1
|
Synergistic effect of serotonin 1A and serotonin 1B/D receptor agonists in the treatment of L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rats. Exp Neurol 2022; 358:114209. [PMID: 35988699 DOI: 10.1016/j.expneurol.2022.114209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The gold standard for symptomatic relief of Parkinson's disease (PD) is L-DOPA. However, long-term treatment often leads to motor complications such as L-DOPA-induced dyskinesia (LID). While amantadine (Gocovri™) is the only approved therapy for dyskinesia in PD patients on the American market, it is associated with neurological side effects and limited efficacy. Thus, there remains a high unmet need for addressing LID in PD patients worldwide. OBJECTIVE The objective of this study was to evaluate the efficacy, safety and performance compared to approved treatments of the serotonin receptor 1A (5-HT1A) and 5-HT1B/D agonists buspirone and zolmitriptan in the 6-hydroxydopamine unilaterally lesioned rat model for PD. METHODS The hemiparkinsonian 6-OHDA-lesioned rats underwent chronic treatment with L-DOPA to induce dyskinesia and were subsequently used for efficacy testing of buspirone, zolmitriptan and comparison with amantadine, measured as abnormal involuntary movement (AIM) scores after L-DOPA challenge. Safety testing was performed in model and naïve animals using forelimb adjusting, rotarod and open field tests. RESULTS 5-HT1A and 5-HT1B/D agonism effectively reduced AIM scores in a synergistic manner. The drug combination of buspirone and zolmitriptan was safe and did not lead to tolerance development following sub-chronic administration. Head-to-head comparison with amantadine showed superior performance of buspirone and zolmitriptan in the model. CONCLUSIONS The strong anti-dyskinetic effect found with combined 5-HT1A and 5-HT1B/D agonism renders buspirone and zolmitriptan together a meaningful treatment for LID in PD.
Collapse
|
2
|
Masterson CG, Durham PL. DHE repression of ATP-mediated sensitization of trigeminal ganglion neurons. Headache 2013; 50:1424-39. [PMID: 20561068 DOI: 10.1111/j.1526-4610.2010.01714.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To investigate the mechanism by which adenosine triphosphate (ATP) causes sensitization of trigeminal neurons and how dihydroergotamine (DHE) represses this modulatory effect. BACKGROUND Dihydroergotamine is an effective treatment of migraine. The cellular mechanisms of action of DHE in treating migraine attacks remain unclear. METHODS In this study, neonatal rat trigeminal ganglia cultures were used to investigate effects of ATP, alpha, beta-methyl ATP (α,β-meATP), and DHE on intracellular calcium levels and calcitonin gene-related peptide (CGRP) secretion. RESULTS Pretreatment with ATP or α,β-meATP caused sensitization of neurons, via P2X(3) receptors, such that a subthreshold amount of potassium chloride (KCl) significantly increased intracellular calcium levels and CGRP secretion. Pretreatment with DHE repressed increases in calcium and CGRP secretion in response to ATP-KCl or α,β-meATP-KCl treatment. Importantly, these inhibitory effects of DHE were blocked with an α(2) -adrenoceptor antagonist and unaffected by a 5HT(1B/D) receptor antagonist. DHE also decreased neuronal membrane expression of the P2X(3) receptor. CONCLUSIONS Our findings provide evidence for a novel mechanism of action for DHE that involves blocking ATP-mediated sensitization of trigeminal neurons, repressing stimulated CGRP release, and decreasing P2X(3) membrane expression via activation of α(2) -adrenoceptors.
