1
|
Katz DH, Lindholm ME, Ashley EA. Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Physiology (Bethesda) 2025; 40:0. [PMID: 39136551 DOI: 10.1152/physiol.00024.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 11/21/2024] Open
Abstract
Physical activity plays a fundamental role in human health and disease. Exercise has been shown to improve a wide variety of disease states, and the scientific community is committed to understanding the precise molecular mechanisms that underlie the exquisite benefits. This review provides an overview of molecular responses to acute exercise and chronic training, particularly energy mobilization and generation, structural adaptation, inflammation, and immune regulation. Furthermore, it offers a detailed discussion of known molecular signals and systemic regulators activated during various forms of exercise and their role in orchestrating health benefits. Critically, the increasing use of multiomic technologies is explored with an emphasis on how multiomic and multitissue studies contribute to a more profound understanding of exercise biology. These data inform anticipated future advancement in the field and highlight the prospect of integrating exercise with pharmacology for personalized disease prevention and treatment.
Collapse
Affiliation(s)
- Daniel H Katz
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Maléne E Lindholm
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Euan A Ashley
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
2
|
Singh P, Singh R, Pasricha C, Kumari P. Navigating liver health with metabolomics: A comprehensive review. Clin Chim Acta 2025; 566:120038. [PMID: 39536895 DOI: 10.1016/j.cca.2024.120038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease worldwide, affecting one-fourth of the world's population. With more than half of the world's population, the Asia-Pacific region contributed 62.6 % of liver-related fatal incidents in 2015. Currently, liver imaging techniques such as computed tomography (CT), nuclear magnetic resonance (NMR) spectroscopy, and ultrasound are non-invasive imaging methods to diagnose the disease. A liver biopsy is the gold standard test for establishing the definite diagnosis of non-alcoholic steatohepatitis (NASH). However, there are still significant problems with sample variability and the procedure's invasiveness. Numerous studies have indicated various non-invasive biomarkers for both fibrosis and steatosis to counter the invasiveness of diagnostic procedures. Metabolomics could be a promising method for detecting early liver diseases, investigating pathophysiology, and developing drugs. Metabolomics, when utilized with other omics technologies, can result in a deeper understanding of biological systems. Metabolomics has emerged as a prominent research topic, offering extensive opportunities to investigate biomarkers for liver diseases that are both sensitive and specific. In this review, we have described the recent studies involving the use of a metabolomics approach in the diagnosis of liver diseases, which would be beneficial for the early detection and treatment of liver diseases.
Collapse
Affiliation(s)
- Preetpal Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Chirag Pasricha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
3
|
Alabdul Razzak I, Fares A, Stine JG, Trivedi HD. The Role of Exercise in Steatotic Liver Diseases: An Updated Perspective. Liver Int 2025; 45:e16220. [PMID: 39720849 DOI: 10.1111/liv.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The increasing prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), parallels the rise in sedentary lifestyles. MASLD is the most common form of steatotic liver disease (SLD), which represents the umbrella beneath which the vast majority of chronic liver diseases fall, including alcohol-related liver disease and their overlap. These conditions are the leading contributors to chronic liver disease, significantly impacting global morbidity and mortality. Despite the emergence of new pharmacotherapies, exercise represents the foundation of MASLD treatment. OBJECTIVE This review aims to provide an updated perspective on the role of exercise in the management of SLD, highlight its molecular and clinical benefits, and explore its benefits and safety in the stage of cirrhosis. METHODS Evidence from pre-clinical and clinical studies was reviewed to evaluate the impact of exercise on SLD (mainly MASLD), advanced chronic liver disease stages, and its relevance in the context of evolving therapies such as Resmetirom and incretin-based anti-obesity medications. CONCLUSION Exercise remains a cornerstone intervention in the management of MASLD, with suggested benefits even for patients who have progressed to cirrhosis. Personalized exercise regimens should be prioritized for all patients, including those receiving pharmacotherapy. Further research is needed to refine exercise protocols and investigate their impact on histologic and clinical outcomes, as well as their potential synergistic effects with emerging treatments.
Collapse
Affiliation(s)
- Iyiad Alabdul Razzak
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed Fares
- Department of Internal Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Jonathan G Stine
- Department of Public Health Sciences, Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Public Health Sciences, Division of Gastroenterology & Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Hirsh D Trivedi
- Depatrtment of Medicine, Karsh Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
4
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
5
|
Babu AF, Palomurto S, Kärjä V, Käkelä P, Lehtonen M, Hanhineva K, Pihlajamäki J, Männistö V. Metabolic signatures of metabolic dysfunction-associated steatotic liver disease in severely obese patients. Dig Liver Dis 2024; 56:2103-2110. [PMID: 38825414 DOI: 10.1016/j.dld.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
BACKROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Still, most patients with MASLD die from cardiovascular diseases indicating metabolic alterations related to both liver and cardiovascular pathology. AIMS AND METHODS The aim of this study was to assess biologic pathways behind MASLD progression from steatosis to metabolic dysfunction-associated steatohepatitis (MASH) using non-targeted liquid chromatography-mass spectrometry analysis in 106 severely obese individuals (78 women, mean age 47.7 7 ± 9.2 years, body mass index 41.8 ± 4.3 kg/m²) undergoing laparoscopic Roux-en-Y gastric bypass. RESULTS We identified several metabolites that are associated with MASLD progression. Most importantly, we observed a decrease of lysophosphatidylcholines LPC(18:2), LPC(18:3), and LPC(20:3) and increase of xanthine when comparing those with steatosis to those with MASH. We found that indole propionic acid and threonine were negatively correlated to fibrosis, but not with the metabolic disturbances associated with cardiovascular risk. Xanthine, ketoleucine, and tryptophan were positively correlated to lobular inflammation and ballooning but also with insulin resistance, and dyslipidemia, respectively. The results did not change when taking into account the most important genetic risk factors of MASLD. CONCLUSIONS Our findings suggest that there are several separate biological pathways, some of them independent of insulin resistance and dyslipidemia, associating with MASLD.
