1
|
Lv B, Xing S, Wang Z, Zhang A, Wang Q, Bian Y, Pei Y, Sun H, Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur J Med Chem 2024; 279:116822. [PMID: 39241669 DOI: 10.1016/j.ejmech.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor involved in oxidative stress response, which controls the expression of various cytoprotective genes. Recent research has indicated that constitutively activated NRF2 can enhance patients' resistance to chemotherapy drugs, resulting in unfavorable prognosis. Therefore, the development of NRF2 inhibitors has emerged as a promising approach for overcoming drug resistance in cancer treatment. However, there are limited reports and reviews focusing on NRF2 inhibitors. This review aims to provide a comprehensive analysis of the structure and regulation of the NRF2 signaling pathway, followed by a comprehensive review of reported NRF2 inhibitors. Moreover, the current design strategies and future prospects of NRF2 inhibitors will be discussed, aiming to establish a foundation for the development of more effective NRF2 inhibitors.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhiqiang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
2
|
Limones-Gonzalez JE, Aguilar Esquivel P, Vazquez-Santillan K, Castro-Oropeza R, Lizarraga F, Maldonado V, Melendez-Zajgla J, Piña-Sanchez P, Mendoza-Almanza G. Changes in the molecular nodes of the Notch and NRF2 pathways in cervical cancer tissues from the precursor stages to invasive carcinoma. Oncol Lett 2024; 28:522. [PMID: 39268158 PMCID: PMC11391250 DOI: 10.3892/ol.2024.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer is a multifactorial disease characterized by the loss of control in the expression of genes known as cancer driver genes. Cancer driver genes trigger uncontrolled cell replication, which leads to the development of malignant tumors. A cluster of signal transduction pathways that contain cancer driver genes involved in cellular processes, such as cell proliferation, differentiation, apoptosis and dysregulated organ growth, are associated with cancer initiation and progression. In the present study, three signal transduction pathways involved in cervical cancer (CC) development were analyzed: The Hippo pathway (FAT atypical cadherin, yes-associated protein 1, SMAD4 and TEA domain family member 2), the Notch pathway [cellular-MYC, cAMP response element-binding binding protein (CREBBP), E1A-associated cellular p300 transcriptional co-activator protein and F-Box and WD repeat domain containing 7] and the nuclear factor erythroid 2-related factor 2 (NRF2) pathway [NRF2, kelch-like ECH-associated protein 1 (KEAP1), AKT and PIK3-catalytic subunit α]. Tumor samples from patients diagnosed with various stages of CC, including cervical intraepithelial neoplasia (CIN) 1, CIN 2, CIN 3, in situ CC and invasive CC, were analyzed. The mRNA expression levels were analyzed using reverse transcription-quantitative PCR assays, whereas protein expression levels were assessed through immunohistochemical tissue microarrays. High mRNA expression levels of c-MYC and AKT and low expression levels of NRF2 and KEAP1 were associated with a decreased survival time of patients with CC. Additionally, increased expression levels of c-MYC were detected in the invasive CC stage. At the protein level, increased NRF2 expression levels were observed in all five stages of CC samples compared with those in the cancer-free control samples. AKT1 was found to be dysregulated in the CIN 1 and CIN 2 stages, PI3K in the in situ and invasive stages, and CREBBP in the CIN 3 and in situ stages. In summary, the present study demonstrated significant changes in proteins of the Notch and NRF2 pathways in CC. NRF2 was overexpressed in all cervical cancer stages (cervical intraepithelial neoplasia, in situ CC and invasive CC). The present study makes an important contribution to the possible biomarker proteins to be analyzed for the presence of premalignant and malignant lesions in the cervix.
Collapse
Affiliation(s)
| | - Perla Aguilar Esquivel
- Department of Pathology, Zacatecas General Hospital Luz González Cosío, Zacatecas 98160, Mexico
| | - Karla Vazquez-Santillan
- Innovation in Precision Medicine Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Rosario Castro-Oropeza
- Molecular Oncology Laboratory, Oncology Research Unit, XXI Century National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Floria Lizarraga
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Jorge Melendez-Zajgla
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Patricia Piña-Sanchez
- Molecular Oncology Laboratory, Oncology Research Unit, XXI Century National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Gretel Mendoza-Almanza
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| |
Collapse
|
3
|
Nguyen TPM, Woods SL, Secombe KR, Tang S, Elz AS, Ayton S, Finnie J, Nagpal A, Pouliot N, Bowen JM. Ferroptosis - a potential feature underlying neratinib-induced colonic epithelial injury. Cancer Chemother Pharmacol 2024; 94:493-505. [PMID: 39002022 PMCID: PMC11438713 DOI: 10.1007/s00280-024-04699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE Neratinib, a small-molecule tyrosine kinase inhibitor (TKI) that irreversibly binds to human epidermal growth factor receptors 1, 2 and 4 (HER1/2/4), is an approved extended adjuvant therapy for patients with HER2-amplified or -overexpressed (HER2-positive) breast cancers. Patients receiving neratinib may experience mild-to-severe symptoms of gut toxicity including abdominal pain and diarrhoea. Despite being a highly prevalent complication in gut health, the biological processes underlying neratinib-induced gut injury, especially in the colon, remains unclear. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) and histology were integrated to study the effect of, and type of cell death induced by neratinib on colonic tissues collected from female Albino Wistar rats dosed with neratinib (50 mg/kg) daily for 28 days. Additionally, previously published bulk RNA-sequencing and CRISPR-screening datasets on human glioblastoma SF268 cell line and glioblastoma T895 xenograft, and mouse TBCP1 breast cancer cell line were leveraged to elucidate potential mechanisms of neratinib-induced cell death. RESULTS The severity of colonic epithelial injury, especially degeneration of surface lining colonocytes and infiltration of immune cells, was more pronounced in the distal colon than the proximal colon. Sequencing showed that apoptotic gene signature was enriched in neratinib-treated SF268 cells while ferroptotic gene signature was enriched in neratinib-treated TBCP1 cells and T895 xenograft. However, we found that ferroptosis, but less likely apoptosis, was a potential histopathological feature underlying colonic injury in rats treated with neratinib. CONCLUSION Ferroptosis is a potential feature of neratinib-induced colonic injury and that targeting molecular machinery governing neratinib-induced ferroptosis may represent an attractive therapeutic approach to ameliorate symptoms of gut toxicity.
Collapse
Affiliation(s)
- Triet P M Nguyen
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Susan L Woods
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Kate R Secombe
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Simon Tang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Aurelia S Elz
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - John Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Aadya Nagpal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Normand Pouliot
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joanne M Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
4
|
Famurewa AC, George MY, Ukwubile CA, Kumar S, Kamal MV, Belle VS, Othman EM, Pai SRK. Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence. Biometals 2024:10.1007/s10534-024-00637-7. [PMID: 39347848 DOI: 10.1007/s10534-024-00637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki, Ebonyi, Nigeria.
- Centre for Natural Products Discovery, School of P harmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cletus A Ukwubile
- Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Bama Road, Maiduguri, Borno, Nigeria
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehta V Kamal
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vijetha S Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Cancer Therapy Research Center, Department of Biochemistry-I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
5
|
Jin X, Lou X, Qi H, Zheng C, Li B, Siwu X, Liu R, Lv Q, Zhao A, Ruan J, Jiang M. NRF2 signaling plays an essential role in cancer progression through the NRF2-GPX2-NOTCH3 axis in head and neck squamous cell carcinoma. Oncogenesis 2024; 13:35. [PMID: 39333079 PMCID: PMC11437035 DOI: 10.1038/s41389-024-00536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
The activation of nuclear factor erythroid 2-related factor 2 (NRF2) has been observed in various cancers. Yet its exact contribution to the development of head and neck squamous cell carcinoma (HNSCC) remains undetermined. We previously found that NRF2 signaling is critical for the differentiation of squamous basal progenitor cells, while disruption of NRF2 causes basal cell hyperplasia. In this study, we revealed a correlation between elevated NRF2 activity and poor outcomes in HNSCC patients. We demonstrated that NRF2 facilitates tumor proliferation, migration, and invasion, as evidenced by both in vitro and in vivo studies. Significantly, NRF2 augments the expression of the antioxidant enzyme GPX2, thereby enhancing the proliferative, migratory, and invasive properties of HNSCC cells. Activation of GPX2 is critical for sustaining cancer stem cells (CSCs) by up-regulating NOTCH3, a key driver of cancer progression. These results elucidate that NRF2 regulates HNSCC progression through the NRF2-GPX2-NOTCH3 axis. Our findings proposed that pharmacological targeting of the NRF2-GPX2-NOTCH3 axis could be a potential therapeutic approach against HNSCC.
Collapse
Affiliation(s)
- Xiaoye Jin
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China
| | - Xiayuan Lou
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China
| | - Haoxiang Qi
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Chao Zheng
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China
| | - Bo Li
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China
| | - Xuerong Siwu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China
| | - Ren Liu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China
| | - Qiaoli Lv
- Institute of Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - An Zhao
- Institute of Cancer Research, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, China
| | - Ming Jiang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China.
| |
Collapse
|
6
|
Feng S, Zhang Y, Wang Y, Gao Y, Song Y. Harnessing Gene Editing Technology for Tumor Microenvironment Modulation: An Emerging Anticancer Strategy. Chemistry 2024:e202402485. [PMID: 39225329 DOI: 10.1002/chem.202402485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Cancer is a multifaceted disease influenced by both intrinsic cellular traits and extrinsic factors, with the tumor microenvironment (TME) being crucial for cancer progression. To satisfy their high proliferation and aggressiveness, cancer cells always plunder large amounts of nutrients and release various signals to their surroundings, forming a dynamic TME with special metabolic, immune, microbial and physical characteristics. Due to the neglect of interactions between tumor cells and the TME, traditional cancer therapies often struggle with challenges such as drug resistance, low efficacy, and recurrence. Importantly, the development of gene editing technologies, particularly the CRISPR-Cas system, offers promising new strategies for cancer treatment. Combined with nanomaterial strategies, CRISPR-Cas technology exhibits precision, affordability, and user-friendliness with reduced side effects, which holds great promise for profoundly altering the TME at the genetic level, potentially leading to lasting anticancer outcomes. This review will delve into how CRISPR-Cas can be leveraged to manipulate the TME, examining its potential as a transformative anticancer therapy.