Collapse
Affiliation(s)
- Caleb G Masterson
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO 65806, USA
| | | |
Collapse
|
3
|
Kao YY, Cheng TJ, Yang DM, Wang CT, Chiung YM, Liu PS. Demonstration of an olfactory bulb-brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. J Mol Neurosci 2012; 48:464-71. [PMID: 22528453 DOI: 10.1007/s12031-012-9756-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/16/2012] [Indexed: 01/08/2023]
Abstract
ZnO nanoparticles (ZnO-NPs) are widely used in the engineering and cosmetic industries, and inhaled airborne particles pose a known hazard to human health; their translocation into humans is a recognized public health concern. The pulmonary-blood pathway for ZnO-NP toxicity is well documented, but whether translocation of these particles can also occur via an olfactory bulb-brain route remains unclear. The potential toxicity of ZnO-NPs for the human central nervous system (CNS) is predicated on the possibility of their translocation. Our study investigated translocation of ZnO-NPs both in vitro using the neuronal cell line PC12 and in vivo in a Sprague-Dawley rat model. Our findings indicate that the zinc-binding dye, Newport-Green DCF, binds ZnO stoichiometrically and that ZnO-NP concentration can therefore be measured by the fluorescence intensity of the bound dye in confocal fluorescence microscopy. Confocal data obtained using Newport-Green DCF-2 K(+)-conjugated ZnO-NPs along with the membrane probe FM1-43 demonstrated endocytosis of ZnO-NPs by PC12 cells. In addition, Fluozin-3 measurement showed elevation of cytosolic Zn(2+) concentration in these cells. Following in vivo nasal exposure of rats to airborne ZnO-NPs, olfactory bulbs and brains that were examined by Newport-Green fluorescence and TEM particle measurement clearly showed the presence of ZnO-NPs in brain. We conclude that an olfactory bulb-brain translocation pathway for airborne ZnO-NPs exists in rats, and that endocytosis is required for interneuron translocation of these particles.
Collapse
Affiliation(s)
- Yi-Yun Kao
- Department of Microbiology, Soochow University, Shihlin, Shilin District, Taipei 111, Taiwan
| | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Abstract
We tested the idea that migraine triggers cause cortical activation, which disinhibits craniovascular sensation through the nucleus raphe magnus (NRM) and thus produces the headache of migraine. Stimulation of the dura mater and facial skin activated neurons in the NRM and the trigeminal nucleus. Stimulation of the NRM caused suppression of responses of trigeminal neurons to electrical and mechanical stimulation of the dura mater, but not of the skin. This suppression was antagonized by the iontophoretic application of the 5-HT1B/1D receptor antagonist GR127935 to trigeminal neurons. Migraine trigger factors were simulated by cortical spreading depression (CSD) and light flash. Activity of neurons in the NRM was inhibited by these stimuli. Multiple waves of CSD antagonized the inhibitory effect of NRM stimulation on responses of trigeminal neurons to dural mechanical stimulation but not to skin mechanical stimulation. The cortico-NRM-trigeminal neuraxis might provide a target for a more universally effective migraine prophylactic treatment.
Collapse
Affiliation(s)
- GA Lambert
- Institute of Neurological Sciences, University of New South Wales & Prince of Wales Hospital, Randwick, Australia
| | - KL Hoskin
- Institute of Neurological Sciences, University of New South Wales & Prince of Wales Hospital, Randwick, Australia
| | - AS Zagami
- Institute of Neurological Sciences, University of New South Wales & Prince of Wales Hospital, Randwick, Australia
| |
Collapse
|
6
|
Starr KR, Price GW, Watson JM, Atkinson PJ, Arban R, Melotto S, Dawson LA, Hagan JJ, Upton N, Duxon MS. SB-649915-B, a novel 5-HT1A/B autoreceptor antagonist and serotonin reuptake inhibitor, is anxiolytic and displays fast onset activity in the rat high light social interaction test. Neuropsychopharmacology 2007; 32:2163-72. [PMID: 17356576 DOI: 10.1038/sj.npp.1301341] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Preclinically, the combination of an SSRI and 5-HT autoreceptor antagonist has been shown to reduce the time to onset of anxiolytic activity compared to an SSRI alone. In accordance with this, clinical data suggest the coadministration of an SSRI and (+/-) pindolol can decrease the time to onset of anxiolytic/antidepressant activity. Thus, the dual-acting novel SSRI and 5-HT(1A/B) receptor antagonist, SB-649915-B, has been assessed in acute and chronic preclinical models of anxiolysis. SB-649915-B (0.1-1.0 mg/kg, i.p.) significantly reduced ultrasonic vocalization in male rat pups separated from their mothers (ED(50) of 0.17 mg/kg). In the marmoset human threat test SB-649915-B (3.0 and 10 mg/kg, s.c.) significantly reduced the number of postures with no effect on locomotion. In the rat high light social interaction (SI), SB-649915-B (1.0-7.5 mg/kg, t.i.d.) and paroxetine (3.0 mg/kg, once daily) were orally administered for 4, 7, and 21 days. Ex vivo inhibition of [(3)H]5-HT uptake was also measured following SI. SB-649915-B and paroxetine had no effect on SI after 4 days. In contrast to paroxetine, SB-649915-B (1.0 and 3.0 mg/kg, p.o., t.i.d.) significantly (p<0.05) increased SI time with no effect on locomotion, indicative of an anxiolytic-like profile on day 7. Anxiolysis was maintained after chronic (21 days) administration by which time paroxetine also increased SI significantly. 5-HT uptake was inhibited by SB-649915-B at all time points to a similar magnitude as that seen with paroxetine. In conclusion, SB-649915-B is acutely anxiolytic and reduces the latency to onset of anxiolytic behavior compared to paroxetine in the SI model.