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland
| | - Saana Palomurto
- Department of Surgery, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Vesa Kärjä
- Department of Pathology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Pirjo Käkelä
- Department of Surgery, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, 70211 Kuopio, Finland; LC-MS Metabolomics Center, Biocenter Kuopio, 70211 Kuopio, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland; Department of Life Technologies, Food Sciences Unit, University of Turku, 20014 Turku, Finland
| | - Jussi Pihlajamäki
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland.
| |
Collapse
|
6
|
Huang M, Yang J, Wang Y, Wu J. Comparative efficacy of different exercise modalities on metabolic profiles and liver functions in non-alcoholic fatty liver disease: a network meta-analysis. Front Physiol 2024; 15:1428723. [PMID: 39376897 PMCID: PMC11457013 DOI: 10.3389/fphys.2024.1428723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Objective Research evidence suggests that exercise is a potent therapeutic strategy for non-alcoholic fatty liver disease (NAFLD). Many investigations have delved into the curative potential of diverse exercise regimens on NAFLD. This investigation synthesizes findings from randomized controlled trials via a network meta-analysis to evaluate the efficacy of exercise-based interventions on NAFLD. Methods We conducted a search across five electronic databases (Web of Science, EMBASE, PubMed, SCOPUS, and CNKI)to identify randomized controlled trials (RCTs) comparing the effects of different exercise modalities on metabolic profiles and liver functions in patients with NAFLD. The literature search was comprehensive up to 15, December 2023. The selected studies were subjected to a rigorous quality appraisal and risk of bias analysis in accordance with the Cochrane Handbook's guidelines, version 5.1.0. We employed Stata/MP 17 for the network meta-analysis, presenting effect sizes as standardized mean differences (SMD). Results This study aggregated results from 28 studies, involving a total of 1,606 participants. The network meta-analysis revealed that aerobic exercise was the most effective intervention for improving BMI in patients with NAFLD, demonstrating a significant decrease in BMI (-0.72, 95%CI: -0.98 to -0.46; p < 0.05; Surface Under the Cumulative Ranking (SUCRA) = 79.8%). HIIT was the top intervention for enhancing HDL-C (0.12, 95% CI: 0.04 to 0.20; p < 0.05; SUCRA = 76.1%). Resistance exercise was the most effective for reducing LDL-C (-0.20, 95% CI: -0.33 to -0.06; p < 0.05; SUCRA = 69.7%). Mind-body exercise showed superior effectiveness in improving TC (-0.67, 95% CI: -1.10 to -0.24; p < 0.05; SUCRA = 89.7%), TG = -0.67, 95% CI: -1.10 to -0.24; p < 0.05; SUCRA = 99.6%), AST (-8.07, 95% CI: -12.88 to -3.25; p < 0.05; SUCRA = 76.1%), ALT (-12.56, 95% CI: -17.54 to -7.58; p < 0.05; SUCRA = 99.5%), and GGT (-13.77, 95% CI: -22.00 to -5.54; p < 0.05; SUCRA = 81.8%). Conclusion This network meta-analysis demonstrates that exercise interventions positively affect various metabolic profiles and liver functions in NAFLD patients. Mind-body exercises are particularly effective, surpassing other exercise forms in improving metabolic profiles and liver functions. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier registration number CRD42024526332.
Collapse
Affiliation(s)
- Mingming Huang
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jiafa Yang
- School of Arts and Sports, Dong-A University, Busan, Republic of Korea
| | - Yihao Wang
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jian Wu
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
7
|
Lodge M, Dykes R, Kennedy A. Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease. Biomolecules 2024; 14:845. [PMID: 39062559 PMCID: PMC11274671 DOI: 10.3390/biom14070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Elevations in fructose consumption have been reported to contribute significantly to an increased incidence of obesity and metabolic diseases in industrial countries. Mechanistically, a high fructose intake leads to the dysregulation of glucose, triglyceride, and cholesterol metabolism in the liver, and causes elevations in inflammation and drives the progression of nonalcoholic fatty liver disease (NAFLD). A high fructose consumption is considered to be toxic to the body, and there are ongoing measures to develop pharmaceutical therapies targeting fructose metabolism. Although a large amount of work has summarized the effects fructose exposure within the intestine, liver, and kidney, there remains a gap in our knowledge regarding how fructose both indirectly and directly influences immune cell recruitment, activation, and function in metabolic tissues, which are essential to tissue and systemic inflammation. The most recent literature demonstrates that direct fructose exposure regulates oxidative metabolism in macrophages, leading to inflammation. The present review highlights (1) the mechanisms by which fructose metabolism impacts crosstalk between tissues, nonparenchymal cells, microbes, and immune cells; (2) the direct impact of fructose on immune cell metabolism and function; and (3) therapeutic targets of fructose metabolism to treat NAFLD. In addition, the review highlights how fructose disrupts liver tissue homeostasis and identifies new therapeutic targets for treating NAFLD and obesity.
Collapse
Affiliation(s)
| | | | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall Campus, Box 7622, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Lin C, Tian Q, Guo S, Xie D, Cai Y, Wang Z, Chu H, Qiu S, Tang S, Zhang A. Metabolomics for Clinical Biomarker Discovery and Therapeutic Target Identification. Molecules 2024; 29:2198. [PMID: 38792060 PMCID: PMC11124072 DOI: 10.3390/molecules29102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
As links between genotype and phenotype, small-molecule metabolites are attractive biomarkers for disease diagnosis, prognosis, classification, drug screening and treatment, insight into understanding disease pathology and identifying potential targets. Metabolomics technology is crucial for discovering targets of small-molecule metabolites involved in disease phenotype. Mass spectrometry-based metabolomics has implemented in applications in various fields including target discovery, explanation of disease mechanisms and compound screening. It is used to analyze the physiological or pathological states of the organism by investigating the changes in endogenous small-molecule metabolites and associated metabolism from complex metabolic pathways in biological samples. The present review provides a critical update of high-throughput functional metabolomics techniques and diverse applications, and recommends the use of mass spectrometry-based metabolomics for discovering small-molecule metabolite signatures that provide valuable insights into metabolic targets. We also recommend using mass spectrometry-based metabolomics as a powerful tool for identifying and understanding metabolic patterns, metabolic targets and for efficacy evaluation of herbal medicine.