Collapse
Affiliation(s)
- Shujun Feng
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Yanyi Wang
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, 241002, Wuhu, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
7
|
Ji Y, Li F, Zhang H, Yang L, Yi Y, Wang L, Chen H, Zhang Y, Yang Z. Targeting TRIM40 signaling reduces esophagus cancer development: A mechanism involving in protection of oroxylin A. Int Immunopharmacol 2024; 137:112362. [PMID: 38901248 DOI: 10.1016/j.intimp.2024.112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
Oroxylin A (OA), a naturally active O-methylated flavone derived from Scutellaria baicalensis, is regarded as a potential drug with strong anticancer effects. Unfortunately, our understanding of the antineoplastic mechanism of oral exposure to such flavonoids is inadequate. Growing evidence has confirmed the important role of OA in the regulation of oxidative stress- and inflammatory-response-induced tissue injury. However, it remains unknown whether OA is capable of mitigating esophagus cancer (EC) progression and its potential molecular mechanism. Furthermore, the tripartite motif containing 40 (TRIM40) is a ubiquitin ligase that mediates the immune response. The potential molecular function of TRIM40 in regulating EC is largely unknown. We confirmed that OA-triggered oxidative stress markedly upregulates TRIM40. During the OA challenge, increased TRIM40 reduced oxidative stress and promoted the ER stress response. Inversely, deletion of TRIM40 facilitated oxidative stress and blocked cancer cell growth in vivo and in vitro. Mechanistically, in response to OA treatment, TRIM40 directly interacts with Keap1 and promotes ubiquitin-proteasome degradation, thus leading to the promotion of Nrf2 nuclear translocation and its downstream cascade activation, which increases antioxidant defense and cell survival. TRIM40 expression was positively correlated with Nrf2 expression and negatively associated with Keap1 expression in EC xenografts and human specimens. In addition, high TRIM40 expression correlates with poor patient survival in EC. The findings suggested that oral exposure to OA significantly mitigates EC development by targeting TRIM40 activity. These findings further elucidated the potential role of TRIM40 in EC progression by mediating Keap1 degradation, which could be considered a therapeutic target for the treatment of such a disease.
Collapse
Affiliation(s)
- Yanlei Ji
- Department of Ultrasound Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Fengxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Hui Zhang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Linke Yang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Yan Yi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Lan Wang
- General Internal Medicine, Laiyang Hospital of Traditional Chinese Medicine, Laiyang, Shandong Province 265200, China
| | - Hua Chen
- Department of Interventional Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China
| | - Yong Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China.
| | - Zhengqiang Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China.
| |
Collapse
|
8
|
Li X, Lin Y, Lin S, Huang J, Ruan Z. Advancements in understanding cardiotoxicity of EGFR- TKIs in non-small cell lung cancer treatment and beyond. Front Pharmacol 2024; 15:1404692. [PMID: 39211774 PMCID: PMC11357958 DOI: 10.3389/fphar.2024.1404692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs) are a class of oral targeted anticancer drugs that have been demonstrated to significantly inhibit tumor progression and improve clinical prognosis in patients diagnosed with EGFR-mutated tumors, particularly in those with non-small cell lung cancer. However, the sustained usage of EGFR-TKIs may cause potential cardiotoxicity, thus limiting their applicability. The primary objective of this review is to systematically analyze the evolving landscape of research pertaining to EGFR-TKI-induced cardiotoxicity and elucidate its underlying mechanisms, such as PI3K signaling pathway inhibition, ion channel blockade, oxidative stress, inflammatory responses, and apoptosis. Additionally, the review includes an exploration of risk assessment for cardiotoxicity induced by EGFR-TKIs, along with management and response strategies. Prospective research directions are outlined, emphasizing the need for more accurate predictors of cardiotoxicity and the development of innovative intervention strategies. In summation, this review consolidates recent research advances, illuminates the risks associated with EGFR-TKI-induced cardiac toxicity and presents crucial insights for refining clinical dosage protocols, optimizing patient management strategies, and unraveling the intricate mechanisms governing EGFR-TKI-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Zhongbao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| |
Collapse
|
9
|
Yang R, Sun S, Zhang Q, Liu H, Wang L, Meng Y, Chen N, Wang Z, Liu H, Ji F, Dai Y, He G, Xu W, Ye Z, Zhang J, Ma Q, Xu J. Pharmacological Inhibition of TXNRD1 by a Small Molecule Flavonoid Butein Overcomes Cisplatin Resistance in Lung Cancer Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04331-0. [PMID: 39141196 DOI: 10.1007/s12011-024-04331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Mammalian cytosolic selenoprotein thioredoxin reductase (TXNRD1) is crucial for maintaining the reduced state of cellular thioredoxin 1 (TXN1) and is commonly up-regulated in cancer cells. TXNRD1 has been identified as an effective target in cancer chemotherapy. Discovering novel TXNRD1 inhibitors and elucidating the cellular effects of TXNRD1 inhibition are valuable for developing targeted therapies based on redox regulation strategies. In this study, we demonstrated that butein, a plant-derived small molecule flavonoid, is a novel TXNRD1 inhibitor. We found that butein irreversibly inhibited recombinant TXNRD1 activity in a time-dependent manner. Using TXNRD1 mutant variants and LC-MS, we identified that butein modifies the catalytic cysteine (Cys) residues of TXNRD1. In cellular contexts, butein promoted the accumulation of reactive oxygen species (ROS) and exhibited cytotoxic effects in HeLa cells. Notably, we found that pharmacological inhibition of TXNRD1 by butein overcame the cisplatin resistance of A549 cisplatin-resistant cells, accompanied by increased cellular ROS levels and enhanced expression of p53. Taken together, the results of this study demonstrate that butein is an effective small molecule inhibitor of TXNRD1, highlighting the therapeutic potential of inhibiting TXNRD1 in platinum-resistant cancer cells.
Collapse
Affiliation(s)
- Rui Yang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shibo Sun
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Qiuyu Zhang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Haowen Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Ling Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yao Meng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Na Chen
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Zihan Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Haiyan Liu
- College of Chemistry and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, China
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Yan Dai
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Gaohong He
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Weiping Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Zhiwei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Jianqiang Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
10
|
Dong Y, Kang H, Peng R, Liu Z, Liao F, Hu SA, Ding W, Wang P, Yang P, Zhu M, Wang S, Wu M, Ye D, Gan X, Li F, Song K. A clinical-stage Nrf2 activator suppresses osteoclast differentiation via the iron-ornithine axis. Cell Metab 2024; 36:1679-1695.e6. [PMID: 38569557 DOI: 10.1016/j.cmet.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/14/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Activating Nrf2 by small molecules is a promising strategy to treat postmenopausal osteoporosis. However, there is currently no Nrf2 activator approved for treating chronic diseases, and the downstream mechanism underlying the regulation of Nrf2 on osteoclast differentiation remains unclear. Here, we found that bitopertin, a clinical-stage glycine uptake inhibitor, suppresses osteoclast differentiation and ameliorates ovariectomy-induced bone loss by activating Nrf2. Mechanistically, bitopertin interacts with the Keap1 Kelch domain and decreases Keap1-Nrf2 binding, leading to reduced Nrf2 ubiquitination and degradation. Bitopertin is associated with less adverse events than clinically approved Nrf2 activators in both mice and human subjects. Furthermore, Nrf2 transcriptionally activates ferroportin-coding gene Slc40a1 to reduce intracellular iron levels in osteoclasts. Loss of Nrf2 or iron supplementation upregulates ornithine-metabolizing enzyme Odc1, which decreases ornithine levels and thereby promotes osteoclast differentiation. Collectively, our findings identify a novel clinical-stage Nrf2 activator and propose a novel Nrf2-iron-ornithine metabolic axis in osteoclasts.
Collapse
Affiliation(s)
- Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuben Liao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-An Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Ding
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengchao Yang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sibo Wang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglong Wu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Gan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Rodriguez-Tirado C, Sosa MS. How much do we know about the metastatic process? Clin Exp Metastasis 2024; 41:275-299. [PMID: 38520475 PMCID: PMC11374507 DOI: 10.1007/s10585-023-10248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2024]
Abstract
Cancer cells can leave their primary sites and travel through the circulation to distant sites, where they lodge as disseminated cancer cells (DCCs), even during the early and asymptomatic stages of tumor progression. In experimental models and clinical samples, DCCs can be detected in a non-proliferative state, defined as cellular dormancy. This state can persist for extended periods until DCCs reawaken, usually in response to niche-derived reactivation signals. Therefore, their clinical detection in sites like lymph nodes and bone marrow is linked to poor survival. Current cancer therapy designs are based on the biology of the primary tumor and do not target the biology of the dormant DCC population and thus fail to eradicate the initial or subsequent waves of metastasis. In this brief review, we discuss the current methods for detecting DCCs and highlight new strategies that aim to target DCCs that constitute minimal residual disease to reduce or prevent metastasis formation. Furthermore, we present current evidence on the relevance of DCCs derived from early stages of tumor progression in metastatic disease and describe the animal models available for their study. We also discuss our current understanding of the dissemination mechanisms utilized by genetically less- and more-advanced cancer cells, which include the functional analysis of intermediate or hybrid states of epithelial-mesenchymal transition (EMT). Finally, we raise some intriguing questions regarding the clinical impact of studying the crosstalk between evolutionary waves of DCCs and the initiation of metastatic disease.