Collapse
Affiliation(s)
- Kathryn R Starr
- Schizophrenia and Bipolar Research, Psychiatry Centre of Excellence in Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Essex CM19 5AW, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lambert GA. Looking in the wrong place? The search for an ideal migraine preventative. Drug Dev Res 2007. [DOI: 10.1002/ddr.20204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Watson JM, Dawson LA. Characterization of the potent 5-HT(1A/B) receptor antagonist and serotonin reuptake inhibitor SB-649915: preclinical evidence for hastened onset of antidepressant/anxiolytic efficacy. CNS DRUG REVIEWS 2007; 13:206-23. [PMID: 17627673 PMCID: PMC6726354 DOI: 10.1111/j.1527-3458.2007.00012.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An increase in brain serotonin (5-HT) levels is thought to be a key mechanism of action responsible for generating antidepressant efficacy. It has been proven that selective serotonin reuptake inhibitors are effective antidepressants, but the delay to therapeutic onset of these agents is thought to be due to the time required for 5-HT1A, and possibly 5-HT1B, autoreceptors to desensitize. Therefore, an agent incorporating 5-HT reuptake inhibition coupled with 5-HT1A and/or 5-HT1B autoreceptor antagonism may provide a fast-acting clinical agent. The current studies review the profile of SB-649915 (6-[(1-{2-[(2-methylquinolin-5-yl)oxy]ethyl}piperidin-4-yl)methyl]-2H-1,4-benzoxazin-3(4H)-one), a novel compound with high affinity for human (h) 5-HT1A and 5-HT1B receptors (pKi values of 8.6 and 8.0, respectively) as well as the (h) 5-HT transporter (SERT) (pKi value of 9.3). SB-649915 behaved as an antagonist at both 5-HT1A and 5-HT1B receptors in vitro and in vivo, reversing 5-HT, (+)8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and SKF99101-induced functional/behavioral responses. Furthermore, it inhibited [3H]5-HT reuptake in rat cortical synaptosomes, in vitro and ex vivo. In electrophysiological studies SB-649915 had no effect on rat dorsal raphe neuronal cell firing per se, but reversed 8-OH-DPAT-induced inhibition of firing both in vitro and in vivo. In addition, in a microdialysis study, it produced an acute increase in extracellular 5-HT in forebrain structures of the rat. Finally, SB-649915 demonstrated acute anxiolytic activity in both rodent and non-human primate and reduced the latency to onset of anxiolytic behavior, compared to paroxetine, in the rat social interaction paradigm. In summary, SB-649915 is a novel, potent 5-HT1A/1B autoreceptor antagonist, and 5-HT reuptake inhibitor. This particular pharmacological profile provides a novel mechanism that could offer fast-acting antidepressant activity.
Collapse
Affiliation(s)
- Jeannette M Watson
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex, UK.
