1
|
Boziki M, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Tzitiridou-Chatzopoulou M, Doulberis M, Kazakos E, Deretzi G, Grigoriadis N, Kountouras J. Impact of Mast Cell Activation on Neurodegeneration: A Potential Role for Gut-Brain Axis and Helicobacter pylori Infection. Neurol Int 2024; 16:1750-1778. [PMID: 39728753 DOI: 10.3390/neurolint16060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND The innate immune response aims to prevent pathogens from entering the organism and/or to facilitate pathogen clearance. Innate immune cells, such as macrophages, mast cells (MCs), natural killer cells and neutrophils, bear pattern recognition receptors and are thus able to recognize common molecular patterns, such as pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), the later occurring in the context of neuroinflammation. An inflammatory component in the pathology of otherwise "primary cerebrovascular and neurodegenerative" disease has recently been recognized and targeted as a means of therapeutic intervention. Activated MCs are multifunctional effector cells generated from hematopoietic stem cells that, together with dendritic cells, represent first-line immune defense mechanisms against pathogens and/or tissue destruction. METHODS This review aims to summarize evidence of MC implication in the pathogenesis of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. RESULTS In view of recent evidence that the gut-brain axis may be implicated in the pathogenesis of neurodegenerative diseases and the characterization of the neuroinflammatory component in the pathology of these diseases, this review also focuses on MCs as potential mediators in the gut-brain axis bi-directional communication and the possible role of Helicobacter pylori, a gastric pathogen known to alter the gut-brain axis homeostasis towards local and systemic pro-inflammatory responses. CONCLUSION As MCs and Helicobacter pylori infection may offer targets of intervention with potential therapeutic implications for neurodegenerative disease, more clinical and translational evidence is needed to elucidate this field.
Collapse
Affiliation(s)
- Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Midwifery Department, School of Healthcare Sciences, University of West Macedonia, Koila, 50100 Kozani, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Gastroklinik, Private Gastroenterological Practice, 8810 Horgen, Switzerland
- Division of Gastroenterology and Hepatology, Medical University Department, 5001 Aarau, Switzerland
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Department of Neurology, Papageorgiou General Hospital, 54629 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
2
|
Sommer C, Neuhaus V, Gogesch P, Flandre T, Dehmel S, Sewald K. Type 2 responses determine skin rash during recombinant interleukin-2 therapy. J Immunotoxicol 2024; 21:S48-S59. [PMID: 39655497 DOI: 10.1080/1547691x.2024.2343359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the organ most often affected by adverse drug reactions. Although these cutaneous adverse drug reactions (CADRs) often are mild, they represent a major burden for patients. One of the drugs inducing CADRs is aldesleukin, a recombinant interleukin-2 (recIL-2) originally approved to treat malignant melanoma and metastatic renal cell carcinoma which frequently led to skin rashes when applied in high doses for anti-cancer therapy. Skin rashes and other side effects, together with poor efficacy led to a drawback of the therapeutic, but modified recIL-2 molecules are on the rise to treat both cancer and inflammatory diseases such as autoimmunity. Still, pathophysiological mechanisms of recIL-2-induced skin rashes are not understood. In the study reported here, a hypothetical literature-based immune-related adverse outcome pathway (irAOP) was developed to identify possible key cells and molecules in recIL-2-induced skin rash. Using this approach, a hypothesis was formed that the induced immune response predominantly is Type 2-driven by T-helper and innate lymphoid cells, leading to the occurrence of cutaneous side effects during recIL-2 therapy. This paper further discusses mechanisms beyond the proposed irAOP which might add to the pathology but currently are less-studied. Together, this hypothetic irAOP forms a basis to clarify possible cellular and molecular interactions leading to recIL-2-induced skin rash. This might be used to adapt existing or develop new test systems to help predict and prevent cutaneous side effects in future IL-2-based or similar therapies.
Collapse
Affiliation(s)
- Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | | | | | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| |
Collapse
|
3
|
Atiakshin D, Morozov S, Dlin V, Kostin A, Volodkin A, Ignatyuk M, Kuzovleva G, Baiko S, Chekmareva I, Chesnokova S, Elieh-Ali-Komi D, Buchwalow I, Tiemann M. Renal Mast Cell-Specific Proteases in the Pathogenesis of Tubulointerstitial Fibrosis. J Histochem Cytochem 2024; 72:495-515. [PMID: 39263893 PMCID: PMC11529666 DOI: 10.1369/00221554241274878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/19/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic kidney disease is detected in 8-15% of the world's population. Along with fibrotic changes, it can lead to a complete loss of organ function. Therefore, a better understanding of the onset of the pathological process is required. To address this issue, we examined the interaction between mast cells (MCs) and cells in fibrous and intact regions, focusing on the role of MC proteases such as tryptase, chymase, and carboxypeptidase A3 (CPA3). MCs appear to be involved in the development of inflammatory and fibrotic changes through the targeted secretion of tryptase, chymase, and CPA3 to the vascular endothelium, nephron epithelium, interstitial cells, and components of intercellular substances. Protease-based phenotyping of renal MCs showed that tryptase-positive MCs were the most common phenotype at all anatomic sites. The infiltration of MC in different anatomic sites of the kidney with an associated release of protease content was accompanied by a loss of contact between the epithelium and the basement membrane, indicating the active participation of MCs in the formation and development of fibrogenic niches in the kidney. These findings may contribute to the development of novel strategies for the treatment of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- RUDN University, Moscow, Russian Federation
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Voronezh, Russia
| | - Sergey Morozov
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russian Federation
| | - Vladimir Dlin
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russian Federation
| | | | | | | | - Galina Kuzovleva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Baiko
- Belarusian State Medical University, Minsk, Belarus
| | | | | | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology, Berlin, Germany
| | - Igor Buchwalow
- RUDN University, Moscow, Russian Federation
- Institute for Hematopathology, Hamburg, Germany
| | | |
Collapse
|
4
|
Song J, Zheng J, Li Z, Fu L, Yang J, Li K, Yu X, Lv B, Du J, Huang Y, Jin H. Sulfur dioxide inhibits mast cell degranulation by sulphenylation of galectin-9 at cysteine 74. Front Immunol 2024; 15:1369326. [PMID: 38953022 PMCID: PMC11215078 DOI: 10.3389/fimmu.2024.1369326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
Objectives Mast cell (MC) degranulation is a key process in allergic reactions and inflammatory responses. Aspartate aminotransferase 1 (AAT1)-derived endogenous sulfur dioxide (SO2) is an important regulator of MC function. However, the mechanism underlying its role in MC degranulation remains unclear. This study aimed to investigate the mechanism by which endogenous SO2 controlled MC degranulation. Methods HMC-1 and Rat basophilic leukemia cell MC line (RBL-2H3) were used in the cell experiments. SO2 content was detected by in situ fluorescent probe. MC degranulation represented by the release rate of MC β-hexosaminidase was determined using a colorimetric assay. Sulfenylation of galectin-9 (Gal-9) in MCs and purified protein was detected using a biotin switch assay. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the exact sulfenylation sites of Gal-9 by SO2. Animal models of passive cutaneous anaphylaxis (PCA) and hypoxia-driven pulmonary vascular remodeling were used to investigate the effect of SO2 on mast cell activation in vivo. Site-directed mutation of Gal-9 was conducted to confirm the exact site of SO2 and support the significance of SO2/Gal-9 signal axis in the regulation of MC degranulation. Results Degranulation was increased in AAT1-knockdowned MCs, and SO2 supplementation reversed the increase in MC degranulation. Furthermore, deficiency of endogenous SO2 contributed to IgE-mediated degranulation in vitro. Besides, SO2 inhibited IgE-mediated and hypoxia-driven MC degranulation in vivo. Mechanistically, LC-MS/MS analysis and site-directed mutation results showed that SO2 sulfenylated Gal-9 at cysteine 74. Sulfenylation of the 74th cysteine of Gal-9 protein was required in the SO2-inhibited MC degranulation under both physiological and pathophysiological conditions. Conclusion These findings elucidated that SO2 inhibited MC degranulation via sulfenylating Gal-9 under both physiological and pathophysiological conditions, which might provide a novel treatment approach for MC activation-related diseases.
Collapse
Affiliation(s)
- Jiaru Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Zheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zongmin Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
5
|
Smith J, Tan JKH, Short C, O'Neill H, Moro C. The effect of myeloablative radiation on urinary bladder mast cells. Sci Rep 2024; 14:6219. [PMID: 38485999 PMCID: PMC10940702 DOI: 10.1038/s41598-024-56655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Radiation-induced cystitis is an inflammatory condition affecting the urinary bladder, which can develop as a side effect of abdominopelvic radiotherapy, specifically external-beam radiation therapy or myeloablative radiotherapy. A possible involvement of mast cells in the pathophysiology of radiation-induced cystitis has been indicated in cases of external-beam radiation therapy; however, there is no evidence that these findings apply to the myeloablative aetiology. As such, this study investigated potential changes to urinary bladder mast cell prevalence when exposed to myeloablative radiation. Lethally irradiated C57BL/6J mice that received donor rescue bone marrow cells exhibited an increased mast cell frequency amongst host leukocytes 1 week following irradiation. By 4 weeks, no significant difference in either frequency or cell density was observed. However mast cell diameter was smaller, and a significant increase in mast cell number in the adventitia was observed. This study highlights that mast cells constitute a significant portion of the remaining host leukocyte population following radiation exposure, with changes to mast cell distribution and decreased cell diameter four weeks following radiation-induced injury.