Collapse
Affiliation(s)
- Carolina Rodriguez-Tirado
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| | - Maria Soledad Sosa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
- Cancer Dormancy and Tumor Microenvironment Institute/Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
12
|
Han B, Zhen F, Sun Y, Sun B, Wang HY, Liu W, Huang J, Liang X, Wang YR, Chen XS, Li SJ, Hu J. Tumor suppressor KEAP1 promotes HSPA9 degradation, controlling mitochondrial biogenesis in breast cancer. Cell Rep 2024; 43:114507. [PMID: 39003742 DOI: 10.1016/j.celrep.2024.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The oxidative-stress-related protein Kelch-like ECH-associated protein 1 (KEAP1) is a substrate articulator of E3 ubiquitin ligase, which plays an important role in the ubiquitination modification of proteins. However, the function of KEAP1 in breast cancer and its impact on the survival of patients with breast cancer remain unclear. Our study demonstrates that KEAP1, a positive prognostic factor, plays a crucial role in regulating cell proliferation, apoptosis, and cell cycle transition in breast cancer. We investigate the underlying mechanism using human tumor tissues, high-throughput detection technology, and a mouse xenograft tumor model. KEAP1 serves as a key regulator of cellular metabolism, the reprogramming of which is one of the hallmarks of tumorigenesis. KEAP1 has a significant effect on mitochondrial biogenesis and oxidative phosphorylation by regulating HSPA9 ubiquitination and degradation. These results suggest that KEAP1 could serve as a potential biomarker and therapeutic target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Bing Han
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Fang Zhen
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Yue Sun
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China
| | - Hong-Yi Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Wei Liu
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Jian Huang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Xiao Liang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang Province 150081, China
| | - Ya-Ru Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China
| | - Xue-Song Chen
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang Province 150001, China.
| | - Shui-Jie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
| | - Jing Hu
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Harbin, Heilongjiang Province 150040, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang Province 150081, China.
| |
Collapse
|
13
|
Nicolas E, Kosmider B, Cukierman E, Borghaei H, Golemis EA, Borriello L. Cancer treatments as paradoxical catalysts of tumor awakening in the lung. Cancer Metastasis Rev 2024:10.1007/s10555-024-10196-5. [PMID: 38963567 DOI: 10.1007/s10555-024-10196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Hossein Borghaei
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Lucia Borriello
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA.
| |
Collapse
|
14
|
Yu J, Zhang Y, Xue Y, Pei H, Li B. Emerging roles of long noncoding RNAs in enzymes related intracellular metabolic pathways in cancer biology. Biomed Pharmacother 2024; 176:116831. [PMID: 38824835 DOI: 10.1016/j.biopha.2024.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Metabolic reprogramming plays critical roles in the development and progression of tumor by providing cancer cells with a sufficient supply of nutrients and other factors needed for fast-proliferating. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in the initiation of metastasis via regulating the metabolic reprogramming in various cancers. In this paper, we aim to summarize that lncRNAs could participate in intracellular nutrient metabolism including glucose, amino acid, lipid, and nucleotide, regardless of whether lncRNAs have tumor-promoting or tumor-suppressor function. Meanwhile, modulation of lncRNAs in glucose metabolic enzymes in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle (TCA) in cancer is reviewed. We also discuss therapeutic strategies targeted at interfering with enzyme activity to decrease the utilization of glucoses, amino acid, nucleotide acid and lipid in tumor cells. This review focuses on our current understanding of lncRNAs participating in cancer cell metabolic reprogramming, paving the way for further investigation into the combination of such approaches with existing anti-cancer therapies.
Collapse
Affiliation(s)
- Jing Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; Department of clinical laboratory Center, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Zhang
- School of Clinical Medicine, Medical College of Soochow University, Suzhou 215123, China
| | - Yaqi Xue
- Department of Clinical Nutrition, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
16
|
De los Santos-Jiménez J, Campos-Sandoval JA, Alonso FJ, Márquez J, Matés JM. GLS and GLS2 Glutaminase Isoenzymes in the Antioxidant System of Cancer Cells. Antioxidants (Basel) 2024; 13:745. [PMID: 38929183 PMCID: PMC11200642 DOI: 10.3390/antiox13060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
A pathway frequently altered in cancer is glutaminolysis, whereby glutaminase (GA) catalyzes the main step as follows: the deamidation of glutamine to form glutamate and ammonium. There are two types of GA isozymes, named GLS and GLS2, which differ considerably in their expression patterns and can even perform opposing roles in cancer. GLS correlates with tumor growth and proliferation, while GLS2 can function as a context-dependent tumor suppressor. However, both isoenzymes have been described as essential molecules handling oxidant stress because of their involvement in glutathione production. We reviewed the literature to highlight the critical roles of GLS and GLS2 in restraining ROS and regulating both cellular signaling and metabolic stress due to their function as indirect antioxidant enzymes, as well as by modulating both reductive carboxylation and ferroptosis. Blocking GA activity appears to be a potential strategy in the dual activation of ferroptosis and inhibition of cancer cell growth in a ROS-mediated mechanism.
Collapse
Affiliation(s)
- Juan De los Santos-Jiménez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - José A. Campos-Sandoval
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - Francisco J. Alonso
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - Javier Márquez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| | - José M. Matés
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.D.l.S.-J.); (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29590 Málaga, Spain
| |
Collapse
|
17
|
Senchukova MA. Colorectal cancer and dormant metastases: Put to sleep or destroy? World J Gastrointest Oncol 2024; 16:2304-2317. [PMID: 38994146 PMCID: PMC11236221 DOI: 10.4251/wjgo.v16.i6.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
After reading the review by An et al "Biological factors driving colorectal cancer metastasis", which covers the problem of the metastasis of colorectal cancer (CRC), I had a desire to discuss with readers one of the exciting problems associated with dormant metastases. Most deaths from CRCs are caused by metastases, which can be detected both at diagnosis of the primary tumor and several years or even decades after treatment. This is because tumor cells that enter the bloodstream can be destroyed by the immune system, cause metastatic growth, or remain dormant for a long time. Dormant tumor cells may not manifest themselves throughout a person's life or, after some time and under appropriate conditions, may give rise to the growth of metastases. In this editorial, we will discuss the most important features of dormant metastases and the mechanisms of premetastatic niche formation, as well as factors that contribute to the activation of dormant metastases in CRCs. We will pay special attention to the possible mechanisms involved in the formation of circulating tumor cell complexes and the choice of therapeutic strategies that promote the dormancy or destruction of tumor cells in CRCs.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
18
|
Wilson EN, Wang C, Swarovski MS, Zera KA, Ennerfelt HE, Wang Q, Chaney A, Gauba E, Ramos Benitez JA, Le Guen Y, Minhas PS, Panchal M, Tan YJ, Blacher E, A Iweka C, Cropper H, Jain P, Liu Q, Mehta SS, Zuckerman AJ, Xin M, Umans J, Huang J, Durairaj AS, Serrano GE, Beach TG, Greicius MD, James ML, Buckwalter MS, McReynolds MR, Rabinowitz JD, Andreasson KI. TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models. Nat Neurosci 2024; 27:873-885. [PMID: 38539014 PMCID: PMC11102654 DOI: 10.1038/s41593-024-01610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 02/22/2024] [Indexed: 04/21/2024]
Abstract
Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-β42 oligomer-induced bioenergetic changes, suggesting that amyloid-β42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.
Collapse
Affiliation(s)
- Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Congcong Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Swarovski
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah E Ennerfelt
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Qian Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aisling Chaney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Gauba
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Javier A Ramos Benitez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Paras S Minhas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Maharshi Panchal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuting J Tan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eran Blacher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Chinyere A Iweka
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Haley Cropper
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Poorva Jain
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qingkun Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Swapnil S Mehta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Abigail J Zuckerman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Xin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob Umans
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jolie Huang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aarooran S Durairaj
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
19
|
Decollogny M, Rottenberg S. Persisting cancer cells are different from bacterial persisters. Trends Cancer 2024; 10:393-406. [PMID: 38429144 DOI: 10.1016/j.trecan.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
The persistence of drug-sensitive tumors poses a significant challenge in cancer treatment. The concept of bacterial persisters, which are a subpopulation of bacteria that survive lethal antibiotic doses, is frequently used to compare to residual disease in cancer. Here, we explore drug tolerance of cancer cells and bacteria. We highlight the fact that bacteria, in contrast to cancer cells, have been selected for survival at the population level and may therefore possess contingency mechanisms that cancer cells lack. The precise mechanisms of drug-tolerant cancer cells and bacterial persisters are still being investigated. Undoubtedly, by understanding common features as well as differences, we, in the cancer field, can learn from microbiology to find strategies to eradicate persisting cancer cells.
Collapse
Affiliation(s)
- Morgane Decollogny
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine and Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine and Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Zhong J, Tang Y. Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:1-18. [PMID: 38387519 DOI: 10.1016/j.pbiomolbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
According to international cancer data, breast cancer (BC) is the leading type of cancer in women. Although significant progress has been made in treating BC, metastasis and drug resistance continue to be the primary causes of mortality for many patients. Reactive oxygen species (ROS) play a dual role in vivo: normal levels can maintain the body's normal physiological function; however, high levels of ROS below the toxicity threshold can lead to mtDNA damage, activation of proto-oncogenes, and inhibition of tumor suppressor genes, which are important causes of BC. Differences in the production and regulation of ROS in different BC subtypes have important implications for the development and treatment of BC. ROS can also serve as an important intracellular signal transduction factor by affecting the antioxidant system, activating MAPK and PI3K/AKT, and other signal pathways to regulate cell cycle and change the relationship between cells and the activity of metalloproteinases, which significantly impacts the metastasis of BC. Hypoxia in the BC microenvironment increases ROS production levels, thereby inducing the expression of hypoxia inducible factor-1α (HIF-1α) and forming "ROS- HIF-1α-ROS" cycle that exacerbates BC development. Many anti-BC therapies generate sufficient toxic ROS to promote cancer cell apoptosis, but because the basal level of ROS in BC cells exceeds that of normal cells, this leads to up-regulation of the antioxidant system, drug efflux, and apoptosis inhibition, rendering BC cells resistant to the drug. ROS crosstalks with tumor vessels and stromal cells in the microenvironment, increasing invasiveness and drug resistance in BC.
