152188] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 05/23/2023]
Abstract
As the primary source of electricity for various devices, batteries are important contributors to the overall electronic waste generated; and are widely considered a source of highly ecotoxic pollutants. Material leakage in battery manufacturing has not been completely solved, and the elucidation of the toxic mechanisms of battery wastewater exposure is needed. We demonstrated that battery waste exposure disrupted the intestinal flora and aggravated hepatotoxicity via the gut-liver axis. Under battery waste exposure, colon epithelium suffered physiological damage, and gene and protein expression levels related to gut barrier function (ZO-1, claudin-1, and Occludin) were significantly downregulated. Meanwhile, battery waste reduced the richness and diversity of the flora, causing metabolites produced by intestinal microbes to enter the gut-liver axis. Gut microbial dysbiosis impaired mitochondrial respiratory function in liver tissue cells, and mitophagy, apoptosis, and the disorder of glycolipids and amino acid metabolism were induced in hosts exposed to battery toxins. Altogether, these results provided novel insights into the underlying mechanisms of battery wastewater-related hepatotoxicity induced by gut microbiota via the gut-liver axis, which has public health implications where humans and animals are exposed to industrial toxins generated by uncontained battery disposal.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, Tibet, PR China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Science, Cornell University, Ithaca, NY, USA.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
20
|
Punitha S, Krishnamurthy R, Elumalai K, Mahboob S, Al-Ghanim KA, Ahmed Z, Mustafa A, Govindarajan M. Changes in the contour of karyology and histoarchitecture of the primary respiratory organ in the fish Oreochromis mossambicus (Peters, 1852) inhabiting the polluted estuarine ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118682. [PMID: 34921947 DOI: 10.1016/j.envpol.2021.118682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The wetland ecosystem (WE) is subject to pollution by many anthropogenic activities, including domestic and industrial effluents. These effluents may contain toxic heavy metals that can interact within the aquatic ecosystem and have a capacity to disturb the metabolic activities, histological profile, and genetic structure and functions in aquatic species inhabiting the environment. The present study observed the karyological and histological alterations in gills of the freshwater fish, Mozambique tilapia, Oreochromis mossambicus in two different sublethal concentrations (1% and 3%) of heavy metals in 7, 15, and 30 days of experimental periods. The heavy metals induced various structural damages such as ring chromosome, sister chromatid exchange, acrocentric association region, condensed chromosomal morphology, heterochromatin region, and nucleolar organizer region in the chromosomes of O. mossambicus treated with 1% and 3% sublethal concentrations of water sample collected from Pallikaranai wetland ecosystem. Gills exposed to 1% and 3% effluent exhibited several variations in the respiratory surfaces of gill arches or lamellae in the light and scanning microscopical study. The gills exposed to 1% concentration for 30 days showed marked necrosis, and the secondary lamellae showed the lamellar membrane's dissolution. Exposure of gills to raw effluent in the field condition was observed in the presence of Cd, Pb, Cr, Cu, and Zn. Thus, this present study shows the environmental deterioration by heavy metal pollution on the structure of the gills in tilapia.
Collapse
Affiliation(s)
- Subramaniam Punitha
- Department of Advanced Zoology & Biotechnology, Government Arts College (Autonomous), Chennai, 600035, Tamil Nadu, India
| | - Rajamanickkam Krishnamurthy
- Department of Advanced Zoology & Biotechnology, Government Arts College (Autonomous), Chennai, 600035, Tamil Nadu, India
| | - Kuppusamy Elumalai
- Department of Advanced Zoology & Biotechnology, Government Arts College (Autonomous), Chennai, 600035, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Mustafa
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, USA
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, Tamil Nadu, India.