Collapse
Affiliation(s)
- Jessica Smith
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Jonathan Kah Huat Tan
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Christie Short
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Helen O'Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Christian Moro
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia.
| |
Collapse
|
6
|
Smith J, Toto R, Moro C. The effects of radiation on myeloid lineage immune cells within the rodent urinary bladder: a systematic review. Int Urol Nephrol 2023; 55:3005-3014. [PMID: 37620625 PMCID: PMC10611598 DOI: 10.1007/s11255-023-03748-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Radiotherapy is a prominent therapy for many malignant and non-malignant disorders, though it can cause side effects such as radiation-induced cystitis. Current research has highlighted a role for mast cells and macrophages in the prognosis of such radiation-induced toxicities. However, the prognostic value of these immune cells in the pathophysiology of radiation-induced cystitis is not clear. As such, a systematic review was conducted to assess myeloid-lineage immune cells for their prognostic value in radiation-induced cystitis to address this gap in literature. METHODS The protocol was registered in PROSPERO, and searches were performed in PubMed, Embase and Web of Science databases for pre-clinical rodent studies on radiation-induced cystitis. RESULTS After de-duplication, 153 articles were screened for relevancy by title and abstract. Title and abstract screening deemed 64 studies irrelevant. The remaining 85 studies were full-text screened, yielding seven unique articles for data extraction. Most included studies had an unclear risk of bias. The findings of this systematic review suggest that the prognostic value of myeloid-lineage immune cells in radiation-induced cystitis is still unclear, indicating a need for further research in this field. CONCLUSION Although the studies reviewed provide some insight into the role of these immune cells in disease pathology, the limited number of studies and unclear risk of bias further highlights a need for additional, high-quality research in this area. In summary, this systematic review highlights a need to understand the involvement of immune cells in radiation-induced cystitis pathophysiology and lay the groundwork for further research in this area. TRIAL REGISTRATION PROSPERO registration: CRD42022345960.
Collapse
Affiliation(s)
- Jessica Smith
- Faculty of Health Sciences and Medicine, Bond University, Queensland, 4226, Australia
| | - Rimaz Toto
- Faculty of Health Sciences and Medicine, Bond University, Queensland, 4226, Australia
| | - Christian Moro
- Faculty of Health Sciences and Medicine, Bond University, Queensland, 4226, Australia.
| |
Collapse
|
7
|
Mimic S, Aru B, Pehlivanoğlu C, Sleiman H, Andjus PR, Yanıkkaya Demirel G. Immunology of amyotrophic lateral sclerosis - role of the innate and adaptive immunity. Front Neurosci 2023; 17:1277399. [PMID: 38105925 PMCID: PMC10723830 DOI: 10.3389/fnins.2023.1277399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
This review aims to summarize the latest evidence about the role of innate and adaptive immunity in Amyotrophic Lateral Sclerosis (ALS). ALS is a devastating neurodegenerative disease affecting upper and lower motor neurons, which involves essential cells of the immune system that play a basic role in innate or adaptive immunity, that can be neurotoxic or neuroprotective for neurons. However, distinguishing between the sole neurotoxic or neuroprotective function of certain cells such as astrocytes can be challenging due to intricate nature of these cells, the complexity of the microenvironment and the contextual factors. In this review, in regard to innate immunity we focus on the involvement of monocytes/macrophages, microglia, the complement, NK cells, neutrophils, mast cells, and astrocytes, while regarding adaptive immunity, in addition to humoral immunity the most important features and roles of T and B cells are highlighted, specifically different subsets of CD4+ as well as CD8+ T cells. The role of autoantibodies and cytokines is also discussed in distinct sections of this review.
Collapse
Affiliation(s)
- Stefan Mimic
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Başak Aru
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Cemil Pehlivanoğlu
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Hadi Sleiman
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Pavle R. Andjus
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
8
|
Atiakshin D, Kostin A, Volodkin A, Nazarova A, Shishkina V, Esaulenko D, Buchwalow I, Tiemann M, Noda M. Mast Cells as a Potential Target of Molecular Hydrogen in Regulating the Local Tissue Microenvironment. Pharmaceuticals (Basel) 2023; 16:817. [PMID: 37375765 DOI: 10.3390/ph16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Knowledge of the biological effects of molecular hydrogen (H2), hydrogen gas, is constantly advancing, giving a reason for the optimism in several healthcare practitioners regarding the management of multiple diseases, including socially significant ones (malignant neoplasms, diabetes mellitus, viral hepatitis, mental and behavioral disorders). However, mechanisms underlying the biological effects of H2 are still being actively debated. In this review, we focus on mast cells as a potential target for H2 at the specific tissue microenvironment level. H2 regulates the processing of pro-inflammatory components of the mast cell secretome and their entry into the extracellular matrix; this can significantly affect the capacity of the integrated-buffer metabolism and the structure of the immune landscape of the local tissue microenvironment. The analysis performed highlights several potential mechanisms for developing the biological effects of H2 and offers great opportunities for translating the obtained findings into clinical practice.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Artem Volodkin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Anna Nazarova
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Dmitry Esaulenko
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 816-0811, Japan
| |
Collapse
|
9
|
Pathophysiological Role of Chymase-Activated Matrix Metalloproteinase-9. Biomedicines 2022; 10:biomedicines10102499. [PMID: 36289761 PMCID: PMC9599306 DOI: 10.3390/biomedicines10102499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Chymase present in mast cells can directly form matrix metalloproteinase (MMP)-9 from proMMP-9. Chymase-activated MMP-9 has been reportedly closely related to the pathogenesis of various diseases, and inflammation-related diseases in particular. Upregulated chymase and MMP-9 have been observed in tissues from patients and animal models of aortic aneurysm, inflammatory gastrointestinal and hepatic diseases, acute pancreatic failure, atopic dermatitis and rheumatoid arthritis. Chymase at these regions is only derived from mast cells, while MMP-9 is derived from macrophages and neutrophils in addition to mast cells. Chymase inhibitors attenuate MMP-9 formation from pro-MMP-9, and ameliorate the development and progression of these disorders, along with reduction in inflammatory cell numbers. MMP-9 activated by chymase might also be involved in angiogenesis in the tumor environment. Development of angiogenesis around several cancers is closely related to the expression of chymase and MMP-9, and postoperative survival curves have revealed that patients with a higher number of chymase positive cells have lower survival rates. In this review, we wanted to clarify the role of chymase-activated MMP-9, which might become an important therapeutic target for various inflammatory disorders.
Collapse
|
10
|
Glaucoma Treatment and Hydrogel: Current Insights and State of the Art. Gels 2022; 8:gels8080510. [PMID: 36005112 PMCID: PMC9407420 DOI: 10.3390/gels8080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Aqueous gels formulated using hydrophilic polymers (hydrogels) and those based on stimuli-responsive polymers (in situ gelling or gel-forming systems) attract increasing interest in the treatment of several eye diseases. Their chemical structure enables them to incorporate various ophthalmic medications, achieving their optimal therapeutic doses and providing more clinically relevant time courses (weeks or months as opposed to hours and days), which will inevitably reduce dose frequency, thereby improving patient compliance and clinical outcomes. Due to its chronic course, the treatment of glaucoma may benefit from applying gel technologies as drug-delivering systems and as antifibrotic treatment during and after surgery. Therefore, our purpose is to review current applications of ophthalmic gelling systems with particular emphasis on glaucoma.
Collapse
|
11
|
Song J, He Z, Yang M, Yu T, Wang X, Liu B, Li J. HepaticIschemia/Reperfusion Injuryinvolves functional tryptase/PAR-2 signaling in liver sinusoidal endothelial cell population. Int Immunopharmacol 2021; 100:108052. [PMID: 34454294 DOI: 10.1016/j.intimp.2021.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Mast cells (MCs) are tissue-resident effector cells that could be the earliest responder to release a unique, stimulus-specific set of mediators in hepatic ischemia-reperfusion (IR) injury However, how MCs function in the hepatic IR has remained a formidable challenge due to the substantial redundancy and functional diverse of these mediators. Tryptase is the main protease for degranulation of MCs and its receptor-protease-activated receptor 2 (PAR-2) is widely expressed in endothelial cells. It is unclear whether and how tryptase/PAR-2 axis participates in hepatic IR. We employed an experimental warm 70% liver IR model in mice and found that tryptase was accumulated in the circulation during hepatic IR and positively correlated with liver injury. Tryptase inhibition by protamine can significantly down-regulate the expression of adhesion molecules and reduce neutrophil infiltration within the liver. The level of inflammatory factors and chemokines were also consistent with the pathological change of the liver. In addition, the treatment with exogeneous tryptase in MC-deficient mice can induce the damage observed in wild type mice in the context of liver IR. In vitro, neutrophil infiltration and inflammatory factor secretion were regulated by Tryptase/PAR-2, involving the adhesion molecule expression to regulate neutrophil adhesion dependent on NF-κB pathway. Conclusion: tryptase/PAR-2 participates in liver injury through the activation of LSECs in the early phase of liver IR.
Collapse
Affiliation(s)
- Jian Song
- Geriatric Cancer Center, Huadong Hospital, Fudan University, West 221 Yan-an Road, Shanghai 200040, China; Department of General Surgery, Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi 214002, Jiangsu, China
| | - Zhigang He
- Department of Plastic and Constructive Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Muqing Yang
- Department of General Surgery, Shanghai Tenth People's Hospital School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Tianyu Yu
- Geriatric Cancer Center, Huadong Hospital, Fudan University, West 221 Yan-an Road, Shanghai 200040, China
| | - Xiaodong Wang
- Geriatric Cancer Center, Huadong Hospital, Fudan University, West 221 Yan-an Road, Shanghai 200040, China
| | - Bin Liu
- Geriatric Cancer Center, Huadong Hospital, Fudan University, West 221 Yan-an Road, Shanghai 200040, China
| | - Jiyu Li
- Geriatric Cancer Center, Huadong Hospital, Fudan University, West 221 Yan-an Road, Shanghai 200040, China.
| |
Collapse
|
12
|
Quantitative Analysis of Intramucosal Mast Cells in Irritable Bowel Syndrome: A Comparison With Inflammatory Bowel Disease in Remission. J Clin Gastroenterol 2021; 55:244-249. [PMID: 32649443 DOI: 10.1097/mcg.0000000000001394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/15/2020] [Indexed: 12/10/2022]
Abstract
GOAL We aimed to study the density of intramucosal mast cells in histologically normal colonic mucosa biopsied from patients with a clinical diagnosis of irritable bowel syndrome (IBS). BACKGROUND Mast cell activation has been thought to implicate in the pathogenesis of inflammatory bowel disease (IBD). Whether it serves a role in the pathogenesis of IBS remains controversial. STUDY A total of 127 colonoscopic mucosal biopsies were immunohistochemically stained, including 51 IBS, 66 IBD, and 10 normal control samples. Intact mast cells were quantified in 3 high power fields (HPF) in areas showing the highest density. RESULTS CD117 was sensitive in detecting mast cells in colonic mucosa. The mast cell counts in all biopsies ranged from 2 to 60 per HPF (mean=17.5±7.2). The density of intramucosal mast cells were similar among IBS, IBD and normal control groups (P=0.6733). IBD in remission versus IBS (17.1±8.0 vs. 18.1±7.0; P=0.4804), Crohn disease versus ulcerative colitis (17.1±10.4 vs. 17.2±5.2; P=0.9463), IBS with diarrhea versus without diarrhea (19.5±6.3 vs. 16.8±6.9; P=0.1404). Forty biopsies (31.5%) showing ≥20 mast cells per HPF appeared to equally distribute among various disease groups (P=0.7283). CONCLUSIONS There is no significant difference in the number of intramucosal mast cells between IBS and IBD that show normal colonic biopsies. In IBS patients, the number of intramucosal mast cell does not correlate with symptoms. The mast cell count (≥20/HPF) is not a reliable criterion for the diagnosis of IBS or for the distinction between patients with IBS and those with IBD in remission.