Collapse
Affiliation(s)
- Jing Zhong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| |
Collapse
|
21
|
Sunassee ED, Deutsch RJ, D’Agostino VW, Castellano-Escuder P, Siebeneck EA, Ilkayeva O, Crouch BT, Madonna MC, Everitt J, Alvarez JV, Palmer GM, Hirschey MD, Ramanujam N. Optical imaging reveals chemotherapy-induced metabolic reprogramming of residual disease and recurrence. SCIENCE ADVANCES 2024; 10:eadj7540. [PMID: 38579004 PMCID: PMC10997195 DOI: 10.1126/sciadv.adj7540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Fewer than 20% of triple-negative breast cancer patients experience long-term responses to mainstay chemotherapy. Resistant tumor subpopulations use alternative metabolic pathways to escape therapy, survive, and eventually recur. Here, we show in vivo, longitudinal metabolic reprogramming in residual disease and recurrence of triple-negative breast cancer xenografts with varying sensitivities to the chemotherapeutic drug paclitaxel. Optical imaging coupled with metabolomics reported an increase in non-glucose-driven mitochondrial metabolism and an increase in intratumoral metabolic heterogeneity during regression and residual disease in resistant MDA-MB-231 tumors. Conversely, sensitive HCC-1806 tumors were primarily reliant on glucose uptake and minimal changes in metabolism or heterogeneity were observed over the tumors' therapeutic life cycles. Further, day-matched resistant HCC-1806 tumors revealed a higher reliance on mitochondrial metabolism and elevated metabolic heterogeneity compared to sensitive HCC-1806 tumors. Together, metabolic flexibility, increased reliance on mitochondrial metabolism, and increased metabolic heterogeneity are defining characteristics of persistent residual disease, features that will inform the appropriate type and timing of therapies.
Collapse
Affiliation(s)
| | - Riley J. Deutsch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Pol Castellano-Escuder
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | | | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Megan C. Madonna
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jeffrey Everitt
- Department of Pathology, School of Medicine, Duke University, Durham, NC, USA
| | - James V. Alvarez
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Matthew D. Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, NC, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| |
Collapse
|
22
|
Heidari-Kalvani N, Alizadeh-Fanalou S, Yarahmadi S, Fallah S, Alipourfard I, Farahmandian N, Barjesteh F, Bahreini E. Investigation of the effects of catharanthine and Q10 on Nrf2 and its association with MMP-9, MRP1, and Bcl-2 and apoptosis in a model of hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2507-2522. [PMID: 37855932 DOI: 10.1007/s00210-023-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Since the role of Nrf2 in cancer cell survival has been highlighted, the pharmacological modulation of the Nrf2-Keap1 pathway may provide new opportunities for cancer treatment. This study purposed to use ubiquinone (Q10) as an antioxidant and catharanthine alkaloid as a cAMP inducer suppressing HepG2 cells by reducing Nrf2 level. The effects of Q10 and catharanthine on HepG2 cells in terms of viability were analyzed by MTT test. MTT results were used to determine the effective concentration of both drugs for the subsequent treatment and analysis. Subsequently, the effects of Q10 and catharanthine in a single and combined manner on oxidant/antioxidant status, apoptosis, metastasis, and drug resistance of HepG2 cells were investigated by related methods. Both Q10 and catharanthine decreased the level of oxidative stress products and increased antioxidant capacity in HepG2 cells. Nrf2 gene expression decreased by Q10, but catharanthine unexpectedly increased it. Following Nrf2 alterations, the expression levels of MMP-9 and MRP1 involved in metastasis and drug resistance were significantly and dose-dependently decreased by Q10, while catharanthine slightly increased both. However, both drugs increased caspase 3/7 activity and apoptosis rate, and the effect of Q10 on apoptosis was stronger than that of catharanthine. Most of the effects of the combination treatments were similar to those of the Q10 single treatment and indicated the dominant effect over the catharanthine component. Despite the antioxidant and apoptotic properties of both agents, Q10 was better than catharanthine in inducing apoptosis, counteracting drug resistance, and metastasis in HepG2 cells.
Collapse
Affiliation(s)
- Nafiseh Heidari-Kalvani
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sudabeh Fallah
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Navid Farahmandian
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Barjesteh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Wu K, El Zowalaty AE, Sayin VI, Papagiannakopoulos T. The pleiotropic functions of reactive oxygen species in cancer. NATURE CANCER 2024; 5:384-399. [PMID: 38531982 DOI: 10.1038/s43018-024-00738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Cellular redox homeostasis is an essential, dynamic process that ensures the balance between reducing and oxidizing reactions within cells and thus has implications across all areas of biology. Changes in levels of reactive oxygen species can disrupt redox homeostasis, leading to oxidative or reductive stress that contributes to the pathogenesis of many malignancies, including cancer. From transformation and tumor initiation to metastatic dissemination, increasing reactive oxygen species in cancer cells can paradoxically promote or suppress the tumorigenic process, depending on the extent of redox stress, its spatiotemporal characteristics and the tumor microenvironment. Here we review how redox regulation influences tumorigenesis, highlighting therapeutic opportunities enabled by redox-related alterations in cancer cells.
Collapse
Affiliation(s)
- Katherine Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ahmed Ezat El Zowalaty
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Mancini C, Lori G, Pranzini E, Taddei ML. Metabolic challengers selecting tumor-persistent cells. Trends Endocrinol Metab 2024; 35:263-276. [PMID: 38071164 DOI: 10.1016/j.tem.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 03/14/2024]
Abstract
Resistance to anticancer therapy still represents one of the main obstacles to cancer treatment. Numerous components of the tumor microenvironment (TME) contribute significantly to the acquisition of drug resistance. Microenvironmental pressures arising during cancer evolution foster tumor heterogeneity (TH) and facilitate the emergence of drug-resistant clones. In particular, metabolic pressures arising in the TME may favor epigenetic adaptations supporting the acquisition of persistence features in tumor cells. Tumor-persistent cells (TPCs) are characterized by high phenotypic and metabolic plasticity, representing a noticeable advantage in chemo- and radio-resistance. Understanding the crosslink between the evolution of metabolic pressures in the TME, epigenetics, and TPC evolution is significant for developing novel therapeutic strategies specifically targeting TPC vulnerabilities to overcome drug resistance.
Collapse
Affiliation(s)
- Caterina Mancini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
25
|
Shao X, Yang D, Shan L, Yan X, Xu D, Li L, Sun Y, Yu Q, Zhou H, Ding Y, Tang J. TH-4000, a hypoxia-activated pan-HER inhibitor, shows excellent preclinical efficacy for the treatment of HER2 + breast cancer. Arch Toxicol 2024; 98:865-881. [PMID: 38212449 DOI: 10.1007/s00204-023-03670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
Human epidermal growth factor receptor 2-positive (HER2+) breast cancer is correlated with poor prognosis, the current treatment of which is still based on surgery and adjuvant targeted therapy with monoclonal antibody. Problems of drug resistance hinder the use of monoclonal antibodies. Subsequently, tyrosine kinase inhibitors (TKIs) have been noticed, TKIs have the advantages of multi-targets and reduced drug resistance. However, TKIs that target HER family proteins often cause adverse effects such as liver damage and diarrhea. Thus, TKIs with high selectivity are being developed. TH-4000, a prodrug that generated an active form TH-4000Effector (TH-4000E) under hypoxic condition, was evaluated in this research. We found that TH-4000E ([(E)-4-[[4-(3-bromo-4-chloroanilino)pyrido[3,4-d]pyrimidin-6-yl]amino]-4-oxobut-2-enyl]-dimethyl-[(3-methyl-5-nitroimidazol-4-yl)methyl]azanium) (1-1000 nM) had potent and highly selective toxic effects on HER2+ breast cancer cells and inhibited the phosphorylation of HER family kinases at lower doses than that of Lapatinib and Tucatinib. TH-4000E activated Caspase-3 and induced apoptosis through a reactive oxygen species (ROS)-dependent pathway. The prodrug TH-4000 ([(E)-4-[[4-(3-bromo-4-chloroanilino)pyrido[3,4-d]pyrimidin-6-yl]amino]-4-oxobut-2-enyl]-dimethyl-[(3-methyl-5-nitroimidazol-4-yl)methyl]azanium;bromide) (50 mg/kg) effectively suppressed the tumor growth with less liver damage in mouse tumor models. This hypoxia-targeted strategy has possessed advantage in avoiding drug-induced liver damage, TH-4000 could be a promising drug candidate for the treatment of HER2+ breast cancer.
Collapse
Affiliation(s)
- Xinyi Shao
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacy, The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dawei Yang
- Department of Pharmacy, The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China.
| | - Liuqun Shan
- Department of General Surgery, The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueqin Yan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yidan Sun
- Department of Laboratory Medicine, Pukou Branch Hospital of Jiangsu Province Hospital (Nanjing Pukou People Hospital), Nanjing, China
- Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Qiang Yu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yongbin Ding
- Department of General Surgery, Jurong Branch Hospital of Jiangsu Province Hospital (Jurong People Hospital), Nanjing Medical University, Zhenjiang, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jinhai Tang
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Derouane F, Desgres M, Moroni C, Ambroise J, Berlière M, Van Bockstal MR, Galant C, van Marcke C, Vara-Messler M, Hutten SJ, Jonkers J, Mourao L, Scheele CLGJ, Duhoux FP, Corbet C. Metabolic adaptation towards glycolysis supports resistance to neoadjuvant chemotherapy in early triple negative breast cancers. Breast Cancer Res 2024; 26:29. [PMID: 38374113 PMCID: PMC10875828 DOI: 10.1186/s13058-024-01788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) is the standard of care for patients with early-stage triple negative breast cancers (TNBC). However, more than half of TNBC patients do not achieve a pathological complete response (pCR) after NAC, and residual cancer burden (RCB) is associated with dismal long-term prognosis. Understanding the mechanisms underlying differential treatment outcomes is therefore critical to limit RCB and improve NAC efficiency. METHODS Human TNBC cell lines and patient-derived organoids were used in combination with real-time metabolic assays to evaluate the effect of NAC (paclitaxel and epirubicin) on tumor cell metabolism, in particular glycolysis. Diagnostic biopsies (pre-NAC) from patients with early TNBC were analyzed by bulk RNA-sequencing to evaluate the predictive value of a glycolysis-related gene signature. RESULTS Paclitaxel induced a consistent metabolic switch to glycolysis, correlated with a reduced mitochondrial oxidative metabolism, in TNBC cells. In pre-NAC diagnostic biopsies from TNBC patients, glycolysis was found to be upregulated in non-responders. Furthermore, glycolysis inhibition greatly improved response to NAC in TNBC organoid models. CONCLUSIONS Our study pinpoints a metabolic adaptation to glycolysis as a mechanism driving resistance to NAC in TNBC. Our data pave the way for the use of glycolysis-related genes as predictive biomarkers for NAC response, as well as the development of inhibitors to overcome this glycolysis-driven resistance to NAC in human TNBC patients.
