1
|
Ruff C, Bombach P, Roder C, Weinbrenner E, Artzner C, Zerweck L, Paulsen F, Hauser TK, Ernemann U, Gohla G. Multidisciplinary quantitative and qualitative assessment of IDH-mutant gliomas with full diagnostic deep learning image reconstruction. Eur J Radiol Open 2024; 13:100617. [PMID: 39717474 PMCID: PMC11664152 DOI: 10.1016/j.ejro.2024.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Rationale and Objectives: Diagnostic accuracy and therapeutic decision-making for IDH-mutant gliomas in tumor board reviews are based on MRI and multidisciplinary interactions. Materials and Methods This study explores the feasibility of deep learning-based reconstruction (DLR) in MRI for IDH-mutant gliomas. The research utilizes a multidisciplinary approach, engaging neuroradiologists, neurosurgeons, neuro-oncologists, and radiotherapists to evaluate qualitative aspects of DLR and conventional reconstructed (CR) sequences. Furthermore, quantitative image quality and tumor volumes according to Response Assessment in Neuro-Oncology (RANO) 2.0 standards were assessed. Results All DLR sequences consistently outperformed CR sequences (median of 4 for all) in qualitative image quality across all raters (p < 0.001 for all) and revealed higher SNR and CNR values (p < 0.001 for all). Preference for all DLR over CR was overwhelming, with ratings of 84 % from the neuroradiologist, 100 % from the neurosurgeon, 92 % from the neuro-oncologist, and 84 % from the radiation oncologist. The RANO 2.0 compliant measurements showed no significant difference between the CR and DRL sequences (p = 0.142). Conclusion This study demonstrates the clinical feasibility of DLR in MR imaging of IDH-mutant gliomas, with significant time savings of 29.6 % on average and non-inferior image quality to CR. DLR sequences received strong multidisciplinary preference, underscoring their potential for enhancing neuro-oncological decision-making and suitability for clinical implementation.
Collapse
Affiliation(s)
- Christer Ruff
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| | - Paula Bombach
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tuebingen, Tuebingen D-72076, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen Center of Neuro-Oncology, Tuebingen D-72076, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen D-72070, Germany
| | - Constantin Roder
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen D-72070, Germany
- Department of Neurosurgery, University of Tuebingen, Tuebingen D-72076, Germany
| | - Eliane Weinbrenner
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| | - Christoph Artzner
- Department of Diagnostic and Interventional Radiology, Diakonie Klinikum Stuttgart, Stuttgart D-70176, Germany
| | - Leonie Zerweck
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen D-72076, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| | - Georg Gohla
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| |
Collapse
|
2
|
Yue Q, Zhang M, Jiang W, Gao L, Ye R, Hong J, Li Y. Prognostic value of FDX1, the cuprotosis key gene, and its prediction models across imaging modalities and histology. BMC Cancer 2024; 24:1381. [PMID: 39528953 PMCID: PMC11552402 DOI: 10.1186/s12885-024-13149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Cuprotosis has been identified as a novel way of cell death. The key regulator ferredoxin 1 (FDX1) was explored via pan-cancer analysis, and its prediction models were proposed across seven malignancies and two imaging modalities. METHODS The prognostic value of FDX1 was explored via 1654 cases of 33 types of cancer in the Cancer Genome Atlas database. The MRI cohort of hepatocellular carcinoma in the First Affiliated Hospital of Fujian Medical University, and CT and MRI images from the Cancer Imaging Archive, REMBRANDT and Duke databases were exploited to formulate radiomic models to predict FDX1 expression. After segmentation of volumes of interest and feature extraction, the recursive feature elimination algorithm was used to screen features, logistic regression was used to model features, immunohistochemistry staining with FDX1 antibody was performed to test the radiomic model. RESULTS FDX1 was found to be prognostic in various types of cancer. The area under the receiver operating characteristic curve of radiomic models to predict FDX1 expression reached 0.825 (95% CI = 0.739-0.911). Cross-tissue compatibility was confirmed in pan-cancer validation and test cohorts. Mechanistically, the radiomic score was significantly correlated with various immunosuppressive genes and gene mutations. The radiomic score was also found to be an independent prognostic factor, making it a potentially actionable biomarker in the clinical setting. CONCLUSIONS The expression of FDX1 could be non-invasively predicted via radiomics. The radiomic patterns with biological and clinical relevance across histology and modalities could have a broad impact on a larger population of patients.
Collapse
Affiliation(s)
- Qiuyuan Yue
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350004, China
| | - Mingwei Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Wenying Jiang
- Department of Breast Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Lanmei Gao
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Rongping Ye
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350212, China
| | - Jinsheng Hong
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China.
| | - Yueming Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
3
|
Wisnu Wardhana DP, Maliawan S, Mahadewa TGB, Rosyidi RM, Wiranata S. Radiomic Features as Artificial Intelligence Prognostic Models in Glioblastoma: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2024; 14:2354. [PMID: 39518322 PMCID: PMC11545697 DOI: 10.3390/diagnostics14212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Glioblastoma, the predominant primary tumor among all central nervous systems, accounts for around 80% of cases. Prognosis in neuro-oncology involves assessing the disease's progression in different individuals, considering the time between the initial pathological diagnosis and the time until the disease worsens. A noninvasive therapeutic approach called radiomic features (RFs), which involves the application of artificial intelligence in MRI, has been developed to address this issue. This study aims to systematically gather evidence and evaluate the prognosis significance of radiomics in glioblastoma using RFs. METHODS We conducted an extensive search across the PubMed, ScienceDirect, EMBASE, Web of Science, and Cochrane databases to identify relevant original studies examining the use of RFs to evaluate the prognosis of patients with glioblastoma. This thorough search was completed on 25 July 2024. Our search terms included glioblastoma, MRI, magnetic resonance imaging, radiomics, and survival or prognosis. We included only English-language studies involving human subjects, excluding case reports, case series, and review studies. The studies were classified into two quality categories: those rated 4-6 were considered moderate-, whereas those rated 7-9 were high-quality using the Newcastle-Ottawa Scale (NOS). Hazard ratios (HRs) and their 95% confidence intervals (CIs) for OS and PFS were combined using random effects models. RESULTS In total, 253 studies were found in the initial search across the five databases. After screening the articles, 40 were excluded due to not meeting the eligibility criteria, and we included only 14 studies. All twelve OS and eight PFS trials were considered, involving 1.639 and 747 patients, respectively. The random effects model was used to calculate the pooled HRs for OS and PFS. The HR for OS was 3.59 (95% confidence interval [CI], 1.80-7.17), while the HR for PFS was 4.20 (95% CI, 1.02-17.32). CONCLUSIONS An RF-AI-based approach offers prognostic significance for OS and PFS in patients with glioblastoma.
Collapse
Affiliation(s)
- Dewa Putu Wisnu Wardhana
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Udayana University Hospital, Denpasar 80361, Indonesia
| | - Sri Maliawan
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Prof. Dr. IGNG Ngoerah General Hospital, Denpasar 80113, Indonesia
| | - Tjokorda Gde Bagus Mahadewa
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Prof. Dr. IGNG Ngoerah General Hospital, Denpasar 80113, Indonesia
| | - Rohadi Muhammad Rosyidi
- Department of Neurosurgery, Medical Faculty of Mataram University, West Nusa Tenggara General Hospital, Mataram 84371, Indonesia
| | - Sinta Wiranata
- Faculty of Medicine, Universitas Udayana, Denpasar 80232, Indonesia
| |
Collapse
|
4
|
Yazdani Nia I, Ambale-Venkatesh B. Editorial for "Multiparametric MRI-Based Deep Learning Radiomics Model for Assessing 5-Year Recurrence Risk in Non-Muscle Invasive Bladder Cancer". J Magn Reson Imaging 2024. [PMID: 39258759 DOI: 10.1002/jmri.29592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Iman Yazdani Nia
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medicine, John's Hopkins University, Baltimore, Maryland, USA
| | - Bharath Ambale-Venkatesh
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medicine, John's Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
You C, Su GH, Zhang X, Xiao Y, Zheng RC, Sun SY, Zhou JY, Lin LY, Wang ZZ, Wang H, Chen Y, Peng WJ, Jiang YZ, Shao ZM, Gu YJ. Multicenter radio-multiomic analysis for predicting breast cancer outcome and unravelling imaging-biological connection. NPJ Precis Oncol 2024; 8:193. [PMID: 39244594 PMCID: PMC11380684 DOI: 10.1038/s41698-024-00666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024] Open
Abstract
Radiomics offers a noninvasive avenue for predicting clinicopathological factors. However, thorough investigations into a robust breast cancer outcome-predicting model and its biological significance remain limited. This study develops a robust radiomic model for prognosis prediction, and further excavates its biological foundation and transferring prediction performance. We retrospectively collected preoperative dynamic contrast-enhanced MRI data from three distinct breast cancer patient cohorts. In FUSCC cohort (n = 466), Lasso was used to select features correlated with patient prognosis and multivariate Cox regression was utilized to integrate these features and build the radiomic risk model, while multiomic analysis was conducted to investigate the model's biological implications. DUKE cohort (n = 619) and I-SPY1 cohort (n = 128) were used to test the performance of the radiomic signature in outcome prediction. A thirteen-feature radiomic signature was identified in the FUSCC cohort training set and validated in the FUSCC cohort testing set, DUKE cohort and I-SPY1 cohort for predicting relapse-free survival (RFS) and overall survival (OS) (RFS: p = 0.013, p = 0.024 and p = 0.035; OS: p = 0.036, p = 0.005 and p = 0.027 in the three cohorts). Multiomic analysis uncovered metabolic dysregulation underlying the radiomic signature (ATP metabolic process: NES = 1.84, p-adjust = 0.02; cholesterol biosynthesis: NES = 1.79, p-adjust = 0.01). Regarding the therapeutic implications, the radiomic signature exhibited value when combining clinical factors for predicting the pathological complete response to neoadjuvant chemotherapy (DUKE cohort, AUC = 0.72; I-SPY1 cohort, AUC = 0.73). In conclusion, our study identified a breast cancer outcome-predicting radiomic signature in a multicenter radio-multiomic study, along with its correlations with multiomic features in prognostic risk assessment, laying the groundwork for future prospective clinical trials in personalized risk stratification and precision therapy.