Collapse
|
13
|
Chymase as a Possible Therapeutic Target for Amelioration of Non-Alcoholic Steatohepatitis. Int J Mol Sci 2020; 21:ijms21207543. [PMID: 33066113 PMCID: PMC7589185 DOI: 10.3390/ijms21207543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The development and progression of non-alcoholic steatohepatitis (NASH) are linked to oxidative stress, inflammation, and fibrosis of the liver. Chymase, a chymotrypsin-like enzyme produced in mast cells, has various enzymatic actions. These actions include activation of angiotensin II, matrix metalloproteinase (MMP)-9, and transforming growth factor (TGF)-β, which are associated with oxidative stress, inflammation, and fibrosis, respectively. Augmentation of chymase activity in the liver has been reported in various NASH models. Generation of hepatic angiotensin II and related oxidative stress is upregulated in NASH but attenuated by treatment with a chymase inhibitor. Additionally, increases in MMP-9 and accumulation of inflammatory cells are observed in NASH but are decreased by chymase inhibitor administration. TGF-β and collagen I upregulation in NASH is also attenuated by chymase inhibition. These results in experimental NASH models demonstrate that a chymase inhibitor can effectively ameliorate NASH via the reduction of oxidative stress, inflammation, and fibrosis. Thus, chymase may be a therapeutic target for amelioration of NASH.
Collapse
|
14
|
Pal S, Nath S, Meininger CJ, Gashev AA. Emerging Roles of Mast Cells in the Regulation of Lymphatic Immuno-Physiology. Front Immunol 2020; 11:1234. [PMID: 32625213 PMCID: PMC7311670 DOI: 10.3389/fimmu.2020.01234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their anatomical proximity to lymphatic vessels and their ability to synthesize, store and release a large array of inflammatory and vasoactive mediators emphasize their significance in the regulation of the lymphatic vascular functions. As a major secretory cell of the innate immune system, MCs maintain their steady-state granule release under normal physiological conditions; however, the inflammatory response potentiates their ability to synthesize and secrete these mediators. Activation of MCs in response to inflammatory signals can trigger adaptive immune responses by dendritic cell-directed T cell activation. In addition, through the secretion of various mediators, cytokines and growth factors, MCs not only facilitate interaction and migration of immune cells, but also influence lymphatic permeability, contractility, and vascular remodeling as well as immune cell trafficking through the lymphatic vessels. In summary, the consequences of these events directly affect the lymphatic niche, influencing inflammation at multiple levels. In this review, we have summarized the recent advancements in our understanding of the MC biology in the context of the lymphatic vascular system. We have further highlighted the MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Anatoliy A Gashev
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| |
Collapse
|
15
|
Pejler G. Novel Insight into the in vivo Function of Mast Cell Chymase: Lessons from Knockouts and Inhibitors. J Innate Immun 2020; 12:357-372. [PMID: 32498069 DOI: 10.1159/000506985] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Mast cells are now recognized as key players in diverse pathologies, but the mechanisms by which they contribute in such settings are only partially understood. Mast cells are packed with secretory granules, and when they undergo degranulation in response to activation the contents of the granules are expelled to the extracellular milieu. Chymases, neutral serine proteases, are the major constituents of the mast cell granules and are hence released in large amounts upon mast cell activation. Following their release, chymases can cleave one or several of a myriad of potential substrates, and the cleavage of many of these could potentially have a profound impact on the respective pathology. Indeed, chymases have recently been implicated in several pathological contexts, in particular through studies using chymase inhibitors and by the use of chymase-deficient animals. In many cases, chymase has been shown to account for mast cell-dependent detrimental effects in the respective conditions and is therefore emerging as a promising drug target. On the other hand, chymase has been shown to have protective roles in other pathological settings. More unexpectedly, chymase has also been shown to control certain homeostatic processes. Here, these findings are reviewed.
Collapse
Affiliation(s)
- Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, .,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden,
| |
Collapse
|
16
|
Li CY, Yap K, Swedberg JE, Craik DJ, de Veer SJ. Binding Loop Substitutions in the Cyclic Peptide SFTI-1 Generate Potent and Selective Chymase Inhibitors. J Med Chem 2020; 63:816-826. [PMID: 31855419 DOI: 10.1021/acs.jmedchem.9b01811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chymase is a serine protease that is predominantly expressed by mast cells and has key roles in immune defense and the cardiovascular system. This enzyme has also emerged as a therapeutic target for cardiovascular disease due to its ability to remodel cardiac tissue and generate angiotensin II. Here, we used the nature-derived cyclic peptide sunflower trypsin inhibitor-1 (SFTI-1) as a template for designing novel chymase inhibitors. The key binding contacts of SFTI-1 were optimized by combining a peptide substrate library screen with structure-based design, which yielded several variants with potent activity. The lead variant was further modified by replacing the P1 Tyr residue with para-substituted Phe derivatives, generating new inhibitors with improved potency (Ki = 1.8 nM) and higher selectivity over closely related enzymes. Several variants were shown to block angiotensin I cleavage in vitro, highlighting their potential for further development and future evaluation as pharmaceutical leads.
Collapse
Affiliation(s)
- Choi Yi Li
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Kuok Yap
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| |
Collapse
|
17
|
Abstract
During degranulation, mast cells secrete a specific set of mediators defined as "secretome" including the preformed mediators that have already been synthesized by a cell and contained in the cytoplasmic granules. This group includes serine proteases, in particular, chymase and tryptase. Biological significance of chymase depends on the mechanisms of degranulation and is characterized by selective effects on the cellular and non-cellular components of the specific tissue microenvironment. Chymase is known to be closely involved in the mechanisms of inflammation and allergy, angiogenesis, and oncogenesis, remodeling of the extracellular matrix of the connective tissue and changes in organ histoarchitectonics. Number of chymase-positive mast cells in the intra-organ population, and the mechanisms of biogenesis and secretome degranulation appear to be the informative criteria for interpreting the state of the internal organs, characterizing not only the diagnostic efficacy but also the properties of targets of pharmacotherapy. In this review, we discussed the current state of knowledge about mast cell chymase as one of the mast cell secretome proteases. Main issues of the reviewed publications are highlighted with our microscopic images of mast cell chymase visualized using immunohistochemical staining.
Collapse
|
18
|
Dell'Italia LJ, Collawn JF, Ferrario CM. Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ Res 2019; 122:319-336. [PMID: 29348253 DOI: 10.1161/circresaha.117.310978] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chymase is the most efficient Ang II (angiotensin II)-forming enzyme in the human body and has been implicated in a wide variety of human diseases that also implicate its many other protease actions. Largely thought to be the product of mast cells, the identification of other cellular sources including cardiac fibroblasts and vascular endothelial cells demonstrates a more widely dispersed production and distribution system in various tissues. Furthermore, newly emerging evidence for its intracellular presence in cardiomyocytes and smooth muscle cells opens an entirely new compartment of chymase-mediated actions that were previously thought to be limited to the extracellular space. This review illustrates how these multiple chymase-mediated mechanisms of action can explain the residual risk in clinical trials of cardiovascular disease using conventional renin-angiotensin system blockade.
Collapse
Affiliation(s)
- Louis J Dell'Italia
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.).
| | - James F Collawn
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.)
| | - Carlos M Ferrario
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.)
| |
Collapse
|
19
|
Piliponsky AM, Acharya M, Shubin NJ. Mast Cells in Viral, Bacterial, and Fungal Infection Immunity. Int J Mol Sci 2019; 20:ijms20122851. [PMID: 31212724 PMCID: PMC6627964 DOI: 10.3390/ijms20122851] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023] Open
Abstract
Mast cells are granule-rich immune cells that are distributed throughout the body in areas where microorganisms typically reside, such as mucosal tissues and the skin, as well as connective tissues. It is well known that mast cells have significant roles in IgE-mediated conditions, such as anaphylaxis, but, because of their location, it is also thought that mast cells act as innate immune cells against pathogens and initiate defensive immune responses. In this review, we discuss recent studies focused on mast cell interactions with flaviviruses and Candida albicans, and mast cell function in the cecal ligation and puncture model of sepsis. We selected these studies because they are clear examples of how mast cells can either promote host resistance to infection, as previously proposed, or contribute to a dysregulated host response that can increase host morbidity and mortality. Importantly, we can distill from these studies that the contribution of mast cells to infection outcomes depends in part on the infection model, including the genetic approach used to assess the influence of mast cells on host immunity, the species in which mast cells are studied, and the differential contribution of mast cell subtypes to immunity. Accordingly, we think that this review highlights the complexity of mast cell biology in the context of innate immune responses.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA 98195, USA.