Collapse
Affiliation(s)
- Françoise Derouane
- Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Manon Desgres
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium
| | - Camilla Moroni
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium
| | - Jérôme Ambroise
- Centre des Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 54, 1200, Brussels, Belgium
| | - Martine Berlière
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Pole of Gynecology (GYNE), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 52, 1200, Brussels, Belgium
| | - Mieke R Van Bockstal
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Christine Galant
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Pole of Morphology (MORF), Institut de Recherche Expérimentale Et Clinique (IREC), UCLouvain, Avenue Mounier 52, 1200, Brussels, Belgium
| | - Cédric van Marcke
- Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Marianela Vara-Messler
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium
- Sanofi Belgium, 9052, Zwijnaarde, Belgium
| | - Stefan J Hutten
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Larissa Mourao
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000, Louvain, Belgium
| | - Colinda L G J Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000, Louvain, Belgium
| | - Francois P Duhoux
- Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium.
| |
Collapse
|
27
|
Qiao L, Zhu G, Jiang T, Qian Y, Sun Q, Zhao G, Gao H, Li C. Self-Destructive Copper Carriers Induce Pyroptosis and Cuproptosis for Efficient Tumor Immunotherapy Against Dormant and Recurrent Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308241. [PMID: 37820717 DOI: 10.1002/adma.202308241] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Activating the strong immune system is a key initiative to counteract dormant tumors and prevent recurrence. Herein, self-destructive and multienzymatically active copper-quinone-GOx nanoparticles (abbreviated as CQG NPs) have been designed to induce harmonious and balanced pyroptosis and cuproptosis using the "Tai Chi mindset" to awaken the immune response for suppressing dormant and recurrent tumors. This cleverly designed material can disrupt the antioxidant defense mechanism of tumor cells by inhibiting the nuclear factor-erythroid 2-related factor 2 (NRF2)-quinone oxidoreductase 1 (NQO1) signaling pathway. Furthermore, combined with its excellent multienzyme activity, it activates NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis. Meanwhile, cuproptosis can be triggered by copper ions released from the self-destructive disintegration of CQG NPs and the sensitivity of cancer cells to cuproptosis is enhanced through the depletion of endogenous copper chelators via the Michael addition reaction between glutathione (GSH) and quinone ligand, oxygen production from catalase-like reaction, and starvation-induced glucose deficiency. More importantly, CQG NPs-induced pyroptosis and cuproptosis can promote immunosuppressive tumor microenvironment (TME) remodeling, enhance the infiltration of immune cells into the tumor, and activate robust systemic immunity. Collectively, this study provides a new strategy to resist tumor dormancy, prevent tumor recurrence, and improve the clinical prognosis of tumors.
Collapse
Affiliation(s)
- Luying Qiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Guoqing Zhu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Tengfei Jiang
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, P. R. China
| | - Yanrong Qian
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Guanghui Zhao
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, P. R. China
| | - Haidong Gao
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| |
Collapse
|
28
|
Jiao Y, Yu Y, Zheng M, Yan M, Wang J, Zhang Y, Zhang S. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis. Clin Transl Med 2024; 14:e1567. [PMID: 38362620 PMCID: PMC10870057 DOI: 10.1002/ctm2.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.
Collapse
Affiliation(s)
- Yuqi Jiao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yongjun Yu
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Minying Zheng
- Department of PathologyTianjin Union Medical CenterNankai UniversityTianjinChina
| | - Man Yan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiangping Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
29
|
Glorieux C, Enríquez C, González C, Aguirre-Martínez G, Buc Calderon P. The Multifaceted Roles of NRF2 in Cancer: Friend or Foe? Antioxidants (Basel) 2024; 13:70. [PMID: 38247494 PMCID: PMC10812565 DOI: 10.3390/antiox13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Physiological concentrations of reactive oxygen species (ROS) play vital roles in various normal cellular processes, whereas excessive ROS generation is central to disease pathogenesis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor that regulates the cellular antioxidant systems in response to oxidative stress by governing the expression of genes encoding antioxidant enzymes that shield cells from diverse oxidative alterations. NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) have been the focus of numerous investigations in elucidating whether NRF2 suppresses tumor promotion or conversely exerts pro-oncogenic effects. NRF2 has been found to participate in various pathological processes, including dysregulated cell proliferation, metabolic remodeling, and resistance to apoptosis. Herein, this review article will examine the intriguing role of phase separation in activating the NRF2 transcriptional activity and explore the NRF2 dual impacts on tumor immunology, cancer stem cells, metastasis, and long non-coding RNAs (LncRNAs). Taken together, this review aims to discuss the NRF2 multifaceted roles in both cancer prevention and promotion while also addressing the advantages, disadvantages, and limitations associated with modulating NRF2 therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Programa de Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Constanza González
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
| | - Gabriela Aguirre-Martínez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
30
|
Michels J, Venkatesh D, Liu C, Budhu S, Zhong H, George MM, Thach D, Yao ZK, Ouerfelli O, Liu H, Stockwell BR, Campesato LF, Zamarin D, Zappasodi R, Wolchok JD, Merghoub T. APR-246 increases tumor antigenicity independent of p53. Life Sci Alliance 2024; 7:e202301999. [PMID: 37891002 PMCID: PMC10610029 DOI: 10.26508/lsa.202301999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
We previously reported that activation of p53 by APR-246 reprograms tumor-associated macrophages to overcome immune checkpoint blockade resistance. Here, we demonstrate that APR-246 and its active moiety, methylene quinuclidinone (MQ) can enhance the immunogenicity of tumor cells directly. MQ treatment of murine B16F10 melanoma cells promoted activation of melanoma-specific CD8+ T cells and increased the efficacy of a tumor cell vaccine using MQ-treated cells even when the B16F10 cells lacked p53. We then designed a novel combination of APR-246 with the TLR-4 agonist, monophosphoryl lipid A, and a CD40 agonist to further enhance these immunogenic effects and demonstrated a significant antitumor response. We propose that the immunogenic effect of MQ can be linked to its thiol-reactive alkylating ability as we observed similar immunogenic effects with the broad-spectrum cysteine-reactive compound, iodoacetamide. Our results thus indicate that combination of APR-246 with immunomodulatory agents may elicit effective antitumor immune response irrespective of the tumor's p53 mutation status.
Collapse
Affiliation(s)
- Judith Michels
- https://ror.org/02r109517 Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- https://ror.org/02r109517 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Divya Venkatesh
- https://ror.org/02r109517 Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- https://ror.org/02r109517 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Cailian Liu
- https://ror.org/02r109517 Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- https://ror.org/02r109517 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sadna Budhu
- https://ror.org/02r109517 Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- https://ror.org/02r109517 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hong Zhong
- https://ror.org/02r109517 Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- https://ror.org/02r109517 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Mariam M George
- https://ror.org/02r109517 Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- https://ror.org/02r109517 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Thach
- https://ror.org/02r109517 Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- https://ror.org/02r109517 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Zhong-Ke Yao
- The Organic Synthesis Core Facility, MSK, New York, NY, USA
| | | | - Hengrui Liu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Luis Felipe Campesato
- https://ror.org/02r109517 Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- https://ror.org/02r109517 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dmitriy Zamarin
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jedd D Wolchok
- https://ror.org/02r109517 Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- https://ror.org/02r109517 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell, New York, NY, USA
| | - Taha Merghoub
- https://ror.org/02r109517 Department of Pharmacology, Swim Across America and Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
- https://ror.org/02r109517 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell, New York, NY, USA
| |
Collapse
|
31
|
Calvo V, Zheng W, Adam-Artigues A, Staschke KA, Huang X, Cheung JF, Nobre AR, Fujisawa S, Liu D, Fumagalli M, Surguladze D, Stokes ME, Nowacek A, Mulvihill M, Farias EF, Aguirre-Ghiso JA. A PERK-Specific Inhibitor Blocks Metastatic Progression by Limiting Integrated Stress Response-Dependent Survival of Quiescent Cancer Cells. Clin Cancer Res 2023; 29:5155-5172. [PMID: 37982738 PMCID: PMC10842363 DOI: 10.1158/1078-0432.ccr-23-1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE The integrated stress response (ISR) kinase PERK serves as a survival factor for both proliferative and dormant cancer cells. We aim to validate PERK inhibition as a new strategy to specifically eliminate solitary disseminated cancer cells (DCC) in secondary sites that eventually reawake and originate metastasis. EXPERIMENTAL DESIGN A novel clinical-grade PERK inhibitor (HC4) was tested in mouse syngeneic and PDX models that present quiescent/dormant DCCs or growth-arrested cancer cells in micro-metastatic lesions that upregulate ISR. RESULTS HC4 significantly blocks metastasis, by killing quiescent/slow-cycling ISRhigh, but not proliferative ISRlow DCCs. HC4 blocked expansion of established micro-metastasis that contained ISRhigh slow-cycling cells. Single-cell gene expression profiling and imaging revealed that a significant proportion of solitary DCCs in lungs were indeed dormant and displayed an unresolved ER stress as revealed by high expression of a PERK-regulated signature. In human breast cancer metastasis biopsies, GADD34 expression (PERK-regulated gene) and quiescence were positively correlated. HC4 effectively eradicated dormant bone marrow DCCs, which usually persist after rounds of therapies. Importantly, treatment with CDK4/6 inhibitors (to force a quiescent state) followed by HC4 further reduced metastatic burden. In HNSCC and HER2+ cancers HC4 caused cell death in dormant DCCs. In HER2+ tumors, PERK inhibition caused killing by reducing HER2 activity because of sub-optimal HER2 trafficking and phosphorylation in response to EGF. CONCLUSIONS Our data identify PERK as a unique vulnerability in quiescent or slow-cycling ISRhigh DCCs. The use of PERK inhibitors may allow targeting of pre-existing or therapy-induced growth arrested "persister" cells that escape anti-proliferative therapies.