Collapse
Affiliation(s)
- Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guan-Hua Su
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ren-Cheng Zheng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Shi-Yun Sun
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia-Yin Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu-Yi Lin
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Zhou Wang
- Department of Cancer Prevention, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Yan Chen
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Wei-Jun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ya-Jia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Khozin S. From organs to algorithms: Redefining cancer classification in the age of artificial intelligence. Clin Transl Sci 2024; 17:e70001. [PMID: 39206604 PMCID: PMC11358696 DOI: 10.1111/cts.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Traditional cancer classification based on organ of origin and histology is increasingly at odds with precision oncology. Tumors in different organs can share molecular features, while those in the same organ can be heterogeneous. This disconnect impacts clinical trials, drug development, and patient care. Recent advances in artificial intelligence (AI), particularly machine learning and deep learning, offer promising avenues for reclassifying cancers through comprehensive integration of molecular, histopathological, imaging, and clinical characteristics. AI-driven approaches have the potential to reveal novel cancer subtypes, identify new prognostic variables, and guide more precise treatment strategies for improving patient outcomes.
Collapse
Affiliation(s)
- Sean Khozin
- CEO Roundtable on CancerMorrisvilleNorth CarolinaUSA
- Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Phyusion Bio, LLCNew YorkNew YorkUSA
| |
Collapse
|
7
|
Shi S, Liu R, Zhou J, Liu J, Lin H, Mo J, Zhang J, Diao X, Luo Y, Huang B, Feng ST. Development and validation of a CT-based radiomics model to predict survival-graded fibrosis in pancreatic ductal adenocarcinoma. Int J Surg 2024; 111:01279778-990000000-01909. [PMID: 39172712 PMCID: PMC11745594 DOI: 10.1097/js9.0000000000002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Tumor fibrosis plays an important role in chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC), however there remains a contradiction in the prognostic value of fibrosis. We aimed to investigate the relationship between tumor fibrosis and survival in patients with PDAC, classify patients into high- and low-fibrosis groups, and develop and validate a CT-based radiomics model to non-invasively predict fibrosis before treatment. MATERIALS AND METHODS This retrospective, bicentric study included 295 patients with PDAC without any treatments before surgery. Tumor fibrosis was assessed using the collagen fraction (CF). Cox regression analysis was used to evaluate the associations of CF with overall survival (OS) and disease-free survival (DFS). Receiver operating characteristic (ROC) analyses were used to determine the rounded threshold of CF. An integrated model (IM) was developed by incorporating selected radiomic features and clinical-radiological characteristics. The predictive performance was validated in the test cohort (Center 2). RESULTS The CFs were 38.22±6.89% and 38.44±8.66% in center 1 (131 patients, 83 males) and center 2 (164 patients, 100 males), respectively (P=0.814). Multivariable Cox regression revealed that CF was an independent risk factor in the OS and DFS analyses at both centers. ROCs revealed that 40% was the rounded cut-off value of CF. IM predicted CF with areas under the curves (AUCs) of 0.825 (95% confidence interval [CI], 0.749-0.886) and 0.745 (95% CI, 0.671-0.810) in the training and test cohorts, respectively. Decision curve analyses revealed that IM outperformed radiomics model and clinical-radiological model for CF prediction in both cohorts. CONCLUSIONS Tumor fibrosis was an independent risk factor for survival of patients with PDAC, and a rounded cut-off value of 40% provided a good differentiation of patient prognosis. The model combining CT-based radiomics and clinical-radiological features can satisfactorily predict survival-grade fibrosis in patients with PDAC.
Collapse
Affiliation(s)
- Siya Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Ruihao Liu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Jian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou
- South China Hospital, Medical School, Shenzhen University
| | - Jiawei Liu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Hongxin Lin
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
| | - Junyang Mo
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
| | - Jian Zhang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions
- Shenzhen University Medical School, Shenzhen University
| | - Xianfen Diao
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| | - Bingsheng Huang
- Marshall Laboratory of Biomedical Engineering, Shenzhen University
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
8
|
Huang H, Huang Y, Kaggie JD, Cai Q, Yang P, Wei J, Wang L, Guo Y, Lu H, Wang H, Xu X. Multiparametric MRI-Based Deep Learning Radiomics Model for Assessing 5-Year Recurrence Risk in Non-Muscle Invasive Bladder Cancer. J Magn Reson Imaging 2024. [PMID: 39167019 DOI: 10.1002/jmri.29574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Accurately assessing 5-year recurrence rates is crucial for managing non-muscle-invasive bladder carcinoma (NMIBC). However, the European Organization for Research and Treatment of Cancer (EORTC) model exhibits poor performance. PURPOSE To investigate whether integrating multiparametric MRI (mp-MRI) with clinical factors improves NMIBC 5-year recurrence risk assessment. STUDY TYPE Retrospective. POPULATION One hundred ninety-one patients (median age, 65 years; age range, 54-73 years; 27 females) underwent mp-MRI between 2011 and 2017, and received ≥5-year follow-ups. They were divided into a training cohort (N = 115) and validation/testing cohorts (N = 38 in each). Recurrence rates were 23.5% (27/115) in the training cohort and 23.7% (9/38) in both validation and testing cohorts. FIELD STRENGTH/SEQUENCE 3-T, fast spin echo T2-weighted imaging (T2WI), single-shot echo planar diffusion-weighted imaging (DWI), and volumetric spoiled gradient echo dynamic contrast-enhanced (DCE) sequences. ASSESSMENT Radiomics and deep learning (DL) features were extracted from the combined region of interest (cROI) including intratumoral and peritumoral areas on mp-MRI. Four models were developed, including clinical, cROI-based radiomics, DL, and clinical-radiomics-DL (CRDL) models. STATISTICAL TESTS Student's t-tests, DeLong's tests with Bonferroni correction, receiver operating characteristics with the area under the curves (AUCs), Cox proportional hazard analyses, Kaplan-Meier plots, SHapley Additive ExPlanations (SHAP) values, and Akaike information criterion for clinical usefulness. A P-value <0.05 was considered statistically significant. RESULTS The cROI-based CRDL model showed superior performance (AUC 0.909; 95% CI: 0.792-0.985) compared to other models in the testing cohort for assessing 5-year recurrence in NMIBC. It achieved the highest Harrell's concordance index (0.804; 95% CI: 0.749-0.859) for estimating recurrence-free survival. SHAP analysis further highlighted the substantial role (22%) of the radiomics features in NMIBC recurrence assessment. DATA CONCLUSION Integrating cROI-based radiomics and DL features from preoperative mp-MRI with clinical factors could improve 5-year recurrence risk assessment in NMIBC. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Haolin Huang
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Yiping Huang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Qian Cai
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Peng Yang
- Department of Health Statistics, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Wei
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijuan Wang
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Guo
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanjun Wang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Xiaopan Xu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Sun Y, Zhang Y, Gan J, Zhou H, Guo S, Wang X, Zhang C, Zheng W, Zhao X, Li X, Wang L, Ning S. Comprehensive quantitative radiogenomic evaluation reveals novel radiomic subtypes with distinct immune pattern in glioma. Comput Biol Med 2024; 177:108636. [PMID: 38810473 DOI: 10.1016/j.compbiomed.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Accurate classification of gliomas is critical to the selection of immunotherapy, and MRI contains a large number of radiomic features that may suggest some prognostic relevant signals. We aim to predict new subtypes of gliomas using radiomic features and characterize their survival, immune, genomic profiles and drug response. METHODS We initially obtained 341 images of 36 patients from the CPTAC dataset for the development of deep learning models. Further 1812 images of 111 patients from TCGA_GBM and 152 images of 53 patients from TCGA_LGG were collected for testing and validation. A deep learning method based on Mask R-CNN was developed to identify new subtypes of glioma patients and compared the survival status, immune infiltration patterns, genomic signatures, specific drugs, and predictive models of different subtypes. RESULTS 200 glioma patients (mean age, 33 years ± 19 [standard deviation]) were enrolled. The accuracy of the deep learning model for identifying tumor regions achieved 88.3 % (98/111) in the test set and 83 % (44/53) in the validation set. The sample was divided into two subtypes based on radiomic features showed different prognostic outcomes (hazard ratio, 2.70). According to the results of the immune infiltration analysis, the subtype with a poorer prognosis was defined as the immunosilencing radiomic (ISR) subtype (n = 43), and the other subtype was the immunoactivated radiomic (IAR) subtype (n = 53). Subtype-specific genomic signatures distinguished celllines into ISR celllines (n = 9) and control celllines (n = 13), and identified eight ISR-specific drugs, four of which were validated by the OCTAD database. Three machine learning-based classifiers showed that radiomic and genomic co-features better predicted the radiomic subtypes of gliomas. CONCLUSIONS These findings provide insights into how radiogenomic could identify specific subtypes that predict prognosis, immune and drug sensitivity in a non-invasive manner.
Collapse
Affiliation(s)
- Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yakun Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Caiyu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wen Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoxi Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
10
|
Su T, Zheng Y, Yang H, Ouyang Z, Fan J, Lin L, Lv F. Nomogram for preoperative differentiation of benign and malignant breast tumors using contrast-enhanced cone-beam breast CT (CE CB-BCT) quantitative imaging and assessment features. LA RADIOLOGIA MEDICA 2024; 129:737-750. [PMID: 38512625 DOI: 10.1007/s11547-024-01803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Breast cancer's impact necessitates refined diagnostic approaches. This study develops a nomogram using radiology quantitative features from contrast-enhanced cone-beam breast CT for accurate preoperative classification of benign and malignant breast tumors. MATERIAL AND METHODS A retrospective study enrolled 234 females with breast tumors, split into training and test sets. Contrast-enhanced cone-beam breast CT-images were acquired using Koning Breast CT-1000. Quantitative assessment features were extracted via 3D-slicer software, identifying independent predictors. The nomogram was constructed to preoperative differentiation benign and malignant breast tumors. Calibration curve was used to assess whether the model showed favorable correspondence with pathological confirmation. Decision curve analysis confirmed the model's superiority. RESULTS The study enrolled 234 female patients with a mean age of 50.2 years (SD ± 9.2). The training set had 164 patients (89 benign, 75 malignant), and the test set had 70 patients (29 benign, 41 malignant). The nomogram achieved excellent predictive performance in distinguishing benign and malignant breast lesions with an AUC of 0.940 (95% CI 0.900-0.940) in the training set and 0.970 (95% CI 0.940-0.970) in the test set. CONCLUSION This study illustrates the effectiveness of quantitative radiology features derived from contrast-enhanced cone-beam breast CT in distinguishing between benign and malignant breast tumors. Incorporating these features into a nomogram-based diagnostic model allows for breast tumor diagnoses that are objective and possess good accuracy. The application of these insights could substantially increase reliability and efficacy in the management of breast tumors, offering enhanced diagnostic capability.