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Manasa Acharya
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Nicholas J Shubin
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
20
|
Ngo Nyekel F, Pacreau E, Benadda S, Msallam R, Åbrink M, Pejler G, Davoust J, Benhamou M, Charles N, Launay P, Blank U, Gautier G. Mast Cell Degranulation Exacerbates Skin Rejection by Enhancing Neutrophil Recruitment. Front Immunol 2018; 9:2690. [PMID: 30515167 PMCID: PMC6255985 DOI: 10.3389/fimmu.2018.02690] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Recent evidences indicate an important role of tissue inflammatory responses by innate immune cells in allograft acceptance and survival. Here we investigated the role of mast cells (MC) in an acute male to female skin allograft rejection model using red MC and basophil (RMB) mice enabling conditional MC depletion. Kinetic analysis showed that MCs markedly accelerate skin rejection. They induced an early inflammatory response through degranulation and boosted local synthesis of KC, MIP-2, and TNF. This enhanced early neutrophil infiltration compared to a female-female graft-associated repair response. The uncontrolled neutrophil influx accelerated rejection as antibody-mediated depletion of neutrophils delayed skin rejection. Administration of cromolyn, a MC stabilizer and to a lesser extent ketotifen, a histamine type I receptor antagonist, and absence of MCPT4 chymase also delayed graft rejection. Together our data indicate that mediators contained in secretory granules of MC promote an inflammatory response with enhanced neutrophil infiltration that accelerate graft rejection.
Collapse
Affiliation(s)
- Flavie Ngo Nyekel
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Emeline Pacreau
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Samira Benadda
- INSERM UMRS 1149, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Rasha Msallam
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jean Davoust
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Benhamou
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Nicolas Charles
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Pierre Launay
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Ulrich Blank
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| | - Gregory Gautier
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire D'excellence INFLAMEX, Paris, France
| |
Collapse
|
21
|
Trias E, King PH, Si Y, Kwon Y, Varela V, Ibarburu S, Kovacs M, Moura IC, Beckman JS, Hermine O, Barbeito L. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS. JCI Insight 2018; 3:123249. [PMID: 30282815 DOI: 10.1172/jci.insight.123249] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a recognized pathogenic mechanism underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS), but the inflammatory mechanisms influencing peripheral motor axon degeneration remain largely unknown. A recent report showed a pathogenic role for c-Kit-expressing mast cells mediating inflammation and neuromuscular junction denervation in muscles from SOD1G93A rats. Here, we have explored whether mast cells infiltrate skeletal muscles in autopsied muscles from ALS patients. We report that degranulating mast cells were abundant in the quadriceps muscles from ALS subjects but not in controls. Mast cells were associated with myofibers and motor endplates and, remarkably, interacted with neutrophils forming large extracellular traps. Mast cells and neutrophils were also abundant around motor axons in the extensor digitorum longus muscle, sciatic nerve, and ventral roots of symptomatic SOD1G93A rats, indicating that immune cell infiltration extends along the entire peripheral motor pathway. Postparalysis treatment of SOD1G93A rats with the tyrosine kinase inhibitor drug masitinib prevented mast cell and neutrophil infiltration, axonal pathology, secondary demyelination, and the loss of type 2B myofibers, compared with vehicle-treated rats. These findings provide further evidence for a yet unrecognized contribution of immune cells in peripheral motor pathway degeneration that can be therapeutically targeted by tyrosine kinase inhibitors.
Collapse
Affiliation(s)
| | - Peter H King
- Department of Neurology, University of Alabama, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Ying Si
- Department of Neurology, University of Alabama, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Yuri Kwon
- Department of Neurology, University of Alabama, Birmingham, Alabama, USA
| | | | | | | | - Ivan C Moura
- Imagine Institute, Hôpital Necker, Paris, France.,INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,CNRS ERL 8254, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France.,Equipe Labélisée par la Ligue Nationale contre le cancer, Nantes, France
| | - Joseph S Beckman
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Olivier Hermine
- Imagine Institute, Hôpital Necker, Paris, France.,INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,CNRS ERL 8254, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France.,Equipe Labélisée par la Ligue Nationale contre le cancer, Nantes, France.,AB Science, Paris, France.,Department of Hematology, Necker Hospital, Paris, France.,Centre national de référence des mastocytoses (CEREMAST), Paris, France
| | | |
Collapse
|
22
|
Cheng L, Chen J, Fu Q, He S, Li H, Liu Z, Tan G, Tao Z, Wang D, Wen W, Xu R, Xu Y, Yang Q, Zhang C, Zhang G, Zhang R, Zhang Y, Zhou B, Zhu D, Chen L, Cui X, Deng Y, Guo Z, Huang Z, Huang Z, Li H, Li J, Li W, Li Y, Xi L, Lou H, Lu M, Ouyang Y, Shi W, Tao X, Tian H, Wang C, Wang M, Wang N, Wang X, Xie H, Yu S, Zhao R, Zheng M, Zhou H, Zhu L, Zhang L. Chinese Society of Allergy Guidelines for Diagnosis and Treatment of Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:300-353. [PMID: 29949830 PMCID: PMC6021586 DOI: 10.4168/aair.2018.10.4.300] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/17/2017] [Accepted: 10/05/2017] [Indexed: 11/20/2022]
Abstract
Allergic rhinitis (AR) is a global health problem that causes major illnesses and disabilities worldwide. Epidemiologic studies have demonstrated that the prevalence of AR has increased progressively over the last few decades in more developed countries and currently affects up to 40% of the population worldwide. Likewise, a rising trend of AR has also been observed over the last 2-3 decades in developing countries including China, with the prevalence of AR varying widely in these countries. A survey of self-reported AR over a 6-year period in the general Chinese adult population reported that the standardized prevalence of adult AR increased from 11.1% in 2005 to 17.6% in 2011. An increasing number of Journal Articles and imporclinical trials on the epidemiology, pathophysiologic mechanisms, diagnosis, management and comorbidities of AR in Chinese subjects have been published in international peer-reviewed journals over the past 2 decades, and substantially added to our understanding of this disease as a global problem. Although guidelines for the diagnosis and treatment of AR in Chinese subjects have also been published, they have not been translated into English and therefore not generally accessible for reference to non-Chinese speaking international medical communities. Moreover, methods for the diagnosis and treatment of AR in China have not been standardized entirely and some patients are still treated according to regional preferences. Thus, the present guidelines have been developed by the Chinese Society of Allergy to be accessible to both national and international medical communities involved in the management of AR patients. These guidelines have been prepared in line with existing international guidelines to provide evidence-based recommendations for the diagnosis and management of AR in China.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huabin Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guolin Tan
- Department of Otolaryngology Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Dehui Wang
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Qintai Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chonghua Zhang
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Gehua Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruxin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Yuan Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Bing Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Luquan Chen
- Department of Traditional Chinese Medicine, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Xinyan Cui
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhiqiang Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhenxiao Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Zizhen Huang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Houyong Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jingyun Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Wenting Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Li
- Department of Otolaryngology Head Neck Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Lin Xi
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Meiping Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuhui Ouyang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Wendan Shi
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiaoyao Tao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiqin Tian
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Hui Xie
- Department of Otorhinolaryngology, Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaoqing Yu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji University, Shanghai, China
| | - Renwu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Ming Zheng
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Han Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Luping Zhu
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Luo Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
Localization of cannabinoid receptors CB1, CB2, GPR55, and PPARα in the canine gastrointestinal tract. Histochem Cell Biol 2018; 150:187-205. [DOI: 10.1007/s00418-018-1684-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2018] [Indexed: 12/26/2022]
|
24
|
Zhang H, Wang J, Wang L, Zhan M, Li S, Fang Z, Xu C, Zheng Y, He S. Induction of mast cell accumulation by chymase via an enzymatic activity- and intercellular adhesion molecule-1-dependent mechanism. Br J Pharmacol 2018; 175:678-692. [PMID: 29197072 PMCID: PMC5786453 DOI: 10.1111/bph.14117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/01/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Chymase is a unique, abundant secretory product of mast cells and a potent chemoattractant for eosinophils, monocytes and neutrophils, but little is known of its influence on mast cell accumulation. EXPERIMENTAL APPROACH A mouse peritoneal inflammation model, cell migration assay and flowcytometry analysis, were used to investigate the role of chymase in recruiting mast cells. KEY RESULTS Chymase increased, by up to 5.4-fold, mast cell numbers in mouse peritoneum. Inhibitors of chymase, heat-inactivation of the enzyme, sodium cromoglycate and terfenadine, and pretreatment of mice with anti-intercellular adhesion molecule 1, anti-L-selectin, anti-CD11a and anti-CD18 antibodies dramatically diminished the chymase-induced increase in mast cell accumulation. These findings indicate that this effect of chymase is dependent on its enzymatic activity and activation of adhesion molecules. In addition, chymase provoked a significant increase in 5-HT and eotaxin release (up to 1.8- and 2.2-fold, respectively) in mouse peritoneum. Since 5-HT, eotaxin and RANTES can induce marked mast cell accumulation, these indirect mechanisms may also contribute to chymase-induced mast cell accumulation. Moreover, chymase increased the trans-endothelium migration of mast cells in vitro indicating it also acts as a chemoattractant. CONCLUSION AND IMPLICATIONS The finding that mast cells accumulate in response to chymase implies further that chymase is a major pro-inflammatory mediator of mast cells. This effect of chymase, a major product of mast cell granules, suggests a novel self-amplification mechanism for mast cell accumulation in allergic inflammation. Mast cell stabilizers and inhibitors of chymase may have potential as a treatment of allergic disorders.
Collapse
Affiliation(s)
- Huiyun Zhang
- Translational Medicine InstituteShenyang Medical CollegeShenyangLiaoningChina
- Allergy and Clinical Immunology Research CentreThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoningChina
| | - Junling Wang
- Translational Medicine InstituteShenyang Medical CollegeShenyangLiaoningChina
| | - Ling Wang
- Allergy and Clinical Immunology Research CentreThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoningChina
| | - Mengmeng Zhan
- Translational Medicine InstituteShenyang Medical CollegeShenyangLiaoningChina
| | - Shigang Li
- Medical SchoolChina Three Gorges UniversityYichangHubeiChina
| | - Zeman Fang
- Allergy and Inflammation Research InstituteShantou University Medical CollegeShantouChina
| | - Ciyan Xu
- Allergy and Inflammation Research InstituteShantou University Medical CollegeShantouChina
| | - Yanshan Zheng
- Allergy and Inflammation Research InstituteShantou University Medical CollegeShantouChina
| | - Shaoheng He
- Translational Medicine InstituteShenyang Medical CollegeShenyangLiaoningChina
- Allergy and Clinical Immunology Research CentreThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoningChina
| |
Collapse
|
25
|
Abstract
Skin is the largest organ of the body with a complex network of multitude of cell types that perform plastic and dynamic cellular communication to maintain several vital processes such as inflammation, immune response including induction of tolerance and disease prevention, wound healing, and angiogenesis. Of paramount importance are immunological functions of the skin that protect from harmful exposure coming from external and internal environments. Awareness of skin immunity can provide a better comprehension of inflammation, autoimmunity, cancer, graft-versus-host disease, vaccination, and immunotherapy approaches. This paper will update on what we currently know about immune sentinels contributing to skin immunity.
