1
|
Tri BD, Shashni B, Matsui H, Nagasaki Y. Designing poly(gamma-aminobutyric acid)-based nanoparticles for the treatment of major depressive disorders. J Control Release 2023; 360:110-121. [PMID: 37336293 DOI: 10.1016/j.jconrel.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/15/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Major depressive disorder (MDD) is a worldwide concern owing to its negative impact on the quality of life. Gamma-aminobutyric acid (GABA), an essential neurotransmitter in the brain, is important for regulating the enteric nervous system and gut-brain dual communication (gut-brain axis), thus providing gastrointestinal GABA and GABA-related pathways with possible targets for MDD treatment. However, the use of GABA for this disease remains limited due to its poor pharmacokinetic properties, including the low permeability through the blood-brain barrier, and the rapid clearance from the gastrointestinal tract. Since poly(amino acid)s are advantageous for improving the beneficial bioactivities of conventional amino acids, poly(gamma-aminobutyric acid) (poly(GABA)) is a potential candidate for MDD therapy. Nevertheless, the non-water-soluble and non-dispersible characteristics of poly(GABA) render difficulty in administering its conventional forms in vitro/in vivo, thereby hindering its therapeutic applications. Therefore, this study proposes a new design for poly(GABA) in nanoparticle form, which is composed of the amphiphilic diblock copolymers of poly(GABA) and poly(ethylene glycol), providing a suitable formulation for medication applications. Herein, we report on a new orally deliverable poly(GABA)-based nanoparticles (NanoGABA) in aqueous media and their efficacy on mouse depression models. NanoGABA treatment efficiently attenuated depression-like symptoms as evidenced by behavioral tests (forced swimming tests and tail suspension tests) and stress biomarkers (corticosterone). These findings suggest that the newly designed poly(GABA)-based nanoparticles are a promising candidate for the treatment of depression. STATEMENT OF SIGNIFICANCE: This research is the first to report the preparation of poly(GABA)-based nanoparticles in aqueous conditions with beneficial physical properties to open the gate for medical and pharmaceutical applications of poly (GABA). It is also a pioneer in using poly(GABA)-based materials for major depressive disorder therapeutics in vivo. Oral administration of NanoGABA attenuates depressive-like symptoms by targeting the enteric nervous system possibly through modulation of the gut-brain axis pathways with negligible toxicity, suggesting that NanoGABA is a promising therapeutic agent for major depressive disorders.
Collapse
Affiliation(s)
- Bui Duc Tri
- Degree Program in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Babita Shashni
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Ibaraki 305-8575, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation and Earth System Science (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan.
| |
Collapse
|
2
|
Alcayaga J, Vera J, Reyna-Jeldes M, Covarrubias AA, Coddou C, Díaz-Jara E, Del Rio R, Retamal MA. Activation of Intra-nodose Ganglion P2X7 Receptors Elicit Increases in Neuronal Activity. Cell Mol Neurobiol 2023:10.1007/s10571-023-01318-8. [PMID: 36680690 DOI: 10.1007/s10571-023-01318-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
Vagus nerve innervates several organs including the heart, stomach, and pancreas among others. Somas of sensory neurons that project through the vagal nerve are located in the nodose ganglion. The presence of purinergic receptors has been reported in neurons and satellite glial cells in several sensory ganglia. In the nodose ganglion, calcium depletion-induced increases in neuron activity can be partly reversed by P2X7 blockers applied directly into the ganglion. The later suggest a possible role of P2X7 receptors in the modulation of neuronal activity within this sensory ganglion. We aimed to characterize the response to P2X7 activation in nodose ganglion neurons under physiological conditions. Using an ex vivo preparation for electrophysiological recordings of the neural discharges of nodose ganglion neurons, we found that treatments with ATP induce transient neuronal activity increases. Also, we found a concentration-dependent increase in neural activity in response to Bz-ATP (ED50 = 0.62 mM, a selective P2X7 receptor agonist), with a clear desensitization pattern when applied every ~ 30 s. Electrophysiological recordings from isolated nodose ganglion neurons reveal no differences in the responses to Bz-ATP and ATP. Finally, we showed that the P2X7 receptor was expressed in the rat nodose ganglion, both in neurons and satellite glial cells. Additionally, a P2X7 receptor negative allosteric modulator decreased the duration of Bz-ATP-induced maximal responses without affecting their amplitude. Our results show the presence of functional P2X7 receptors under physiological conditions within the nodose ganglion of the rat, and suggest that ATP modulation of nodose ganglion activity may be in part mediated by the activation of P2X7 receptors.
Collapse
Affiliation(s)
- Julio Alcayaga
- Laboratorio de Fisiología Celular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile. .,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile.
| | - Jorge Vera
- Laboratorio de Fisiología Celular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Mauricio Reyna-Jeldes
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Alejandra A Covarrubias
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Claudio Coddou
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Mauricio A Retamal
- Universidad de Desarrollo, Programa de Comunicación Celular en Cáncer. Facultad de Medicina Clínica Alemana., Santiago, Chile. .,Universidad del Desarrollo. , Centro de Fisiología Celular e Integrativa, Clínica Alemana Facultad de Medicina., Santiago, Chile.
| |
Collapse
|
3
|
Dietary Gamma-Aminobutyric Acid (GABA) Induces Satiation by Enhancing the Postprandial Activation of Vagal Afferent Nerves. Nutrients 2022; 14:nu14122492. [PMID: 35745222 PMCID: PMC9227210 DOI: 10.3390/nu14122492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/07/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is present in the mammalian brain as the main inhibitory neurotransmitter and in foods. It is widely used as a supplement that regulates brain function through stress-reducing and sleep-enhancing effects. However, its underlying mechanisms remain poorly understood, as it is reportedly unable to cross the blood–brain barrier. Here, we explored whether a single peroral administration of GABA affects feeding behavior as an evaluation of brain function and the involvement of vagal afferent nerves. Peroral GABA at 20 and 200 mg/kg immediately before refeeding suppressed short-term food intake without aversive behaviors in mice. However, GABA administration 30 min before refeeding demonstrated no effects. A rise in circulating GABA concentrations by the peroral administration of 200 mg/kg GABA was similar to that by the intraperitoneal injection of 20 mg/kg GABA, which did not alter feeding. The feeding suppression by peroral GABA was blunted by the denervation of vagal afferents. Unexpectedly, peroral GABA alone did not alter vagal afferent activities histologically. The coadministration of a liquid diet and GABA potentiated the postprandial activation of vagal afferents, thereby enhancing postprandial satiation. In conclusion, dietary GABA activates vagal afferents in collaboration with meals or meal-evoked factors and regulates brain function including feeding behavior.
Collapse
|
4
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
The Microbiota and the Gut-Brain Axis in Controlling Food Intake and Energy Homeostasis. Int J Mol Sci 2021; 22:ijms22115830. [PMID: 34072450 PMCID: PMC8198395 DOI: 10.3390/ijms22115830] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity currently represents a major societal and health challenge worldwide. Its prevalence has reached epidemic proportions and trends continue to rise, reflecting the need for more effective preventive measures. Hypothalamic circuits that control energy homeostasis in response to food intake are interesting targets for body-weight management, for example, through interventions that reinforce the gut-to-brain nutrient signalling, whose malfunction contributes to obesity. Gut microbiota-diet interactions might interfere in nutrient sensing and signalling from the gut to the brain, where the information is processed to control energy homeostasis. This gut microbiota-brain crosstalk is mediated by metabolites, mainly short chain fatty acids, secondary bile acids or amino acids-derived metabolites and subcellular bacterial components. These activate gut-endocrine and/or neural-mediated pathways or pass to systemic circulation and then reach the brain. Feeding time and dietary composition are the main drivers of the gut microbiota structure and function. Therefore, aberrant feeding patterns or unhealthy diets might alter gut microbiota-diet interactions and modify nutrient availability and/or microbial ligands transmitting information from the gut to the brain in response to food intake, thus impairing energy homeostasis. Herein, we update the scientific evidence supporting that gut microbiota is a source of novel dietary and non-dietary biological products that may beneficially regulate gut-to-brain communication and, thus, improve metabolic health. Additionally, we evaluate how the feeding time and dietary composition modulate the gut microbiota and, thereby, the intraluminal availability of these biological products with potential effects on energy homeostasis. The review also identifies knowledge gaps and the advances required to clinically apply microbiome-based strategies to improve the gut-brain axis function and, thus, combat obesity.
Collapse
|
6
|
Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 2021; 127:37-53. [PMID: 33894241 DOI: 10.1016/j.neubiorev.2021.04.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Brain diseases, including neurodegenerative, cerebrovascular and neuropsychiatric diseases, have posed a deleterious threat to human health and brought a great burden to society and the healthcare system. With the development of medical technology, vagus nerve stimulation (VNS) has been approved by the Food and Drug Administration (FDA) as an alternative treatment for refractory epilepsy, refractory depression, cluster headaches, and migraines. Furthermore, current evidence showed promising results towards the treatment of more brain diseases, such as Parkinson's disease (PD), autistic spectrum disorder (ASD), traumatic brain injury (TBI), and stroke. Nonetheless, the biological mechanisms underlying the beneficial effects of VNS in brain diseases remain only partially elucidated. This review aims to delve into the relevant preclinical and clinical studies and update the progress of VNS applications and its potential mechanisms underlying the biological effects in brain diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Lyte JM. Eating for 3.8 × 10 13: Examining the Impact of Diet and Nutrition on the Microbiota-Gut-Brain Axis Through the Lens of Microbial Endocrinology. Front Endocrinol (Lausanne) 2019; 9:796. [PMID: 30761092 PMCID: PMC6361751 DOI: 10.3389/fendo.2018.00796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022] Open
Abstract
The study of host-microbe neuroendocrine crosstalk, termed microbial endocrinology, suggests the impact of diet on host health and microbial viability is, in part, reliant upon nutritional modulation of shared host-microbe neuroendocrine axes. In the 1990's it was first recognized that neuroendocrine pathways are major components of the microbiota-gut-brain axis, and that diet-induced changes in the gut microbiota were correlated with changes in host behavior and cognition. A causative link, however, between nutritional-induced shifts in microbiota composition and change in host behavior has yet to be fully elucidated. Substrates found in food which are utilized by bacteria in the production of microbial-derived neurochemicals, which are structurally identical to those made by the host, likely represent a microbial endocrinology-based route by which the microbiota causally influence the host and microbial community dynamics via diet. For example, food safety is strongly impacted by the microbial production of biogenic amines. While microbial-produced tyramine found in cheese can elicit hypertensive crises, microorganisms which are common inhabitants of the human intestinal tract can convert L-histidine found in common foodstuffs to histamine and thereby precipitate allergic reactions. Hence, there is substantial evidence suggesting a microbial endocrinology-based role by which the gastrointestinal microbiota can utilize host dietary components to produce neuroactive molecules that causally impact the host. Conversely, little is known regarding the reverse scenario whereby nutrition-mediated changes in host neuroendocrine production affect microbial viability, composition, and/or function. Mechanisms in the direction of brain-to-gut, such as how host production of catecholamines drives diverse changes in microbial growth and functionality within the gut, require greater examination considering well-known nutritional effects on host stress physiology. As dietary intake mediates changes in host stress, such as the effects of caffeine on the hypothalamic-pituitary-adrenal axis, it is likely that nutrition can impact host neuroendocrine production to affect the microbiota. Likewise, the plasticity of the microbiota to changes in host diet has been hypothesized to drive microbial regulation of host food preference via a host-microbe feedback loop. This review will focus on food as concerns microbial endocrinology with emphasis given to nutrition as a mediator of host-microbe bi-directional neuroendocrine crosstalk and its impact on microbial viability and host health.