Collapse
Affiliation(s)
- Veronica Calvo
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Current affiliation: Pathos, Chicago, IL, USA
| | - Wei Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Adam-Artigues
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Xin Huang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie F. Cheung
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sho Fujisawa
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Liu
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Maria Fumagalli
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - David Surguladze
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | | | - Ari Nowacek
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Mark Mulvihill
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Eduardo F. Farias
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
- Current affiliation: Serinus Biosciences, New York, NY, USA
| | - Julio A. Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
32
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
33
|
Nasr MM, Lynch CC. How circulating tumor cluster biology contributes to the metastatic cascade: from invasion to dissemination and dormancy. Cancer Metastasis Rev 2023; 42:1133-1146. [PMID: 37442876 PMCID: PMC10713810 DOI: 10.1007/s10555-023-10124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight future directions to advance our current understanding of CTC cluster biology.
Collapse
Affiliation(s)
- Mostafa M Nasr
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
34
|
Corvigno S, Badal S, Spradlin ML, Keating M, Pereira I, Stur E, Bayraktar E, Foster KI, Bateman NW, Barakat W, Darcy KM, Conrads TP, Maxwell GL, Lorenzi PL, Lutgendorf SK, Wen Y, Zhao L, Thaker PH, Goodheart MJ, Liu J, Fleming N, Lee S, Eberlin LS, Sood AK. In situ profiling reveals metabolic alterations in the tumor microenvironment of ovarian cancer after chemotherapy. NPJ Precis Oncol 2023; 7:115. [PMID: 37923835 PMCID: PMC10624842 DOI: 10.1038/s41698-023-00454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/26/2023] [Indexed: 11/06/2023] Open
Abstract
In this study, we investigated the metabolic alterations associated with clinical response to chemotherapy in patients with ovarian cancer. Pre- and post-neoadjuvant chemotherapy (NACT) tissues from patients with high-grade serous ovarian cancer (HGSC) who had poor response (PR) or excellent response (ER) to NACT were examined. Desorption electrospray ionization mass spectrometry (DESI-MS) was performed on sections of HGSC tissues collected according to a rigorous laparoscopic triage algorithm. Quantitative MS-based proteomics and phosphoproteomics were performed on a subgroup of pre-NACT samples. Highly abundant metabolites in the pre-NACT PR tumors were related to pyrimidine metabolism in the epithelial regions and oxygen-dependent proline hydroxylation of hypoxia-inducible factor alpha in the stromal regions. Metabolites more abundant in the epithelial regions of post-NACT PR tumors were involved in the metabolism of nucleotides, and metabolites more abundant in the stromal regions of post-NACT PR tumors were related to aspartate and asparagine metabolism, phenylalanine and tyrosine metabolism, nucleotide biosynthesis, and the urea cycle. A predictive model built on ions with differential abundances allowed the classification of patients' tumor responses as ER or PR with 75% accuracy (10-fold cross-validation ridge regression model). These findings offer new insights related to differential responses to chemotherapy and could lead to novel actionable targets.
Collapse
Grants
- P50 CA217685 NCI NIH HHS
- R01 CA193249 NCI NIH HHS
- R35 CA209904 NCI NIH HHS
- This work was supported, in part, by the MD Anderson Ovarian Cancer Moon Shot, CPRIT (RP180381), SPORE in ovarian cancer (CA217685), CA193249, CA209904, and CA193249-S1 from the National Institutes of Health, the Ovarian Cancer Research Alliance, the American Cancer Society, the Dunwoody Fund, and the Frank McGraw Memorial Chair in Cancer Research, the Foundation for Women’s cancer, Amy Krouse Rosenthal Foundation and Judy’s Mission to End Ovarian Cancer Foundation Research Grant for Early Detection of Ovarian Cancer. We acknowledge the Research Medical Library at MD Anderson Cancer Center for editing the text. For the GYN-COE collection, the collection and banking of these specimens and data were funded by awards HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027 from the Uniformed Services University of the Health Sciences from the Defense Health Program to the Henry M Jackson Foundation (HJF) for the Advancement of Military Medicine Inc. Gynecologic Cancer Center of Excellence Program (PI: Yovanni Casablanca, Co-PI: G. Larry Maxwell
- the Foundation for Women’s cancer, Amy Krouse Rosenthal Foundation and Judy’s Mission to End Ovarian Cancer Foundation Research Grant for Early Detection of Ovarian Cancer
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Badal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | | | - Michael Keating
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Igor Pereira
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine I Foster
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan K Lutgendorf
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, University of Iowa, Iowa City, IA, USA
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Premal H Thaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO, USA
| | - Michael J Goodheart
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Iowa, Iowa City, IA, USA
| | - Jinsong Liu
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
35
|
Abstract
The pattern of delayed recurrence in a subset of breast cancer patients has long been explained by a model that incorporates a variable period of cellular or tumor mass dormancy prior to disease relapse. In this review, we critically evaluate existing data to develop a framework for inferring the existence of dormancy in clinical contexts of breast cancer. We integrate these clinical data with rapidly evolving mechanistic insights into breast cancer dormancy derived from a broad array of genetically engineered mouse models as well as experimental models of metastasis. Finally, we propose actionable interventions and discuss ongoing clinical trials that translate the wealth of knowledge gained in the laboratory to the long-term clinical management of patients at a high risk of developing recurrence.
Collapse
Affiliation(s)
- Erica Dalla
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Amulya Sreekumar
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Department of Oncology, Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Cancer Center, Gruss Lipper Biophotonics Center, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lewis A Chodosh
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Medicine, Abramson Cancer Center, and 2-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Szebényi K, Füredi A, Bajtai E, Sama SN, Csiszar A, Gombos B, Szabó P, Grusch M, Szakács G. Effective targeting of breast cancer by the inhibition of P-glycoprotein mediated removal of toxic lipid peroxidation byproducts from drug tolerant persister cells. Drug Resist Updat 2023; 71:101007. [PMID: 37741091 DOI: 10.1016/j.drup.2023.101007] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Therapy resistance has long been considered to occur through the selection of pre-existing clones equipped to survive and quickly regrow, or through the acquisition of mutations during chemotherapy. Here we show that following in vitro treatment by chemotherapy, epithelial breast cancer cells adopt a transient drug tolerant phenotype characterized by cell cycle arrest, epithelial-to-mesenchymal transition (EMT) and the reversible upregulation of the multidrug resistance (MDR) efflux transporter P-glycoprotein (P-gp). The drug tolerant persister (DTP) state is reversible, as cells eventually resume proliferation, giving rise to a cell population resembling the initial, drug-naïve cell lines. However, recovery after doxorubicin treatment is almost completely eliminated when DTP cells are cultured in the presence of the P-gp inhibitor Tariquidar. Mechanistically, P-gp contributes to the survival of DTP cells by removing reactive oxygen species-induced lipid peroxidation products resulting from doxorubicin exposure. In vivo, prolonged administration of Tariquidar during doxorubicin treatment holidays resulted in a significant increase of the overall survival of Brca1-/-;p53-/- mammary tumor bearing mice. These results indicate that prolonged administration of a P-gp inhibitor during drug holidays would likely benefit patients without the risk of aggravated side effects related to the concomitantly administered toxic chemotherapy. Effective targeting of DTPs through the inhibition of P-glycoprotein may result in a paradigm shift, changing the focus from countering drug resistance mechanisms to preventing or delaying therapy resistance.
Collapse
Affiliation(s)
- Kornélia Szebényi
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
| | - András Füredi
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Institute of Technical Physics and Materials Science, Centre of Energy Research, Budapest, Hungary
| | - Eszter Bajtai
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Doctoral School of Pathological Sciences, Semmelweis University, Budapest, Hungary
| | - Sai Nagender Sama
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Agnes Csiszar
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balázs Gombos
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Szabó
- Centre for Structural Study, Research Centre for Natural Sciences, Budapest, Hungary
| | - Michael Grusch
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Gergely Szakács
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
37
|
You M, Jiang Q, Huang H, Ma F, Zhou X. 4-Octyl itaconate inhibits inflammation to attenuate psoriasis as an agonist of oxeiptosis. Int Immunopharmacol 2023; 124:110915. [PMID: 37741130 DOI: 10.1016/j.intimp.2023.110915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Psoriasis is a highly prevalent chronic disease associated with a substantial social and economic burden. Oxeiptosis is a programmed cell death that occurs when cells are in a state of high oxidative stress, which has a potent anti-inflammatory effect. However, there is still no research on oxeiptosis in psoriasis, and the agonists or antagonists of oxeiptosis remain an unclear field. Here, we found that oxeiptosis of keratinocytes was inhibited in psoriasis lesions. KEAP1, as the upstream molecular component of oxeiptosis, is highly expressed in psoriasis lesions. Knockdown of KEAP1 in HaCaT cells caused oxeiptosis in the condition of M5 cocktail stimulation. Next, we found that the cell-permeable derivative of itaconate, 4-octylitaconate (OI) promoted oxeiptosis of keratinocytes by inhibiting KEAP1 and then activating PGAM5 which are two upstream molecular components of oxeiptosis. At the same time, OI can reduce the expression of inflammatory cytokines induced by M5 cocktail stimulation in vitro. Similarly, we found that OI can alleviate IMQ-induced psoriatic lesions in mice and downregulate the levels of inflammatory cytokines in psoriatic lesions. In summary, our findings suggest that oxeiptosis of keratinocytes was inhibited in psoriasis and OI can significantly inhibit inflammation and alleviate psoriasis as an agonist of oxeiptosis, indicating that oxeiptosis may be involved in regulating the progression of psoriasis, which may provide new therapeutic targets for psoriasis treatment.