| |
Collapse
|
21
|
Bhalla A, Pannu AK. Are Ayurvedic medications store house of heavy metals? Toxicol Res (Camb) 2022; 11:179-183. [PMID: 35237422 PMCID: PMC8882783 DOI: 10.1093/toxres/tfab124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 01/17/2023] Open
Abstract
Ayurvedic formulations are widely used and perceived as safer medicine and subjected to be self-prescribed. However, recent reports have demonstrated adulterating these drugs with toxic quantities of heavy metals. To study the magnitude of the problem in Indian-manufactured Ayurvedic medications, we randomly collected common over-the-counter Ayurvedic preparations from the licensed Ayurvedic shops in the local markets of Chandigarh in 2017. The samples were analyzed to identify and quantify eight metal ions, including mercury, arsenic, lead, cadmium, zinc, iron, copper, and chromium, using inductively coupled plasma mass spectrometry in Postgraduate Institute of Medical Education and Research, Chandigarh. The permissible limit set by the Food and Agriculture Organization/World Health Organization (FAO/WHO) for herbal medicines was followed to define the high metal concentrations. Out of 43 Ayurvedic preparations, 42 were analyzed. Heavy metals were detected in all formulations. The median (range) concentrations (in μg/g or mg/kg) of the metals were quantified as follows- mercury, 13.52 (0.00-61 095.99); arsenic, 0.00 (0.00-1038.83); lead, 1.40 (0.00-57.09); zinc, 84.2200 (26.48-22 519.03); iron, 1356.21 (128.24-136 835.25); copper, 17.1450 (0.00-12 756.86) and chromium, 20.9050 (0.00-2717.58). The metal contents above the FAO/WHO-mandated limit for zinc, mercury, arsenic, and lead were detected in 35, 29, 6, and 2 formulations, respectively. All medications contained detectable quantities of zinc and iron. Copper was detected in all except one. Cadmium was not found in any sample. Ayurvedic medications have a high prevalence of heavy metals. An evaluation of the sources of contamination and the necessary drug safety regulations are required.
Collapse
Affiliation(s)
- A Bhalla
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, 4th Floor, F Block, Nehru Hospital, PGIMER, Chandigarh 160012, India
| | - A K Pannu
- Correspondence address. Ashok Kumar Pannu, Room no. 26, 4th Floor, F Block, Nehru Hospital, PGIMER, Chandigarh, 160012, India. Tel: +919914291115, +918264786277; E-mail:
| |
Collapse
|
22
|
Tabrez S, Zughaibi TA, Javed M. Water quality index, Labeo rohita, and Eichhornia crassipes: Suitable bio-indicators of river water pollution. Saudi J Biol Sci 2022; 29:75-82. [PMID: 35002395 PMCID: PMC8717156 DOI: 10.1016/j.sjbs.2021.10.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
The present study investigated the water quality index (WQI) of the Kshipra river at Dewas, Madhya Pradesh, India, using native fish Labeo rohita, and plant Eichhornia crassipes. The temperature, pH, dissolved oxygen, alkalinity, turbidity, and dissolved solids were found to be within the prescribed limits. However, heavy metals concentration exceeded the limit except for Cu and Zn. Their occurrence in river water was as follows: Ni > Fe > Cd > Cr > Mn > Zn > Cu. Among these heavy metals, Cd was found to be highly bioavailable, whereas Zn was the least bioavailable metal. Based on WQI, the water was found to be unfit for drinking, and the high WQI value was due to the presence of Cr and Cd. In fish tissues (muscle, liver, gut, gills, and kidney), the highest and lowest metal pollution index was found in gills (45.03) and kidneys (12.21), respectively. Bioaccumulation of these metals resulted in significant depletion of energy reserves (protein, glucose, and glycogen) and also altered hematological parameters. Moreover, liver function tests showed hepatic damage in the exposed fish. In-plant, both the bioaccumulation and mobility factor exceeded 1 for all these metals. On the other hand, the translocation factor was found to be beyond 1 for Fe, Ni, and Zn. These high values make this plant fit for phytoextraction of Mn, Fe, Cu, Zn, and Cd and phytostabilization of Cr in water. Moreover, consumption of L. rohita from the Kshipra River does not pose a non-cancer risk as the target hazard quotient was below 1, but it may pose cancer risk because of the presence of Cr in the range of 1.402 × 10-3 to 1.599 × 10-3.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mehjbeen Javed
- Department of Science, T.R. Kanya Mahavidyalaya, Aligarh, India
| |
Collapse
|
23
|
Kuwer P, Yadav A, Labhasetwar PK. Adsorption of cupric, cadmium and cobalt ions from the aqueous stream using the composite of iron(II,III) oxide and zeolitic imidazole framework-8. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2288-2303. [PMID: 34810312 DOI: 10.2166/wst.2021.452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent research, the composite of Fe3O4 and metal-organic frameworks have shown great potential in removing potentially toxic metals from water. We conducted the adsorption studies of potentially toxic metal ions (Cu2+, Co2+ and Cd2+) using the composite of Fe3O4 and zeolitic imidazole framework-8 (Fe3O4@ZIF-8) for the first time. The solvothermal technique was used to synthesize the Fe3O4. The magnetic ZIF-8 offers high thermal stability, greater adsorption surface, good removability, and high chemical and thermal stability. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the synthesized samples. The SEM and XRD results revealed the high purity and structural integrity of ZIF-8 crystallites. To remove potentially toxic metals (Cu2+, Co2+ and Cd2+), the influence of adsorbent dosage, contact time, pH, and adsorbate concentration on the adsorption performance of Fe3O4@ZIF-8 was investigated. The Langmuir isotherm accurately represented the adsorption processes, with absorption magnitudes of Fe3O4@ZIF-8 determined to be 46.82 mg g-1, 71.29 mg g-1 and 54.49 mg g-1 for Cu2+, Co2+ and Cd2+, respectively. According to the adsorption mechanism analysis, the primary Cu2+, Co2+ and Cd2+ removal methods of Fe3O4@ZIF-8 were ion exchange and coordination bonds. The uptake capacity of Cu2+, Co2+ and Cd2+ solution by Fe3O4@ZIF-8 were not significantly affected by the presence of counter ions. The material exhibited superior regenerative properties for Cu2+, Co2+ and Cd2+ ions from water for up to three cycles. This study concluded that the Fe3O4@ZIF-8 could be a viable candidate for eliminating potentially toxic metals (Cu2+, Co2+ and Cd2+).