Collapse
Affiliation(s)
- Tong Su
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Hongyu Yang
- Department of Radiology, Chongqing Changshou District People's Hospital, Chongqing, China
| | - Zubin Ouyang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Jun Fan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Lin Lin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
| |
Collapse
|
11
|
Sujit SJ, Aminu M, Karpinets TV, Chen P, Saad MB, Salehjahromi M, Boom JD, Qayati M, George JM, Allen H, Antonoff MB, Hong L, Hu X, Heeke S, Tran HT, Le X, Elamin YY, Altan M, Vokes NI, Sheshadri A, Lin J, Zhang J, Lu Y, Behrens C, Godoy MCB, Wu CC, Chang JY, Chung C, Jaffray DA, Wistuba II, Lee JJ, Vaporciyan AA, Gibbons DL, Heymach J, Zhang J, Cascone T, Wu J. Enhancing NSCLC recurrence prediction with PET/CT habitat imaging, ctDNA, and integrative radiogenomics-blood insights. Nat Commun 2024; 15:3152. [PMID: 38605064 PMCID: PMC11009351 DOI: 10.1038/s41467-024-47512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
While we recognize the prognostic importance of clinicopathological measures and circulating tumor DNA (ctDNA), the independent contribution of quantitative image markers to prognosis in non-small cell lung cancer (NSCLC) remains underexplored. In our multi-institutional study of 394 NSCLC patients, we utilize pre-treatment computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to establish a habitat imaging framework for assessing regional heterogeneity within individual tumors. This framework identifies three PET/CT subtypes, which maintain prognostic value after adjusting for clinicopathologic risk factors including tumor volume. Additionally, these subtypes complement ctDNA in predicting disease recurrence. Radiogenomics analysis unveil the molecular underpinnings of these imaging subtypes, highlighting downregulation in interferon alpha and gamma pathways in the high-risk subtype. In summary, our study demonstrates that these habitat imaging subtypes effectively stratify NSCLC patients based on their risk levels for disease recurrence after initial curative surgery or radiotherapy, providing valuable insights for personalized treatment approaches.
Collapse
Affiliation(s)
- Sheeba J Sujit
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingjun Chen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maliazurina B Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Morteza Salehjahromi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Boom
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mohamed Qayati
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M George
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Haley Allen
- Natural Sciences, Rice University, Houston, TX, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingzhi Hong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Hu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hai T Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie I Vokes
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julie Lin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Myrna C B Godoy
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carol C Wu
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David A Jaffray
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Lung Cancer Genomics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Lung Cancer Interception Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute of Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Khalighi S, Reddy K, Midya A, Pandav KB, Madabhushi A, Abedalthagafi M. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis Oncol 2024; 8:80. [PMID: 38553633 PMCID: PMC10980741 DOI: 10.1038/s41698-024-00575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
This review delves into the most recent advancements in applying artificial intelligence (AI) within neuro-oncology, specifically emphasizing work on gliomas, a class of brain tumors that represent a significant global health issue. AI has brought transformative innovations to brain tumor management, utilizing imaging, histopathological, and genomic tools for efficient detection, categorization, outcome prediction, and treatment planning. Assessing its influence across all facets of malignant brain tumor management- diagnosis, prognosis, and therapy- AI models outperform human evaluations in terms of accuracy and specificity. Their ability to discern molecular aspects from imaging may reduce reliance on invasive diagnostics and may accelerate the time to molecular diagnoses. The review covers AI techniques, from classical machine learning to deep learning, highlighting current applications and challenges. Promising directions for future research include multimodal data integration, generative AI, large medical language models, precise tumor delineation and characterization, and addressing racial and gender disparities. Adaptive personalized treatment strategies are also emphasized for optimizing clinical outcomes. Ethical, legal, and social implications are discussed, advocating for transparency and fairness in AI integration for neuro-oncology and providing a holistic understanding of its transformative impact on patient care.
Collapse
Affiliation(s)
- Sirvan Khalighi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kartik Reddy
- Department of Radiology, Emory University, Atlanta, GA, USA
| | - Abhishek Midya
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Krunal Balvantbhai Pandav
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Atlanta Veterans Administration Medical Center, Atlanta, GA, USA.
| | - Malak Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
- The Cell and Molecular Biology Program, Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
13
|
Salehjahromi M, Karpinets TV, Sujit SJ, Qayati M, Chen P, Aminu M, Saad MB, Bandyopadhyay R, Hong L, Sheshadri A, Lin J, Antonoff MB, Sepesi B, Ostrin EJ, Toumazis I, Huang P, Cheng C, Cascone T, Vokes NI, Behrens C, Siewerdsen JH, Hazle JD, Chang JY, Zhang J, Lu Y, Godoy MCB, Chung C, Jaffray D, Wistuba I, Lee JJ, Vaporciyan AA, Gibbons DL, Gladish G, Heymach JV, Wu CC, Zhang J, Wu J. Synthetic PET from CT improves diagnosis and prognosis for lung cancer: Proof of concept. Cell Rep Med 2024; 5:101463. [PMID: 38471502 PMCID: PMC10983039 DOI: 10.1016/j.xcrm.2024.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/07/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
[18F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are indispensable components in modern medicine. Although PET can provide additional diagnostic value, it is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic CT scans based on multi-center multi-modal lung cancer datasets (n = 1,478). Synthetic PET images are validated across imaging, biological, and clinical aspects. Radiologists confirm comparable imaging quality and tumor contrast between synthetic and actual PET scans. Radiogenomics analysis further proves that the dysregulated cancer hallmark pathways of synthetic PET are consistent with actual PET. We also demonstrate the clinical values of synthetic PET in improving lung cancer diagnosis, staging, risk prediction, and prognosis. Taken together, this proof-of-concept study testifies to the feasibility of applying deep learning to obtain high-fidelity PET translated from CT.
Collapse
Affiliation(s)
| | | | - Sheeba J Sujit
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed Qayati
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Pingjun Chen
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Aminu
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Maliazurina B Saad
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Lingzhi Hong
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, MD Anderson Cancer Center, Houston, TX USA
| | - Julie Lin
- Department of Pulmonary Medicine, MD Anderson Cancer Center, Houston, TX USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin J Ostrin
- Department of General Internal Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Iakovos Toumazis
- Department of Health Services Research, MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Huang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Chao Cheng
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie I Vokes
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey H Siewerdsen
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA; Institute for Data Science in Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - John D Hazle
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Lu
- Department of Nuclear Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Myrna C B Godoy
- Department of Thoracic Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA; Institute for Data Science in Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - David Jaffray
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA; Institute for Data Science in Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory Gladish
- Department of Thoracic Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Carol C Wu
- Department of Thoracic Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA; Lung Cancer Genomics Program, MD Anderson Cancer Center, Houston, TX, USA; Lung Cancer Interception Program, MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA; Institute for Data Science in Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Tran HT, Heeke S, Sujit S, Vokes N, Zhang J, Aminu M, Lam VK, Vaporciyan A, Swisher SG, Godoy MCB, Cascone T, Sepesi B, Gibbons DL, Wu J, Heymach JV. Circulating tumor DNA and radiological tumor volume identify patients at risk for relapse with resected, early-stage non-small-cell lung cancer. Ann Oncol 2024; 35:183-189. [PMID: 37992871 PMCID: PMC11233158 DOI: 10.1016/j.annonc.2023.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Predicting relapse and overall survival (OS) in early-stage non-small-cell lung cancer (NSCLC) patients remains challenging. Therefore, we hypothesized that detection of circulating tumor DNA (ctDNA) can identify patients with increased risk of relapse and that integrating radiological tumor volume measurement along with ctDNA detectability improves prediction of outcome. PATIENTS AND METHODS We analyzed 366 serial plasma samples from 85 patients who underwent surgical resections and assessed ctDNA using a next-generation sequencing liquid biopsy assay, and measured tumor volume using a computed tomography-based three-dimensional annotation. RESULTS Our results showed that patients with detectable ctDNA at baseline or after treatment and patients who did not clear ctDNA after treatment had a significantly worse clinical outcome. Integrating radiological analysis allowed the stratification in risk groups prognostic of clinical outcome as confirmed in an independent cohort of 32 patients. CONCLUSIONS Our findings suggest ctDNA and radiological monitoring could be valuable tools for guiding follow-up care and treatment decisions for early-stage NSCLC patients.