Collapse
Affiliation(s)
- Mengshu You
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huining Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fangyu Ma
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Xingchen Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
38
|
Xi C, Pang J, Barrett A, Horuzsko A, Ande S, Mivechi NF, Zhu X. Nrf2 Drives Hepatocellular Carcinoma Progression through Acetyl-CoA-Mediated Metabolic and Epigenetic Regulatory Networks. Mol Cancer Res 2023; 21:1079-1092. [PMID: 37364049 PMCID: PMC10592407 DOI: 10.1158/1541-7786.mcr-22-0935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Correlations between the oxidative stress response and metabolic reprogramming have been observed during malignant tumor formation; however, the detailed mechanism remains elusive. The transcription factor Nrf2, a master regulator of the oxidative stress response, mediates metabolic reprogramming in multiple cancers. In a mouse model of hepatocellular carcinoma (HCC), through metabolic profiling, genome-wide gene expression, and chromatin structure analyses, we present new evidence showing that in addition to altering antioxidative stress response signaling, Nrf2 ablation impairs multiple metabolic pathways to reduce the generation of acetyl-CoA and suppress histone acetylation in tumors, but not in tumor-adjacent normal tissue. Nrf2 ablation and dysregulated histone acetylation impair transcription complex assembly on downstream target antioxidant and metabolic regulatory genes for expression regulation. Mechanistic studies indicate that the regulatory function of Nrf2 is low glucose dependent, the effect of which is demolished under energy refeeding. Together, our results implicate an unexpected effect of Nrf2 on acetyl-CoA generation, in addition to its classic antioxidative stress response regulatory activity, integrates metabolic and epigenetic programs to drive HCC progression. IMPLICATIONS This study highlights that Nrf2 integrates metabolic and epigenetic regulatory networks to dictate tumor progression and that Nrf2 targeting is therapeutically exploitable in HCC treatment.
Collapse
Affiliation(s)
- Caixia Xi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Junfeng Pang
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Amanda Barrett
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | | | - Nahid F. Mivechi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Department of Radiation Oncology, Augusta University, Augusta, GA 30912, USA
| | - Xingguo Zhu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
39
|
Sunassee ED, Jardim-Perassi BV, Madonna MC, Ordway B, Ramanujam N. Metabolic Imaging as a Tool to Characterize Chemoresistance and Guide Therapy in Triple-Negative Breast Cancer (TNBC). Mol Cancer Res 2023; 21:995-1009. [PMID: 37343066 PMCID: PMC10592445 DOI: 10.1158/1541-7786.mcr-22-1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/07/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
After an initial response to chemotherapy, tumor relapse is frequent. This event is reflective of both the spatiotemporal heterogeneities of the tumor microenvironment as well as the evolutionary propensity of cancer cell populations to adapt to variable conditions. Because the cause of this adaptation could be genetic or epigenetic, studying phenotypic properties such as tumor metabolism is useful as it reflects molecular, cellular, and tissue-level dynamics. In triple-negative breast cancer (TNBC), the characteristic metabolic phenotype is a highly fermentative state. However, during treatment, the spatial and temporal dynamics of the metabolic landscape are highly unstable, with surviving populations taking on a variety of metabolic states. Thus, longitudinally imaging tumor metabolism provides a promising approach to inform therapeutic strategies, and to monitor treatment responses to understand and mitigate recurrence. Here we summarize some examples of the metabolic plasticity reported in TNBC following chemotherapy and review the current metabolic imaging techniques available in monitoring chemotherapy responses clinically and preclinically. The ensemble of imaging technologies we describe has distinct attributes that make them uniquely suited for a particular length scale, biological model, and/or features that can be captured. We focus on TNBC to highlight the potential of each of these technological advances in understanding evolution-based therapeutic resistance.
Collapse
Affiliation(s)
- Enakshi D. Sunassee
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Megan C. Madonna
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bryce Ordway
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
40
|
Song X, Lan Y, Zheng X, Zhu Q, Liao X, Liu K, Zhang W, Peng Q, Zhu Y, Zhao L, Chen X, Shu Y, Yang K, Hu J. Targeting drug-tolerant cells: A promising strategy for overcoming acquired drug resistance in cancer cells. MedComm (Beijing) 2023; 4:e342. [PMID: 37638338 PMCID: PMC10449058 DOI: 10.1002/mco2.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Drug resistance remains the greatest challenge in improving outcomes for cancer patients who receive chemotherapy and targeted therapy. Surmounting evidence suggests that a subpopulation of cancer cells could escape intense selective drug treatment by entering a drug-tolerant state without genetic variations. These drug-tolerant cells (DTCs) are characterized with a slow proliferation rate and a reversible phenotype. They reside in the tumor region and may serve as a reservoir for resistant phenotypes. The survival of DTCs is regulated by epigenetic modifications, transcriptional regulation, mRNA translation remodeling, metabolic changes, antiapoptosis, interactions with the tumor microenvironment, and activation of signaling pathways. Thus, targeting the regulators of DTCs opens a new avenue for the treatment of therapy-resistant tumors. In this review, we first provide an overview of common characteristics of DTCs and the regulating networks in DTCs development. We also discuss the potential therapeutic opportunities to target DTCs. Last, we discuss the current challenges and prospects of the DTC-targeting approach to overcome acquired drug resistance. Reviewing the latest developments in DTC research could be essential in discovering of methods to eliminate DTCs, which may represent a novel therapeutic strategy for preventing drug resistance in the future.
Collapse
Affiliation(s)
- Xiaohai Song
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Lan
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiuli Zheng
- Department of RadiologyHuaxi MR Research Center (HMRRC) and Critical Care MedicinePrecision Medicine Center, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Qianyu Zhu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xuliang Liao
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Kai Liu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Weihan Zhang
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - QiangBo Peng
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yunfeng Zhu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Linyong Zhao
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaolong Chen
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Shu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Kun Yang
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jiankun Hu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
41
|
Pendleton KE, Wang K, Echeverria GV. Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. Front Cell Dev Biol 2023; 11:1254313. [PMID: 37779896 PMCID: PMC10534013 DOI: 10.3389/fcell.2023.1254313] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Deregulation of tumor cell metabolism is widely recognized as a "hallmark of cancer." Many of the selective pressures encountered by tumor cells, such as exposure to anticancer therapies, navigation of the metastatic cascade, and communication with the tumor microenvironment, can elicit further rewiring of tumor cell metabolism. Furthermore, phenotypic plasticity has been recently appreciated as an emerging "hallmark of cancer." Mitochondria are dynamic organelles and central hubs of metabolism whose roles in cancers have been a major focus of numerous studies. Importantly, therapeutic approaches targeting mitochondria are being developed. Interestingly, both plastic (i.e., reversible) and permanent (i.e., stable) metabolic adaptations have been observed following exposure to anticancer therapeutics. Understanding the plastic or permanent nature of these mechanisms is of crucial importance for devising the initiation, duration, and sequential nature of metabolism-targeting therapies. In this review, we compare permanent and plastic mitochondrial mechanisms driving therapy resistance. We also discuss experimental models of therapy-induced metabolic adaptation, therapeutic implications for targeting permanent and plastic metabolic states, and clinical implications of metabolic adaptations. While the plasticity of metabolic adaptations can make effective therapeutic treatment challenging, understanding the mechanisms behind these plastic phenotypes may lead to promising clinical interventions that will ultimately lead to better overall care for cancer patients.