Collapse
Affiliation(s)
- Joshua M. Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| |
Collapse
|
9
|
Cawthon CR, de La Serre CB. Gut bacteria interaction with vagal afferents. Brain Res 2018; 1693:134-139. [PMID: 29360469 DOI: 10.1016/j.brainres.2018.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/25/2022]
Abstract
Contemporary techniques including the use of germ-free models and next generation sequencing have deepened our understanding of the gut microbiota dynamics and its influence on host physiology. There is accumulating evidence that the gut microbiota can communicate to the CNS and is involved in the development of metabolic and behavioral disorders. Vagal afferent terminals are positioned beneath the gut epithelium where they can receive, directly or indirectly, signals produced by the gut microbiota, to affect host behavior, including feeding behavior. Supplementation with L. Rhamnosus in mice notably causes a decrease in anxiety and these effects are abolished by vagotomy. Additionally, chronic treatment with bacterial byproduct lipopolysaccharide (LPS) blunts vagally-mediated post-ingestive feedback and is associated with increased food intake. Inflammation in the nodose ganglion (NG), the location of vagal afferent neurons' cell bodies, may be a key triggering factor of microbiota-driven vagal alteration. Interestingly, several models show that vagal damage leads to an increase in immune cell (microglia) activation in the NG and remodeling of the vagal pathway. Similarly, diet-driven microbiota dysbiosis is associated with NG microglia activation and decreased vagal outputs to the CNS. Crucially, preventing dysbiosis and microglia activation in high-fat diet fed rodents normalizes vagal innervation and energy intake, highlighting the importance of microbiota/vagal communication in controlling feeding behavior. As of today, new consideration of potential roles for glial influence on vagal communication and new methods of vagal afferent ablation open opportunities to increase our understanding of how the gut microbiota influence its host's health and behavior.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, 372 Dawson Hall, 305 Sanford Drive, Athens, GA 30602 USA.
| | - Claire B de La Serre
- Department of Foods and Nutrition, University of Georgia, 372 Dawson Hall, 305 Sanford Drive, Athens, GA 30602 USA.
| |
Collapse
|
10
|
Tsujimura T, Sakai S, Suzuki T, Ujihara I, Tsuji K, Magara J, Canning BJ, Inoue M. Central inhibition of initiation of swallowing by systemic administration of diazepam and baclofen in anaesthetized rats. Am J Physiol Gastrointest Liver Physiol 2017; 312:G498-G507. [PMID: 28254772 PMCID: PMC6347068 DOI: 10.1152/ajpgi.00299.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 01/31/2023]
Abstract
Dysphagia is caused not only by neurological and/or structural damage but also by medication. We hypothesized memantine, dextromethorphan, diazepam, and baclofen, all commonly used drugs with central sites of action, may regulate swallowing function. Swallows were evoked by upper airway (UA)/pharyngeal distension, punctate mechanical stimulation using a von Frey filament, capsaicin or distilled water (DW) applied topically to the vocal folds, and electrical stimulation of a superior laryngeal nerve (SLN) in anesthetized rats and were documented by recording electromyographic activation of the suprahyoid and thyrohyoid muscles and by visualizing laryngeal elevation. The effects of intraperitoneal or topical administration of each drug on swallowing function were studied. Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABAA receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABAB receptor antagonist diminished the effects of baclofen. Topically applied diazepam or baclofen had no effect on swallowing. These data indicate that diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats.NEW & NOTEWORTHY Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABAA receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABAB receptor antagonist diminished the effects of baclofen. Topical applied diazepam or baclofen was without effect on swallowing. Diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats.
Collapse
Affiliation(s)
- Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | - Shogo Sakai
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | - Taku Suzuki
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | - Izumi Ujihara
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | - Kojun Tsuji
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | - Jin Magara
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | | | - Makoto Inoue
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| |
Collapse
|
11
|
Kang YH, Sun B, Park YS, Park CS, Jin YH. GABA(A) and GABA(B) receptors have opposite effects on synaptic glutamate release on the nucleus tractus solitarii neurons. Neuroscience 2012; 209:39-46. [PMID: 22410341 DOI: 10.1016/j.neuroscience.2012.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/06/2012] [Accepted: 02/11/2012] [Indexed: 01/03/2023]
Abstract
Cranial visceral afferent nerve transfers information about visceral organs to nucleus tractus solitarii (NTS) by releasing the excitatory neurotransmitter glutamate. Various endogenous modulators affect autonomic reflex responses by changing glutamatergic responses in the NTS. Although the expression of GABA(A) and GABA(B) receptors in glutamatergic terminals is known, their functional contribution on glutamate release is poorly characterized. Here, we used mechanically isolated NTS neurons to examine the mechanisms by which presynaptic GABA(A) and GABA(B) receptors modulate glutamatergic excitatory postsynaptic currents (EPSCs). EPSC were isolated by clamping voltage at equilibrium potential for chloride (-49 mV) without any GABA receptors antagonists. In all neurons, GABA(A) agonist, muscimol (1 and 10 μM), increased EPSC frequency (284.1±57% and 278.4±87% of control, respectively), but the GABA(B) agonist, baclofen (10 μM), decreased EPSC frequency (43±8% of control). The GABA(A) antagonist, gabazine (18 μM), decreased EPSC frequency in 50% of tested neurons, whereas GABA(B) antagonist, CGP (5 μM), increased the EPSC frequency in 36% of tested neurons. External application of GABA (1 and 30 μM) facilitating the EPSC frequency. The facilitation of the GABA(A) receptor-mediated release of glutamate was blocked by Na⁺-K⁺-Cl⁻ cotransporter type 1 antagonist or Na⁺ and Ca²⁺ channel inhibitors indicating GABA(A) presynaptic depolarization. Thus, tonically released GABA activates GABA(A) and GABA(B) receptors to modulate the release of glutamate. These findings provide cellular mechanisms of heterosynaptic GABA-glutamate integration of peripheral visceral afferent signals in the NTS.
Collapse
Affiliation(s)
- Y-H Kang
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Mussa BM, Sartor DM, Rantzau C, Verberne AJM. Effects of nitric oxide synthase blockade on dorsal vagal stimulation-induced pancreatic insulin secretion. Brain Res 2011; 1394:62-70. [PMID: 21530944 DOI: 10.1016/j.brainres.2011.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/23/2011] [Accepted: 04/09/2011] [Indexed: 01/13/2023]
Abstract
We and others have previously shown that the dorsal motor nucleus of the vagus (DMV) is involved in regulation of pancreatic exocrine secretion. Many pancreatic preganglionic neurons within the DMV are inhibited by pancreatic secretagogues suggesting that an inhibitory pathway may participate in the control of pancreatic exocrine secretion. Accordingly, the present study examined whether chemical stimulation of the DMV activates the endocrine pancreas and whether an inhibitory pathway is involved in this response. All experiments were conducted in overnight fasted isoflurane/urethane-anesthetized Sprague Dawley rats. Activation of the DMV by bilateral microinjection of bicuculline methiodide (BIM, GABA(A) receptor antagonist, 100 pmol/25 nl; 4 mM) resulted in a significant and rapid increase in glucose-induced insulin secretion (9.2±0.1 ng/ml peak response) compared to control microinjection (4.0±0.6 ng/ml). Activation of glucose-induced insulin secretion by chemical stimulation of the DMV was inhibited (2.1±1.1 ng/ml and 1.6±0.1 ng/ml 5 min later) in the presence of the muscarinic receptor antagonist atropine methonitrate (100 μg/kg/min, i.v.). On the other hand, the nitric oxide (NO) synthesis inhibitor l-nitroarginine methyl ester (30 mg/kg, i.v.) significantly increased the excitatory effect of DMV stimulation on glucose-induced insulin secretion to 15.3±3.0 ng/ml and 16.1±3.1 ng/ml 5 min later. These findings suggest that NO may play an inhibitory role in the central regulation of insulin secretion.