Collapse
Affiliation(s)
- Agata Matejuk
- Faculty of Health Science, Wroclaw Medical University, Wrocław, Poland. .,Faculty of Science and Technology, Karkonosze College, Jelenia Góra, Poland.
| |
Collapse
|
26
|
Allergic airway inflammation induces migration of mast cell populations into the mouse airway. Cell Tissue Res 2017; 369:331-340. [PMID: 28343320 DOI: 10.1007/s00441-017-2597-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Mast cells (MCs) and airway nerves play an important role in allergic asthma. However, little is known about the MCs and their interaction with airway nerves during allergic airway inflammation. This study aims to investigate the distribution and proliferation of MC populations in different lung compartments, along with the association of mast cells with nerve endings, using a house dust mite (HDM) model for allergic airway inflammation. BALB/c mice were exposed to HDM extract intranasally (25 μg/50 μl) for 5 consecutive days a week over 7 weeks. Immunofluorescence and Edu stains were used to examine the colocalisation of MCs and nerves and the proliferation of MCs, respectively. HDM treatment caused an increased migration of MCs into bronchi, alveolar parenchyma and airway vessels. The proportions of tryptase-chymase expressing MC (MCTC) increased significantly in the bronchi and the alveolar parenchyma but not in the vascular tissues, by allergic airway inflammation. The association of MCs with nerves was found only in the bronchi and there were no changes in comparison of controls to HDM-treated animals. The present study shows a strong migration of tryptase expressing MC (MCT) and MCTC into the bronchi and the alveolar parenchyma, as well as of MCT in the vascular compartment under HDM treatment. This supports the hypothesis that these mast cell populations may contribute to allergic airway inflammation.
Collapse
|
27
|
Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth. Sci Rep 2017; 7:45106. [PMID: 28327604 PMCID: PMC5361184 DOI: 10.1038/srep45106] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/16/2017] [Indexed: 01/22/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is caused by insufficient remodeling of spiral arteries (SAs). The mechanism underlying the relevance of natural killer cells (NKs) and mast cells (MCs) for SA remodeling and its effects on pregnancy outcome are not well understood. We show that NK depletion arrested SA remodeling without affecting pregnancy. MC depletion resulted in abnormally remodeled SAs and IUGR. Combined absence of NKs and MCs substantially affected SA remodeling and impaired fetal growth. We found that α-chymase mast cell protease (Mcpt) 5 mediates apoptosis of uterine smooth muscle cells, a key feature of SA remodeling. Additionally, we report a previously unknown source for Mcpt5: uterine (u) NKs. Mice with selective deletion of Mcpt5+ cells had un-remodeled SAs and growth-restricted progeny. The human α-chymase CMA1, phylogenetic homolog of Mcpt5, stimulated the ex vivo migration of human trophoblasts, a pre-requisite for SA remodeling. Our results show that chymases secreted by uMCs and uNKs are pivotal to the vascular changes required to support pregnancy. Understanding the mechanisms underlying pregnancy-induced vascular changes is essential for developing therapeutic options against pregnancy complications associated with poor vascular remodeling.
Collapse
|
28
|
Role of interleukin-18 in the pathophysiology of allergic diseases. Cytokine Growth Factor Rev 2016; 32:31-39. [PMID: 27496752 DOI: 10.1016/j.cytogfr.2016.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 01/24/2023]
Abstract
Interleukin (IL)-18 is an IL-1 family cytokine expressed by macrophages, dendritic cells, epithelial cells, and keratinocytes and is implicated in various aspects of both the innate and adaptive immune systems. IL-18 signals similar to IL-1β intracellularly to activate gene transcription. Since its discovery, IL-18 has been demonstrated to play a key role in pathogen defense from helminths and some bacteria. Recently however, evidence has accumulated that IL-18 expression is increased in many presentations of allergic disease. A pathologic role for IL-18 includes stimulating mast cell and basophil degranulation, recruiting granulocytes to sites of inflammation, increasing cytotoxic activity of natural killer (NK) and NK-T cells, inducing Immunoglobulin (Ig)E production and isotype switching, and affecting a broad range of T cells to promote a type II helper T cell (Th2) response. Evidence and importance of these effects are presented, including novel results from our lab implicating IL-18 in the direct expansion of mast cells, basophils, and other myeloid-lineage cells from bone-marrow precursors. The development of urticaria, asthma, dermatitis, rhinitis, and eosinophilic disorders all have demonstrated correlations to increased IL-18 levels either in the tissue or systemically. IL-18 represents a novel site of immune regulation in not only allergic conditions, but also autoimmune diseases and other instances of aberrant immune functioning. Diagrammatic summarized abstract for readers convinance is presented in Fig. 1.
Collapse
|
29
|
Johnzon CF, Rönnberg E, Pejler G. The Role of Mast Cells in Bacterial Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:4-14. [DOI: 10.1016/j.ajpath.2015.06.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 01/21/2023]
|
30
|
Chai OH, Song CH. Role of mast cell in the late phase of contact hypersensitivity induced by trimellitic anhydride. Anat Cell Biol 2015; 48:225-34. [PMID: 26770872 PMCID: PMC4701695 DOI: 10.5115/acb.2015.48.4.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022] Open
Abstract
Mast cells are known as effector cells of IgE-mediated allergic responses, but role of mast cells in contact hypersensitivity (CHS) has been considered controversial. In this study, we investigated role of mast cell in trimellitic anhydride (TMA)-induced CHS. The mice were sensitized to TMA on the back and repeatedly challenged with TMA on the left ear at 1-week intervals. The ear after challenge showed biphasic responses. The repetition of TMA challenge shifted in time course of ear response and enlarged the extent of early and late phase reactions in proportion to the frequency of TMA challenges in C57BL/6 mice. In late phase reaction, peak of ear response by single challenge showed at 24 hours after challenge, but the peak by repeat challenges at 8 hours after the last challenge. Number of mast cells and eosinophils per unit area increased in proportion to frequency of TMA challenges. However, mast cell-deficient WBB6F1/J-KitW/KitW-v mice developed the late phase reaction without the early phase reaction. The repetition of TMA challenge shifted in time course of ear response and enlarged the extent of ear response and the infiltration of eosinophils. The magnitude of these responses observed according to the frequency of the TMA challenge in mast cell-deficient WBB6F1/J-KitW/KitW-v mice was significantly lower than that in C57BL/6 mice. Also TMA elicited mast cell degranulation and histamine release from rat peritoneal mast cells in a concentration-dependent manner. Conclusively, TMA induces the early and late phase reactions in CHS, and mast cells may be required for TMA-induced CHS.
Collapse
Affiliation(s)
- Ok Hee Chai
- Department of Anatomy, Chonbuk National University Medical School and Institute for Medical Science, Chonbuk National University, Jeonju, Korea
| | - Chang Ho Song
- Department of Anatomy, Chonbuk National University Medical School and Institute for Medical Science, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
31
|
Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol 2015; 126:45-127. [PMID: 25727288 DOI: 10.1016/bs.ai.2014.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such "controversial" results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Elena Tchougounova
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
32
|
Oskeritzian CA. Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. Mol Immunol 2015; 63:104-12. [PMID: 24766823 PMCID: PMC4226394 DOI: 10.1016/j.molimm.2014.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/02/2023]
Abstract
Mast cells (MC) are found in all vascularized tissues at homeostasis and, until recently, were viewed only as effector cells of allergic reactions via degranulation, the canonical process through which MC release mediators, including histamine and pre-formed proteases and cytokines such as TNF. Cross-linking of IgE bound to surface high affinity receptors for IgE (FcɛRI) by a specific antigen (Ag) triggers signaling events leading to degranulation. We and others have reported the concomitant production and export of an influential multifaceted sphingolipid mediator, sphingosine-1-phosphate (S1P) transported outside of MC by ATP-binding cassettes (ABC) transporters, i.e., independently of degranulation. Indeed, the MC horizon expanded by the discovery of their unique ability to selectively release mediators depending upon the stimulus and receptors involved. Aside from degranulation and transporter usage, MC are also endowed with piecemeal degranulation, a slower process during which mediator release occurs with minor morphological changes. The broad spectrum of pro- and anti-inflammatory bioactive substances MC produce and release, their amounts and delivery pace render these cells bona fide fine-tuners of the immune response. In this viewpoint article, MC developmental, phenotypic and functional plasticity, its modulation by microRNAs and its relevance to immunity, inflammation and cancer will be discussed.
Collapse
Affiliation(s)
- Carole A Oskeritzian
- University of South Carolina School of Medicine, Department of Pathology, Microbiology and Immunology, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
33
|
Expression of recombinant human mast cell chymase with Asn-linked glycans in glycoengineered Pichia pastoris. Protein Expr Purif 2014; 102:69-75. [PMID: 25131858 DOI: 10.1016/j.pep.2014.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/22/2022]
Abstract
Recombinant human mast cell chymase (rhChymase) was expressed in secreted form as an active enzyme in the SuperMan5 strain of GlycoSwitch® Pichia pastoris, which is engineered to produce proteins with (Man)5(GlcNAc)2 Asn-linked glycans. Cation exchange and heparin affinity chromatography yielded 5mg of active rhChymase per liter of fermentation medium. Purified rhChymase migrated on SDS-PAGE as a single band of 30 kDa and treatment with peptide N-glycosidase F decreased this to 25 kDa, consistent with the established properties of native human chymase (hChymase). Polyclonal antibodies against hChymase detected rhChymase by Western blot. Active site titration with Eglin C, a potent chymase inhibitor, quantified the concentration of purified active enzyme. Kinetic analyses with succinyl-Ala-Ala-Pro-Phe (suc-AAPF) p-nitroanilide and thiobenzyl ester synthetic substrates showed that heparin significantly reduced KM, whereas heparin effects on kcat were minor. Pure rhChymase with Asn-linked glycans closely resembles hChymase. This bioengineering approach avoided hyperglycosylation and provides a source of active rhChymase for other studies as well as a foundation for production of recombinant enzyme with human glycosylation patterns.