Collapse
Affiliation(s)
- H T Tran
- Department of Thoracic Head & Neck Medical Oncology
| | - S Heeke
- Department of Thoracic Head & Neck Medical Oncology
| | - S Sujit
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston
| | - N Vokes
- Department of Thoracic Head & Neck Medical Oncology
| | - J Zhang
- Department of Thoracic Head & Neck Medical Oncology
| | - M Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston
| | - V K Lam
- Department of Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore
| | - A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery
| | - S G Swisher
- Department of Thoracic and Cardiovascular Surgery
| | - M C B Godoy
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - T Cascone
- Department of Thoracic Head & Neck Medical Oncology
| | - B Sepesi
- Department of Thoracic Head & Neck Medical Oncology
| | - D L Gibbons
- Department of Thoracic Head & Neck Medical Oncology
| | - J Wu
- Department of Thoracic Head & Neck Medical Oncology; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston
| | - J V Heymach
- Department of Thoracic Head & Neck Medical Oncology.
| |
Collapse
|
15
|
Qi X, Wang W, Pan S, Liu G, Xia L, Duan S, He Y. Predictive value of triple negative breast cancer based on DCE-MRI multi-phase full-volume ROI clinical radiomics model. Acta Radiol 2024; 65:173-184. [PMID: 38017694 DOI: 10.1177/02841851231215145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Since no studies compared the value of radiomics features of distinct phases of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting triple-negative breast cancer (TNBC). PURPOSE To identify the optimal phase of DCE-MRI for diagnosing TNBC and, in combination with clinical factors, to develop a clinical-radiomics model to well predict TNBC. MATERIAL AND METHODS This retrospective study included 158 patients with pathology-confirmed breast cancer, including 38 cases of TNBC. The patients were randomly divided into the training and validation set (7:3). Eight radiomics models were built based on eight DCE-MR phases, and their performances were evaluated using receiver operating characteristic curve (ROC) and DeLong's test. The Radscore derived from the best radiomics model was integrated with independent clinical risk factors to construct a clinical-radiomics predictive model, and evaluate its performance using ROC analysis, calibration, and decision curve analyses. RESULTS WHO classification, margin, and T2-weighted (T2W) imaging signals were significantly correlated with TNBC and independent risk factors for TNBC (P<0.05). The clinical model yielded areas under the curve (AUCs) of 0.867 and 0.843 in the training and validation sets, respectively. The radiomics model based on DCEphase7 achieved the highest efficacy, with an AUC of 0.818 and 0.777. The AUC of the clinical-radiomics model was 0.936 and 0.886 in the training and validation sets, respectively. The decision curve showed the clinical utility of the clinical-radiomics model. CONCLUSION The radiomics features of DCE-MRI had the potential to predict TNBC and could improve the performance of clinical risk factors for preoperative personalized prediction of TNBC.
Collapse
Affiliation(s)
- Xuan Qi
- Department of Radiology, Ma'anshan People's Hospital, Maanshan, PR China
| | - Wuling Wang
- Department of Radiology, Ma'anshan People's Hospital, Maanshan, PR China
| | - Shuya Pan
- Department of Radiology, Ma'anshan People's Hospital, Maanshan, PR China
| | - Guangzhu Liu
- Ma'anshan Clinical College, Anhui Medical University, Hefei, PR China
| | - Liang Xia
- Department of Radiology, Sir Run Run Hospital affiliated to Nanjing Medical University, Nanjing, PR China
| | - Shaofeng Duan
- Precision Health Institution, GE Healthcare China, Shanghai, China
| | - Yongsheng He
- Department of Radiology, Ma'anshan People's Hospital, Maanshan, PR China
| |
Collapse
|
16
|
Zhang M, Lu Y, Sun H, Hou C, Zhou Z, Liu X, Zhou Q, Li Z, Yin Y. CT-based deep learning radiomics and hematological biomarkers in the assessment of pathological complete response to neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma: A two-center study. Transl Oncol 2024; 39:101804. [PMID: 37839176 PMCID: PMC10587766 DOI: 10.1016/j.tranon.2023.101804] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
PURPOSE To evaluate and validate CT-based models using pre- and posttreatment deep learning radiomics features and hematological biomarkers for assessing esophageal squamous cell carcinoma (ESCC) pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT). MATERIAL AND METHODS This retrospective study recruited patients with biopsy-proven ESCC who underwent nCRT from two Chinese hospitals between May 2017 and May 2022, divided into a training set (hospital I, 111 cases), an internal validation set (hospital I, 47 cases), and an external validation set (hospital II, 33 cases). We used minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) as feature selection methods and three classifiers as model construction methods. The assessment of models was performed using area under the receiver operating characteristic (ROC) curve (AUC) and decision curve analysis (DCA). RESULTS A total 190 patients were included in our study (60.8 ± 7.08 years, 133 men), and seventy-seven of them (40.5 %) achieved pCR. The logistic regression (LR)-based combined model incorporating neutrophil to lymphocyte ratio, lymphocyte to monocyte ratio, albumin, and radscores performed well both in the internal and external validation sets with AUCs of 0.875 and 0.857 (95 % CI, 0.776-0.964; 0.731-0.984, P <0.05), respectively. DCA demonstrated that nomogram was useful for pCR prediction and produced clinical net benefits. CONCLUSION The incorporation of radscores and hematological biomarkers into LR-based model improved pCR prediction after nCRT in ESCC. Enhanced pCR predictability may improve patients selection before surgery, providing clinical application value for the use of active surveillance.
Collapse
Affiliation(s)
- Meng Zhang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yukun Lu
- Department of Radiation Oncology, Anyang Tumor Hospital, Anyang, Henan, China
| | - Hongfu Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chuanke Hou
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Zichun Zhou
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, Shandong, China
| | - Xiao Liu
- Manteia Technologies Co., Ltd, Xiamen, Fujian, China
| | - Qichao Zhou
- Manteia Technologies Co., Ltd, Xiamen, Fujian, China
| | - Zhenjiang Li
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Yong Yin
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
17
|
Deboever N, Zhang J. The opportunities and challenges of perioperative therapy of localized non-small cell lung cancer-thoughts from the KEYNOTE-671 trial. Transl Lung Cancer Res 2023; 12:2347-2352. [PMID: 38090518 PMCID: PMC10713268 DOI: 10.21037/tlcr-23-570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 02/01/2024]
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Su GH, Xiao Y, You C, Zheng RC, Zhao S, Sun SY, Zhou JY, Lin LY, Wang H, Shao ZM, Gu YJ, Jiang YZ. Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets. SCIENCE ADVANCES 2023; 9:eadf0837. [PMID: 37801493 PMCID: PMC10558123 DOI: 10.1126/sciadv.adf0837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Intratumor heterogeneity (ITH) profoundly affects therapeutic responses and clinical outcomes. However, the widespread methods for assessing ITH based on genomic sequencing or pathological slides, which rely on limited tissue samples, may lead to inaccuracies due to potential sampling biases. Using a newly established multicenter breast cancer radio-multiomic dataset (n = 1474) encompassing radiomic features extracted from dynamic contrast-enhanced magnetic resonance images, we formulated a noninvasive radiomics methodology to effectively investigate ITH. Imaging ITH (IITH) was associated with genomic and pathological ITH, predicting poor prognosis independently in breast cancer. Through multiomic analysis, we identified activated oncogenic pathways and metabolic dysregulation in high-IITH tumors. Integrated metabolomic and transcriptomic analyses highlighted ferroptosis as a vulnerability and potential therapeutic target of high-IITH tumors. Collectively, this work emphasizes the superiority of radiomics in capturing ITH. Furthermore, we provide insights into the biological basis of IITH and propose therapeutic targets for breast cancers with elevated IITH.
Collapse
Affiliation(s)
- Guan-Hua Su
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ren-Cheng Zheng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 201203, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shi-Yun Sun
- Department of Radiology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia-Yin Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu-Yi Lin
- Department of Radiology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - He Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai 201203, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ya-Jia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Li Z, Jiang Y, Lu M, Li R, Xia Y. Survival Prediction via Hierarchical Multimodal Co-Attention Transformer: A Computational Histology-Radiology Solution. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2678-2689. [PMID: 37030860 DOI: 10.1109/tmi.2023.3263010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The rapid advances in deep learning-based computational pathology and radiology have demonstrated the promise of using whole slide images (WSIs) and radiology images for survival prediction in cancer patients. However, most image-based survival prediction methods are limited to using either histology or radiology alone, leaving integrated approaches across histology and radiology relatively underdeveloped. There are two main challenges in integrating WSIs and radiology images: (1) the gigapixel nature of WSIs and (2) the vast difference in spatial scales between WSIs and radiology images. To address these challenges, in this work, we propose an interpretable, weakly-supervised, multimodal learning framework, called Hierarchical Multimodal Co-Attention Transformer (HMCAT), to integrate WSIs and radiology images for survival prediction. Our approach first uses hierarchical feature extractors to capture various information including cellular features, cellular organization, and tissue phenotypes in WSIs. Then the hierarchical radiology-guided co- attention (HRCA) in HMCAT characterizes the multimodal interactions between hierarchical histology-based visual concepts and radiology features and learns hierarchical co- attention mappings for two modalities. Finally, HMCAT combines their complementary information into a multimodal risk score and discovers prognostic features from two modalities by multimodal interpretability. We apply our approach to two cancer datasets (365 WSIs with matched magnetic resonance [MR] images and 213 WSIs with matched computed tomography [CT] images). Our results demonstrate that the proposed HMCAT consistently achieves superior performance over the unimodal approaches trained on either histology or radiology data alone, as well as other state-of-the-art methods.
Collapse
|
20
|
Jiang Y, Zhang Z, Wang W, Huang W, Chen C, Xi S, Ahmad MU, Ren Y, Sang S, Xie J, Wang JY, Xiong W, Li T, Han Z, Yuan Q, Xu Y, Xing L, Poultsides GA, Li G, Li R. Biology-guided deep learning predicts prognosis and cancer immunotherapy response. Nat Commun 2023; 14:5135. [PMID: 37612313 PMCID: PMC10447467 DOI: 10.1038/s41467-023-40890-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Substantial progress has been made in using deep learning for cancer detection and diagnosis in medical images. Yet, there is limited success on prediction of treatment response and outcomes, which has important implications for personalized treatment strategies. A significant hurdle for clinical translation of current data-driven deep learning models is lack of interpretability, often attributable to a disconnect from the underlying pathobiology. Here, we present a biology-guided deep learning approach that enables simultaneous prediction of the tumor immune and stromal microenvironment status as well as treatment outcomes from medical images. We validate the model for predicting prognosis of gastric cancer and the benefit from adjuvant chemotherapy in a multi-center international study. Further, the model predicts response to immune checkpoint inhibitors and complements clinically approved biomarkers. Importantly, our model identifies a subset of mismatch repair-deficient tumors that are non-responsive to immunotherapy and may inform the selection of patients for combination treatments.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhicheng Zhang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- JancsiTech and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Wang
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weicai Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sujuan Xi
- The Reproductive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - M Usman Ahmad
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yulan Ren
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shengtian Sang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Xie
- Graduate Group of Epidemiology, University of California Davis, Davis, CA, USA
| | - Jen-Yeu Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tuanjie Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Han
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - George A Poultsides
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Al-Tashi Q, Saad MB, Sheshadri A, Wu CC, Chang JY, Al-Lazikani B, Gibbons C, Vokes NI, Zhang J, Lee JJ, Heymach JV, Jaffray D, Mirjalili S, Wu J. SwarmDeepSurv: swarm intelligence advances deep survival network for prognostic radiomics signatures in four solid cancers. PATTERNS (NEW YORK, N.Y.) 2023; 4:100777. [PMID: 37602223 PMCID: PMC10435962 DOI: 10.1016/j.patter.2023.100777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 08/22/2023]
Abstract
Survival models exist to study relationships between biomarkers and treatment effects. Deep learning-powered survival models supersede the classical Cox proportional hazards (CoxPH) model, but substantial performance drops were observed on high-dimensional features because of irrelevant/redundant information. To fill this gap, we proposed SwarmDeepSurv by integrating swarm intelligence algorithms with the deep survival model. Furthermore, four objective functions were designed to optimize prognostic prediction while regularizing selected feature numbers. When testing on multicenter sets (n = 1,058) of four different cancer types, SwarmDeepSurv was less prone to overfitting and achieved optimal patient risk stratification compared with popular survival modeling algorithms. Strikingly, SwarmDeepSurv selected different features compared with classical feature selection algorithms, including the least absolute shrinkage and selection operator (LASSO), with nearly no feature overlapping across these models. Taken together, SwarmDeepSurv offers an alternative approach to model relationships between radiomics features and survival endpoints, which can further extend to study other input data types including genomics.