Collapse
Affiliation(s)
- Bashair M Mussa
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria, Australia
| | | | | | | |
Collapse
|
13
|
GABAA receptor subunit β1 is involved in the formation of protease-resistant prion protein in prion-infected neuroblastoma cells. FEBS Lett 2010; 584:1193-8. [DOI: 10.1016/j.febslet.2010.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 02/05/2010] [Accepted: 02/11/2010] [Indexed: 11/15/2022]
|
14
|
GABA homeostasis contributes to the developmental programming of anxiety-related behavior. Brain Res 2008; 1210:189-99. [DOI: 10.1016/j.brainres.2008.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 11/24/2022]
|
15
|
Sabbatini M, Molinari C, Grossini E, Piffanelli V, Mary DASG, Vacca G, Cannas M. GABAA receptors expression pattern in rat brain following low pressure distension of the stomach. Neuroscience 2008; 152:449-58. [PMID: 18280049 DOI: 10.1016/j.neuroscience.2008.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 12/17/2007] [Accepted: 01/10/2008] [Indexed: 11/19/2022]
Abstract
It is known that gastric mechanoreceptor stimuli are widely integrated into neuronal circuits that involve visceral nuclei of hindbrain as well as several central brain areas. GABAergic neurons are widely represented in hindbrain nuclei controlling gastric motor functions, but limited information is available specifically about GABA(A)-responding neurons in brain visceral areas. The present investigation was designed to determine the central sensory neuronal pathways and their GABA(A)-alpha1 and -alpha3 receptor presenting neurons that respond to gastric mechanoreceptor stimulation within the entire rat brain. Low pressure gastric distension was used to deliver physiological mechanical stimuli in anesthetized rats, and different protocols of gastric distension were performed to mimic different stimulation patterns with and without sectioning vagal and/or splanchnic afferent nerves. Mapping of activated neurons was investigated using double colorimetric immunohistochemistry for GABA(A)-alpha1 or -alpha3 subunits and c-Fos. Following stomach distension, neurons expressing GABA(A) receptors with alpha1 or alpha3 subunits were detected. Low frequency gastric distension induced c-Fos expression in nucleus tractus solitarii (NTS) only, whereas in the high frequency gastric distension c-Fos positive nuclei were found in lateral reticular nucleus and in NTS in addition to some forebrain areas. In contrast, during the tonic-rapid gastric distension the neuronal activation was found in hindbrain, midbrain and forebrain areas. Moreover different protocols of gastric stimulation activated diverse patterns of neurons presenting GABA(A)-alpha1 or -alpha3 receptors within responding brain nuclei, which may indicate a probable functional significance of differential expression of GABA(A)-responding neurons. The same protocol of gastric distension performed in vagotomized rats has confirmed the primary role of the vagus in the response of activation of gastric brain areas, whereas neuronal input of splanchnic origins was shown to play an important role in modulating the mechanogastric response of brain areas.
Collapse
Affiliation(s)
- M Sabbatini
- Laboratorio di Anatomia Umana, Dipartimento Medicina Clinica e Sperimentale, Università del Piemonte Orientale, Novara, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mussa BM, Verberne AJM. Activation of the dorsal vagal nucleus increases pancreatic exocrine secretion in the rat. Neurosci Lett 2007; 433:71-6. [PMID: 18241988 DOI: 10.1016/j.neulet.2007.12.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 01/13/2023]
Abstract
Pancreatic secretion is regulated by the dorsal vagal nucleus (DVN) which is modulated by several neurotransmitters and diverse synaptic inputs. The inhibitory neurotransmitter GABA is a major modulator of the vagal output to the gastrointestinal tract. The present study investigated the effects of GABA(A) receptor blockade in the DVN, using bicuculline methiodide (BIM, GABA(A) receptor antagonist, 100 pmol/25 nl), on pancreatic exocrine secretion (PES). Male Sprague-Dawley rats anaesthetised with isoflurane were used in all experiments. PES was collected from the common bile-pancreatic duct and was used to determine the pancreatic protein output (PPO). PES and PPO were measured prior to, and after, microinjection of BIM into the DVN. Bilateral microinjection of BIM into the DVN significantly increased PES and PPO from 23.4+/-3.2 microl/h to 66.1+/-17.5 microl/h and 19.3+/-1.7 microg/h to 35.7+/-3.0 microg/h (P<0.05), respectively. Atropine methonitrate (100 microg/(kg min), i.v.) blocked the excitatory effect of BIM microinjection on PES and PPO. These results suggest that activation of DVN neurons stimulates pancreatic secretion via a cholinergic muscarinic mechanism.
Collapse
Affiliation(s)
- Bashair M Mussa
- University of Melbourne, Department of Medicine, Clinical Pharmacology and Therapeutics Unit, Austin Health, Heidelberg 3084, Victoria, Australia
| | | |
Collapse
|
17
|
Moreira THV, Gover TD, Weinreich D. Electrophysiological properties and chemosensitivity of acutely dissociated trigeminal somata innervating the cornea. Neuroscience 2007; 148:766-74. [PMID: 17706884 PMCID: PMC3390199 DOI: 10.1016/j.neuroscience.2007.03.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 03/02/2007] [Accepted: 04/04/2007] [Indexed: 11/25/2022]
Abstract
Adult rat sensory trigeminal ganglion neurons innervating the cornea (cTGNs) were isolated and identified following retrograde dye labeling with FM1-43. Using standard whole-cell patch clamp recording techniques, cTGNs could be subdivided by their action potential (AP) duration. Fast cTGNs had AP durations <1 ms (40%) while slow cTGNs had AP durations >1 ms and an inflection on the repolarization phase of the AP. With the exception of membrane input resistance, the passive membrane properties of fast cTGNs were different from those of slow cTGNs (capacitance: 61+/-4.5 pF vs. 42+/-2.6 pF, resting membrane potential: -59+/-0.7 mV vs. -53+/-0.9 mV, for fast and slow cTGNs respectively). Active membrane properties also differed between fast and slow cTGNs. Slow cTGNs had a higher AP threshold (-25+/-1.6 mV vs. -38+/-0.8 mV), a larger rheobase (14+/-1.9 pA/pF vs. 6.8+/-1.0 pA/pF), and a smaller AP undershoot (-56+/-1.7 mV vs. -67+/-2.5 mV). The AP overshoot, however was similar between the two types of neurons (46+/-3.1 mV vs. 48+/-4 mV). Slow cTGNs were depolarized by capsaicin (1 microM, 80%) and 60% of their APs were blocked by tetrodotoxin (TTX) (100 nM). Fast cTGNs were unaffected by capsaicin and 100% of their APs were blocked by TTX. Similarly, cTGNs were also heterogeneous with respect to their responses to exogenous ATP and 5-HT. The current work shows that cTGNs have distinctive electrophysiological properties and chemosensitivity profiles. These characteristics may mirror the distinct properties of corneal sensory nerve terminals. The availability of isolated identified cTGNs constitutes a tractable model system to investigate the biophysical and pharmacological properties of corneal sensory nerve terminals.
Collapse
Affiliation(s)
- Thaís Helena Veiga Moreira
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tony D Gover
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Daniel Weinreich
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Muller E, Le Corronc H, Triller A, Legendre P. Developmental dissociation of presynaptic inhibitory neurotransmitter and postsynaptic receptor clustering in the hypoglossal nucleus. Mol Cell Neurosci 2006; 32:254-73. [PMID: 16765056 DOI: 10.1016/j.mcn.2006.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/19/2006] [Accepted: 04/24/2006] [Indexed: 11/21/2022] Open
Abstract
At postsynaptic densities of mouse hypoglossal motoneurons, the proportion of glycine receptors co-clustered with GABAA receptors increases from neonatal to adult animals, suggesting that mixed synapses might play a greater role in adult synaptic inhibition. We visualized the presynaptic correlates of these developmental changes using immunocytochemistry. At P5, presynaptic terminals contained glycine and GlyT2 and/or GABA and GAD65, but at P15, the majority of inhibitory terminals contained glycine and GlyT2 only. The GABAergic component of evoked inhibitory postsynaptic currents in HMs decreased strongly between P5 and P15. Similarly, miniature inhibitory postsynaptic currents evolved from mainly glycinergic and mixed glycinergic/GABAergic events at P3-5 to predominantly glycinergic currents at P15. These results indicate that the decrease in the proportion of functional mixed inhibitory synapses with maturation results from a loss of the ability of presynaptic terminals to release both neurotransmitters during development while co-aggregation of GlyRs + GABAARs at postsynaptic loci remained.
Collapse
Affiliation(s)
- Emilie Muller
- UMR 7102-Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie, Bat. B 6e étage, Case 1, 9, Quai Saint Bernard, 75252 Paris CEDEX 05, France
| | | | | | | |
Collapse
|
19
|
Zheng H, Patterson LM, Morrison C, Banfield BW, Randall JA, Browning KN, Travagli RA, Berthoud HR. Melanin concentrating hormone innervation of caudal brainstem areas involved in gastrointestinal functions and energy balance. Neuroscience 2006; 135:611-25. [PMID: 16111819 DOI: 10.1016/j.neuroscience.2005.06.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 05/22/2005] [Accepted: 06/09/2005] [Indexed: 12/30/2022]
Abstract
Neural signaling by melanin-concentrating hormone and its receptor (SLC-1) has been implicated in the control of energy balance, but due to the wide distribution of melanin-concentrating hormone-containing fibers throughout the neuraxis, its critical sites of action for a particular effect have not been identified. The present study aimed to anatomically and functionally characterize melanin-concentrating hormone innervation of the rat caudal brainstem, as this brain area plays an important role in the neural control of ingestive behavior and autonomic outflow. Using retrograde tracing we demonstrate that a significant proportion (5-15%) of primarily perifornical and far-lateral hypothalamic melanin-concentrating hormone neurons projects to the dorsal vagal complex. In the caudal brainstem, melanin-concentrating hormone-ir axon profiles are distributed densely in most areas including the nucleus of the solitary tract, dorsal motor nucleus of the vagus, and sympathetic premotor areas in the ventral medulla. Close anatomical appositions can be demonstrated between melanin-concentrating hormone-ir axon profiles and tyrosine hydroxylase, GABA, GLP-1, NOS-expressing, and nucleus of the solitary tract neurons activated by gastric nutrient infusion. In medulla slice preparations, bath application of melanin-concentrating hormone inhibited in a concentration-dependent manner the amplitude of excitatory postsynaptic currents evoked by solitary tract stimulation via a pre-synaptic mechanism. Fourth ventricular administration of melanin-concentrating hormone (10 microg) in freely moving rats decreased core body temperature but did not change locomotor activity and food and water intake. We conclude that the rich hypothalamo-medullary melanin-concentrating hormone projections in the rat are mainly inhibitory to nucleus of the solitary tract neurons, but are not involved in the control of food intake. Projections to ventral medullary sites may play a role in the inhibitory effect of melanin-concentrating hormone on energy expenditure.