Collapse
Affiliation(s)
- Chunsheng Lin
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China;
| | - Sifan Guo
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Dandan Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Ying Cai
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Zhibo Wang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Hang Chu
- Department of Biomedical Sciences, Beijing City University, Beijing 100193, China;
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Aihua Zhang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| |
Collapse
|
9
|
Garcia-Morena D, Fernandez-Cantos MV, Escalera SL, Lok J, Iannone V, Cancellieri P, Maathuis W, Panagiotou G, Aranzamendi C, Aidy SE, Kolehmainen M, El-Nezami H, Wellejus A, Kuipers OP. In Vitro Influence of Specific Bacteroidales Strains on Gut and Liver Health Related to Metabolic Dysfunction-Associated Fatty Liver Disease. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10219-1. [PMID: 38319537 DOI: 10.1007/s12602-024-10219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become a major health risk and a serious worldwide issue. MAFLD typically arises from aberrant lipid metabolism, insulin resistance, oxidative stress, and inflammation. However, subjacent causes are multifactorial. The gut has been proposed as a major factor in health and disease, and over the last decade, bacterial strains with potentially beneficial effects on the host have been identified. In vitro cell models have been commonly used as an early step before in vivo drug assessment and can confer complementary advantages in gut and liver health research. In this study, several selected strains of the order Bacteroidales were used in a three-cell line in vitro analysis (HT-29, Caco-2, and HepG2 cell lines) to investigate their potential as new-generation probiotics and microbiota therapeutics. Antimicrobial activity, a potentially useful trait, was studied, and the results showed that Bacteroidales can be a source of either wide- or narrow-spectrum antimicrobials targeting other closely related strains. Moreover, Bacteroides sp. 4_1_36 induced a significant decrease in gut permeability, as evidenced by the high TEER values in the Caco-2 monolayer assay, as well as a reduction in free fatty acid accumulation and improved fatty acid clearance in a steatosis HepG2 model. These results suggest that Bacteroidales may spearhead the next generation of probiotics to prevent or diminish MAFLD.
Collapse
Affiliation(s)
- Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Silvia Lopez Escalera
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
- Friedrich-Schiller Universität Jena, Fakultät für Biowissenschaften, 18K, 07743, Bachstraβe, Germany
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Pierluca Cancellieri
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Willem Maathuis
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Faculty of Biological Sciences, Friedrich Schiller University, 07745, Jena, Germany
| | - Carmen Aranzamendi
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Sahar El Aidy
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Hani El-Nezami
- Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Anja Wellejus
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
10
|
Qi S, Li X, Yu J, Yin L. Research advances in the application of metabolomics in exercise science. Front Physiol 2024; 14:1332104. [PMID: 38288351 PMCID: PMC10822880 DOI: 10.3389/fphys.2023.1332104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Exercise training can lead to changes in the metabolic composition of an athlete's blood, the magnitude of which depends largely on the intensity and duration of exercise. A variety of behavioral, biochemical, hormonal, and immunological biomarkers are commonly used to assess an athlete's physical condition during exercise training. However, traditional invasive muscle biopsy testing methods are unable to comprehensively detect physiological differences and metabolic changes in the body. Metabolomics technology is a high-throughput, highly sensitive technique that provides a comprehensive assessment of changes in small molecule metabolites (molecular weight <1,500 Da) in the body. By measuring the overall metabolic characteristics of biological samples, we can study the changes of endogenous metabolites in an organism or cell at a certain moment in time, and investigate the interconnection and dynamic patterns between metabolites and physiological changes, thus further understanding the interactions between genes and the environment, and providing possibilities for biomarker discovery, precise training and nutritional programming of athletes. This paper summaries the progress of research on the application of exercise metabolomics in sports science, and looks forward to the future development of exercise metabolomics, with a view to providing new approaches and perspectives for improving human performance, promoting exercise against chronic diseases, and advancing sports science research.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Jinglun Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Gao C, Wei J, Lu C, Wang L, Dong D, Sun M. A new perspective in intestinal microecology: lifting the veil of exercise regulation of cardiometabolic diseases. Gut Microbes 2024; 16:2404141. [PMID: 39305272 PMCID: PMC11418258 DOI: 10.1080/19490976.2024.2404141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiometabolic diseases (CMDs), encompassing cardiovascular and metabolic dysfunctions, characterized by insulin resistance, dyslipidemia, hepatic steatosis, and inflammation, have been identified with boosting morbidity and mortality due to the dearth of efficacious therapeutic interventions. In recent years, studies have shown that variations in gut microbiota and its own metabolites can influence the occurrence of CMDs. Intriguingly, the composition and function of the gut microbiota are susceptible to exercise patterns, thus affecting inflammatory, immune, and metabolic responses within the host. In this review, we introduce the key mechanisms of intestinal microecology involved in the onset and development of CMDs, discuss the relationship between exercise and intestinal microecology, and then analyze the role of intestinal microecology in the beneficial effects of exercise on CMDs, aiming at elucidating the gut-heart axis mechanisms of exercise mediated protective effect on CMDs, building avenues for the application of exercise in the management of CMDs.
Collapse
Affiliation(s)
- Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
12
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
da Silva ACR, Yadegari A, Tzaneva V, Vasanthan T, Laketic K, Shearer J, Bainbridge SA, Harris C, Adamo KB. Metabolomics to Understand Alterations Induced by Physical Activity during Pregnancy. Metabolites 2023; 13:1178. [PMID: 38132860 PMCID: PMC10745110 DOI: 10.3390/metabo13121178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Physical activity (PA) and exercise have been associated with a reduced risk of cancer, obesity, and diabetes. In the context of pregnancy, maintaining an active lifestyle has been shown to decrease gestational weight gain (GWG) and lower the risk of gestational diabetes mellitus (GDM), hypertension, and macrosomia in offspring. The main pathways activated by PA include BCAAs, lipids, and bile acid metabolism, thereby improving insulin resistance in pregnant individuals. Despite these known benefits, the underlying metabolites and biological mechanisms affected by PA remain poorly understood, highlighting the need for further investigation. Metabolomics, a comprehensive study of metabolite classes, offers valuable insights into the widespread metabolic changes induced by PA. This narrative review focuses on PA metabolomics research using different analytical platforms to analyze pregnant individuals. Existing studies support the hypothesis that exercise behaviour can influence the metabolism of different populations, including pregnant individuals and their offspring. While PA has shown considerable promise in maintaining metabolic health in non-pregnant populations, our comprehension of metabolic changes in the context of a healthy pregnancy remains limited. As a result, further investigation is necessary to clarify the metabolic impact of PA within this unique group, often excluded from physiological research.