Collapse
|
34
|
|
35
|
Lin JL, Chen CG, Shen ZZ, Piao ZX, Li WQ, Liu L, Xu LY, Li EM. Actin cytoskeleton reorganization correlates with polarization of secretory vesicle and cell morphology in the degranulation of mast cell subtypes in human colon tissues. Acta Histochem 2014; 116:407-14. [PMID: 24161690 DOI: 10.1016/j.acthis.2013.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/01/2013] [Accepted: 09/10/2013] [Indexed: 02/05/2023]
Abstract
Mast cells play a central role in the intestinal immune response. To investigate the relationship between degranulation, cell polarization and the reorganization of actin cytoskeleton of mast cells, we used fluorescence or gold labeling methods to identify different mast cell subtypes in human colon. The reorganization of filamentous actin was visualized and then the polarization of secretory vesicles, as well as cell surfaces, was analyzed by fluorescence microscopy and electron microscopy. Our results first showed a diversity of filamentous actin assembly or disassembly within the contacting cell membrane of different mast cell subtypes. The polarization and degranulation of secretory vesicles was not only accompanied with the assembly and disassembly of filamentous actin at the cell periphery, but also with changes of cell surface polarization. Our study provides an insight into the local membranous structures and suggested correlations of cytoskeleton arrangement with the polarization of secretory vesicles and cell surface configuration during mast cell degranulation.
Collapse
Affiliation(s)
- Jue-Long Lin
- Laboratory of Analytical Cytology, Shantou University Medical College, Shantou 515041, People's Republic of China.
| | - Chun-Gui Chen
- Laboratory of Analytical Cytology, Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Zhi-Zhong Shen
- First Affiliated Hospital, Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Zhong-Xian Piao
- Laboratory of Analytical Cytology, Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Wei-Qiu Li
- Laboratory of Analytical Cytology, Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Liu Liu
- Laboratory of Analytical Cytology, Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, People's Republic of China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, People's Republic of China
| |
Collapse
|
36
|
Imai Y, Takai S, Jin D, Komeda K, Tashiro K, Li ZL, Otsuki Y, Okamura H, Hayashi M, Uchiyama K. Chymase inhibition attenuates lipopolysaccharide/ d-galactosamine-induced acute liver failure in hamsters. Pharmacology 2014; 93:47-56. [PMID: 24457951 DOI: 10.1159/000357684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Chymase inhibition has been shown to attenuate matrix metalloproteinase (MMP)-9 and tumor necrosis factor (TNF)-α, both of which are associated with the pathogenesis of acute liver failure (ALF). This study investigated the effects of the chymase inhibitor TY-51469 on lipopolysaccharide (LPS)/D-galactosamine (GalN)-induced ALF in hamsters. METHODS TY-51469 (10 or 30 mg/kg) or placebo was administered 1 h before the LPS (160 µg/kg)/GalN (400 mg/kg) injection. RESULTS Hepatic chymase activity was significantly increased after the LPS/GalN injection, but the significant increase was dose-dependently and significantly attenuated by treatment with TY-51469. Significant increases in hepatic MMP-9 activity and TNF-α concentration were observed after the LPS/GalN injection, but these increases were also attenuated by treatment with TY-51469. Plasma aspartate aminotransferase and alanine aminotransferase activities were significantly increased after LPS/GalN injection in the placebo-treated group, but the increases were significantly attenuated in the TY-51469-treated group. The area of hepatic necrotic after LPS/GalN injection was significantly reduced by treatment with TY-51469. Treatment with TY-51469 resulted in significant reductions in the hepatic malondialdehyde concentration, mast cell numbers, and gene expressions of interleukin-1β and myeloperoxidase. DISCUSSION Chymase inhibition could be a useful strategy to attenuate LPS/GalN-induced ALF in hamsters.
Collapse
Affiliation(s)
- Yoshiro Imai
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
He SH, Zhang HY, Zeng XN, Chen D, Yang PC. Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis. Acta Pharmacol Sin 2013; 34:1270-83. [PMID: 23974516 DOI: 10.1038/aps.2013.88] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
The current definition of allergy is a group of IgE-mediated diseases. However, a large portion of patients with clinical manifestations of allergies do not exhibit elevated serum levels of IgE (sIgEs). In this article, three key factors, ie soluble allergens, sIgEs and mast cells or basophils, representing the causative factors, messengers and primary effector cells in allergic inflammation, respectively, were discussed. Based on current knowledge on allergic diseases, we propose that allergic diseases are a group of diseases mediated through activated mast cells and/or basophils in sensitive individuals, and allergic diseases include four subgroups: (1) IgE dependent; (2) other immunoglobulin dependent; (3) non-immunoglobulin mediated; (4) mixture of the first three subgroups. According to our proposed definition, pseudo-allergic-reactions, in which mast cell or basophil activation is not mediated via IgE, or to a lesser extent via IgG or IgM, should be non-IgE-mediated allergic diseases. Specific allergen challenge tests (SACTs) are gold standard tests for diagnosing allergies in vivo, but risky. The identification of surface membrane activation markers of mast cells and basophils (CD203c, CCR3, CD63, etc) has led to development of the basophil activation test (BAT), an in vitro specific allergen challenge test (SACT). Based on currently available laboratory allergy tests, we here propose a laboratory examination procedure for allergy.
Collapse
|
38
|
Nabe T, Kijitani Y, Kitagawa Y, Sakano E, Ueno T, Fujii M, Nakao S, Sakai M, Takai S. Involvement of chymase in allergic conjunctivitis of guinea pigs. Exp Eye Res 2013; 113:74-9. [PMID: 23726880 DOI: 10.1016/j.exer.2013.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 11/18/2022]
Abstract
It has been reported that chymase activity was increased in allergic conjunctivitis patients and this activity was correlated with the severity of the disease. However, the precise roles of chymase in allergic conjunctivitis are unclear, and whether chymase inhibitors are effective for allergic conjunctivitis has not been reported even in experimental animal models. In this study, the roles of chymase in the pathogenesis were evaluated using a selective chymase inhibitor, ONO-WH-236, in a guinea pig model of allergic conjunctivitis induced by cedar pollen. Sensitized guinea pigs were challenged by the pollen, followed by assessing redness and edema in the conjuntiva, and counting the frequency of eye scratching as an itch-associated response. Treatment with the ONO-WH-236 (40 and 80 mg/kg, p.o.) dose-dependently inhibited the induction of redness, edema and scratching behavior. An anti-histaminic drug, ketotifen (3 mg/kg, p.o.), also significantly inhibited conjunctivitis symptoms. Chymase activity was increased in ophthalmic lavage fluid immediately after the pollen challenge. The increase in chymase activity was inhibited by in vivo treatment with ONO-WH-236. Interestingly, increased histamine in the ophthalmic lavage fluid immediately after the challenge was also inhibited by the chymase inhibitor. Administration of human recombinant chymase by eye dropping (0.09 and 0.9 μg/eye) dose-dependently induced scratching behavior, which was inhibited by not only ONO-WH-236 but also ketotifen; however, chymase administration induced only weak redness in the conjunctiva, which was resistant to treatment with anti-histaminic drugs. In conclusion, it was suggested that chymase was released from mast cells after antigen challenge, followed by the induction of conjunctivitis symptoms through histamine release from mast cells. Thus, chymase could be a potential target for pharmacotherapy for allergic conjunctivitis.
Collapse
Affiliation(s)
- Takeshi Nabe
- Department of Pharmacology, Kyoto Pharmaceutical University, 5 Nakauchi, Misasagi, Yamashina, Kyoto 607-8414, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dong X, Geng Z, Zhao Y, Chen J, Cen Y. Involvement of mast cell chymase in burn wound healing in hamsters. Exp Ther Med 2012; 5:643-647. [PMID: 23408248 PMCID: PMC3570197 DOI: 10.3892/etm.2012.836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/19/2012] [Indexed: 01/23/2023] Open
Abstract
Mast cells play a significant role in the late stage of wound healing following burn injuries. In the present study, the possible role of mast cell chymase in burn wound healing was examined using a mast cell membrane stabilizer, ketotifen, in hamsters. A total of 28 hamsters were randomly divided into two groups (n=14), termed as the control and ketotifen groups. A deep partial-thickness burn injury was made on the back skin of the hamsters. The control group was orally administered physiological saline (1 ml) and the ketotifen group was orally administered ketotifen (4 mg/kg) once daily, two days prior to and two days subsequent to the burn. The results showed that concentrations of angiotensin II (Ang II), TGF-β1, collagens I and III and interleukin (IL)-1β were significantly decreased in the ketotifen group compared with those in the control group. However, there was no significant difference in fibroblast apoptosis between the two groups. The release of mast cell chymase was inhibited by the mast cell membrane stabilizer ketotifen. Taken together, these results suggest that mast cell chymase may participate in the process of burn wound healing. Chymase may therefore be a promising therapeutic target for the treatment of burn wounds.