Collapse
Affiliation(s)
- H Zheng
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Docherty RJ, Charlesworth G, Farrag K, Bhattacharjee A, Costa S. The use of the rat isolated vagus nerve for functional measurements of the effect of drugs in vitro. J Pharmacol Toxicol Methods 2005; 51:235-42. [PMID: 15862468 DOI: 10.1016/j.vascn.2004.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 10/25/2022]
Abstract
In this article we describe how to dissect, set up and use the rat isolated vagus nerve in a 'grease gap' apparatus which provides a simple and practical method for measuring the effects of drugs on the membrane potential of axons in the nerve in vitro. Some discussion of the origins and development of the technique as well as the strengths and disadvantages of the preparation as a neuropharmacological tool are included. The vagus nerve conducts action potentials in at least three distinct types of axons that can be measured extracellularly as compound action potentials and distinguished on the basis of their conduction velocity and excitability. Activity in myelinated A fibres and unmyelinated C fibres can be measured separately easily. The axons express receptors for a wide range of putative neurotransmitter agents including 5-HT, GABA and ATP as well as other agents such as capsaicin, anandamide, bradykinin and prostanoids. Responses to all of these chemicals can be measured as a depolarization of the nerve fibres. The vagus nerve is an important target for a wide range of drugs and the isolated preparation provides a fairly simple preparation for studying their effects. The isolated vagus nerve is also a convenient system in which the effects of drugs that have been discovered using heterologous expression systems can be assayed on receptors and ion channels that are expressed in a native neural system.
Collapse
Affiliation(s)
- R J Docherty
- Centre for Neuroscience Research, GKT School of Biomedical Sciences, King's College London, Guy's Campus, London Bridge, London SE1 9RT, United Kingdom.
| | | | | | | | | |
Collapse
|
21
|
Zheng H, Patterson LM, Phifer CB, Berthoud HR. Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. Am J Physiol Regul Integr Comp Physiol 2005; 289:R247-58. [PMID: 15746303 DOI: 10.1152/ajpregu.00869.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic, cognitive, and environmental factors processed in the forebrain modulate food intake by changing the potency of direct controls of meal ingestion in the brain stem. Here, we behaviorally and anatomically test the role of the hypothalamic proopiomelanocortin (POMC) system in mediating some of these descending, indirect controls. Melanotan II (MTII), a stable melanocortin 4 receptor (MC4R) and melanocortin 3 receptor (MC3R) agonist injected into the fourth ventricle near the dorsal vagal complex, potently inhibited 14-h food intake by decreasing meal size but not meal frequency; SHU9119, an antagonist, increased food intake by selectively increasing meal size. Furthermore, MTII injected into the fourth ventricle increased and SHU9119 tended to decrease heart rate and body temperature measured telemetrically in freely moving rats. Numerous alpha-melanocyte-stimulating hormone-immunoreactive axons were in close anatomical apposition to nucleus tractus solitarius neurons showing c-Fos in response to gastric distension, expressing neurochemical phenotypes implicated in ingestive control, and projecting to brown adipose tissue. In retrograde tracing experiments, a small percentage of arcuate nucleus POMC neurons was found to project to the dorsal vagal complex. Thus melanocortin signaling in the brain stem is sufficient to alter food intake via changing the potency of satiety signals and to alter sympathetic outflow. Although the anatomical findings support the involvement of hypothalamomedullary POMC projections in mediating part of the descending, indirect signal, they do not rule out involvement of POMC neurons in the nucleus tractus solitarius in mediating part of the direct signal.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd., Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
22
|
Muller E, Triller A, Legendre P. Glycine receptors and GABA receptor alpha 1 and gamma 2 subunits during the development of mouse hypoglossal nucleus. Eur J Neurosci 2005; 20:3286-300. [PMID: 15610161 DOI: 10.1111/j.1460-9568.2004.03785.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the hypoglossal nucleus, GABA and glycine mediate inhibition at separate or mixed synapses containing glycine receptors (GlyRs) and/or GABA(A) receptors (GABA(A)Rs). The functional development of mixed inhibitory synapses depends on the brain area studied, but their relative proportion to total synapses generally decreases with time. We have determined the sequential process of inhibitory synapse maturation in the hypoglossal nucleus in vivo. Immunocytochemistry and confocal microscopy were used for codetection of VIAAT, the common presynaptic vesicular transporter of glycine and GABA, GlyRs, GABA(A)R alpha1 and gamma2 subunits, and gephyrin, the scaffold protein implicated in the synaptic localization of inhibitory receptors. In E17 embryos, GlyRs were already clustered while GABA(A)R alpha1 and gamma2 subunit immunoreactivity (IR) displayed both diffuse and clustered patterns. Quantitative analysis at this stage revealed that the majority of GlyR clusters were apposed to VIAAT-IR accumulation and that 30% of them colocalized with gamma2GABA(A)R clusters. This proportion increased with age to 50% at P30. GlyR clusters that did not colocalize with gamma2GABA(A)R clusters were associated with GABA(A)R gamma2 diffuse IR. Interestingly, the percentage of GlyR clusters surrounded by GABA(A)R gamma2 diffuse IR decreased with age, while GlyR clusters colocalized with gamma2GABA(A)R clusters increased. The developmental coclustered pattern of gephyrin and GABA(A)R alpha1 and gamma2 subunits paralleled the coclustered pattern of GlyRs and GABA(A)R alpha1 and gamma2 subunits. Our results indicate that the proportion of GlyR-GABA(A)R coclusters increases until adulthood. A developmental sequence of the postsynaptic events is proposed in which diffuse extrasynaptic GABA(A)Rs accumulate at inhibitory synapses to form postsynaptic clusters, most of them being colocalized with GlyR clusters in the adult.
Collapse
Affiliation(s)
- Emilie Muller
- UMR 7102 Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie, 7 Quai Saint Bernard, 75252 Paris Cedex 05, France.
| | | | | |
Collapse
|
23
|
Abstract
Sodium is a key component of virtually every mammalian physiological function. As such, many animals have evolved specialized mechanisms for detecting and ameliorating deficits in body sodium, including the development of a robust salt appetite, where normally aversive concentrations of salt are readily consumed during periods of sodium deprivation. Here, we review research spanning more than half a century focusing on the condition and detection of sodium deprivation, the important and unique function of taste in sodium homeostasis, as well as the neurohormonal interactions leading to behaviors aimed at the reversal of sodium deficits. Based on the present literature, we propose a model for the interaction of forebrain and brainstem systems for the mediating circuitry giving rise to salt appetite and discuss the remarkable parallel between what is known about the neurohormonal interactions that regulate salt appetite and those involved in energy homeostasis.
Collapse
Affiliation(s)
- Derek Daniels
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, 254E, Philadelphia, PA 19104-6046, USA
| | | |
Collapse
|
24
|
Oshima T, Dohi S. Isoflurane Facilitates Hiccup-Like Reflex Through Gamma Aminobutyric Acid (GABA)A- and Suppresses Through GABAB-Receptors in Pentobarbital-Anesthetized Cats. Anesth Analg 2004; 98:346-352. [PMID: 14742368 DOI: 10.1213/01.ane.0000097169.98992.e7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED The mechanism by which volatile anesthetics exert inconsistent effects on hiccups is unknown. We elicited a hiccup-like reflex by mechanical stimulation of the dorsal epipharynx in mechanically ventilated cats. The magnitude of the hiccup-like reflex was measured as the peak negative esophageal pressure (nPes) generated against an occluded airway. First, we examined the effects of different end-expiratory concentrations of isoflurane on nPes. Second, we determined the effects of 1.0 minimum alveolar anesthetic concentration of isoflurane on nPes after a peripherally restricted gamma aminobutyric acid (GABA)(A)-receptor antagonist, bicuculline methiodide (BM), a GABA(B)-receptor antagonist, CGP 35348, a peripherally restricted GABA(B)-receptor antagonist, CGP 54626, or saline had been administered IV. Third, BM, CGP 35348, or artificial cerebrospinal fluid was administered intracisternally before 1.0 minimum alveolar anesthetic concentration of isoflurane exposure. During isoflurane anesthesia, nPes was inversely proportional to the end-expiratory isoflurane concentration. The rank order of nPes values obtained after IV drug pretreatment and isoflurane exposure was BM < saline < CGP54626 < CGP35348. After intracisternal drug pretreatment and isoflurane administration, the order of nPes was BM < artificial cerebrospinal fluid < CGP35348. Isoflurane modulates the hiccup-like reflex in opposite directions through both central and peripheral GABA(A) and GABA(B) receptors, with the net effect being a dose-dependent suppression. IMPLICATIONS Isoflurane facilitated the hiccup-like reflex through activation of central and peripheral gamma aminobutyric acid (GABA)(A) receptors but suppressed it via activation of central and peripheral GABA(B) receptors. The net result was that the hiccup-like reflex was inhibited in proportion to the alveolar isoflurane concentration.
Collapse
Affiliation(s)
- Tsutomu Oshima
- Department of Anesthesiology and Critical Care Medicine, Gifu University School of Medicine, Gifu-City, Japan
| | | |
Collapse
|
25
|
Roulston CL, Lawrence AJ, Jarrott B, Widdop RE. Localization of AT(2) receptors in the nucleus of the solitary tract of spontaneously hypertensive and Wistar Kyoto rats using [125I] CGP42112: upregulation of a non-angiotensin II binding site following unilateral nodose ganglionectomy. Brain Res 2003; 968:139-55. [PMID: 12644272 DOI: 10.1016/s0006-8993(03)02231-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have examined the binding distribution of a selective AT(2) receptor ligand [125I] CGP42112 in the brain of adult Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). AT(2) receptor localization was also examined in the rat brainstem following unilateral nodose ganglionectomy. Specific [125I] CGP42112 binding was observed in discrete brain regions from both rat strains, including the nucleus of the solitary tract (NTS), and did not differ between WKY and SHR. [125I] CGP42112 binding in the NTS revealed an AT(2) receptor component that was displaceable by PD 123319 and Ang II (50-58%), as well as a non-angiotensin II receptor component (42-49%). Following unilateral nodose ganglionectomy, [125I] CGP42112 binding density on the denervated side of the NTS was increased approximately two-fold in both WKY and SHR. This increased [125I] CGP42112 binding density in the ipsilateral NTS was comprised of a greater non-angiotensin II component than that observed in the sham groups, since only approximately 30% was displaced by PD123319 and angiotensin II. Furthermore, [125I] CGP42112 also revealed high binding density on the denervated side in the dorsal motor nucleus and the nucleus ambiguus in both WKY and SHR. AT(2) receptor immunoreactivity was also visualised in the NTS of sham operated rats, but was not observed in the dorsal motor nucleus or the nucleus ambiguus, nor was it up-regulated following nodose ganglionectomy. These results demonstrate, for the first time, an AT(2) receptor binding site in the NTS, as well as a non-angiotensin II [125I] CGP42112 binding site. These studies also demonstrate that nodose ganglionectomy represents a useful model in which to study a non-angiotensin II [125I] CGP42112 binding site that is up-regulated following degeneration of afferent vagal nerves.