Collapse
Affiliation(s)
- Ana Carolina Rosa da Silva
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Anahita Yadegari
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Velislava Tzaneva
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Tarushika Vasanthan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5G 2A7, Canada
| | - Katarina Laketic
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, Cumming School of Medicine and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shannon A. Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, Ottawa, ON K1N 6N5, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cory Harris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Kristi B. Adamo
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| |
Collapse
|
14
|
Domingues I, Leclercq IA, Beloqui A. Nonalcoholic fatty liver disease: Current therapies and future perspectives in drug delivery. J Control Release 2023; 363:415-434. [PMID: 37769817 DOI: 10.1016/j.jconrel.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25% of the adult population worldwide. This pathology can progress into end-stage liver disease with life-threatening complications, and yet no pharmacologic therapy has been approved. NAFLD is commonly characterized by excessive fat accumulation in the liver and is in closely associated with insulin resistance and metabolic disorders, which suggests that NAFLD is the hepatic manifestation of metabolic syndrome. Regarding treatment options, the current validated strategy relies on lifestyle modifications (exercise and diet restrictions). Although there are no approved drug-based treatments, several clinical trials are ongoing. Novel targets are being discovered, and the repurposing of drugs that show promising effects in NAFLD is starting to gain more interest. The field of nanotechnology has been growing at an increasing rate, with new and more efficient drug delivery strategies being developed for NAFLD treatment. Nanocarriers can easily encapsulate drugs that need to be better protected from the organism to exert their effect or that need help at reaching their target, thereby helping achieve a better bioavailability. Drug delivery systems can also be designed to target the site of the disease, in this case, the liver. In this review, we focus on the current knowledge of NAFLD pathology, the targets being considered for clinical trials, and the current guidelines and ongoing clinical trials, with a specific focus on potential oral treatments for NAFLD using promising drug delivery strategies.
Collapse
Affiliation(s)
- Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Isabelle A Leclercq
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Avenue Emmanuel Mounier 53, 1200 Brussels, Belgium.
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
15
|
Csader S, Chen X, Leung H, Männistö V, Pentikäinen H, Tauriainen MM, Savonen K, El-Nezami H, Schwab U, Panagiotou G. Gut ecological networks reveal associations between bacteria, exercise, and clinical profile in non-alcoholic fatty liver disease patients. mSystems 2023; 8:e0022423. [PMID: 37606372 PMCID: PMC10654067 DOI: 10.1128/msystems.00224-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023] Open
Abstract
IMPORTANCE Our study is applying a community-based approach to examine the influence of exercise on gut microbiota (GM) and discover GM structures linked with NAFLD improvements during exercise. The majority of microbiome research has focused on finding specific species that may contribute to the development of human diseases. However, we believe that complex diseases, such as NAFLD, would be more efficiently treated using consortia of species, given that bacterial functionality is based not only on its own genetic information but also on the interaction with other microorganisms. Our results revealed that exercise significantly changes the GM interaction and that structural alterations can be linked with improvements in intrahepatic lipid content and metabolic functions. We believe that the identification of these characteristics in the GM enhances the development of exercise treatment for NAFLD and will attract general interest in this field.
Collapse
Affiliation(s)
- Susanne Csader
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Xiuqiang Chen
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Howell Leung
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Ville Männistö
- Departments of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Milla-Maria Tauriainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Departments of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Hani El-Nezami
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- University of Hong Kong School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ursula Schwab
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Janota B, Szczepańska E, Noras K, Janczewska E. Lifestyle and Quality of Life of Women with Diagnosed Hypothyroidism in the Context of Metabolic Disorders. Metabolites 2023; 13:1033. [PMID: 37887358 PMCID: PMC10609071 DOI: 10.3390/metabo13101033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
The lifestyle causes of metabolic disorders in patients with hypothyroidism should be investigated. We aimed to assess the lifestyle and quality of life of women diagnosed with hypothyroidism and search for the presence of differences between the lifestyle and quality of life of women with and without diagnosed lipid metabolism disorders. This study included 311 women. To assess the differences between the groups with and without metabolic disorders, a non-parametric Mann-Whitney U test was performed. Of the products that were potentially beneficial for health, statistically significant differences in the average frequency of consumption were observed for legume seeds (p = 0.014), and of the products potentially unbeneficial for health, the frequencies of consumption of fried dishes (p = 0.016) and fast-food products (p = 0.001) were significant. Only 11.9% rated their free-time physical activity as high. The quality of life was significantly different between the groups. The lifestyle was moderately appropriate. Compared with women with lipid metabolism disorders, women without them exhibited a higher frequency of correct dietary behaviors regarding the consumption of products with a potentially beneficial effect and sleeping duration. Women without lipid metabolism disorders had a better quality of life. Women with hypothyroidism should be educated about the beneficial aspects of the regular consumption of vegetables, fruits, legumes, and fish and sleeping for the optimal amount of time.