Collapse
Affiliation(s)
- Pushpmala Kuwer
- Department of Chemistry, Institute for Excellence in Higher Education, Bhopal 462016, India; Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India E-mail:
| | - Anshul Yadav
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India E-mail:
| | - Pawan Kumar Labhasetwar
- Water Technology and Management Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India
| |
Collapse
|
24
|
Omame A, Sene N, Nometa I, Nwakanma CI, Nwafor EU, Iheonu NO, Okuonghae D. Analysis of COVID-19 and comorbidity co-infection model with optimal control. OPTIMAL CONTROL APPLICATIONS & METHODS 2021. [PMID: 34226774 DOI: 10.1002/oca.2717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this work, we develop and analyze a mathematical model for the dynamics of COVID-19 with re-infection in order to assess the impact of prior comorbidity (specifically, diabetes mellitus) on COVID-19 complications. The model is simulated using data relevant to the dynamics of the diseases in Lagos, Nigeria, making predictions for the attainment of peak periods in the presence or absence of comorbidity. The model is shown to undergo the phenomenon of backward bifurcation caused by the parameter accounting for increased susceptibility to COVID-19 infection by comorbid susceptibles as well as the rate of reinfection by those who have recovered from a previous COVID-19 infection. Simulations of the cumulative number of active cases (including those with comorbidity), at different reinfection rates, show infection peaks reducing with decreasing reinfection of those who have recovered from a previous COVID-19 infection. In addition, optimal control and cost-effectiveness analysis of the model reveal that the strategy that prevents COVID-19 infection by comorbid susceptibles is the most cost-effective of all the control strategies for the prevention of COVID-19.
Collapse
Affiliation(s)
- Andrew Omame
- Department of Mathematics Federal University of Technology Owerri Owerri Nigeria
| | - Ndolane Sene
- Laboratoire Lmdan, Département de Mathématiques de la Décision, Facultédes Sciences Economiques et Gestion Université Cheikh Anta Diop de Dakar Dakar Fann Senegal
| | - Ikenna Nometa
- Department of Mathematics University of Hawaii Manoa Honolulu Hawaii USA
| | - Cosmas I Nwakanma
- Networked Systems Lab, IT Covergence Engineering, School of Electronic Engineering Kumoh National Institute of Technology Gumi Korea
| | - Emmanuel U Nwafor
- Department of Mathematics Federal University of Technology Owerri Owerri Nigeria
| | - Nneka O Iheonu
- Department of Mathematics Federal University of Technology Owerri Owerri Nigeria
| | - Daniel Okuonghae
- Department of Mathematics University of Benin Benin City Nigeria
| |
Collapse
|
25
|
Varea R, Paris A, Ferreira M, Piovano S. Multibiomarker responses to polycyclic aromatic hydrocarbons and microplastics in thumbprint emperor Lethrinus harak from a South Pacific locally managed marine area. Sci Rep 2021; 11:17991. [PMID: 34504212 PMCID: PMC8429447 DOI: 10.1038/s41598-021-97448-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
To determine the baseline threat of microplastics and polycyclic aromatic hydrocarbons (PAHs) in an important seafood fish from Vueti Navakavu locally managed marine area, a multibiomarker risk assessment was conducted on the thumbprint emperor fish Lethrinus harak. Condition factor, a measure of relative general health condition of fish, was significantly lower in samples from the wet season compared to the dry season but no significant differences were observed for hepatosomatic index, a measure of relative stored energy/nutrition, between seasonal groups. PAHs levels of four metabolites in emperor fish from Fiji waters are reported here for the first time; seasonal groups showed no significant differences, but all samples presented levels of biliary PAHs. Each specimen also contained at least one microplastic in its gastrointestinal system; fibres were the predominant form-type and ingestion levels showed that more than 80% of fragment sizes were below 1.0 mm. Biochemical responses were observed for ethoxyresorufin-O-deethylase and glutathione S-transferase biotransformation activity, oxidative stress (glutathione peroxidase and glutathione reductase activity; lipid peroxidation) and genotoxicity (micronuclei assay). Though there were no statistically significant differences found, there were biological significances that were important to note; relatively low levels of pollutant exposure and low levels of biochemical responses showed enzymes response in thumbprint emperor were as expected to their roles in the body. In this multibiomarker approach, the observation of pollutants presence and histopathological injuries are considered biologically relevant from a toxicological perspective and serve as a baseline for future pollution studies in seafood fishes in Fiji, with site differences and the inclusion of fish species comparison. We recommend adopting a suite of biomarkers in future regional biomonitoring studies to develop holistic baseline information for other marine settings in Fiji and other Pacific Island countries.