Collapse
Affiliation(s)
- Carli L Roulston
- Department of Pharmacology, Monash University, 3800, Victoria, Australia
| | | | | | | |
Collapse
|
26
|
Sengupta JN, Medda BK, Shaker R. Effect of GABA(B) receptor agonist on distension-sensitive pelvic nerve afferent fibers innervating rat colon. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1343-51. [PMID: 12388205 DOI: 10.1152/ajpgi.00124.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spinal afferents innervating the gastrointestinal tract are the major pathways for visceral nociception. Many centrally acting analgesic drugs attenuate responses of visceral primary afferent fibers by acting at the peripheral site. Gamma-amino butyric acid (GABA), a major inhibitory neurotransmitter, acts via metobotropic GABA(B) and ionotropic GABA(A)/GABA(C) receptors. The aim of this study was to test the peripheral effect of selective GABA(B) receptor agonist baclofen on responses of the pelvic nerve afferent fibers innervating the colon of the rat. Distension-sensitive pelvic nerve afferent fibers were recorded from the S(1) sacral dorsal root in anesthetized rats. The effect of baclofen (1-300 micromol/kg) was tested on responses of these fibers to colorectal distension (CRD; 60 mmHg, 30 s). A total of 21 pelvic nerve afferent fibers was recorded. Mechanosensitive properties of four fibers were also recorded before and after bilateral transections of T(12)-S(3) ventral roots (VR). Effect of baclofen was tested on 15 fibers (7 in intact rats, 4 in rats with transected VR, and 4 in rats pretreated with CGP 54626). In nine fibers (5/7 in intact and 4/4 in VR transected rats), baclofen produced dose-dependent inhibition of response to CRD. Pretreatment with selective GABA(B) receptor antagonist CGP 54626 (1 micromol/kg) reversed the inhibitory effect of baclofen. Results suggest a peripheral role of GABA(B) receptors in the inhibition of mechanotransduction property of distension-sensitive pelvic nerve afferent fibers.
Collapse
Affiliation(s)
- Jyoti N Sengupta
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | |
Collapse
|
27
|
Hunt RH, Tougas G. Evolving concepts in functional gastrointestinal disorders: promising directions for novel pharmaceutical treatments. Best Pract Res Clin Gastroenterol 2002; 16:869-83. [PMID: 12473296 DOI: 10.1053/bega.2002.0356] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years there has been an increasing appreciation of the complexity of functional gastrointestinal disorders. These represent a spectrum of conditions which may affect any part of the gastrointestinal tract in which there appears to be dysregulation of visceral function and afferent sensation and a strong association with emotional factors and stress. There is a clear psychological dimension, with up to 60% of irritable bowel syndrome (IBS) patients reported to have psychological co-morbidities and altered pain perception is also common in comparison with control populations. The role of the enteric nervous system, the sensory pathways and the brain as well as the influence of the latter on sympathetic and parasympathetic outflow have likewise attracted increasing interest and have led to exciting new methods to study their complex interactions. The concept of low-grade inflammation, such as might occur after infection, acting as a trigger for neuromuscular dysfunction has also led to the broad integrative hypotheses that help to explain the biopsychosocial dimensions seen in functional gastrointestinal disease. The multi-component model places a major emphasis on neurogastroenterology and enteric and neuro-immune interactions where new approaches to pharmacotherapy lie. Drugs may affect motility, visceral sensation and other aspects of gut function such as secretion or absorption. More particularly, however, has been the search for and attempts to influence important mediators of these primary gut functions. Such targets include serotonin and selected 5-HT receptors, which are involved in gut motility, visceral sensation and other aspects of gut function, CCK receptors which are involved in the mediation of pain in the gut and nociception in the CNS, opioid receptors involved in pain in the brain, spinal cord and periphery, muscarinic M3-receptors, substance P and neurokinin A and B receptors which are involved in motor adaptation and pain transmission in association with inflammation, gabba receptors involved in nociception and cannabinoid receptors which are involved in the control of acetyl choline release in the gut. With a better understanding of the structures and pathways involved in visceral perception and hyperalgesia, in the CNS, spinal cord and the gut and new pharmacological tools we will be better able to elucidate the neuropharmacology of visceral perception and its relationship to gut dysfunction. It is likely that there will be multiple therapeutic options based on the spectrum of abnormalities capable of causing the spectrum of symptoms of functional gastrointestinal disorders in any individual patient.
Collapse
Affiliation(s)
- Richard H Hunt
- Department of Medicine, Division of Gastroenterology, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | | |
Collapse
|
28
|
Zagorodnyuk VP, D'Antona G, Brookes SJH, Costa M. Functional GABAB receptors are present in guinea pig nodose ganglion cell bodies but not in peripheral mechanosensitive endings. Auton Neurosci 2002; 102:20-9. [PMID: 12492132 DOI: 10.1016/s1566-0702(02)00183-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of the GABAB-selective agonist baclofen were studied on guinea pig nodose ganglion neurones using grease gap and intracellular recording techniques, and on peripheral mechanosensitive endings in the guinea pig oesophagus and stomach with extracellular recordings. GABA dose-dependently reduced the amplitude of the compound action potential of C-type neurones (C spikes, EC50 = 30.9 microM), which was prevented by the GABAA antagonist bicuculline (10 microM). The GABAB agonist baclofen (1-300 microM) did not produce any significant effect on the amplitude of C spikes. In microelectrode studies, baclofen (100 microM) evoked hyperpolarisation (by 2.53 +/- 0.51 mV, n = 6, N = 5) in a subset of nodose neurones (6 out of 26, N = 18). In seven out of eight neurones (N = 8) with a slow after-hyperpolarisation following action potentials, baclofen significantly inhibited its amplitude by 19 +/- 4% (n = 7, p < 0.05). GABA (100 microM) evoked a depolarisation of 9.3 +/- 2.4 mV (10 nodose neurones, N = 9, p < 0.05) associated with a decrease in input impedance of 49 +/- 12% (N = 4, p < 0.05). Baclofen (100-200 microM) did not affect either spontaneous or stretch-evoked firing of distension-sensitive vagal mechanoreceptors of the guinea pig oesophagus and stomach but did inhibit mechanoreceptors in the ferret oesophagus. Antibodies to GABAB receptor 1a splice variants labelled most of the neurones and numerous fibres in the guinea pig nodose ganglion while antibodies to GABAB receptor 1b splice variants stained only nerve cell bodies. There were numerous nerve fibres showing GABAB receptor 1a- and 1b-like immunoreactivity in the myenteric plexus in the guinea pig oesophagus and stomach but not in anterogradely labelled extrinsic vagal nerve fibres. The result indicates that most guinea pig C-type nodose ganglion neurones have GABAB receptors on their cell bodies but their density on distension-sensitive peripheral endings is too low to allow modulation of mechanotransduction. There is a significant species-dependent difference in the expression of GABAB receptors on peripheral vagal mechanosensitive endings.
Collapse
Affiliation(s)
- Vladimir P Zagorodnyuk
- Department of Human Physiology, Centre for Neuroscience, Flinders University of South Australia, GPO Box 2100, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
29
|
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 213:1-47. [PMID: 11837891 DOI: 10.1016/s0074-7696(02)13011-7] [Citation(s) in RCA: 379] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyrate (GABA) is a major inhibitory neurotransmitter in the adult mammalian brain. GABA is also considered to be a multifunctional molecule that has different situational functions in the central nervous system, the peripheral nervous system, and in some nonneuronal tissues. GABA is synthesized primarily from glutamate by glutamate decarboxylase (GAD), but alternative pathways may be important under certain situations. Two types of GAD appear to have significant physiological roles. GABA functions appear to be triggered by binding of GABA to its ionotropic receptors, GABA(A) and GABA(C), which are ligand-gated chloride channels, and its metabotropic receptor, GABA(B). The physiological, pharmacological, and molecular characteristics of GABA(A) receptors are well documented, and diversity in the pharmacologic properties of the receptor subtypes is important clinically. In addition to its role in neural development, GABA appears to be involved in a wide variety of physiological functions in tissues and organs outside the brain.
Collapse
|
30
|
Lawrence AJ, Krstew EV, Dautzenberg FM, Rühmann A. The highly selective CRF(2) receptor antagonist K41498 binds to presynaptic CRF(2) receptors in rat brain. Br J Pharmacol 2002; 136:896-904. [PMID: 12110614 PMCID: PMC1573413 DOI: 10.1038/sj.bjp.0704783] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Novel analogues of antisauvagine-30 (aSvg-30), a selective antagonist for CRF(2) receptors, have been synthesized and characterized in vitro and in vivo. 2. The analogues were tested for their ability to compete for [(125)I-Tyr(0)]Svg binding and to inhibit Svg-stimulated adenylate cyclase activity in human embryonic kidney (HEK) 293 cells, permanently transfected with cDNA coding for the human CRF(1) (hCRF(1)), hCRF(2alpha) and hCRF(2beta) receptor. One analogue [D-Phe(11), His(12), Nle(17)]Svg(11-40), named K41498, showed high affinity binding to hCRF(2alpha) (K(i)=0.66+/-0.03 nM) and hCRF(2beta) (K(i)=0.62+/-0.01 nM) but not the hCRF(1) receptor (k(i)=425+50 nM) and decreased Svg-stimulated cAMP accumulation in hCRF(2) expressing cells. In conscious Wistar-Kyoto rats, K41498 (1.84 microg, i.v.) antagonized the hypotensive response to systemic urocortin (1.4 microg, i.v.), but did not block the pressor response to centrally administered urocortin (2.35 microg, i.c.v.). 3. K41498 was subsequently radio-iodinated, and in autoradiographic studies, specific (sensitive to rat urocortin, astressin and aSvg30, but insensitive to antalarmin) binding of (125)I-K41498 (100 pM) was detected in the heart and in selected brain regions including the nucleus tractus solitarius (NTS), spinal trigeminal nucleus, lateral septum and around the anterior and middle cerebral arteries. 4. Following unilateral nodose ganglionectomy, binding of (125)I-K41498 was reduced by 65% in the ipsilateral NTS, indicative of presynaptic CRF(2) receptors on vagal afferent terminals. 5. These data demonstrate that K41498 is a useful tool to study native CRF(2) receptors in the brain and periphery.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Pharmacology, Monash University, Clayton VIC 3800, Australia.