Collapse
Affiliation(s)
- Xianglin Dong
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uigur Autonomous Region 830054
| | | | | | | | | |
Collapse
|
40
|
Van der Velden J, Barker D, Barcham G, Koumoundouros E, Snibson K. Increased mast cell density and airway responses to allergic and non-allergic stimuli in a sheep model of chronic asthma. PLoS One 2012; 7:e37161. [PMID: 22606346 PMCID: PMC3351402 DOI: 10.1371/journal.pone.0037161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/16/2012] [Indexed: 11/18/2022] Open
Abstract
Background Increased mast cell (MC) density and changes in their distribution in airway tissues is thought to contribute significantly to the pathophysiology of asthma. However, the time sequence for these changes and how they impact small airway function in asthma is not fully understood. The aim of the current study was to characterise temporal changes in airway MC density and correlate these changes with functional airway responses in sheep chronically challenged with house dust mite (HDM) allergen. Methodology/Principal Findings MC density was examined on lung tissue from four spatially separate lung segments of allergic sheep which received weekly challenges with HDM allergen for 0, 8, 16 or 24 weeks. Lung tissue was collected from each segment 7 days following the final challenge. The density of tryptase-positive and chymase-positive MCs (MCT and MCTC respectively) was assessed by morphometric analysis of airway sections immunohistochemically stained with antibodies against MC tryptase and chymase. MCT and MCTC density was increased in small bronchi following 24 weeks of HDM challenges compared with controls (P<0.05). The MCTC/MCT ratio was significantly increased in HDM challenged sheep compared to controls (P<0.05). MCT and MCTC density was inversely correlated with allergen-induced increases in peripheral airway resistance after 24 weeks of allergen exposure (P<0.05). MCT density was also negatively correlated with airway responsiveness after 24 challenges (P<0.01). Conclusions MCT and MCTC density in the small airways correlates with better lung function in this sheep model of chronic asthma. Whether this finding indicates that under some conditions mast cells have protective activities in asthma, or that other explanations are to be considered requires further investigation.
Collapse
Affiliation(s)
- Joanne Van der Velden
- Centre for Animal Biotechnology, Veterinary Science, University of Melbourne, Parkville, Australia
- Department of Pharmacology, University of Melbourne, Parkville, Australia
| | - Donna Barker
- Centre for Animal Biotechnology, Veterinary Science, University of Melbourne, Parkville, Australia
| | - Garry Barcham
- Centre for Animal Biotechnology, Veterinary Science, University of Melbourne, Parkville, Australia
| | - Emmanuel Koumoundouros
- Centre for Animal Biotechnology, Veterinary Science, University of Melbourne, Parkville, Australia
- School of Engineering, University of Melbourne, Parkville, Australia
| | - Kenneth Snibson
- Centre for Animal Biotechnology, Veterinary Science, University of Melbourne, Parkville, Australia
- * E-mail:
| |
Collapse
|
41
|
Furuta T, Murao LA, Lan NTP, Huy NT, Huong VTQ, Thuy TT, Tham VD, Nga CTP, Ha TTN, Ohmoto Y, Kikuchi M, Morita K, Yasunami M, Hirayama K, Watanabe N. Association of mast cell-derived VEGF and proteases in Dengue shock syndrome. PLoS Negl Trop Dis 2012; 6:e1505. [PMID: 22363824 PMCID: PMC3283553 DOI: 10.1371/journal.pntd.0001505] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 12/20/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase) and -related cytokines (IL-4, -9, and -17) between patients with differing severity of Dengue fever and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS The study was performed at Children's Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF), Dengue hemorrhagic fever (DHF), and Dengue shock syndrome (DSS), as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9. CONCLUSIONS As mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity.
Collapse
Affiliation(s)
- Takahisa Furuta
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Mast cells (MCs) were first described by Paul Ehrlich 1 in his doctoral thesis. MCs have long been implicated in the pathogenesis of allergic reactions and certain protective responses to parasites. As most tumors contain inflammatory cell infiltrates, which often include plentiful MCs, the question as to the possible contribution of MCs to tumor development has progressively been emerging. In this chapter, the specific involvement of MCs in tumor biology and tumor fate will be considered, with particular emphasis on the capacity of these cells to stimulate tumor growth by promoting angiogenesis and lymphangiogenesis. Data from experimental carcinogenesis and from different tumor settings in human pathology will be summarized. Information to be presented will suggest that MCs may serve as a novel therapeutic target for cancer treatment.
Collapse
|
43
|
Takato H, Yasui M, Ichikawa Y, Waseda Y, Inuzuka K, Nishizawa Y, Tagami A, Fujimura M, Nakao S. The specific chymase inhibitor TY-51469 suppresses the accumulation of neutrophils in the lung and reduces silica-induced pulmonary fibrosis in mice. Exp Lung Res 2010; 37:101-8. [PMID: 21128860 DOI: 10.3109/01902148.2010.520815] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chymase is a chymotrypsin-like serine protease that is present in mast cells. Its activities include various effects associated with inflammatory responses. But little is known about the effects of chymase in pulmonary fibrosis. The mouse silicosis model was induced by intratracheal injection of 10 mg silica. The Ashcroft pathological score and the hydroxyproline content of lungs were measured to evaluate the effect of a chymase inhibitor, 2-[4-(5-fluoro-3-methylbenzo[b]thiophen-2-yl)sulfonamido-3-methanesulfonylphenyl] thiazole-4-carboxylic acid (TY-51469). The cellular composition and cytokine levels in bronchoalveolar lavage fluid (BALF) were also examined. Following TY-51469 treatment, the lung fibrosis score and hydroxyproline level were significantly reduced, and the number of neutrophils and the levels of macrophage inflammatory protein-2, monocyte chemoattractant protein-1, and transforming growth factor-β₁ in BALF were reduced on day 21. The administration of TY-51469 at an early stage showed a greater reduction of fibrosis compared to administration at a later stage. The neutrophil number in BALF in mice treated with TY-51469 both at an early stage and late stage was significantly reduced. The level of mouse mast cell proteinase-4 mRNA increased with time in silica-induced fibrosing lung tissue. These results show that the chymase inhibitor TY51469 suppresses the migration of neutrophils, which results in the suppression of lung fibrosis.
Collapse
Affiliation(s)
- Hazuki Takato
- Department of Respiratory Medicine, Division of Cellular Transplantation Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sawesi O, Spillmann D, Lundén A, Wernersson S, Åbrink M. Serglycin-independent release of active mast cell proteases in response to Toxoplasma gondii infection. J Biol Chem 2010; 285:38005-13. [PMID: 20864536 PMCID: PMC2992234 DOI: 10.1074/jbc.m110.118471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 08/13/2010] [Indexed: 01/05/2023] Open
Abstract
Earlier studies identified serglycin proteoglycan and its heparin chains to be important for storage and activity of mast cell proteases. However, the importance of serglycin for secretion and activity of mast cell proteases in response to parasite infection has been poorly investigated. To address this issue, we studied the effects on mast cell proteases in serglycin-deficient and wild type mice after peritoneal infection with the obligate intracellular parasite Toxoplasma gondii. In line with previous results, we found severely reduced levels of cell-bound mast cell proteases in both noninfected and infected serglycin-deficient mice. However, serglycin-deficient mice secreted mast cell proteases at wild type levels at the site of infection, and enzymatic activities associated with mast cell proteases were equally up-regulated in wild type and serglycin-deficient mice 48 h after infection. In both wild type and serglycin-deficient mice, parasite infection resulted in highly increased extracellular levels of glycosaminoglycans, including hyaluronan and chondroitin sulfate A, suggesting a role of these substances in the general defense mechanism. In contrast, heparan sulfate/heparin was almost undetectable in serglycin-deficient mice, and in wild type mice, it was mainly confined to the cellular fraction and was not increased upon infection. Furthermore, the heparan sulfate/heparin population was less sulfated in serglycin-deficient than in wild type mice indicative for the absence of heparin, which supports that heparin production is dependent on the serglycin core protein. Together, our results suggest that serglycin proteoglycan is dispensable for normal secretion and activity of mast cell proteases in response to peritoneal infection with T. gondii.
Collapse
Affiliation(s)
- Osama Sawesi
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, and
- Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, SE-75123 Uppsala, Sweden
| | - Dorothe Spillmann
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, and
| | - Anna Lundén
- the Departments of Biomedical Sciences and Veterinary Public Health, Section of Parasitology (SWEPAR), SE-75189 Uppsala, and
| | - Sara Wernersson
- Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, SE-75123 Uppsala, Sweden
| | - Magnus Åbrink
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, and
| |
Collapse
|
45
|
Hersberger M, Thun GA, Imboden M, Brandstätter A, Waechter V, Summerer M, Schmid-Grendelmeier P, Bircher A, Rohrer L, Berger W, Russi EW, Rochat T, Kronenberg F, Probst-Hensch N. Association of STR polymorphisms in CMA1 and IL-4 with asthma and atopy: the SAPALDIA cohort. Hum Immunol 2010; 71:1154-60. [PMID: 20736038 DOI: 10.1016/j.humimm.2010.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/05/2010] [Accepted: 08/16/2010] [Indexed: 11/26/2022]
Abstract
Asthma is a chronic pulmonary disorder that is characterized by airway inflammation and bronchial hyperreactivity. Several genetic loci have been associated with asthma, and some of these associations have been replicated in independent studies. However, larger population-based replication studies for the association of short tandem repeat (STR) polymorphisms with asthma are limited. In this study, we investigated the association of STR polymorphisms in genes encoding mast cell chymase (CMA1), uteroglobin (UGB), tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) with asthma and atopic phenotypes in the large population-based Swiss Cohort Study SAPALDIA. Our results show that the STR polymorphism in the CMA1 gene is associated with asthma and that this association is even stronger with atopic asthma. Similarly, we observed a weak association of the IL-4 2-allele with asthma that tended to be stronger for atopic asthma than for nonatopic asthma. This minor IL-4 2-allele was also associated with higher IgE levels, with a higher risk for a positive skin prick test and with a trend for a higher risk for bronchial hyperresponsiveness. These results support previous findings suggesting a role for CMA1 and IL-4 in atopic asthma and for IL-4 in atopy in general.