Collapse
Affiliation(s)
- Qasem Al-Tashi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maliazurina B. Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carol C. Wu
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joe Y. Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bissan Al-Lazikani
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher Gibbons
- Section of Patient-Centered Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Jaffray
- Office of the Chief Technology and Digital Officer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Saad MB, Hong L, Aminu M, Vokes NI, Chen P, Salehjahromi M, Qin K, Sujit SJ, Lu X, Young E, Al-Tashi Q, Qureshi R, Wu CC, Carter BW, Lin SH, Lee PP, Gandhi S, Chang JY, Li R, Gensheimer MF, Wakelee HA, Neal JW, Lee HS, Cheng C, Velcheti V, Lou Y, Petranovic M, Rinsurongkawong W, Le X, Rinsurongkawong V, Spelman A, Elamin YY, Negrao MV, Skoulidis F, Gay CM, Cascone T, Antonoff MB, Sepesi B, Lewis J, Wistuba II, Hazle JD, Chung C, Jaffray D, Gibbons DL, Vaporciyan A, Lee JJ, Heymach JV, Zhang J, Wu J. Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study. Lancet Digit Health 2023; 5:e404-e420. [PMID: 37268451 PMCID: PMC10330920 DOI: 10.1016/s2589-7500(23)00082-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/28/2023] [Accepted: 04/04/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Only around 20-30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context. METHODS In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK negative NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the Deep-CT model in the context of existing clinicopathological and radiological metrics. FINDINGS Our Deep-CT model demonstrated robust stratification of patient survival of the MD Anderson testing set, which was validated in the external Stanford set. The performance of the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, including histology, smoking status, and PD-L1 expression, and remained an independent predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk factors demonstrated significantly improved prediction performance, with overall survival C-index increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone could not reach the performance level of deep learning, indicating that the deep learning model effectively captured additional imaging patterns beyond known radiomics features. INTERPRETATION This proof-of-concept study shows that automated profiling of radiographic scans through deep learning can provide orthogonal information independent of existing clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with NSCLC closer. FUNDING National Institutes of Health, Mark Foundation Damon Runyon Foundation Physician Scientist Award, MD Anderson Strategic Initiative Development Program, MD Anderson Lung Moon Shot Program, Andrea Mugnaini, and Edward L C Smith.
Collapse
Affiliation(s)
- Maliazurina B Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingzhi Hong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie I Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingjun Chen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Morteza Salehjahromi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kang Qin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheeba J Sujit
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuetao Lu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elliana Young
- Department of Enterprise Data Engineering and Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qasem Al-Tashi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rizwan Qureshi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carol C Wu
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brett W Carter
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Percy P Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael F Gensheimer
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Heather A Wakelee
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Joel W Neal
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J Sugarbaker Division of Thoracic Surgery, Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Chao Cheng
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Vamsidhar Velcheti
- Department of Hematology and Oncology, New York University Langone Health, New York, NY, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Milena Petranovic
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Waree Rinsurongkawong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vadeerat Rinsurongkawong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Spelman
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeff Lewis
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Jaffray
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ara Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Khalili N, Kazerooni AF, Familiar A, Haldar D, Kraya A, Foster J, Koptyra M, Storm PB, Resnick AC, Nabavizadeh A. Radiomics for characterization of the glioma immune microenvironment. NPJ Precis Oncol 2023; 7:59. [PMID: 37337080 DOI: 10.1038/s41698-023-00413-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Increasing evidence suggests that besides mutational and molecular alterations, the immune component of the tumor microenvironment also substantially impacts tumor behavior and complicates treatment response, particularly to immunotherapies. Although the standard method for characterizing tumor immune profile is through performing integrated genomic analysis on tissue biopsies, the dynamic change in the immune composition of the tumor microenvironment makes this approach not feasible, especially for brain tumors. Radiomics is a rapidly growing field that uses advanced imaging techniques and computational algorithms to extract numerous quantitative features from medical images. Recent advances in machine learning methods are facilitating biological validation of radiomic signatures and allowing them to "mine" for a variety of significant correlates, including genetic, immunologic, and histologic data. Radiomics has the potential to be used as a non-invasive approach to predict the presence and density of immune cells within the microenvironment, as well as to assess the expression of immune-related genes and pathways. This information can be essential for patient stratification, informing treatment decisions and predicting patients' response to immunotherapies. This is particularly important for tumors with difficult surgical access such as gliomas. In this review, we provide an overview of the glioma microenvironment, describe novel approaches for clustering patients based on their tumor immune profile, and discuss the latest progress on utilization of radiomics for immune profiling of glioma based on current literature.
Collapse
Affiliation(s)
- Nastaran Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ariana Familiar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Debanjan Haldar
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Kraya
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica Foster
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mateusz Koptyra
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali Nabavizadeh
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Cui J, Miao X, Yanghao X, Qin X. Bibliometric research on the developments of artificial intelligence in radiomics toward nervous system diseases. Front Neurol 2023; 14:1171167. [PMID: 37360350 PMCID: PMC10288367 DOI: 10.3389/fneur.2023.1171167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Background The growing interest suggests that the widespread application of radiomics has facilitated the development of neurological disease diagnosis, prognosis, and classification. The application of artificial intelligence methods in radiomics has increasingly achieved outstanding prediction results in recent years. However, there are few studies that have systematically analyzed this field through bibliometrics. Our destination is to study the visual relationships of publications to identify the trends and hotspots in radiomics research and encourage more researchers to participate in radiomics studies. Methods Publications in radiomics in the field of neurological disease research can be retrieved from the Web of Science Core Collection. Analysis of relevant countries, institutions, journals, authors, keywords, and references is conducted using Microsoft Excel 2019, VOSviewer, and CiteSpace V. We analyze the research status and hot trends through burst detection. Results On October 23, 2022, 746 records of studies on the application of radiomics in the diagnosis of neurological disorders were retrieved and published from 2011 to 2023. Approximately half of them were written by scholars in the United States, and most were published in Frontiers in Oncology, European Radiology, Cancer, and SCIENTIFIC REPORTS. Although China ranks first in the number of publications, the United States is the driving force in the field and enjoys a good academic reputation. NORBERT GALLDIKS and JIE TIAN published the most relevant articles, while GILLIES RJ was cited the most. RADIOLOGY is a representative and influential journal in the field. "Glioma" is a current attractive research hotspot. Keywords such as "machine learning," "brain metastasis," and "gene mutations" have recently appeared at the research frontier. Conclusion Most of the studies focus on clinical trial outcomes, such as the diagnosis, prediction, and prognosis of neurological disorders. The radiomics biomarkers and multi-omics studies of neurological disorders may soon become a hot topic and should be closely monitored, particularly the relationship between tumor-related non-invasive imaging biomarkers and the intrinsic micro-environment of tumors.
Collapse
|
25
|
Al-Tashi Q, Saad MB, Muneer A, Qureshi R, Mirjalili S, Sheshadri A, Le X, Vokes NI, Zhang J, Wu J. Machine Learning Models for the Identification of Prognostic and Predictive Cancer Biomarkers: A Systematic Review. Int J Mol Sci 2023; 24:7781. [PMID: 37175487 PMCID: PMC10178491 DOI: 10.3390/ijms24097781] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The identification of biomarkers plays a crucial role in personalized medicine, both in the clinical and research settings. However, the contrast between predictive and prognostic biomarkers can be challenging due to the overlap between the two. A prognostic biomarker predicts the future outcome of cancer, regardless of treatment, and a predictive biomarker predicts the effectiveness of a therapeutic intervention. Misclassifying a prognostic biomarker as predictive (or vice versa) can have serious financial and personal consequences for patients. To address this issue, various statistical and machine learning approaches have been developed. The aim of this study is to present an in-depth analysis of recent advancements, trends, challenges, and future prospects in biomarker identification. A systematic search was conducted using PubMed to identify relevant studies published between 2017 and 2023. The selected studies were analyzed to better understand the concept of biomarker identification, evaluate machine learning methods, assess the level of research activity, and highlight the application of these methods in cancer research and treatment. Furthermore, existing obstacles and concerns are discussed to identify prospective research areas. We believe that this review will serve as a valuable resource for researchers, providing insights into the methods and approaches used in biomarker discovery and identifying future research opportunities.
Collapse
Affiliation(s)
- Qasem Al-Tashi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maliazurina B. Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amgad Muneer
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rizwan Qureshi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea
- University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
26
|
Jiang Y, Li R, Li G. Artificial intelligence for clinical oncology: current status and future outlook. Sci Bull (Beijing) 2023; 68:448-451. [PMID: 36822911 DOI: 10.1016/j.scib.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Yuming Jiang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94304, USA
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94304, USA; Stanford Institute for Human-Centered Artificial Intelligence, Stanford University, Stanford 94304, USA.
