1
|
Shimizu D, Miura A, Mori M. The perspective for next-generation lung replacement therapies: functional whole lung generation by blastocyst complementation. Curr Opin Organ Transplant 2024; 29:340-348. [PMID: 39150364 DOI: 10.1097/mot.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW Blastocyst complementation represents a promising frontier in next-generation lung replacement therapies. This review aims to elucidate the future prospects of lung blastocyst complementation within clinical settings, summarizing the latest studies on generating functional lungs through this technique. It also explores and discusses host animal selection relevant to interspecific chimera formation, a challenge integral to creating functional human lungs via blastocyst complementation. RECENT FINDINGS Various gene mutations have been utilized to create vacant lung niches, enhancing the efficacy of donor cell contribution to the complemented lungs in rodent models. By controlling the lineage to induce gene mutations, chimerism in both the lung epithelium and mesenchyme has been improved. Interspecific blastocyst complementation underscores the complexity of developmental programs across species, with several genes identified that enhance chimera formation between humans and other mammals. SUMMARY While functional lungs have been generated via intraspecies blastocyst complementation, the generation of functional interspecific lungs remains unrealized. Addressing the challenges of controlling the host lung niche and selecting host animals relevant to interspecific barriers between donor human and host cells is critical to enabling the generation of functional humanized or entire human lungs in large animals.
Collapse
Affiliation(s)
- Dai Shimizu
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Miura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Miura A, Sarmah H, Tanaka J, Hwang Y, Sawada A, Shimamura Y, Otoshi T, Kondo Y, Fang Y, Shimizu D, Ninish Z, Suer JL, Dubois NC, Davis J, Toyooka S, Wu J, Que J, Hawkins FJ, Lin CS, Mori M. Conditional blastocyst complementation of a defective Foxa2 lineage efficiently promotes the generation of the whole lung. eLife 2023; 12:e86105. [PMID: 37861292 PMCID: PMC10642968 DOI: 10.7554/elife.86105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
Millions suffer from incurable lung diseases, and the donor lung shortage hampers organ transplants. Generating the whole organ in conjunction with the thymus is a significant milestone for organ transplantation because the thymus is the central organ to educate immune cells. Using lineage-tracing mice and human pluripotent stem cell (PSC)-derived lung-directed differentiation, we revealed that gastrulating Foxa2 lineage contributed to both lung mesenchyme and epithelium formation. Interestingly, Foxa2 lineage-derived cells in the lung mesenchyme progressively increased and occupied more than half of the mesenchyme niche, including endothelial cells, during lung development. Foxa2 promoter-driven, conditional Fgfr2 gene depletion caused the lung and thymus agenesis phenotype in mice. Wild-type donor mouse PSCs injected into their blastocysts rescued this phenotype by complementing the Fgfr2-defective niche in the lung epithelium and mesenchyme and thymic epithelium. Donor cell is shown to replace the entire lung epithelial and robust mesenchymal niche during lung development, efficiently complementing the nearly entire lung niche. Importantly, those mice survived until adulthood with normal lung function. These results suggest that our Foxa2 lineage-based model is unique for the progressive mobilization of donor cells into both epithelial and mesenchymal lung niches and thymus generation, which can provide critical insights into studying lung transplantation post-transplantation shortly.
Collapse
Affiliation(s)
- Akihiro Miura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hemanta Sarmah
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Junichi Tanaka
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Youngmin Hwang
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Anri Sawada
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yuko Shimamura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Takehiro Otoshi
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yuri Kondo
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yinshan Fang
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Dai Shimizu
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Zurab Ninish
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Jake Le Suer
- The Pulmonary Center and Department of Medicine, Boston University School of MedicineBostonUnited States
- Center for Regenerative Medicine, Boston University and Boston Medical CenterBostonUnited States
| | - Nicole C Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jennifer Davis
- Department of Pathology, University of WashingtonSeattleUnited States
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jianwen Que
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Finn J Hawkins
- The Pulmonary Center and Department of Medicine, Boston University School of MedicineBostonUnited States
- Center for Regenerative Medicine, Boston University and Boston Medical CenterBostonUnited States
| | - Chyuan-Sheng Lin
- Bernard and Shirlee Brown Glaucoma Laboratory, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| |
Collapse
|
3
|
Xuan Y, Petersen B, Liu P. Human and Pig Pluripotent Stem Cells: From Cellular Products to Organogenesis and Beyond. Cells 2023; 12:2075. [PMID: 37626885 PMCID: PMC10453631 DOI: 10.3390/cells12162075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pluripotent stem cells (PSCs) are important for studying development and hold great promise in regenerative medicine due to their ability to differentiate into various cell types. In this review, we comprehensively discuss the potential applications of both human and pig PSCs and provide an overview of the current progress and challenges in this field. In addition to exploring the therapeutic uses of PSC-derived cellular products, we also shed light on their significance in the study of interspecies chimeras, which has led to the creation of transplantable human or humanized pig organs. Moreover, we emphasize the importance of pig PSCs as an ideal cell source for genetic engineering, facilitating the development of genetically modified pigs for pig-to-human xenotransplantation. Despite the achievements that have been made, further investigations and refinement of PSC technologies are necessary to unlock their full potential in regenerative medicine and effectively address critical healthcare challenges.