Collapse
Affiliation(s)
- Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich and Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tashiro K, Takai S, Jin D, Yamamoto H, Komeda K, Hayashi M, Tanaka K, Tanigawa N, Miyazaki M. Chymase inhibitor prevents the nonalcoholic steatohepatitis in hamsters fed a methionine- and choline-deficient diet. Hepatol Res 2010; 40:514-23. [PMID: 20374300 DOI: 10.1111/j.1872-034x.2010.00627.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM Mast cells may be involved in the pathogenesis of nonalcoholic steatohepatitis (NASH). The mast cell protease chymase contributes to the formation of angiotensin II and matrix metalloproteinase (MMP)-9, both of which are intimately involved in liver fibrosis. Therefore, we hypothesized that chymase plays an important role in the development of NASH. METHODS Hamsters were fed a methionine- and choline-deficient (MCD) diet for 8 weeks. These animals were divided into two groups and received either TY-51469 (1 mg/kg per day) or placebo. A third group was fed a normal diet as a control. RESULTS Total plasma bilirubin, triglycerides, and hyaluronic acid levels were significantly higher in the MCD diet-fed hamsters than in the normal diet-fed hamsters, but the levels were significantly lower in chymase inhibitor-treated MCD diet-fed hamsters than in placebo-treated MCD diet-fed hamsters. Using histological analysis, marked steatosis and fibrosis were observed in MCD diet-fed hamsters, but these changes were significantly attenuated by treatment with the chymase inhibitor. Increases in mast cells and chymase-positive cells were observed in the liver after the MCD diet, but the increases disappeared in the chymase inhibitor-treated group. The significant increase observed in chymase activity in liver tissue extract from the MCD diet-fed group was also reduced by treatment with the chymase inhibitor. Chymase inhibition significantly reduced not only angiotensin II expression but also matrix metallopeptidase 9 activity in MCD diet-fed hamsters. CONCLUSION These findings demonstrate that the mast cell protease chymase may play a crucial role in the development of NASH in hamsters.
Collapse
Affiliation(s)
- Keitaro Tashiro
- Department of Pharmacology, Osaka Medical College, Daigaku-machi, Takatsuki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kakimoto K, Takai S, Murano M, Ishida K, Yoda Y, Inoue T, Jin D, Umegaki E, Higuchi K. Significance of chymase-dependent matrix metalloproteinase-9 activation on indomethacin-induced small intestinal damages in rats. J Pharmacol Exp Ther 2010; 332:684-9. [PMID: 19996300 DOI: 10.1124/jpet.109.162933] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The side effects of nonsteroidal anti-inflammatory drugs (NSAIDs) include gastrointestinal damage not only in the stomach but also in the small intestine. Chymase converts promatrix metalloproteinase-9 to matrix metalloproteinase (MMP)-9, which plays an important role in NSAID-induced gastric damage, but it has been unclear whether chymase-dependent MMP-9 activation is involved in the NSAID-induced small intestinal damage. To clarify the involvement of chymase-dependent MMP-9 activation on NSAID-induced small intestinal damage, the effect of a chymase inhibitor, 2-[4-(5-fluoro-3-methylbenzo[b]thiophen-2-yl)sulfonamido-3-methanesulfonylphenyl] thiazole-4-carboxylic acid (TY-51469), on indomethacin-induced small intestinal damage in rats was evaluated. Until 6 h after oral administration of indomethacin in rats, intestinal MMP-9 activity was unchanged compared with normal rats, but significant increases in MMP-9 activity were observed 12 and 24 h after indomethacin administration. Significant increases in the small intestinal damage score were also observed 12 and 24 h after indomethacin administration. In the extract from the small intestine 24 h after indomethacin administration, the MMP-9 activation was significantly attenuated by TY-51469. Intraperitoneal injection of TY-51469 (10 mg/kg) 3 h before indomethacin administration significantly attenuated the MMP-9 activity in the small intestine compared with placebo treatment. Myeloperoxidase activity, which indicates accumulation of neutrophils, was significantly increased in the small intestine in the placebo-treated rats, but its activity was significantly attenuated by TY-51469 treatment. The area of small intestinal damage was also significantly ameliorated by TY-51469 treatment. These findings suggest that chymase-dependent MMP-9 activation has a significant role in indomethacin-induced small intestinal damage in rats.
Collapse
Affiliation(s)
- Kazuki Kakimoto
- Second Department of Internal Medicine, Department of Pharmacology, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shiota N, Kovanen PT, Eklund KK, Shibata N, Shimoura K, Niibayashi T, Shimbori C, Okunishi H. The anti-allergic compound tranilast attenuates inflammation and inhibits bone destruction in collagen-induced arthritis in mice. Br J Pharmacol 2010; 159:626-35. [PMID: 20067475 DOI: 10.1111/j.1476-5381.2009.00561.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent findings suggest the importance of mast cells in the pathogenesis of rheumatoid arthritis and their potential as a therapeutic target. Tranilast is an anti-allergic compound with a potent membrane-stabilizing effect on mast cells and a wide range of anti-inflammatory effects, thus may be advantageous in the treatment of arthritis. Here, we have evaluated the effects of tranilast on the progression of collagen-induced arthritis in mice. EXPERIMENTAL APPROACH Tranilast (400 mg.kg(-1).day(-1)) was orally administered for 8 weeks to mice with established collagen-induced arthritis. Arthritis was assessed by clinical signs and X-ray scores. In paw tissue, the numbers of mast cells and osteoclasts were measured by histological analysis, and several inflammatory factors were assessed by RT-PCR and Western blot analysis.* KEY RESULTS TNF-alpha-positive mast cells were present extensively throughout the inflamed synovium of vehicle-treated arthritic mice, with some mast cells in close proximity to osteoclasts in areas of marked bone and cartilage destruction. Tranilast significantly reduced clinical and X-ray scores of arthritis and decreased numbers of TNF-alpha-positive mast cells and mRNA levels of TNF-alpha, chymase (mouse mast cell protease 4), tryptase (mouse mast cell protease 6), stem cell factor, interleukin-6, cathepsin-K, receptor activator of nuclear factor-kappaB, and of receptor activator of nuclear factor-kappaB-ligand, but increased interleukin-10 mRNA level in paws of arthritic mice. Osteoclast numbers were decreased by treatment with tranilast. CONCLUSIONS AND IMPLICATIONS Tranilast possesses significant anti-rheumatic efficacy and, probably, this therapeutic effect is partly mediated by inhibition of mast cell activation and osteoclastogenesis.
Collapse
Affiliation(s)
- N Shiota
- Department of Pharmacology, Shimane University School of Medicine, Shimane, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Waern I, Jonasson S, Hjoberg J, Bucht A, Abrink M, Pejler G, Wernersson S. Mouse mast cell protease 4 is the major chymase in murine airways and has a protective role in allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:6369-76. [PMID: 19841188 DOI: 10.4049/jimmunol.0900180] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is widely established that mast cells (MCs) have a harmful role in asthma, for example by secreting various proinflammatory substances stored within their secretory granule. However, in this study, we show that one of the substances stored within MC granule, chymase, in fact has a protective role in allergic airway inflammation, indicating that MCs may possess both harmful and protective activities in connection with this type of disease. Wild-type (WT) mice and mice lacking mouse MC protease 4 (mMCP-4), a chymase that is functionally homologous to human chymase, were sensitized and challenged with OVA, followed by the assessment of airway physiology and inflammatory parameters. Our results show that the airway hyperresponsiveness was significantly higher in mMCP-4(-/-) as compared with WT mice. Moreover, the degree of lung tissue inflammation was markedly higher in mice lacking mMCP-4 than in WT controls. Histological analysis revealed that OVA sensitization/challenge resulted in a marked increased in the thickness of the smooth muscle cell (SMC) layer and, notably, that the degree of SMC layer thickening was more pronounced in mMCP-4(-/-) animals than in WT controls, thus indicating that chymase may have an effect on airway SMCs. In support of this, mMCP-4-positive MCs were located in the close vicinity of the SMC layer, mainly in the upper airways, and mMCP-4 was shown to be the major chymase expressed in these MCs. Taken together, our results indicate that chymase present in the upper airways protects against allergic airway responses, possibly by regulating SMCs.
Collapse
Affiliation(s)
- Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Okada K, Sugiyama T, Takai S, Jin D, Ishida O, Fukmoto M, Oku H, Miyazaki M, Ikeda T. Effects of mitomycin C on the expression of chymase and mast cells in the conjunctival scar of a monkey trabeculectomy model. Mol Vis 2009; 15:2029-36. [PMID: 19844588 PMCID: PMC2763124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 10/04/2009] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To determine the effects of mitomycin C (MMC) on the expression of chymase and mast cells in the conjunctival scar after trabeculectomy. METHODS Ten eyes of five monkeys were used. Three eyes underwent trabeculectomy with MMC (MMC-treated), four eyes had trabeculectomy without MMC (placebo-treated), and three eyes served as control eyes. Intraocular pressure was measured before and three weeks after surgery. The scores of the degree of conjunctival adhesion were evaluated. Immunohistochemistry was used to analyze the densities of proliferative cell nuclear antigen-positive cells, chymase-positive cells, and mast cells. The ratio of collagen fiber areas to conjunctival and scleral lesions was analyzed by Mallory-Azan staining. RESULTS After trabeculectomy, the intraocular pressure reduction of MMC-treated eyes was significantly different from placebo-treated and control eyes (p=0.032, 0.035). The adhesion score of MMC-treated eyes was also significantly lower than that of placebo-treated eyes (p=0.034). Densities of proliferative cell nuclear antigen-positive cells, chymase-positive cells, and areas of collagen fiber in conjunctival and scleral lesions were significantly decreased in MMC-treated eyes, compared with placebo-treated eyes (p=0.034, 0.034, 0.049, respectively). There was a tendency for the density of mast cells to be suppressed in MMC-treated eyes (p=0.157). CONCLUSIONS Chymase might be involved in one of the mechanisms by which MMC suppresses scar formation after trabeculectomy.
Collapse
Affiliation(s)
- Kouhei Okada
- Department of Ophthalmology, Takatsuki Red Cross Hospital, Osaka, Japan
| | - Tetsuya Sugiyama
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan
| | - Shinji Takai
- Department of Pharmacology, Osaka Medical College, Osaka, Japan
| | - Denan Jin
- Department of Pharmacology, Osaka Medical College, Osaka, Japan
| | - Osamu Ishida
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan
| | - Masanori Fukmoto
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan
| | - Mizuo Miyazaki
- Department of Pharmacology, Osaka Medical College, Osaka, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan
| |
Collapse
|