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
27
|
Duan J, Zhang Z, Chen Y, Zhao Y, Sun Q, Wang W, Zheng H, Liang D, Cheng J, Yan J, Li ZC. Imaging phenotypes from MRI for the prediction of glioma immune subtypes from RNA sequencing: A multicenter study. Mol Oncol 2023; 17:629-646. [PMID: 36688633 PMCID: PMC10061289 DOI: 10.1002/1878-0261.13380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Tumor subtyping based on its immune landscape may guide precision immunotherapy. The aims of this study were to identify immune subtypes of adult diffuse gliomas with RNA sequencing data, and to noninvasively predict this subtype using a biologically interpretable radiomic signature from MRI. A subtype discovery dataset (n = 210) from a public database and two radiogenomic datasets (n = 130 and 55, respectively) from two local hospitals were included. Brain tumor microenvironment-specific signatures were constructed from RNA sequencing to identify the immune types. A radiomic signature was built from MRI to predict the identified immune subtypes. The pathways underlying the radiomic signature were identified to annotate their biological meanings. The reproducibility of the findings was verified externally in multicenter datasets. Three distinctive immune subtypes were identified, including an inflamed subtype marked by elevated hypoxia-induced immunosuppression, a "cold" subtype that exhibited scarce immune infiltration with downregulated antigen presentation, and an intermediate subtype that showed medium immune infiltration. A 10-feature radiomic signature was developed to predict immune subtypes, achieving an AUC of 0.924 in the validation dataset. The radiomic features correlated with biological functions underpinning immune suppression, which substantiated the hypothesis that molecular changes can be reflected by radiomic features. The immune subtypes, predictive radiomic signature, and radiomics-correlated biological pathways were validated externally. Our data suggest that adult-type diffuse gliomas harbor three distinctive immune subtypes that can be predicted by MRI radiomic features with clear biological significance. The immune subtypes, radiomic signature, and radiogenomic links can be replicated externally.
Collapse
Affiliation(s)
- Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinsheng Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,National Innovation Center for Advanced Medical Devices, Shenzhen, China.,Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| |
Collapse
|
28
|
Towards precision medicine: Omics approach for COVID-19. BIOSAFETY AND HEALTH 2023; 5:78-88. [PMID: 36687209 PMCID: PMC9846903 DOI: 10.1016/j.bsheal.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic had a devastating impact on human society. Beginning with genome surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of omics technologies brought a clearer understanding of the complex SARS-CoV-2 and COVID-19. Here, we reviewed how omics, including genomics, proteomics, single-cell multi-omics, and clinical phenomics, play roles in answering biological and clinical questions about COVID-19. Large-scale sequencing and advanced analysis methods facilitate COVID-19 discovery from virus evolution and severity risk prediction to potential treatment identification. Omics would indicate precise and globalized prevention and medicine for the COVID-19 pandemic under the utilization of big data capability and phenotypes refinement. Furthermore, decoding the evolution rule of SARS-CoV-2 by deep learning models is promising to forecast new variants and achieve more precise data to predict future pandemics and prevent them on time.
Collapse
|
29
|
Jiang Y, Fang S, Feng J, Ruan Q, Zhang J. Synthesis and Bioevaluation of Novel Technetium-99m-Labeled Complexes with Norfloxacin HYNIC Derivatives for Bacterial Infection Imaging. Mol Pharm 2023; 20:630-640. [PMID: 36398935 DOI: 10.1021/acs.molpharmaceut.2c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To seek a novel 99mTc-labeled quinolone derivative for bacterial infection SPECT imaging that aims to lower nontarget organ uptake, a novel norfloxacin 6-hydrazinoicotinamide (HYNIC) derivative (HYNICNF) was designed and synthesized. It was radiolabeled with different coligands, such as tricine, trisodium triphenylphosphine-3,3',3″-trisulfonate (TPPTS), sodium triphenylphosphine-3-monosulfonate (TPPMS), and ethylenediamine-N,N'-diacetic acid (EDDA), to obtain three 99mTc-labeled norfloxacin HYNIC complexes, namely, [99mTc]Tc-tricine-TPPTS-HYNICNF, [99mTc]Tc-tricine-TPPMS-HYNICNF, and [99mTc]Tc-EDDA-HYNICNF. These complexes were purified (RCP > 95%) and evaluated in vitro and in vivo for targeting bacteria. All three complexes are hydrophilic, maintain good stability, and specifically bind Staphylococcus aureus in vitro. The biodistribution in mice with bacterial infection demonstrated that [99mTc]Tc-EDDA-HYNICNF showed a higher abscess uptake and lower nontarget organ uptake and was able to distinguish bacterial infection and sterile inflammation. Single photon emission computed tomography (SPECT) image study in bacterial infection mice showed there was a visible accumulation in the infection site, suggesting that [99mTc]Tc-EDDA-HYNICNF is a potential radiotracer for bacterial infection imaging.
Collapse
Affiliation(s)
- Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Product Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Si'an Fang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Product Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Product Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Product Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Product Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
30
|
Vanguri RS, Luo J, Aukerman AT, Egger JV, Fong CJ, Horvat N, Pagano A, Araujo-Filho JDAB, Geneslaw L, Rizvi H, Sosa R, Boehm KM, Yang SR, Bodd FM, Ventura K, Hollmann TJ, Ginsberg MS, Gao J, Hellmann MD, Sauter JL, Shah SP. Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer. NATURE CANCER 2022; 3:1151-1164. [PMID: 36038778 PMCID: PMC9586871 DOI: 10.1038/s43018-022-00416-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022]
Abstract
Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer (NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we show the predictive capacity of integrating medical imaging, histopathologic and genomic features to predict immunotherapy response using a cohort of 247 patients with advanced NSCLC with multimodal baseline data obtained during diagnostic clinical workup, including computed tomography scan images, digitized programmed death ligand-1 immunohistochemistry slides and known outcomes to immunotherapy. Using domain expert annotations, we developed a computational workflow to extract patient-level features and used a machine-learning approach to integrate multimodal features into a risk prediction model. Our multimodal model (area under the curve (AUC) = 0.80, 95% confidence interval (CI) 0.74-0.86) outperformed unimodal measures, including tumor mutational burden (AUC = 0.61, 95% CI 0.52-0.70) and programmed death ligand-1 immunohistochemistry score (AUC = 0.73, 95% CI 0.65-0.81). Our study therefore provides a quantitative rationale for using multimodal features to improve prediction of immunotherapy response in patients with NSCLC using expert-guided machine learning.
Collapse
Affiliation(s)
- Rami S Vanguri
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jia Luo
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew T Aukerman
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacklynn V Egger
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher J Fong
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Pagano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Luke Geneslaw
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hira Rizvi
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ramon Sosa
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin M Boehm
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francis M Bodd
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katia Ventura
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Travis J Hollmann
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Michelle S Ginsberg
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jianjiong Gao
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Hellmann
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Hou J, Jia X, Xie Y, Qin W. Integrative Histology-Genomic Analysis Predicts Hepatocellular Carcinoma Prognosis Using Deep Learning. Genes (Basel) 2022; 13:genes13101770. [PMID: 36292654 PMCID: PMC9601633 DOI: 10.3390/genes13101770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
Cancer prognosis analysis is of essential interest in clinical practice. In order to explore the prognostic power of computational histopathology and genomics, this paper constructs a multi-modality prognostic model for survival prediction. We collected 346 patients diagnosed with hepatocellular carcinoma (HCC) from The Cancer Genome Atlas (TCGA), each patient has 1-3 whole slide images (WSIs) and an mRNA expression file. WSIs were processed by a multi-instance deep learning model to obtain the patient-level survival risk scores; mRNA expression data were processed by weighted gene co-expression network analysis (WGCNA), and the top hub genes of each module were extracted as risk factors. Information from two modalities was integrated by Cox proportional hazard model to predict patient outcomes. The overall survival predictions of the multi-modality model (Concordance index (C-index): 0.746, 95% confidence interval (CI): ±0.077) outperformed these based on histopathology risk score or hub genes, respectively. Furthermore, in the prediction of 1-year and 3-year survival, the area under curve of the model achieved 0.816 and 0.810. In conclusion, this paper provides an effective workflow for multi-modality prognosis of HCC, the integration of histopathology and genomic information has the potential to assist clinical prognosis management.
Collapse
Affiliation(s)
- Jiaxin Hou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoqi Jia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenjian Qin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
32
|
Chen MM, Terzic A, Becker AS, Johnson JM, Wu CC, Wintermark M, Wald C, Wu J. Artificial intelligence in oncologic imaging. Eur J Radiol Open 2022; 9:100441. [PMID: 36193451 PMCID: PMC9525817 DOI: 10.1016/j.ejro.2022.100441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
Radiology is integral to cancer care. Compared to molecular assays, imaging has its advantages. Imaging as a noninvasive tool can assess the entirety of tumor unbiased by sampling error and is routinely acquired at multiple time points in oncological practice. Imaging data can be digitally post-processed for quantitative assessment. The ever-increasing application of Artificial intelligence (AI) to clinical imaging is challenging radiology to become a discipline with competence in data science, which plays an important role in modern oncology. Beyond streamlining certain clinical tasks, the power of AI lies in its ability to reveal previously undetected or even imperceptible radiographic patterns that may be difficult to ascertain by the human sensory system. Here, we provide a narrative review of the emerging AI applications relevant to the oncological imaging spectrum and elaborate on emerging paradigms and opportunities. We envision that these technical advances will change radiology in the coming years, leading to the optimization of imaging acquisition and discovery of clinically relevant biomarkers for cancer diagnosis, staging, and treatment monitoring. Together, they pave the road for future clinical translation in precision oncology.