| | | | | | | |
Collapse
|
31
|
Smid SD, Young RL, Cooper NJ, Blackshaw LA. GABA(B)R expressed on vagal afferent neurones inhibit gastric mechanosensitivity in ferret proximal stomach. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1494-501. [PMID: 11705755 DOI: 10.1152/ajpgi.2001.281.6.g1494] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GABA(B)-receptor (GABA(B)R) agonists reduce transient lower esophageal sphincter relaxation (TLESR) and reflux episodes through an action on vagal pathways. In this study, we determined whether GABA(B)R are expressed on vagal afferent neurones and whether they modulate distension-evoked discharge of vagal afferents in the isolated stomach. Vagal mehanoreceptor activity was recorded following distensions of the isolated ferret proximal stomach before and after perfusion with the GABA(B)R-selective agonists baclofen and 3-aminopropylphosphinic acid (3-APPiA). Retrograde labeling and immunohistochemistry were used to identify GABA(B)R located on vagal afferent neurones in the nodose ganglia. Vagal afferent fibers responded to isovolumetric gastric distension with an increase in discharge. The GABA(B)-receptor agonists baclofen (5 x 10(-5) M) and 3-APPiA (10(-6) to 10(-5) M) but not muscimol (GABA(A)-selective agonist: 1.3 x 10(-5) M) significantly decreased afferent distension-response curves. The effect of baclofen (5 x 10(-5) M) was reversed by the GABA(B)-receptor antagonist CGP 62349 (10(-5) M). Over 93% of retrogradely labeled gastric vagal afferents in the nodose ganglia expressed immunoreactivity for the GABA(B)R. GABA(B)R expressed on vagal afferent fibers directly inhibit gastric mechanosensory activity. This is likely a contributing mechanism to the efficacy of GABA(B)-receptor agonists in reducing TLESR and reflux episodes in vivo.
Collapse
Affiliation(s)
- S D Smid
- Nerve-Gut Research Laboratory, Level 1 Hanson Centre, Adelaide SA 5000, Australia.
| | | | | | | |
Collapse
|
32
|
Kasparov S, Davies KA, Patel UA, Boscan P, Garret M, Paton JF. GABA(A) receptor epsilon-subunit may confer benzodiazepine insensitivity to the caudal aspect of the nucleus tractus solitarii of the rat. J Physiol 2001; 536:785-96. [PMID: 11691872 PMCID: PMC2278908 DOI: 10.1111/j.1469-7793.2001.00785.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2001] [Accepted: 06/28/2001] [Indexed: 11/30/2022] Open
Abstract
1. Benzodiazepines (BZ) and barbiturates both potentiate chloride currents through GABA(A) receptors to enhance inhibition. However, unlike barbiturates BZ do not impair autonomic control of heart rate. We hypothesised that BZ might not significantly potentiate GABAergic transmission in the caudal nucleus of the solitary tract (cNTS), which is critically important for mediating the baroreceptor reflex. 2. In rat brain slices the BZ agonists chlordiazepoxide and midazolam (2 and 50 microM) did not significantly enhance currents evoked by GABA in voltage-clamped cNTS neurones. Chlordiazepoxide (50 microM) reversibly increased electrically evoked IPSPs in 5/10 rostral NTS (rNTS) neurones but only in 2/10 cNTS neurones. Pentobarbitone (50-100 microM) was effective in enhancing GABA(A)-mediated responses in all NTS neurones. An inverse BZ agonist, methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM; 1 or 10 microM), failed to depress GABA-induced currents in the cNTS. 3. Microinjections of midazolam (10 and 100 microM solutions) into the cNTS did not affect the baroreceptor reflex (P > 0.2) while pentobarbitone (100 microM) significantly and reversibly depressed it (gain decrease to 53 +/- 11 % of control, P < 0.01). 4. Reverse transcriptase polymerase chain reaction revealed the presence of alpha(1), alpha(2), beta(2), beta(3) and gamma(2) GABA(A) receptor subunit mRNA in the cNTS. No alternatively spliced variants of the alpha(1)- and gamma(2)-subunits were revealed. Moreover, GABA(A) epsilon-unit mRNA was found in both the cNTS and rNTS as two alternatively spliced transcripts. 5. Immunocytochemical analysis revealed numerous GABA(A) epsilon-subunit-positive neurones within the cNTS with significantly fewer epsilon-subunit-positive cells in the rNTS. 6. As incorporation of the epsilon-subunit in recombinant GABA(A) receptors may confer BZ insensitivity we propose that the paucity of BZ actions in the cNTS is due to a high level of epsilon-subunit expression. This is the first demonstration of a possible physiological impact of the epsilon-subunit on native GABA(A) receptors.
Collapse
Affiliation(s)
- S Kasparov
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Holzer P. Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. Eur J Pharmacol 2001; 429:177-93. [PMID: 11698040 DOI: 10.1016/s0014-2999(01)01319-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An intricate surveillance network consisting of enteroendocrine cells, immune cells and sensory nerve fibres monitors the luminal and interstitial environment in the alimentary canal. Functional bowel disorders are characterized by persistent alterations in digestive regulation and gastrointestinal discomfort and pain. Visceral hyperalgesia may arise from an exaggerated sensitivity of peripheral afferent nerve fibres and/or a distorted processing and representation of gut signals in the brain. Novel strategies to treat these sensory bowel disorders are therefore targeted at primary afferent nerve fibres. These neurons express a number of molecular traits including transmitters, receptors and ion channels that are specific to them and whose number and/or behaviour may be altered in chronic visceral pain. The targets under consideration comprise vanilloid receptor ion channels, acid-sensing ion channels, sensory neuron-specific Na(+) channels, P2X(3) purinoceptors, 5-hydroxytryptamine (5-HT), 5-HT(3) and 5-HT(4) receptors, cholecystokinin CCK(1) receptors, bradykinin and prostaglandin receptors, glutamate receptors, tachykinin and calcitonin gene-related peptide receptors as well as peripheral opioid and cannabinoid receptors. The utility of sensory neuron-targeting drugs in functional bowel disorders will critically depend on the compounds' selectivity of action for afferent versus enteric or central neurons.
Collapse
Affiliation(s)
- P Holzer
- Department of Experimental and Clinical Pharmacology, University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
34
|
Patten D, Foxon GR, Martin KF, Halliwell RF. An electrophysiological study of the effects of propofol on native neuronal ligand-gated ion channels. Clin Exp Pharmacol Physiol 2001; 28:451-8. [PMID: 11380521 DOI: 10.1046/j.1440-1681.2001.03469.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Pharmacological evidence suggests that some of the clinical actions of propofol may be mediated, at least in part, by positive modulation of the GABA(A) receptor chloride channel. The effect of propofol at other native neuronal ligand-gated ion channels is unclear. 2. To gain some insight into the effects of propofol at a range of native neuronal receptors, the present study has used an extracellular recording technique and determined its effects at GABA(A), 5-HT3, P2X and nicotinic acetylcholine (nACh) receptors of the rat isolated vagus nerve and the GABA(A) and strychnine-sensitive glycine receptor of the rat isolated optic nerve. In addition, we have used patch-clamp recording techniques to further investigate the effects of propofol at the GABA(A) and strychnine-sensitive glycine receptors in rat cultured hippocampal neurons. 3. Propofol (0.3-100 micromol/L) concentration-dependently potentiated submaximal GABA-evoked responses in the vagus nerve and shifted the GABA concentration-response curve to the left. In contrast, propofol at concentrations ranging from 1 to 10 micromol/L had little or no effect on 5-HT3, P2X or nACh receptor-mediated responses in the vagus nerve but, at 100 micromol/L, propofol inhibited these responses to approximately 50% of control. In the optic nerve, EC20 GABA-evoked responses were also potentiated by propofol (10 micromol/L), while EC20 glycine-evoked responses were minimally enhanced. 4. Further investigations using cultured hippocampal neurons showed that submaximal (10 micromol/L) GABA-evoked currents were potentiated by propofol (1-10 micromol/L), in a non-voltage-dependent manner, whereas submaximal (100 micromol/L) glycine-evoked currents were unaffected. 5. These data suggest that propofol, at therapeutic concentrations, exerts its principle pharmacological actions at GABA(A) receptors with relatively little effect at other neuronal ligand-gated ion channels.
Collapse
MESH Headings
- Anesthetics, Intravenous/pharmacology
- Animals
- Cells, Cultured
- Electrophysiology
- Ion Channel Gating/drug effects
- Ligands
- Male
- Neurons/drug effects
- Neurons/metabolism
- Optic Nerve/cytology
- Optic Nerve/drug effects
- Patch-Clamp Techniques
- Propofol/pharmacology
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Cholinergic/drug effects
- Receptors, Glycine/drug effects
- Receptors, Purinergic P2/drug effects
- Receptors, Serotonin/drug effects
- Receptors, Serotonin, 5-HT3
- Vagus Nerve/cytology
- Vagus Nerve/drug effects
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- D Patten
- Department of Biological Sciences, Science Laboratories, University of Durham, Durham, United Kingdom
| | | | | | | |
Collapse
|
35
|
Abstract
Action potentials initiated at the peripheral terminal of an afferent nerve are conducted to the central nervous system therein causing release of neurotransmitters that excite secondary neurons in the brain stem or spinal cord. Various chemicals, extremes in osmolarity and pH as well as mechanical stimuli are sensed by primary afferent nerves that innervate the airways. The processes leading to excitation of afferent nerve endings, conduction of action potentials along axons, transmitter secretion, and neuronal excitability are regulated by ions flowing through channels in the nerve membrane. Voltage-gated ion channels selective for K+ and Na+ ions allow the generation and conduction of action potentials and along with families of ion channels selective for other ions such as Ca2+ or Cl- are thought to play distinctive roles in regulating neuronal excitability and transmitter secretion. Here we discuss, in general terms, the roles played by various classes of ion channels in the activation, neurotransmitter secretion and excitability of primary afferent neurons.