Collapse
Affiliation(s)
- Barbara Janota
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Elżbieta Szczepańska
- Department of Human Nutrition, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Kinga Noras
- Department of Biometry, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Ewa Janczewska
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| |
Collapse
|
17
|
Stine JG, Long MT, Corey KE, Sallis RE, Allen AM, Armstrong MJ, Conroy DE, Cuthbertson DJ, Duarte-Rojo A, Hallsworth K, Hickman IJ, Kappus MR, Keating SE, Pugh CJA, Rotman Y, Simon TL, Vilar-Gomez E, Wai-Sun Wong V, Schmitz KH. Physical Activity and Nonalcoholic Fatty Liver Disease: A Roundtable Statement from the American College of Sports Medicine. Med Sci Sports Exerc 2023; 55:1717-1726. [PMID: 37126039 PMCID: PMC10524517 DOI: 10.1249/mss.0000000000003199] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
ABSTRACT Although physical activity (PA) is crucial in the prevention and clinical management of nonalcoholic fatty liver disease, most individuals with this chronic disease are inactive and do not achieve recommended amounts of PA. There is a robust and consistent body of evidence highlighting the benefit of participating in regular PA, including a reduction in liver fat and improvement in body composition, cardiorespiratory fitness, vascular biology, and health-related quality of life. Importantly, the benefits of regular PA can be seen without clinically significant weight loss. At least 150 min of moderate or 75 min of vigorous intensity PA are recommended weekly for all patients with nonalcoholic fatty liver disease, including those with compensated cirrhosis. If a formal exercise training program is prescribed, aerobic exercise with the addition of resistance training is preferred. In this roundtable document, the benefits of PA are discussed, along with recommendations for 1) PA assessment and screening; 2) how best to advise, counsel, and prescribe regular PA; and 3) when to refer to an exercise specialist.
Collapse
Affiliation(s)
- Jonathan G. Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA
- Department of Public Health Sciences, The Pennsylvania State University- College of Medicine, Hershey PA
| | - Michelle T. Long
- Section of Gastroenterology, Evans Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Kathleen E. Corey
- Division of Gastroenterology and Hepatology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Robert E. Sallis
- Department of Family Medicine and Sports Medicine, Kaiser Permanente Medical Center, Fontana, CA
| | - Alina M. Allen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Matthew J. Armstrong
- Liver Transplant Unit, Queen Elizabeth University Hospitals Birmingham, and NIHR Birmingham Biomedical Research Centre, Birmingham, UNITED KINGDOM
| | - David E. Conroy
- Department of Kinesiology, The Pennsylvania State University, University Park, PA
| | - Daniel J. Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UNITED KINGDOM
| | - Andres Duarte-Rojo
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University, Chicago, IL
| | - Kate Hallsworth
- Newcastle NIHR Biomedical Research Centre and the Liver Unit, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UNITED KINGDOM
| | - Ingrid J. Hickman
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Queensland, AUSTRALIA
| | - Matthew R. Kappus
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC
| | - Shelley E. Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, AUSTRALIA
| | - Christopher J. A. Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UNITED KINGDOM
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Tracey L. Simon
- Division of Gastroenterology and Hepatology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Eduardo Vilar-Gomez
- Division of Gastroenterology and Hepatology. Indiana University School of Medicine. Indianapolis
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, CHINA
| | | |
Collapse
|
18
|
Nam H, Yoo JJ, Cho Y, Kang SH, Ahn SB, Lee HW, Jun DW, Song DS, Choi M. Effect of exercise-based interventions in nonalcoholic fatty liver disease: A systematic review with meta-analysis. Dig Liver Dis 2023; 55:1178-1186. [PMID: 37716859 DOI: 10.1016/j.dld.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The global burden of nonalcoholic fatty liver disease (NAFLD) is rapidly increasing. AIMS This study aimed to evaluate the effect of exercise on intrahepatic lipid (IHL), serum alanine aminotransferase (ALT), body mass index (BMI), and insulin resistance in NAFLD patients. METHODS We searched MEDLINE, Embase, Cochrane CENTRAL, KMbase, and the Korean Studies Information Service System through April 2022. The included studies were randomised control trials (RCTs) of exercise, in which IHL was measured using magnetic resonance imaging in adult NAFLD patients. RESULTS Eleven RCTs with 577 participants were included in this meta-analysis. Exercise was significantly associated with a reduction in IHL (mean difference (MD), -2.03; 95% CI, -3.26 to -0.79; P = 0.001) and a decrease in ALT (MD, -4.17; 95% CI, -6.60 to -1.73; P = 0.0008). Regarding the duration of exercise, maintaining exercise for more than 3 months significantly improved IHL (MD, -3.62; 95% CI, -5.76 to -1.48; P = 0.0009), while exercise for less than 3 months did not (MD, -1.23; 95% CI, -2.74 to 0.29; P = 0.11). BMI and insulin resistance did not improve significantly with exercise. CONCLUSIONS We found that exercise improved IHL and ALT levels in NAFLD patients. The effect of exercise is particularly increased when one engages in exercises that last longer than 3 months.
Collapse
Affiliation(s)
- Heechul Nam
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, 11765, Republic of Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Seong Hee Kang
- Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, 26426, Gangwon-do, Republic of Korea
| | - Sang Bong Ahn
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University College of Medicine, Seoul, 01830, Republic of Korea
| | - Hye-Won Lee
- Department of Internal Medicine, Yonsei University College of medicine, Seoul, 03722, Republic of Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, 16247, Republic of Korea.
| | - Miyoung Choi
- Clinical Evidence Research, National Evidence-based Healthcare Collaborating Agency, Seoul, 04933, Republic of Korea.
| |
Collapse
|
19
|
Cho YK, Lee S, Lee J, Doh J, Park JH, Jung YS, Lee YH. Lipid remodeling of adipose tissue in metabolic health and disease. Exp Mol Med 2023; 55:1955-1973. [PMID: 37653032 PMCID: PMC10545718 DOI: 10.1038/s12276-023-01071-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. This review aims to summarize recent lipidomics studies that investigated the dynamic remodeling of adipose tissue lipids in response to specific physiological changes, pharmacological interventions, and pathological conditions. We discuss the molecular mechanisms of lipid remodeling in adipose tissue and explore the recent identification of bioactive lipid mediators generated in adipose tissue that regulate adipocytes and systemic metabolism. We propose that manipulating lipid-mediator metabolism could serve as a therapeutic approach for preventing or treating obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX Institute, Soft Foundry Institute, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
21
|
Barrón-Cabrera E, Soria-Rodríguez R, Amador-Lara F, Martínez-López E. Physical Activity Protocols in Non-Alcoholic Fatty Liver Disease Management: A Systematic Review of Randomized Clinical Trials and Animal Models. Healthcare (Basel) 2023; 11:1992. [PMID: 37510432 PMCID: PMC10379178 DOI: 10.3390/healthcare11141992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with other metabolic disease and cardiovascular disease. Regular exercise reduces hepatic fat content and could be the first-line treatment in the management of NAFLD. This review aims to summarize the current evidence of the beneficial effects of exercise training and identify the molecular pathways involved in the response to exercise to define their role in the resolution of NAFLD both in animal and human studies. According to the inclusion criteria, 43 animal studies and 14 RCTs were included in this systematic review. Several exercise modalities were demonstrated to have a positive effect on liver function. Physical activity showed a strong association with improvement in inflammation, and reduction in steatohepatitis and fibrosis in experimental models. Furthermore, both aerobic and resistance exercise in human studies were demonstrated to reduce liver fat, and to improve insulin resistance and blood lipids, regardless of weight loss, although aerobic exercises may be more effective. Resistance exercise is more feasible for patients with NAFLD with poor cardiorespiratory fitness. More effort and awareness should be dedicated to encouraging NAFLD patients to adopt an active lifestyle and benefit from it its effects in order to reduce this growing public health problem.