Collapse
Affiliation(s)
- Melissa M. Chen
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Admir Terzic
- Department of Radiology, Dom Zdravlja Odzak, Odzak, Bosnia and Herzegovina
| | - Anton S. Becker
- Department Radiology, Memorial Sloan Kettering, New York, NY, USA
| | - Jason M. Johnson
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Carol C. Wu
- Department of Thoracic Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Integrated multimodal artificial intelligence framework for healthcare applications. NPJ Digit Med 2022; 5:149. [PMID: 36127417 PMCID: PMC9489871 DOI: 10.1038/s41746-022-00689-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Artificial intelligence (AI) systems hold great promise to improve healthcare over the next decades. Specifically, AI systems leveraging multiple data sources and input modalities are poised to become a viable method to deliver more accurate results and deployable pipelines across a wide range of applications. In this work, we propose and evaluate a unified Holistic AI in Medicine (HAIM) framework to facilitate the generation and testing of AI systems that leverage multimodal inputs. Our approach uses generalizable data pre-processing and machine learning modeling stages that can be readily adapted for research and deployment in healthcare environments. We evaluate our HAIM framework by training and characterizing 14,324 independent models based on HAIM-MIMIC-MM, a multimodal clinical database (N = 34,537 samples) containing 7279 unique hospitalizations and 6485 patients, spanning all possible input combinations of 4 data modalities (i.e., tabular, time-series, text, and images), 11 unique data sources and 12 predictive tasks. We show that this framework can consistently and robustly produce models that outperform similar single-source approaches across various healthcare demonstrations (by 6–33%), including 10 distinct chest pathology diagnoses, along with length-of-stay and 48 h mortality predictions. We also quantify the contribution of each modality and data source using Shapley values, which demonstrates the heterogeneity in data modality importance and the necessity of multimodal inputs across different healthcare-relevant tasks. The generalizable properties and flexibility of our Holistic AI in Medicine (HAIM) framework could offer a promising pathway for future multimodal predictive systems in clinical and operational healthcare settings.
Collapse
|
34
|
Zhang B, Zhang S. Radiomics-derived morphological features predict pulmonary function response during lumacaftor/ivacaftor therapy in patients with cystic fibrosis. Eur Respir J 2022; 60:2103077. [PMID: 35086826 DOI: 10.1183/13993003.03077-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Bin Zhang
- Dept of Radiology, the First Affiliated Hospital of Jinan University, Guangdong, China
| | - Shuixing Zhang
- Dept of Radiology, the First Affiliated Hospital of Jinan University, Guangdong, China
| |
Collapse
|
35
|
Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer. Cell Rep Med 2022; 3:100694. [PMID: 35858585 PMCID: PMC9381418 DOI: 10.1016/j.xcrm.2022.100694] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with an adverse prognosis and significant tumor heterogeneity. Here, we extract quantitative radiomic features from contrast-enhanced magnetic resonance images to construct a breast cancer radiomic dataset (n = 860) and a TNBC radiogenomic dataset (n = 202). We develop and validate radiomic signatures that can fairly differentiate TNBC from other breast cancer subtypes and distinguish molecular subtypes within TNBC. A radiomic feature that captures peritumoral heterogeneity is determined to be a prognostic factor for recurrence-free survival (p = 0.01) and overall survival (p = 0.004) in TNBC. Combined with the established matching TNBC transcriptomic and metabolomic data, we demonstrate that peritumoral heterogeneity is associated with immune suppression and upregulated fatty acid synthesis in tumor samples. Collectively, this multi-omic dataset serves as a useful public resource to promote precise subtyping of TNBC and helps to understand the biological significance of radiomics. A radiomic signature identifies TNBC from other subtypes of breast cancer Radiomic features are predictive of TNBC molecular subtypes A radiomic feature reflecting peritumoral heterogeneity indicates TNBC prognosis Peritumoral heterogeneity correlates with metabolic and immune abnormalities in TNBC
Collapse
|
36
|
Primakov SP, Ibrahim A, van Timmeren JE, Wu G, Keek SA, Beuque M, Granzier RWY, Lavrova E, Scrivener M, Sanduleanu S, Kayan E, Halilaj I, Lenaers A, Wu J, Monshouwer R, Geets X, Gietema HA, Hendriks LEL, Morin O, Jochems A, Woodruff HC, Lambin P. Automated detection and segmentation of non-small cell lung cancer computed tomography images. Nat Commun 2022; 13:3423. [PMID: 35701415 PMCID: PMC9198097 DOI: 10.1038/s41467-022-30841-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
Detection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts. Moreover, we demonstrate that on average, radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases. Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST criteria and measuring the tumor volumes. Segmentations by our method stratified patients into low and high survival groups with higher significance compared to those methods based on manual contours. Correct interpretation of computer tomography (CT) scans is important for the correct assessment of a patient’s disease but can be subjective and timely. Here, the authors develop a system that can automatically segment the non-small cell lung cancer on CT images of patients and show in an in silico trial that the method was faster and more reproducible than clinicians.
Collapse
Affiliation(s)
- Sergey P Primakov
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, Liege, Belgium.,Department of Nuclear Medicine and Comprehensive diagnostic center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany.,Department of Radiology, Columbia University Irving Medical Center, New York, USA
| | - Janita E van Timmeren
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.,Department of Radiation Oncology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Guangyao Wu
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simon A Keek
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Manon Beuque
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Renée W Y Granzier
- Department of Surgery, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Elizaveta Lavrova
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.,GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Madeleine Scrivener
- Department of Radiation Oncology, Cliniques universitaires St-Luc, Brussels, Belgium
| | - Sebastian Sanduleanu
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Esma Kayan
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Iva Halilaj
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Anouk Lenaers
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.,Department of Surgery, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - René Monshouwer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xavier Geets
- Department of Radiation Oncology, Cliniques universitaires St-Luc, Brussels, Belgium
| | - Hester A Gietema
- Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Olivier Morin
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, CA, USA
| | - Arthur Jochems
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands. .,Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| |
Collapse
|
37
|
Chen P, Zhang J, Wu J. Artificial Intelligence in Digital Pathology to Advance Cancer Immunotherapy. 21ST CENTURY PATHOLOGY 2022; 2:120. [PMID: 36282981 PMCID: PMC9578679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Immune-checkpoint inhibitors (ICIs) have revolutionized the treatment of many malignancies. For instance, in lung cancer, however, only 20~30% of patients can achieve durable clinical benefits from ICI monotherapy. Histopathologic and molecular features such as histological type, PD-L1 expression, and tumor mutation burden (TMB), play a paramount role in selecting appropriate regimens for cancer treatment in the era of immunotherapy. Unfortunately, none of the existing features are exclusive predictive biomarkers. Thus, there is an imperative need to pinpoint more effective biomarkers to identify patients who may achieve the most benefit from ICIs. The adoption of digital pathology in clinical flow, as being powered by artificial intelligence (AI) especially deep learning, has catalyzed the automated analysis of tissue slides. With the breakthrough of multiplex bioimaging technology, researchers can comprehensively characterize the tumor microenvironment, including the different immune cells' distribution, function, and interaction. Here, we briefly summarize recent AI studies in digital pathology and share our perspective on emerging paradigms and directions to advance the development of immunotherapy biomarkers.
Collapse
Affiliation(s)
- Pingjun Chen
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
38
|
Chronic Lymphocytic Leukemia Progression Diagnosis with Intrinsic Cellular Patterns via Unsupervised Clustering. Cancers (Basel) 2022; 14:cancers14102398. [PMID: 35626003 PMCID: PMC9139505 DOI: 10.3390/cancers14102398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Distinguishing between chronic lymphocytic leukemia (CLL), accelerated CLL (aCLL), and full-blown transformation to diffuse large B-cell lymphoma (Richter transformation; RT) has significant clinical implications. Identifying cellular phenotypes via unsupervised clustering provides the most robust analytic performance in analyzing digitized pathology slides. This study serves as a proof of concept that using an unsupervised machine learning scheme can enhance diagnostic accuracy. Abstract Identifying the progression of chronic lymphocytic leukemia (CLL) to accelerated CLL (aCLL) or transformation to diffuse large B-cell lymphoma (Richter transformation; RT) has significant clinical implications as it prompts a major change in patient management. However, the differentiation between these disease phases may be challenging in routine practice. Unsupervised learning has gained increased attention because of its substantial potential in data intrinsic pattern discovery. Here, we demonstrate that cellular feature engineering, identifying cellular phenotypes via unsupervised clustering, provides the most robust analytic performance in analyzing digitized pathology slides (accuracy = 0.925, AUC = 0.978) when compared to alternative approaches, such as mixed features, supervised features, unsupervised/mixed/supervised feature fusion and selection, as well as patch-based convolutional neural network (CNN) feature extraction. We further validate the reproducibility and robustness of unsupervised feature extraction via stability and repeated splitting analysis, supporting its utility as a diagnostic aid in identifying CLL patients with histologic evidence of disease progression. The outcome of this study serves as proof of principle using an unsupervised machine learning scheme to enhance the diagnostic accuracy of the heterogeneous histology patterns that pathologists might not easily see.
Collapse
|
39
|
Chen J, Bermejo I, Dekker A, Wee L. Generative models improve radiomics performance in different tasks and different datasets: An experimental study. Phys Med 2022; 98:11-17. [PMID: 35468494 DOI: 10.1016/j.ejmp.2022.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/11/2022] [Accepted: 04/17/2022] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Radiomics is an active area of research focusing on high throughput feature extraction from medical images with a wide array of applications in clinical practice, such as clinical decision support in oncology. However, noise in low dose computed tomography (CT) scans can impair the accurate extraction of radiomic features. In this article, we investigate the possibility of using deep learning generative models to improve the performance of radiomics from low dose CTs. METHODS We used two datasets of low dose CT scans - NSCLC Radiogenomics and LIDC-IDRI - as test datasets for two tasks - pre-treatment survival prediction and lung cancer diagnosis. We used encoder-decoder networks and conditional generative adversarial networks (CGANs) trained in a previous study as generative models to transform low dose CT images into full dose CT images. Radiomic features extracted from the original and improved CT scans were used to build two classifiers - a support vector machine (SVM) and a deep attention based multiple instance learning model - for survival prediction and lung cancer diagnosis respectively. Finally, we compared the performance of the models derived from the original and improved CT scans. RESULTS Denoising with the encoder-decoder network and the CGAN improved the area under the curve (AUC) of survival prediction from 0.52 to 0.57 (p-value < 0.01). On the other hand, the encoder-decoder network and the CGAN improved the AUC of lung cancer diagnosis from 0.84 to 0.88 and 0.89 respectively (p-value < 0.01). Finally, there are no statistically significant improvements in AUC using encoder-decoder networks and CGAN (p-value = 0.34) when networks trained at 75 and 100 epochs. CONCLUSION Generative models can improve the performance of low dose CT-based radiomics in different tasks. Hence, denoising using generative models seems to be a necessary pre-processing step for calculating radiomic features from low dose CTs.