Collapse
Affiliation(s)
- Rufino Varea
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji.
| | - Andrew Paris
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji
| | - Marta Ferreira
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji
| | - Susanna Piovano
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji
| |
Collapse
|
26
|
Heavy metals content in ashes of wood pellets and the health risk assessment related to their presence in the environment. Sci Rep 2021; 11:17952. [PMID: 34504178 PMCID: PMC8429764 DOI: 10.1038/s41598-021-97305-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Efforts to reduce air pollution in developing countries may require increased use of biomass fuels. Even biomass fuels are a sustainable alternative to fossil fuels there is limited quantitative information concerning heavy metal content in their ashes. Therefore, this study focuses on the determination of the heavy metal concentrations in wood pellet ash obtained from the combustion of 10 pellet brans from Bosnia and Herzegovina and Italy, the effects of adding the ashes to soils, and the assessment of health risk assessment. Ash content was determined by gravimetric method. The amount and composition of ash remaining after combustion of wood pellets varies considerably according to the type of biomass and wood from which the pellet is made. Samples were prepared by wet digestion using HNO3, and heavy metals are determined by atomic absorption spectroscopy-flame and graphite furnace. The results showed that the lowest concentration in ashes was obtained for Co 0.01 mg kg−1 and the highest for Fe 571.63 mg kg−1. The Hazard Index (HI), calculated for non-cancerous substances for children was 2.23E−01, and the total Risk index was 4.54E−05. As for adults, HI was 1.51E−02, while the Risk index value was 3.21E−06. Human health risk calculated through HI and Risk index for children and adults associated with analyzed pellets is not of significant concern. The calculated enrichment factor and metal pollution index for wood pellet ashes indicate the risk of soil contamination with heavy metals. From this point of view, analyzed samples of ashes could be a serious contaminant of soil, so further monitoring is required.
Collapse
|
27
|
Abu Shnaf ASM, Abd El-Aziz SH, Ata AM. Cyto-histopathological and protein polymorphism alterations in five populations of Nile tilapia (Oreochromis niloticus) as biomonitor for water heavy metal pollution. JOURNAL OF FISH BIOLOGY 2021; 99:999-1009. [PMID: 34043238 DOI: 10.1111/jfb.14798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/24/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Cytological, histopathological and sodium dodecyl sulphate polyacrylamide gel analyses were carried out on five populations of common Nile tilapia fish (Oreochromis niloticus) occurring in five sites - River Nile (reference site), Bahr Yusef canal, Ibrahimia canal, Irrigation drain and El Moheet drain of El Minia Province, Egypt - to evaluate the usability of Nile tilapia as a biomonitor for water heavy metal contaminants. Water surface samples were collected from the five sites, and lead (Pb) concentration was shown to surpass the limits defined by WHO. Ni and Cd levels were shown to be elevated in Ibrahimia canal samples. Moreover, the concentration of heavy metals in fish muscles collected from Bahr Yusef canal and El Moheet drain was the highest in comparison with those of the other water sites. Cytological examinations of blood smears showed not only a significant percentage of micronuclei in Irrigation drain population but also a significant percentage of binucleated cells in Ibrahimia canal and El Moheet drain populations. In addition, pathological alteration was observed in blood cells, especially in samples collected from Irrigation drain and El Moheet drain. Histopathological changes were strongly observed in the liver and the kidneys of El Moheet and Irrigation drain population. Moreover, total protein band pattern profiles showed extra bands in both Ibrahimia canal and Irrigation drain more than that recorded for the River Nile population. In conclusion, cyto-histopathological and total protein band pattern results confirmed that O. niloticus responds sensitively to the excess of heavy metals present in the water.