Collapse
Affiliation(s)
- M J Carr
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | |
Collapse
|
36
|
Smid SD, Blackshaw LA. Vagal neurotransmission to the ferret lower oesophageal sphincter: inhibition via GABA(B) receptors. Br J Pharmacol 2000; 131:624-30. [PMID: 11015316 PMCID: PMC1572359 DOI: 10.1038/sj.bjp.0703602] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABA(B) receptors modulate the function of the lower oesophageal sphincter (LOS) in vivo by inhibiting neurotransmitter release in the vagal pathway controlling LOS relaxation. We aimed to determine whether this effect was mediated peripherally on vagal motor outflow to the ferret LOS in vitro. The LOS, with intact vagal innervation, was prepared from adult ferrets and LOS tension measured. Vagal stimulation (0.5 - 10 Hz, 30 V) evoked a tetrodotoxin-sensitive, frequency-dependent relaxation. Both GABA (3x10(-4) M) and (+/-)baclofen (2x10(-4) M) inhibited vagally-stimulated LOS relaxation. The potent GABA(B) receptor-selective agonist 3-APPA dose-dependently inhibited vagally-stimulated LOS relaxation, with an EC(50) value of 0.7 microM Decreased responses following vagal stimulation in the presence of (+/-)baclofen or 3-APPA were reversed with the potent GABA(B) receptor antagonist CGP 62349. Neither CGP 62349 nor muscimol (GABA(A) receptor agonist) alone affected LOS responses following vagal stimulation. Agonists of other G protein-coupled receptors (clonidine (alpha(2)-adrenoceptor) (5x10(-6) M), U50488 (kappa opioid) (10(-5) M), neuropeptide Y (10(-6) M)) did not affect vagally-mediated LOS relaxation. The present study supports a discrete presynaptic inhibitory role for GABA(B) receptors on vagal preganglionic fibres serving inhibitory motorneurones in the ferret LOS.
Collapse
Affiliation(s)
- S D Smid
- Department of Gastrointestinal Medicine, Nerve-Gut Research Laboratory, Royal Adelaide Hospital, Adelaide SA 5000, Australia.
| | | |
Collapse
|
37
|
Genetic inactivation of the Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J Neurosci 2000. [PMID: 10751426 DOI: 10.1523/jneurosci.20-08-02758.2000] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anxiety is a common psychiatric illness often treated by benzodiazepines (BZs). BZs, such as Valium, bind to the alpha subunit of the pentameric GABA(A) receptor and increase inhibition in the CNS. There is considerable evidence for abnormal GABA(A) receptor function in anxiety, and a significant proportion of anxiety patients has a reduced sensitivity to BZs. Here, we show that serotonin(1A) (5-HT(1A)) receptor knock-out mice display BZ-resistant anxiety. Consistent with this finding, binding of both BZ and non-BZ GABA(A) receptor ligands were reduced and GABAergic inhibition was impaired in mutant mice. These changes were reflected by abnormal alpha subunit expression in the amygdala and hippocampus, two important limbic regions involved in fear and anxiety. These data suggest a pathological pathway, initiated by a 5-HT(1A) receptor deficit, leading to abnormalities in GABA(A) receptor composition and level, which in turn result in BZ-insensitivity and anxiety. This model mechanistically links together the 5-HT and GABA systems, which both have been implicated in anxiety. A related mechanism may underlie reduced BZ sensitivity in certain forms of anxiety.
Collapse
|
38
|
Blackshaw LA, Smid SD, O'Donnell TA, Dent J. GABA(B) receptor-mediated effects on vagal pathways to the lower oesophageal sphincter and heart. Br J Pharmacol 2000; 130:279-88. [PMID: 10807664 PMCID: PMC1572054 DOI: 10.1038/sj.bjp.0703244] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
GABA(B) receptors influencing vagal pathways to the lower oesophageal sphincter and heart were investigated. In urethane-anaesthetized ferrets, the GABA(B) agonist baclofen (7 micromol kg(-1) i.v.) increased basal lower oesophageal sphincter (LOS) pressure. This was reversed by antagonism with CGP35348 (100 micromol kg(-1) i.v.). Baclofen's effect was abolished by vagotomy, suggesting a central action, yet it was ineffective when given centrally (3 - 6 nmol i.c.v.). Peripheral vagal stimulation (10 Hz, 5 s duration) caused LOS inhibition, followed by excitation, then prolonged inhibition. Bradycardia was also evoked during stimulation. Bradycardia and LOS responses were abolished after chronic supranodose vagotomy, indicating that they were due to stimulation of vagal pre-ganglionic neurones, not antidromic stimulation of afferents. Baclofen (1 - 10 micromol kg(-1)) reduced bradycardia and enhanced LOS excitation, which was also seen in animals pretreated with atropine (400 microgram kg(-1) i.v.) and guanethidine (5 mg kg(-1) i.v.), but not in those pretreated with L-NAME (100 mg kg(-1) i.v.). Effects of baclofen (7 micromol kg(-1) i.v.) on vagal stimulation-induced LOS and cardiac responses were unchanged by the GABA(B) antagonists CGP35348 or CGP36742 (up to 112 micromol kg(-1) i.v.), but were reversed by CGP62349 (ED(50) 37 nmol kg(-1) i.v.) or CGP54626 (ED(50) 100 nmol kg(-1) i.v.). Responses of isolated LOS strips to electrical stimulation, capsaicin, NK-1, NK-2 and nicotinic receptor agonists were all unaffected by baclofen (</=200 microM). We conclude that baclofen reduces vagal output at two peripheral sites: one presynaptically on pre-ganglionic neurones (CGP35348-insensitive), and another (CGP35348-sensitive) that could not be identified. This demonstrates heterogeneity of GABA(B) receptors through differential sensitivity to antagonists.
Collapse
Affiliation(s)
- L A Blackshaw
- Nerve-Gut Research Laboratory, Department of Gastrointestinal Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia.
| | | | | | | |
Collapse
|
39
|
Sibille E, Pavlides C, Benke D, Toth M. Genetic inactivation of the Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J Neurosci 2000; 20:2758-65. [PMID: 10751426 PMCID: PMC6772213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anxiety is a common psychiatric illness often treated by benzodiazepines (BZs). BZs, such as Valium, bind to the alpha subunit of the pentameric GABA(A) receptor and increase inhibition in the CNS. There is considerable evidence for abnormal GABA(A) receptor function in anxiety, and a significant proportion of anxiety patients has a reduced sensitivity to BZs. Here, we show that serotonin(1A) (5-HT(1A)) receptor knock-out mice display BZ-resistant anxiety. Consistent with this finding, binding of both BZ and non-BZ GABA(A) receptor ligands were reduced and GABAergic inhibition was impaired in mutant mice. These changes were reflected by abnormal alpha subunit expression in the amygdala and hippocampus, two important limbic regions involved in fear and anxiety. These data suggest a pathological pathway, initiated by a 5-HT(1A) receptor deficit, leading to abnormalities in GABA(A) receptor composition and level, which in turn result in BZ-insensitivity and anxiety. This model mechanistically links together the 5-HT and GABA systems, which both have been implicated in anxiety. A related mechanism may underlie reduced BZ sensitivity in certain forms of anxiety.
Collapse
Affiliation(s)
- E Sibille
- Department of Pharmacology, Weill Medical School of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
40
|
Lehmann A, Antonsson M, Bremner-Danielsen M, Flärdh M, Hansson-Brändén L, Kärrberg L. Activation of the GABA(B) receptor inhibits transient lower esophageal sphincter relaxations in dogs. Gastroenterology 1999; 117:1147-54. [PMID: 10535878 DOI: 10.1016/s0016-5085(99)70400-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Transient lower esophageal sphincter relaxation (TLESR) appears to be the most frequent motor event responsible for gastroesophageal reflux. Because TLESRs are considered to be triggered by activation of gastric mechanoreceptors, and because the gamma-aminobutyric acid type B (GABA(B))-receptor agonist baclofen is known to inhibit transmitter release from mechanosensitive afferents, the effects of baclofen on TLESRs in the dog were assessed. METHODS A total of 183 recordings of the pharyngeal, esophageal, lower esophageal sphincter, and gastric pressures as well as measurement of esophageal pH were performed in 15 awake dogs. Racemic baclofen, its enantiomers, and the GABA(B)-receptor antagonist CGP36742 were administered before stimulation of TLESRs by a liquid meal and air insufflation. The pharmacodynamics of baclofen were compared with its pharmacokinetics. RESULTS Baclofen dose-dependently inhibited TLESRs, with a 50% effective dose (ED(50)) of 1.0 micromol/kg after intravenous administration. The maximal inhibition amounted to approximately 80%. Intragastric baclofen was almost equally effective (ED(50), 1.8 micromol/kg), compatible with the complete oral availability of the drug (100%). The inhibitory effect of baclofen resided in the pharmacologically active R enantiomer, and CGP36742 reduced some of the effects of baclofen. CONCLUSIONS Baclofen is a potent and efficacious inhibitor of TLESRs and reflux in the dog. Activation of the GABA(B) receptor may be a new approach to the treatment of reflux disease.
Collapse
Affiliation(s)
- A Lehmann
- Gastrointestinal Pharmacology, Astra Zeneca R&D Mölndal, Mölndal, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Ashworth-Preece MA, Chen F, Jarrott B, Lawrence AJ. Visualisation of AMPA binding sites in the brain stem of normotensive and hypertensive rats. Brain Res 1999; 834:186-9. [PMID: 10407113 DOI: 10.1016/s0006-8993(99)01560-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study has employed in vitro receptor autoradiography with (S)-[(3)H]-5-fluorowillardiine (10 nM) to visualise the presence of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) binding sites in the brain stems of adult (16-18 weeks) normotensive (Wistar-Kyoto (WKY) and Don Ryu (DRY)) and Spontaneously Hypertensive (SHR) rats. Similar topographic distribution and density of (S)-[(3)H]-5-fluorowillardiine binding was observed in the nucleus tractus solitarius (NTS) of all three strains. Specific (S)-[(3)H]-5-fluorowillardiine binding sites were also visualised in sections of nodose ganglion from adult WKY rats, demonstrating that vagal afferent perikarya possess AMPA binding sites. However, while unilateral vagal deafferentation did not result in a significant decrease in binding site density in the caudal half of the rat NTS, the visualisation of AMPA binding sites on the nodose ganglion is consistent with the existence of a population of binding sites on vagal afferent terminals. In the caudal half of the rat NTS, AMPA binding sites appear to be predominantly postsynaptic in nature.