Collapse
Affiliation(s)
- Junhua Chen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands.
| | - Inigo Bermejo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands
| | - Leonard Wee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht 6229 ET, Netherlands
| |
Collapse
|
40
|
Jimenez JE, Dai D, Xu G, Zhao R, Li T, Pan T, Wang L, Lin Y, Wang Z, Jaffray D, Hazle JD, Macapinlac HA, Wu J, Lu Y. Lesion-Based Radiomics Signature in Pretherapy 18F-FDG PET Predicts Treatment Response to Ibrutinib in Lymphoma. Clin Nucl Med 2022; 47:209-218. [PMID: 35020640 PMCID: PMC8851692 DOI: 10.1097/rlu.0000000000004060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of this study was to develop a pretherapy PET/CT-based prediction model for treatment response to ibrutinib in lymphoma patients. PATIENTS AND METHODS One hundred sixty-nine lymphoma patients with 2441 lesions were studied retrospectively. All eligible lymphomas on pretherapy 18F-FDG PET images were contoured and segmented for radiomic analysis. Lesion- and patient-based responsiveness to ibrutinib was determined retrospectively using the Lugano classification. PET radiomic features were extracted. A radiomic model was built to predict ibrutinib response. The prognostic significance of the radiomic model was evaluated independently in a test cohort and compared with conventional PET metrics: SUVmax, metabolic tumor volume, and total lesion glycolysis. RESULTS The radiomic model had an area under the receiver operating characteristic curve (ROC AUC) of 0.860 (sensitivity, 92.9%, specificity, 81.4%; P < 0.001) for predicting response to ibrutinib, outperforming the SUVmax (ROC AUC, 0.519; P = 0.823), metabolic tumor volume (ROC AUC, 0.579; P = 0.412), total lesion glycolysis (ROC AUC, 0.576; P = 0.199), and a composite model built using all 3 (ROC AUC, 0.562; P = 0.046). The radiomic model increased the probability of accurately predicting ibrutinib-responsive lesions from 84.8% (pretest) to 96.5% (posttest). At the patient level, the model's performance (ROC AUC = 0.811; P = 0.007) was superior to that of conventional PET metrics. Furthermore, the radiomic model showed robustness when validated in treatment subgroups: first (ROC AUC, 0.916; P < 0.001) versus second or greater (ROC AUC, 0.842; P < 0.001) line of defense and single treatment (ROC AUC, 0.931; P < 0.001) versus multiple treatments (ROC AUC, 0.824; P < 0.001). CONCLUSIONS We developed and validated a pretherapy PET-based radiomic model to predict response to treatment with ibrutinib in a diverse cohort of lymphoma patients.
Collapse
Affiliation(s)
- Jorge E Jimenez
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dong Dai
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Guofan Xu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ruiyang Zhao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX
| | - Tengfei Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tinsu Pan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yingyan Lin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX
| | - Zhangyang Wang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX
| | - David Jaffray
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John D. Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Homer A. Macapinlac
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
41
|
Shaffie A, Soliman A, Eledkawy A, van Berkel V, El-Baz A. Computer-Assisted Image Processing System for Early Assessment of Lung Nodule Malignancy. Cancers (Basel) 2022; 14:cancers14051117. [PMID: 35267425 PMCID: PMC8908987 DOI: 10.3390/cancers14051117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Lung cancer is the second most common cancer in men after prostate cancer and in women after breast cancer, but it is the leading cause of cancer death among both genders. This manuscript proposes a new computer-aided diagnosis system that uses only a single computed tomography scan to diagnose the pulmonary nodule as benign or malignant. This system helps in the early detection of the pulmonary nodules and shows its ability to identify the pulmonary nodules precisely. Abstract Lung cancer is one of the most dreadful cancers, and its detection in the early stage is very important and challenging. This manuscript proposes a new computer-aided diagnosis system for lung cancer diagnosis from chest computed tomography scans. The proposed system extracts two different kinds of features, namely, appearance features and shape features. For the appearance features, a Histogram of oriented gradients, a Multi-view analytical Local Binary Pattern, and a Markov Gibbs Random Field are developed to give a good description of the lung nodule texture, which is one of the main distinguishing characteristics between benign and malignant nodules. For the shape features, Multi-view Peripheral Sum Curvature Scale Space, Spherical Harmonics Expansion, and a group of some fundamental morphological features are implemented to describe the outer contour complexity of the nodules, which is main factor in lung nodule diagnosis. Each feature is fed into a stacked auto-encoder followed by a soft-max classifier to generate the initial malignancy probability. Finally, all these probabilities are combined together and fed to the last network to give the final diagnosis. The system is validated using 727 nodules which are subset from the Lung Image Database Consortium (LIDC) dataset. The system shows very high performance measures and achieves 92.55%, 91.70%, and 93.40% for the accuracy, sensitivity, and specificity, respectively. This high performance shows the ability of the system to distinguish between the malignant and benign nodules precisely.
Collapse
Affiliation(s)
- Ahmed Shaffie
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.S.); (A.S.)
| | - Ahmed Soliman
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.S.); (A.S.)
| | - Amr Eledkawy
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt;
| | - Victor van Berkel
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.S.); (A.S.)
- Correspondence:
| |
Collapse
|
42
|
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol 2022; 12:773840. [PMID: 35251962 PMCID: PMC8891653 DOI: 10.3389/fonc.2022.773840] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics studies. In this context, the quantitative analysis of multidimensional data plays an essential role in assessing the spatio-temporal characteristics of different tissues and organs and their microenvironment. Herein, recent developments in this method, including manually defined features, data acquisition and preprocessing, lesion segmentation, feature extraction, feature selection and dimension reduction, statistical analysis, and model construction, are reviewed. In addition, deep learning-based techniques for automatic segmentation and radiomic analysis are being analyzed to address limitations such as rigorous workflow, manual/semi-automatic lesion annotation, and inadequate feature criteria, and multicenter validation. Furthermore, a summary of the current state-of-the-art applications of this technology in disease diagnosis, treatment response, and prognosis prediction from the perspective of radiology images, multimodality images, histopathology images, and three-dimensional dose distribution data, particularly in oncology, is presented. The potential and value of radiomics in diagnostic and therapeutic strategies are also further analyzed, and for the first time, the advances and challenges associated with dosiomics in radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a robust framework for radiomic analysis is presented and challenges and recommendations for future development are discussed, including but not limited to the factors that affect model stability (medical big data and multitype data and expert knowledge in medical), limitations of data-driven processes (reproducibility and interpretability of studies, different treatment alternatives for various institutions, and prospective researches and clinical trials), and thoughts on future directions (the capability to achieve clinical applications and open platform for radiomics analysis).
Collapse
Affiliation(s)
- Xingping Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Yanchun Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
| | - Xiaoxia Yin
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
| | - Liefa Liao
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| |
Collapse
|
43
|
Wei P. Radiomics, deep learning and early diagnosis in oncology. Emerg Top Life Sci 2021; 5:829-835. [PMID: 34874454 PMCID: PMC8786297 DOI: 10.1042/etls20210218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
Medical imaging, including X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), plays a critical role in early detection, diagnosis, and treatment response prediction of cancer. To ease radiologists' task and help with challenging cases, computer-aided diagnosis has been developing rapidly in the past decade, pioneered by radiomics early on, and more recently, driven by deep learning. In this mini-review, I use breast cancer as an example and review how medical imaging and its quantitative modeling, including radiomics and deep learning, have improved the early detection and treatment response prediction of breast cancer. I also outline what radiomics and deep learning share in common and how they differ in terms of modeling procedure, sample size requirement, and computational implementation. Finally, I discuss the challenges and efforts entailed to integrate deep learning models and software in clinical practice.
Collapse
Affiliation(s)
- Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, U.S.A
| |
Collapse
|
44
|
Álvarez-Torres MDM, Fuster-García E, Balaña C, Puig J, García-Gómez JM. Lack of Benefit of Extending Temozolomide Treatment in Patients with High Vascular Glioblastoma with Methylated MGMT. Cancers (Basel) 2021; 13:5420. [PMID: 34771583 PMCID: PMC8582449 DOI: 10.3390/cancers13215420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, we evaluated the benefit on survival of the combination of methylation of O6-methylguanine-DNA methyltransferase (MGMT) promotor gene and moderate vascularity in glioblastoma using a retrospective dataset of 123 patients from a multicenter cohort. MRI processing and calculation of relative cerebral blood volume (rCBV), used to define moderate- and high-vascular groups, were performed with the automatic ONCOhabitats method. We assessed the previously proposed rCBV threshold (10.7) and the new calculated ones (9.1 and 9.8) to analyze the association with survival for different populations according to vascularity and MGMT methylation status. We found that patients included in the moderate-vascular group had longer survival when MGMT is methylated (significant median survival difference of 174 days, p = 0.0129*). However, we did not find significant differences depending on the MGMT methylation status for the high-vascular group (p = 0.9119). In addition, we investigated the combined correlation of MGMT methylation status and rCBV with the prognostic effect of the number of temozolomide cycles, and only significant results were found for the moderate-vascular group. In conclusion, there is a lack of benefit of extending temozolomide treatment for patients with high vascular glioblastomas, even presenting MGMT methylation. Preliminary results suggest that patients with moderate vascularity and methylated MGMT glioblastomas would benefit more from prolonged adjuvant chemotherapy.
Collapse
Affiliation(s)
- María del Mar Álvarez-Torres
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| | - Elies Fuster-García
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
- Department of Diagnostic Physics, Oslo University Hospital, 0450 Oslo, Norway
| | - Carmen Balaña
- Institut Catala d’Oncologia (ICO), Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
| | - Josep Puig
- Institut de Diagnostic per la Image (IDI), Hospital Dr. Josep Trueta, 17007 Girona, Spain;
| | - Juan M. García-Gómez
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| |
Collapse
|
45
|
|
46
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|