Collapse
Affiliation(s)
- Katherine E. Pendleton
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Karen Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Gloria V. Echeverria
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
42
|
Mapuskar KA, Pulliam CF, Zepeda-Orozco D, Griffin BR, Furqan M, Spitz DR, Allen BG. Redox Regulation of Nrf2 in Cisplatin-Induced Kidney Injury. Antioxidants (Basel) 2023; 12:1728. [PMID: 37760031 PMCID: PMC10525889 DOI: 10.3390/antiox12091728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin, a potent chemotherapeutic agent, is marred by severe nephrotoxicity that is governed by mechanisms involving oxidative stress, inflammation, and apoptosis pathways. The transcription factor Nrf2, pivotal in cellular defense against oxidative stress and inflammation, is the master regulator of the antioxidant response, upregulating antioxidants and cytoprotective genes under oxidative stress. This review discusses the mechanisms underlying chemotherapy-induced kidney injury, focusing on the role of Nrf2 in cancer therapy and its redox regulation in cisplatin-induced kidney injury. We also explore Nrf2's signaling pathways, post-translational modifications, and its involvement in autophagy, as well as examine redox-based strategies for modulating Nrf2 in cisplatin-induced kidney injury while considering the limitations and potential off-target effects of Nrf2 modulation. Understanding the redox regulation of Nrf2 in cisplatin-induced kidney injury holds significant promise for developing novel therapeutic interventions. This knowledge could provide valuable insights into potential strategies for mitigating the nephrotoxicity associated with cisplatin, ultimately enhancing the safety and efficacy of cancer treatment.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Casey F. Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Diana Zepeda-Orozco
- Pediatric Nephrology and Hypertension at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin R. Griffin
- Division of Nephrology, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Muhammad Furqan
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
43
|
Ribeiro E, Vale N. Understanding the Clinical Use of Levosimendan and Perspectives on its Future in Oncology. Biomolecules 2023; 13:1296. [PMID: 37759695 PMCID: PMC10526140 DOI: 10.3390/biom13091296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Drug repurposing, also known as repositioning or reprofiling, has emerged as a promising strategy to accelerate drug discovery and development. This approach involves identifying new medical indications for existing approved drugs, harnessing the extensive knowledge of their bioavailability, pharmacokinetics, safety and efficacy. Levosimendan, a calcium sensitizer initially approved for heart failure, has been repurposed for oncology due to its multifaceted pharmacodynamics, including phosphodiesterase 3 inhibition, nitric oxide production and reduction of reactive oxygen species. Studies have demonstrated that levosimendan inhibits cancer cell migration and sensitizes hypoxic cells to radiation. Moreover, it exerts organ-protective effects by activating mitochondrial potassium channels. Combining levosimendan with traditional anticancer agents such as 5-fluorouracil (5-FU) has shown a synergistic effect in bladder cancer cells, highlighting its potential as a novel therapeutic approach. This drug repurposing strategy offers a cost-effective and time-efficient solution for developing new treatments, ultimately contributing to the advancement of cancer therapeutics and improved outcomes for patients. Further investigations and clinical trials are warranted to validate the effectiveness of levosimendan in oncology and explore its potential benefits in a clinical setting.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
44
|
Wang Q, Jiang S, Wu Y, Zhang Y, Huang M, Qiu Y, Luo X. Prognostic and clinicopathological role of RACK1 for cancer patients: a systematic review and meta-analysis. PeerJ 2023; 11:e15873. [PMID: 37601269 PMCID: PMC10434108 DOI: 10.7717/peerj.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background The receptor for activated C kinase 1 (RACK1) expression is associated with clinicopathological characteristics and the prognosis of various cancers; however, the conclusions are controversial. As a result, this study aimed to explore the clinicopathological and prognostic values of RACK1 expression in patients with cancer. Methodology PubMed, Embase, Web of Science, Cochrane Library, and Scopus were comprehensively explored from their inception to April 20, 2023, for selecting studies on the clinicopathological and prognostic role of RACK1 in patients with cancer that met the criteria for inclusion in this review. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were used to assess the prognosis-predictive value of RACK1 expression, while pooled odds ratios (ORs) and 95% CIs were used to evaluate the correlation between RACK1 expression and the clinicopathological characteristics of patients with cancer. The quality of the included studies was evaluated using the Newcastle-Ottawa Scale. Results Twenty-two studies (13 on prognosis and 20 on clinicopathological characteristics) were included in this systematic review and meta-analysis. The findings indicated that high RACK1 expression was significantly associated with poor overall survival (HR = 1.62; 95% CI, 1.13-2.33; P = 0.009; I2 = 89%) and reversely correlated with disease-free survival/recurrence-free survival (HR = 1.87; 95% CI, 1.22-2.88; P = 0.004; I2 = 0%). Furthermore, increased RACK1 expression was significantly associated with lymphatic invasion/N+ stage (OR = 1.74; 95% CI, 1.04-2.90; P = 0.04; I2 = 79%) of tumors. Conclusions RACK1 may be a global predictive marker of poor prognosis in patients with cancer and unfavorable clinicopathological characteristics. However, further clinical studies are required to validate these findings.
Collapse
Affiliation(s)
- Qiuhao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sixin Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Qiu
- Laboratory of Pathology, Clinical Research Center for Breast, Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Gnanaprakasam JNR, Kushwaha B, Liu L, Chen X, Kang S, Wang T, Cassel TA, Adams CM, Higashi RM, Scott DA, Xin G, Li Z, Yang J, Lane AN, Fan TWM, Zhang J, Wang R. Asparagine restriction enhances CD8 + T cell metabolic fitness and antitumoral functionality through an NRF2-dependent stress response. Nat Metab 2023; 5:1423-1439. [PMID: 37550596 PMCID: PMC10447245 DOI: 10.1038/s42255-023-00856-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
Robust and effective T cell immune surveillance and cancer immunotherapy require proper allocation of metabolic resources to sustain energetically costly processes, including growth and cytokine production. Here, we show that asparagine (Asn) restriction on CD8+ T cells exerted opposing effects during activation (early phase) and differentiation (late phase) following T cell activation. Asn restriction suppressed activation and cell cycle entry in the early phase while rapidly engaging the nuclear factor erythroid 2-related factor 2 (NRF2)-dependent stress response, conferring robust proliferation and effector function on CD8+ T cells during differentiation. Mechanistically, NRF2 activation in CD8+ T cells conferred by Asn restriction rewired the metabolic program by reducing the overall glucose and glutamine consumption but increasing intracellular nucleotides to promote proliferation. Accordingly, Asn restriction or NRF2 activation potentiated the T cell-mediated antitumoral response in preclinical animal models, suggesting that Asn restriction is a promising and clinically relevant strategy to enhance cancer immunotherapy. Our study revealed Asn as a critical metabolic node in directing the stress signaling to shape T cell metabolic fitness and effector functions.
Collapse
Affiliation(s)
- J N Rashida Gnanaprakasam
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Bhavana Kushwaha
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Lingling Liu
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Xuyong Chen
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Siwen Kang
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Tingting Wang
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Christopher M Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - David A Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gang Xin
- Department of Microbial Infection and Immunity, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Zihai Li
- Department of Microbial Infection and Immunity, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Ji Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruoning Wang
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
46
|
Liang XW, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Wang SZ, Wu JC. Characteristics and molecular mechanism of drug-tolerant cells in cancer: a review. Front Oncol 2023; 13:1177466. [PMID: 37483492 PMCID: PMC10360399 DOI: 10.3389/fonc.2023.1177466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Drug resistance in tumours has seriously hindered the therapeutic effect. Tumour drug resistance is divided into primary resistance and acquired resistance, and the recent study has found that a significant proportion of cancer cells can acquire stable drug resistance from scratch. This group of cells first enters the drug tolerance state (DT state) under drug pressure, and gradually acquires stable drug resistance through adaptive mutations in this state. Although the specific mechanisms underlying the formation of drug tolerant cells (DTCs) remain unclear, various proteins and signalling pathways have been identified as being involved in the formation of DTCs. In the current review, we summarize the characteristics, molecular mechanisms and therapeutic strategies of DTCs in detail.
Collapse
Affiliation(s)
- Xian-Wen Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Bing- Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jia-Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhi Cao
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng-ran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiong Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Sheng-Zhong Wang
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jin-Cai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
47
|
Luo G, Kumar H, Alridge K, Rieger S, Jiang E, Chan ER, Soliman A, Mahdi H, Letterio JJ. A core NRF2 gene set defined through comprehensive transcriptomic analysis predicts selective drug resistance and poor multi-cancer prognosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537691. [PMID: 37131828 PMCID: PMC10153264 DOI: 10.1101/2023.04.20.537691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The NRF2-KEAP1 pathway plays an important role in the cellular response to oxidative stress but may also contribute to metabolic changes and drug resistance in cancer. We investigated the activation of NRF2 in human cancers and fibroblast cells through KEAP1 inhibition and cancer associated KEAP1/NRF2 mutations. We define a core set of 14 upregulated NRF2 target genes from seven RNA-Sequencing databases that we generated and analyzed, which we validated this gene set through analyses of published databases and gene sets. An NRF2 activity score based on expression of these core target genes correlates with resistance to drugs such as PX-12 and necrosulfonamide but not to paclitaxel or bardoxolone methyl. We validated these findings and also found NRF2 activation led to radioresistance in cancer cell lines. Finally, our NRF2 score is prognostic for cancer survival and validated in additional independent cohorts for novel cancers types not associated with NRF2-KEAP1 mutations. These analyses define a core NRF2 gene set that is robust, versatile, and useful as a NRF2 biomarker and for predicting drug resistance and cancer prognosis.
Collapse
|
48
|
Wiecek AJ, Cutty SJ, Kornai D, Parreno-Centeno M, Gourmet LE, Tagliazucchi GM, Jacobson DH, Zhang P, Xiong L, Bond GL, Barr AR, Secrier M. Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer. Genome Biol 2023; 24:128. [PMID: 37221612 PMCID: PMC10204193 DOI: 10.1186/s13059-023-02963-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/07/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture and whose mutational drivers remain largely unknown. RESULTS We develop methodology to robustly identify this state from transcriptomic signals and characterise its prevalence and genomic constraints in solid primary tumours. We show that G0 arrest preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel genomic dependencies of this process and validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single-cell data. CONCLUSIONS We propose a G0 arrest transcriptional signature that is linked with therapeutic resistance and can be used to further study and clinically track this state.
Collapse
Affiliation(s)
- Anna J. Wiecek
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Stephen J. Cutty
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Daniel Kornai
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Mario Parreno-Centeno
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Lucie E. Gourmet
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - Daniel H. Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, UK
| | - Ping Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lingyun Xiong
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gareth L. Bond
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Cell Cycle Control Team, MRC London Institute of Medical Sciences (LMS), London, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
49
|
Jovanović M, Kovačević S, Brkljačić J, Djordjevic A. Oxidative Stress Linking Obesity and Cancer: Is Obesity a 'Radical Trigger' to Cancer? Int J Mol Sci 2023; 24:ijms24098452. [PMID: 37176160 PMCID: PMC10179114 DOI: 10.3390/ijms24098452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
50
|
Ceyhan Y, Garcia NMG, Alvarez JV. Immune cells in residual disease and recurrence. Trends Cancer 2023:S2405-8033(23)00057-2. [PMID: 37150627 DOI: 10.1016/j.trecan.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
Tumor recurrence following potentially curative therapy constitutes a major obstacle to achieving cures in patients with cancer. Recurrent tumors frequently arise from a population of residual cancer cells - also referred to as minimal residual disease (RD) or persister cells - that survive therapy and persist for prolonged periods prior to tumor relapse. While there has been significant recent progress in deciphering tumor-cell-intrinsic pathways that regulate residual cancer cell survival and recurrence, much less is known about how the tumor microenvironment (TME) of residual tumors impacts persister cancer cells or tumor recurrence. In this review, we highlight recent studies exploring the regulation and function of immune cells in RD and discuss therapeutic opportunities to target immune cells in residual tumors.
Collapse
Affiliation(s)
- Yasemin Ceyhan
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nina Marie G Garcia
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James V Alvarez
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|