Collapse
Affiliation(s)
- Elisa Barrón-Cabrera
- Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan 80010, Mexico
| | - Raúl Soria-Rodríguez
- Program in Physical Activity and Lifestyle, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Fernando Amador-Lara
- Department of Medical Clinics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular and Genomic Biology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| |
Collapse
|
22
|
Csader S, Ismaiah MJ, Kuningas T, Heinäniemi M, Suhonen J, Männistö V, Pentikäinen H, Savonen K, Tauriainen MM, Galano JM, Lee JCY, Rintamäki R, Karisola P, El-Nezami H, Schwab U. Twelve Weeks of High-Intensity Interval Training Alters Adipose Tissue Gene Expression but Not Oxylipin Levels in People with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24108509. [PMID: 37239856 DOI: 10.3390/ijms24108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Lifestyle modifications, including increased physical activity and exercise, are recommended for non-alcoholic fatty liver disease (NAFLD). Inflamed adipose tissue (AT) contributes to the progression and development of NAFLD and oxylipins such as hydroxyeicosatetraenoic acids (HETE), hydroxydocosahexanenoic acids (HDHA), prostaglandins (PEG2), and isoprostanoids (IsoP), which all may play a role in AT homeostasis and inflammation. To investigate the role of exercise without weight loss on AT and plasma oxylipin concentrations in NAFLD subjects, we conducted a 12-week randomized controlled exercise intervention. Plasma samples from 39 subjects and abdominal subcutaneous AT biopsy samples from 19 subjects were collected both at the beginning and the end of the exercise intervention. In the AT of women, a significant reduction of gene expression of hemoglobin subunits (HBB, HBA1, HBA2) was observed within the intervention group during the 12-week intervention. Their expression levels were negatively associated with VO2max and maxW. In addition, pathways involved in adipocyte morphology alterations significantly increased, whereas pathways in fat metabolism, branched-chain amino acids degradation, and oxidative phosphorylation were suppressed in the intervention group (p < 0.05). Compared to the control group, in the intervention group, the ribosome pathway was activated, but lysosome, oxidative phosphorylation, and pathways of AT modification were suppressed (p < 0.05). Most of the oxylipins (HETE, HDHA, PEG2, and IsoP) in plasma did not change during the intervention compared to the control group. 15-F2t-IsoP significantly increased in the intervention group compared to the control group (p = 0.014). However, this oxylipin could not be detected in all samples. Exercise intervention without weight loss may influence the AT morphology and fat metabolism at the gene expression level in female NAFLD subjects.
Collapse
Affiliation(s)
- Susanne Csader
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Tiina Kuningas
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Janne Suhonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Heikki Pentikäinen
- Kuopio Research Institute of Exercise Medicine, FI-70210 Kuopio, Finland
| | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, FI-70210 Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Milla-Maria Tauriainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34093 Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Reeta Rintamäki
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Piia Karisola
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, FI-00100 Helsinki, Finland
| | - Hani El-Nezami
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Ursula Schwab
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, FI-70210 Kuopio, Finland
| |
Collapse
|
23
|
Ong MLY, Green CG, Rowland SN, Heaney LM. Mass Sportrometry: An annual look back at applications of mass spectrometry in sport and exercise science. ANALYTICAL SCIENCE ADVANCES 2023; 4:60-80. [PMID: 38715927 PMCID: PMC10989560 DOI: 10.1002/ansa.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 11/17/2024]
Abstract
Research in sport and exercise science (SES) is reliant on robust analyses of biomarker measurements to assist with the interpretation of physiological outcomes. Mass spectrometry (MS) is an analytical approach capable of highly sensitive, specific, precise, and accurate analyses of a range of biomolecules, many of which are of interest in SES including, but not limited to, endogenous metabolites, exogenously administered compounds (e.g. supplements), mineral ions, and circulating/tissue proteins. This annual review provides a summary of the applications of MS across studies investigating aspects related to sport or exercise in manuscripts published, or currently in press, in 2022. In total, 93 publications are included and categorized according to their methodologies including targeted analyses, metabolomics, lipidomics, proteomics, and isotope ratio/elemental MS. The advantageous analytical opportunities afforded by MS technologies are discussed across a selection of relevant articles. In addition, considerations for the future of MS in SES, including the need to improve the reporting of assay characteristics and validation data, are discussed, alongside the recommendation for selected current methods to be superseded by MS-based approaches where appropriate. The review identifies that a targeted, mostly quantitative, approach is the most commonly applied MS approach within SES, although there has also been a keen interest in the use of 'omics' to perform hypothesis-generating research studies. Nonetheless, MS is not commonplace in SES at this time, but its use to expand, and possibly improve, the analytical options should be continually considered to exploit the benefits of analytical chemistry in exercise/sports-based research. Overall, it is exciting to see the gradually increasing adoption of MS in SES and it is expected that the number, and quality, of MS-based assays in SES will increase over time, with the potential for 2023 to further establish this technique within the field.