Collapse
Affiliation(s)
- Yiyi Xuan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, 31535 Neustadt am Rübenberge, Germany;
| | - Pentao Liu
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
- Center for Translational Stem Cell Biology, Hong Kong, China
| |
Collapse
|
4
|
Brown JL, Voth JP, Person K, Low WC. A Technological and Regulatory Review on Human-Animal Chimera Research: The Current Landscape of Biology, Law, and Public Opinion. Cell Transplant 2023; 32:9636897231183112. [PMID: 37599386 PMCID: PMC10467371 DOI: 10.1177/09636897231183112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 08/22/2023] Open
Abstract
Organ transplantation is a highly utilized treatment for many medical conditions, yet the number of patients waiting for organs far exceeds the number available. The challenges and limitations currently associated with organ transplantation and technological advances in gene editing techniques have led scientists to pursue alternate solutions to the donor organ shortage. Growing human organs in animals and harvesting those organs for transplantation into humans is one such solution. These chimeric animals usually have certain genes necessary for a specific organ's development inhibited at an early developmental stage, followed by the addition of cultured pluripotent human cells to fill that developmental niche. The result is a chimeric animal that contains human organs which are available for transplant into a patient, circumventing some of the limitations currently involved in donor organ transplantation. In this review, we will discuss both the current scientific and legal landscape of human-animal chimera (HAC) research. We present an overview of the technological advances that allow for the creation of HACs, the patents that currently exist on these methods, as well as current public attitude and understanding that can influence HAC research policy. We complement our scientific and public attitude discussion with a regulatory overview of chimera research at both the national and state level, while also contrasting current U.S. legislation with regulations in other countries. Overall, we provide a comprehensive analysis of the legal and scientific barriers to conducting research on HACs for the generation of transplantable human organs, as well as provide recommendations for the future.
Collapse
Affiliation(s)
- Jennifer L. Brown
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Law School, University of Minnesota, Minneapolis, MN, USA
| | - Joseph P. Voth
- Department of Neuroscience, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Kennedy Person
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Curnow E, Wang Y. New Animal Models for Understanding FMRP Functions and FXS Pathology. Cells 2022; 11:1628. [PMID: 35626665 PMCID: PMC9140010 DOI: 10.3390/cells11101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fragile X encompasses a range of genetic conditions, all of which result as a function of changes within the FMR1 gene and abnormal production and/or expression of the FMR1 gene products. Individuals with Fragile X syndrome (FXS), the most common heritable form of intellectual disability, have a full-mutation sequence (>200 CGG repeats) which brings about transcriptional silencing of FMR1 and loss of FMR protein (FMRP). Despite considerable progress in our understanding of FXS, safe, effective, and reliable treatments that either prevent or reduce the severity of the FXS phenotype have not been approved. While current FXS animal models contribute their own unique understanding to the molecular, cellular, physiological, and behavioral deficits associated with FXS, no single animal model is able to fully recreate the FXS phenotype. This review will describe the status and rationale in the development, validation, and utility of three emerging animal model systems for FXS, namely the nonhuman primate (NHP), Mongolian gerbil, and chicken. These developing animal models will provide a sophisticated resource in which the deficits in complex functions of perception, action, and cognition in the human disorder are accurately reflected and aid in the successful translation of novel therapeutics and interventions to the clinic setting.
Collapse
Affiliation(s)
- Eliza Curnow
- REI Division, Department of ObGyn, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|