Collapse
Affiliation(s)
- M A Ashworth-Preece
- Department of Pharmacology, Monash University, Wellington Road, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
42
|
Correia AG, Bergström G, Lawrence AJ, Evans RG. Renal medullary interstitial infusion of norepinephrine in anesthetized rabbits: methodological considerations. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R112-22. [PMID: 10409264 DOI: 10.1152/ajpregu.1999.277.1.r112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested methods for delivery of drugs to the renal medulla of anesthetized rabbits. Outer medullary infusion (OMI) of norepinephrine (300 ng. kg(-1). min(-1)), using acutely or chronically positioned catheters, reduced both cortical (CBF; 15%) and medullary perfusion (MBF; 23-31%). Inner medullary infusion (IMI) did not affect renal hemodynamics, whereas intravenous infusion reduced CBF (15%) without changes in MBF. During OMI of [(3)H]norepinephrine, much of the radiolabel (approximately 40% with chronically positioned catheters) spilled over systemically. Nevertheless, autoradiographic analysis showed the concentration of radiolabel was about fourfold greater in the infused medulla than the cortex. In contrast, during IMI, only approximately 5% of the infused radiolabel spilled over into the systemic circulation and approximately 64% was excreted by the infused kidney. The resultant intrarenal levels of radiolabel were considerably less with IMI compared with OMI. In rabbits, OMI therefore provides a useful method for targeting agents to the renal medulla, but given the considerable systemic spillover with OMI, its utility is probably limited to substances that are rapidly degraded in vivo.
Collapse
Affiliation(s)
- A G Correia
- Department of Physiology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
43
|
Sivarao DV, Krowicki ZK, Hornby PJ. Role of GABAA receptors in rat hindbrain nuclei controlling gastric motor function. Neurogastroenterol Motil 1998; 10:305-13. [PMID: 9697105 DOI: 10.1046/j.1365-2982.1998.00110.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been shown in cats that gastric motor control by the dorsal vagal complex and nucleus ambiguus is under a tonic GABAergic influence. Since much more work has been performed in rats to define vago-vagal reflexes controlling gastrointestinal function, an understanding of the potential inhibition by candidate neurotransmitters such as GABA (gamma aminobutyric acid) in the rat dorsal vagal complex (DVC) is essential to assess. Multiple-barrelled micropipettes were used to apply to the dorsal vagal complex the GABAA antagonist, bicuculline methiodide (0.1-1 nmol), and a GABAA agonist, muscimol (10 nmol) prior to micro-injection of the GABAA antagonist. Micro-injections of bicuculline (353 pmol and 1 nmol), which were localized primarily in the dorsal motor nucleus of the vagus, produced significant increases in intragastric pressure and pyloric motility. These responses were abolished by vagotomy and by a prior micro-injection of muscimol. To determine whether GABAergic blockade in the dorsal vagal complex results in gastric motor excitation through excitatory amino acid receptors, kynurenic acid (5 nmol), a kainate/NMDA (N-methyl D-aspartic acid) receptor antagonist, was micro-injected prior to bicuculline. This abolished the increase in gastric motor function normally evoked by bicuculline. In the other two important hindbrain nuclei controlling gastric function, the nucleus raphe obscurus and nucleus ambiguus, bicuculline (353 pmol) significantly increased intragastric pressure via vagally mediated pathways. These data demonstrate that all three rat hindbrain nuclei known to influence gastric function via the vagus nerve are under tonic GABAergic control. In addition, in the dorsal vagal complex, relief from GABAergic inhibition results in increases in gastric motor function through kainate/NMDA receptor-mediated excitation.
Collapse
Affiliation(s)
- D V Sivarao
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
44
|
Lawrence AJ, Castillo-Meléndez M, McLean KJ, Jarrott B. The distribution of nitric oxide synthase-, adenosine deaminase- and neuropeptide Y-immunoreactivity through the entire rat nucleus tractus solitarius: Effect of unilateral nodose ganglionectomy. J Chem Neuroanat 1998; 15:27-40. [PMID: 9710147 DOI: 10.1016/s0891-0618(98)00020-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study has employed immunocytochemistry on free-floating sections of adult rat medulla oblongata to characterise the distribution of nitric oxide synthase- (NOS), adenosine deaminase- (ADA) and neuropeptide Y- (NPY) immunoreactivity (IR) throughout the entire rostro-caudal axis of the nucleus tractus solitarius (NTS). In addition, unilateral nodose ganglionectomy was performed in a group of rats to determine whether any observed immunoreactivity was associated with central vagal afferent terminals. NOS-IR was found throughout the entire NTS, in cells, and both varicose and non-varicose fibres. Furthermore, unilateral nodose ganglionectomy resulted in a clear reduction in NOS-IR (visualised with diaminobenzidine) in a highly restricted portion of the ipsilateral medial NTS. Similarly, ADA- and NPY-containing cells, fibres and terminals were also found throughout the adult rat NTS. However, following unilateral nodose ganglionectomy, there was no apparent reduction in either ADA-IR or NPY-IR on the denervated side of the NTS. These data indicate a role for nitric oxide, purines and neuropeptide Y as neuromodulators within the rat NTS, although only nitric oxide appears to be primarily associated with vagal afferent input. Adenosine deaminase and neuropeptide Y-containing neurons appear to be predominantly postsynaptic to vagal input, although their possible association with vagal afferents cannot be completely excluded.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Pharmacology, Monash University, Clayton, Vic., Australia.
| | | | | | | |
Collapse
|
45
|
Abstract
The present study has employed in vitro electrophysiology to characterise the ability of bradykinin to depolarise the rat isolated nodose ganglion preparation, containing the perikarya of vagal afferent neurons. Both bradykinin and kallidin elicited a concentration-dependent (1-100 nM) depolarisation when applied to the superfusate bathing the nodose ganglia, whereas the bradykinin B1 receptor agonist, des-Arg9-bradykinin, was only effective in the micromolar range. Furthermore, the electrophysiological response to bradykinin was antagonised by the bradykinin B2 receptor antagonist, D-arginyl-L-arginyl-L-prolyl-trans-4-hydroxy-L-prolylglycyl-3-(2-t hienyl)-L-alanyl-L-seryl-D-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl+ ++-L-(2alpha,3beta,7abeta)-octahydro-1H-indole-2-carbonyl-L- arginine (Hoe 140), in a concentration-related manner. To determine the anatomical location of functional bradykinin B2 receptors, in vitro autoradiography with [125I]para-iodophenyl Hoe 140 was performed on sections of rat and human inferior vagal (nodose) ganglia and confirmed the presence of binding over vagal perikarya. Collectively, these data provide evidence for functionally relevant bradykinin B2 receptors on vagal afferent neurons, which are apparently also present on human vagal perikarya.
Collapse
Affiliation(s)
- E Krstew
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
46
|
Chen F, Rezvani A, Jarrott B, Lawrence AJ. Distribution of GABAA receptors in the limbic system of alcohol-preferring and non-preferring rats: in situ hybridisation histochemistry and receptor autoradiography. Neurochem Int 1998; 32:143-51. [PMID: 9542726 DOI: 10.1016/s0197-0186(97)00069-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study has employed quantitative receptor autoradiography and in situ hybridisation histochemistry to compare the expression of the mRNA encoding the alpha 1 and alpha 2 subunits of the GABAA receptor and the binding density of mature GABAA receptors in the limbic system of alcohol-preferring Fawn-Hooded rats (FH) with Wistar-Kyoto rats (WKY). Quantifiable levels of mRNA encoding the alpha 1 subunit were found in cortical regions, ventral pallidum, substantia nigra, horizontal limb of the diagonal band and the hippocampus of both rat strains. Interestingly, expression of the alpha 1 subunit mRNA was decreased by approximately 30% in the hippocampus of FH compared to WKY rats. Following a 28-day period with free access to 10% ethanol, expression of the alpha 1 subunit transcript, was significantly increased in the piriform cortex and horizontal limb of the diagonal band, unaltered in the hippocampus but decreased in the substantia nigra of FH rats. Quantifiable levels of mRNA encoding the alpha 2 subunit were found in nucleus accumbens, amygdala, cortical regions, lateral septal nucleus, hippocampus, medial habenula and ventral pallidum of both strains. Expression of the alpha 2 subunit mRNA was decreased by approximately 35% in both the hippocampus and occipital cortex of FH compared to WKY rats. However, consumption of 10% ethanol in FH rats had no impact upon expression of the mRNA encoding the alpha 2 subunit in any region examined. Mature GABAA receptors were studied by autoradiography utilising the antagonist radioligand [3H]SR95531 and the agonist radioligand [3H]muscimol. Topographic binding throughout the limbic system of both strains was observed for both radioligands. Specifically, [3H]SR95531 binding was higher in the occipital cortex, hippocampus, lateral septal nucleus, superior colliculus and ventral pallidum of the FH rats compared to WKY rats; however, in the nucleus accumbens [3H]SR95531 binding was lower in FH compared to WKY. Ethanol consumption had no measurable effect on the binding of [3H]SR95531 in FH rats. In the case of [3H]muscimol, binding was higher in the cortex, lateral septum and ventral pallidum of FH compared to WKY. Furthermore, ethanol consumption resulted in a 25-30% increase in [3H]muscimol binding in the lateral septum and striatum of FH rats. These data provide evidence for differential expression of GABAA receptor subunits in FH and WKY rats, and additionally indicate anatomically defined variations in GABAA receptor binding between the two rat strains.
Collapse
Affiliation(s)
- F Chen
- Department of Pharmacology, Monash University, Clayton, Vic., Australia
| | | | | | | |
Collapse
|