Collapse
Affiliation(s)
- Marilyn LY Ong
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
- School of Health SciencesExercise and Sports Science ProgrammeUniversiti Sains MalaysiaKota BharuMalaysia
| | - Christopher G Green
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Samantha N Rowland
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Liam M Heaney
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| |
Collapse
|
24
|
Fan Y, Zhang M, Ma J, Zhang Y, Yang J. Metabolomics analysis of the serum metabolic signature of nonalcoholic fatty liver disease combined with prediabetes model rats after the intervention of Lycium barbarum polysaccharides combined with aerobic activity. Biomed Chromatogr 2023; 37:e5562. [PMID: 36480472 DOI: 10.1002/bmc.5562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Metabolic disorders accompany nonalcoholic fatty liver disease (NAFLD), associated with prediabetes. Lycium barbarum polysaccharides (LBP) seem to be a potential prebiotic, and aerobic exercise has shown protective effects on NAFLD with prediabetes. However, their combined effects on NAFLD and prediabetes remain unclear. This study investigated the effects of LBP and aerobic exercise alone, and their combined effects on the metabolomics of serum, and explored the potential mechanisms utilizing a high-fat diet-induced rat model of NAFLD and prediabetes. It provided the metabolic basis for the pathogenesis and early diagnosis of prediabetes complicated with NAFLD. Untargeted metabolomics profiling was performed using ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry to analyze the changes in overall metabolites in each group of samples. An orthogonal partial least squares-discriminant analysis model with variable importance on projection >1 and p < 0.05 were used as the screening criteria to screen the significant differential metabolites and analyze the expression changes and functional pathways. Different intervention treatments showed clear discrimination by univariate and multivariate analyses. The model group had a high relative level of expression of lipids. Comparison between the two groups showed steroids with high expression after LBP and aerobic exercise treatment separately and alkaloids and fatty acyls with high expression after aerobic exercise and the combination intervention, respectively. Comparison of the five groups showed some of the metabolites to be differently expressed after the intervention improved lipid and fatty acid metabolism. The three types of intervention had sound effects on the changes in liver index for the diseases studied. Furthermore, the combination treatment may be a better choice for disease prevention and treatment than a single treatment. Our analysis of metabolomics confirmed that the different treatments had significant regulatory effects on the metabolic pathways. Our findings strongly support the possibility that aerobic exercise combined with LBP can be regarded as a potential therapeutic method for NAFLD in prediabetics.
Collapse
Affiliation(s)
- Yanna Fan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Mengwei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Jiamin Ma
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Yannan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Jianjun Yang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
25
|
Kim HY, Kim DJ, Lee HA, Cho JY, Kim W. Baseline Tyrosine Level Is Associated with Dynamic Changes in FAST Score in NAFLD Patients under Lifestyle Modification. Metabolites 2023; 13:metabo13030444. [PMID: 36984884 PMCID: PMC10058052 DOI: 10.3390/metabo13030444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Noninvasive risk stratification is a challenging issue in the management of patients with nonalcoholic fatty liver disease (NAFLD). This study aimed to identify multiomics-based predictors of NAFLD progression, as assessed by changes in serial FibroScan-aspartate aminotransferase (FAST) scores during lifestyle modification. A total of 266 patients with available metabolomics and genotyping data were included. The follow-up sub-cohort included patients with paired laboratory and transient elastography results (n = 160). The baseline median FAST score was 0.37. The PNPLA3 rs738409 genotype was significantly associated with a FAST score > 0.35. Circulating metabolomics significantly associated with a FAST score > 0.35 included SM C24:0 (odds ratio [OR] = 0.642; 95% confidence interval [CI], 0.463-0.891), PC ae C40:6 (OR = 0.477; 95% CI, 0.340-0.669), lysoPC a C18:2 (OR = 0.570; 95% CI, 0.417-0.779), and tyrosine (OR = 2.743; 95% CI, 1.875-4.014). A combination of these metabolites and PNPLA3 genotype yielded a c-index = 0.948 for predicting a FAST score > 0.35. In the follow-up sub-cohort (median follow-up = 23.7 months), 47/76 patients (61.8%) with a baseline FAST score > 0.35 had a follow-up FAST score ≤ 0.35. An improved FAST score at follow-up was significantly associated with age, serum alanine aminotransferase, and tyrosine. In conclusion, baseline risk stratification in NAFLD patients may be assisted using a multiomics-based model. Particularly, patients with increased tyrosine may benefit from an earlier switch to pharmacologic approaches.
Collapse
Affiliation(s)
- Hwi Young Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Da Jung Kim
- Metabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Hye Ah Lee
- Clinical Trial Center, Ewha Womans University Medical Center, Seoul 07985, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government Boramae Medical Center, Seoul 07061, Republic of Korea
| |
Collapse
|
26
|
Kosmalski M, Frankowski R, Ziółkowska S, Różycka-Kosmalska M, Pietras T. What's New in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD). J Clin Med 2023; 12:jcm12051852. [PMID: 36902639 PMCID: PMC10003344 DOI: 10.3390/jcm12051852] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious health problem due to its high incidence and consequences. In view of the existing controversies, new therapeutic options for NAFLD are still being sought. Therefore, the aim of our review was to evaluate the recently published studies on the treatment of NAFLD patients. We searched for articles in the PubMed database using appropriate terms, including "non-alcoholic fatty liver disease", "nonalcoholic fatty liver disease", "NAFLD", "diet", "treatment", "physical activity", "supplementation", "surgery", "overture" and "guidelines". One hundred forty-eight randomized clinical trials published from January 2020 to November 2022 were used for the final analysis. The results show significant benefits of NAFLD therapy associated with the use of not only the Mediterranean but also other types of diet (including low-calorie ketogenic, high-protein, anti-inflammatory and whole-grain diets), as well as enrichment with selected food products or supplements. Significant benefits in this group of patients are also associated with moderate aerobic physical training. The available therapeutic options indicate, above all, the usefulness of drugs related to weight reduction, as well as the reduction in insulin resistance or lipids level and drugs with anti-inflammatory or antioxidant properties. The usefulness of therapy with dulaglutide and the combination of tofogliflozin with pioglitazone should be emphasized. Based on the results of the latest research, the authors of this article suggest a revision of the therapeutic recommendations for NAFLD patients.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
- Correspondence: ; Tel.: +48-728-358-504
| | - Rafał Frankowski
- Students’ Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Sylwia Ziółkowska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
27
|
Big Data in Gastroenterology Research. Int J Mol Sci 2023; 24:ijms24032458. [PMID: 36768780 PMCID: PMC9916510 DOI: 10.3390/ijms24032458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Studying individual data types in isolation provides only limited and incomplete answers to complex biological questions and particularly falls short in revealing sufficient mechanistic and kinetic details. In contrast, multi-omics approaches to studying health and disease permit the generation and integration of multiple data types on a much larger scale, offering a comprehensive picture of biological and disease processes. Gastroenterology and hepatobiliary research are particularly well-suited to such analyses, given the unique position of the luminal gastrointestinal (GI) tract at the nexus between the gut (mucosa and luminal contents), brain, immune and endocrine systems, and GI microbiome. The generation of 'big data' from multi-omic, multi-site studies can enhance investigations into the connections between these organ systems and organisms and more broadly and accurately appraise the effects of dietary, pharmacological, and other therapeutic interventions. In this review, we describe a variety of useful omics approaches and how they can be integrated to provide a holistic depiction of the human and microbial genetic and proteomic changes underlying physiological and pathophysiological phenomena. We highlight the potential pitfalls and alternatives to help avoid the common errors in study design, execution, and analysis. We focus on the application, integration, and analysis of big data in gastroenterology and hepatobiliary research.