Collapse
Affiliation(s)
- Anwaar S M Abu Shnaf
- Department of Zoology and Entomology, Faculty of Science, Minia University, Minia, Egypt
| | - Shaban H Abd El-Aziz
- Department of Zoology and Entomology, Faculty of Science, Minia University, Minia, Egypt
| | - Abdeltawab M Ata
- Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| |
Collapse
|
28
|
Protective effects of non-encapsulated and microencapsulated Lactobacillus delbrueckii subsp. bulgaricus in rainbow trout (Oncorhynchus mykiss) exposed to lead (Pb) via diet. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
The present study was designed to investigate the effects of dietary non-encapsulated and microencapsulated Lactobacillus delbrueckii subsp. bulgaricus on growth performance, intestinal enzymatic activities, antioxidant capacity and hepato-biochemical parameters of rainbow trout before or after exposure to lead via diet. Fingerling fish (16 ± 4 g) were divided into four groups: negative control (NC), positive control (PC), probiotic (PR) and encapsulated probiotic (EN-PR). During the pre-exposure period (days 0-45), fish in the NC and PC groups received the basal diet, whereas fish in the PR and EN-PR groups were fed with basal diet containing 108 CFU g−1 feed of non-encapsulated and microencapsulated probiotic, respectively. During the exposure period (days 46-66), the fish in the probiotic and PC groups were co-treated with 500 μg g−1 feed of lead nitrate. Blood, liver and gut samples were taken at days 0, 45, 52, 59 and 66. The results revealed that growth performance and intestinal enzymatic activities were significantly (p< 0.05) improved in the probiotic groups compared to the NC group (day 45). Dietary exposure to lead resulted in the highest levels of liver aspartate aminotransferase (AST), liver alkaline phosphatase (ALP) and serum malondialdehyde (MDA), and the lowest activities of serum superoxide dismutase (SOD) and catalase (CAT) in the PC group (day 66). The levels of liver ALP were significantly (p< 0.05) lower in the probiotic groups compared to the NC and PC groups prior to and after exposure to dietary lead. Serum levels of total protein, albumin, SOD, CAT and glutathione (GSH) were significantly increased in fish fed with both non-encapsulated and microencapsulated probiotics (p< 0.05). However, microencapsulated probiotic showed the greatest potential for alleviation of the disturbed activities of intestinal and hepatic enzymes, and improvement of serum biochemical and antioxidant parameters. Our findings suggest that L. delbrueckii subsp. bulgaricus, particularly in the microencapsulated form, can be used as a potential probiotic to protect rainbow trout from dietborne lead toxicity.
Collapse
|
29
|
Bioaccumulation of heavy metals and their toxicity assessment in Mystus species. Saudi J Biol Sci 2020; 28:1459-1464. [PMID: 33613073 PMCID: PMC7878687 DOI: 10.1016/j.sjbs.2020.11.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
This study was conducted on two native fish species namely Mystus vittatus and Mystus tengara inhabiting challenging environment of Yamuna River. The heavy metals concentrations in the river water were found to be as follows: Fe > Mn > Zn > Cu > Ni > Cr > Cd, all above the Bureau of Indian Standards (BIS) and World Health Organization (WHO) guidelines. The high metal pollution index in gill, liver, and kidney of M. vittatus was recorded compared to M. tengara. The pathology caused by the accumulation of heavy metals resulted significantly (p < 0.05) higher enzyme activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatinine kinase (CK) in M. tengara as compared to M. vittatus. However, albumin: globulin ratio was found to be below 0.8 in both fishes. Higher total leukocyte (TLC) (48.5 × 103/mm3), lymphocytes (40%), respiratory burst activity (1.9), and nitric oxide synthase (NOS) activity (13.11 U/L) in M. vittatus reflect high immune response. In addition, chromosomal breakage study showed significantly (p < 0.05) low micronuclei frequency, lobed nuclei, and kidney-shaped nuclei (KSN) in M. vittatus. These results indicate that under the same challenging conditions M. vittatus have more capability of resistance and its continuous survival points towards its suitability to serve as a bioindicator than M. tengara.
Collapse
|