Collapse
|
28
|
Place de l’Activité Physique Adaptée dans le parcours de soins : cas du patient présentant une stéatose hépatique non-alcoolique (NAFLD). NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Shao M, Lu Y, Xiang H, Wang J, Ji G, Wu T. Application of metabolomics in the diagnosis of non-alcoholic fatty liver disease and the treatment of traditional Chinese medicine. Front Pharmacol 2022; 13:971561. [PMID: 36091827 PMCID: PMC9453477 DOI: 10.3389/fphar.2022.971561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world, and it often coexists with insulin resistance-related diseases including obesity, diabetes, hyperlipidemia, and hypertension, which seriously threatens human health. Better prevention and treatment strategies are required to improve the impact of NAFLD. Although needle biopsy is an effective tool for diagnosing NAFLD, this method is invasive and difficult to perform. Therefore, it is very important to develop more efficient approaches for the early diagnosis of NAFLD. Traditional Chinese medicine (TCM) can play a certain role in improving symptoms and protecting target organs, and its mechanism of action needs to be further studied. Metabolomics, the study of all metabolites that is thought to be most closely associated with the patients’ characters, can provide useful clinically biomarkers that can be applied to NAFLD and may open up new methods for diagnosis. Metabolomics technology is consistent with the overall concept of TCM, and it can also be used as a potential mechanism to explain the effects of TCM by measuring biomarkers by metabolomics. Based on PubMed/MEDLINE and other databases, this paper retrieved relevant literature NAFLD and TCM intervention in NAFLD using metabolomics technology in the past 5 years were searched, and the specific metabolites associated with the development of NAFLD and the potential mechanism of Chinese medicine on improving symptoms were summarized.
Collapse
Affiliation(s)
- Mingmei Shao
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guang Ji, , ; Tao Wu, ,
| |
Collapse
|
30
|
The Effects of Berry Polyphenols on the Gut Microbiota and Blood Pressure: A Systematic Review of Randomized Clinical Trials in Humans. Nutrients 2022; 14:nu14112263. [PMID: 35684063 PMCID: PMC9182664 DOI: 10.3390/nu14112263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/19/2022] Open
Abstract
Berry consumption has beneficial effects on blood pressure. Intestinal microbiota transform berry phytochemicals into more bioactive forms. Thus, we performed a systematic review of randomized clinical trials to determine whether berry polyphenols in foods, extracts or supplements have effects on both the profile of gut microbiota and systolic and diastolic blood pressure in humans. PubMed, Cochrane Library, Scopus, and CAB Abstracts (EBSCOhost) were searched for randomized clinical trials in humans published from 1 January 2011 to 29 October 2021. Search results were imported into Covidence for screening and data extraction by two blinded reviewers, who also performed bias assessment independently. The literature search identified 216 publications; after duplicates were removed, 168 publications were screened with 12 full-text publications assessed for eligibility. Ultimately three randomized clinical trials in humans met the eligibility criteria. One randomized clinical trial showed a low risk of bias while the other two randomized clinical trials included low, high or unclear risk of bias. Together the randomized clinical trials showed that berry consumption (Aronia berry, strawberries, raspberries, cloudberries and bilberries) for 8–12 weeks had no significant effect on both blood pressure and the gut microbiota. More randomized clinical trials are needed to determine the effects of berry consumption on the profile of gut microbiota and blood pressure in humans.
Collapse
|
31
|
Rong L, Zou J, Ran W, Qi X, Chen Y, Cui H, Guo J. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front Endocrinol (Lausanne) 2022; 13:1087260. [PMID: 36726464 PMCID: PMC9884828 DOI: 10.3389/fendo.2022.1087260] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a series of diseases, involving excessive lipid deposition in the liver and is often accompanied by obesity, diabetes, dyslipidemia, abnormal blood pressure, and other metabolic disorders. In order to more accurately reflect its pathogenesis, an international consensus renamed NAFLD in 2020 as metabolic (dysfunction) associated with fatty liver disease (MAFLD). The changes in diet and lifestyle are recognized the non-drug treatment strategies; however, due to the complex pathogenesis of NAFLD, the current drug therapies are mainly focused on its pathogenic factors, key links of pathogenesis, and related metabolic disorders as targets. There is still a lack of specific drugs. In clinical studies, the common NAFLD treatments include the regulation of glucose and lipid metabolism to protect the liver and anti-inflammation. The NAFLD treatments based on the enterohepatic axis, targeting gut microbiota, are gradually emerging, and various new metabolism-regulating drugs are also under clinical development. Therefore, this review article has comprehensively discussed the research advancements in NAFLD treatment in recent years.
Collapse
Affiliation(s)
- Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Junyan Zou
- Medical Research Institute, Southwest University, Chongqing, China
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Wei Ran
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Xiaohong Qi
- Department of General surgery, Baoshan People’s Hospital of Yunnan Province, Baoshan, Yunnan, China
| | - Yaokai Chen
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
- *Correspondence: Jinjun Guo,
| |
Collapse
|