| | | |
Collapse
|
9
|
Abstract
Most neurological and psychiatric disorders involve selective or preferential impairments of neurotransmitter systems. Therefore, studies of functional transmitter pathophysiology in human brain are of unique importance in view of the development of effective, mechanism-based, therapeutic modalities. It is well known that central nervous system functional proteins, including receptors, transporters, ion channels, and enzymes, can exhibit high heterogeneity in terms of structure, function, and pharmacological profile. If the existence of types and subtypes of functional proteins amplifies the possibility of developing selective drugs, such heterogeneity certainly increases the likelihood of interspecies differences. It is therefore essential, before choosing animal models to be used in preclinical pharmacology experimentation, to establish whether functionally corresponding proteins in men and animals also display identical pharmacological profiles. Because of evidence that scaffolding proteins, trafficking between plasma membrane and intracellular pools, phosphorylation and allosteric modulators can affect the function of receptors and transporters, experiments with human clones expressed in host cells where the environment of native receptors is rarely reproduced should be interpreted with caution. Thus, the use of neurosurgically removed fresh human brain tissue samples in which receptors, transporters, ion channels, and enzymes essentially retain their natural environment represents a unique experimental approach to enlarge our understanding of human brain processes and to help in the choice of appropriate animal models. Using this experimental approach, many human brain functional proteins, in particular transmitter receptors, have been characterized in terms of localization, function, and pharmacological properties.
Collapse
Affiliation(s)
- Maurizio Raiteri
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
10
|
Scott C, Soffin EM, Hill M, Atkinson PJ, Langmead CJ, Wren PB, Faedo S, Gordon LJ, Price GW, Bromidge S, Johnson CN, Hagan JJ, Watson J. SB-649915, a novel, potent 5-HT1A and 5-HT1B autoreceptor antagonist and 5-HT re-uptake inhibitor in native tissue. Eur J Pharmacol 2006; 536:54-61. [PMID: 16571351 DOI: 10.1016/j.ejphar.2006.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 01/26/2006] [Accepted: 02/21/2006] [Indexed: 11/21/2022]
Abstract
An increase in brain 5-HT levels is thought to be the key mechanism of action which results in an antidepressant response. It has been proven that selective serotonin re-uptake inhibitors are effective antidepressants but the delay to therapeutic onset of these agents is thought to be due to the time required for 5-HT1A, and possibly 5-HT1B, autoreceptor desensitisation. Therefore an agent incorporating 5-HT re-uptake inhibition coupled with 5-HT1A and/or 5-HT1B autoreceptor antagonism may provide a fast acting clinical agent. The current studies describe the in vitro profile of SB-649915 (6-[(1-{2-[(2-methylquinolin-5-yl)oxy]ethyl}piperidin-4-yl)methyl]-2H-1,4-benzoxazin-3(4H)-one), a novel compound which has high affinity for human recombinant 5-HT1A, 5-HT1B and 5-HT1D receptors (pKi values of 8.6, 8.0, 8.8, respectively) and the human recombinant 5-HT transporter (pKi value of 9.3). SB-649915 also displays high affinity for rat, guinea pig, mouse and marmoset native tissue 5-HT1A, 5-HT1B and 5-HT1D receptors and rat native tissue 5-HT transporters (pKi values>or=7.5). In functional [35S]GTPgammaS binding studies, SB-649915 (up to 1 microM) does not display intrinsic activity in HEK293 cells expressing human recombinant 5-HT1A receptors but acts as a partial agonist at human recombinant 5-HT1B and 5-HT1D receptors with intrinsic activity values of 0.3 and 0.7, respectively, as compared to the full agonist 5-HT. From Schild analysis, SB-649915 caused a concentration-dependent, rightward shift of 5-HT-induced stimulation of basal [35S]GTPgammaS binding in cells expressing human recombinant 5-HT1A or 5-HT1B receptors to yield pA2 values of 9.0 and 7.9, respectively. In electrophysiological studies in rat dorsal raphe nucleus, SB-649915 did not affect the cell firing rate up to 1 microM but attenuated (+)8-hydroxy-2-(di-n-propylamino) tetralin-induced inhibition of cell firing with an apparent pKb value of 9.5. SB-649915 (1 microM) significantly attenuated exogenous 5-HT-induced inhibition of electrically-stimulated [3H]5-HT release from guinea pig cortex. In studies designed to enhance endogenous 5-HT levels, and therefore increase tone at 5-HT1B autoreceptors, SB-649915 significantly potentiated [3H]5-HT release at 100 and 1000 nM. In LLCPK cells expressing human recombinant 5-HT transporters and in rat cortical synaptosomes, SB-649915 inhibited [3H]5-HT re-uptake with pIC50 values of 7.9 and 9.7, respectively. In summary, SB-649915 is a novel, potent 5-HT1A/1B autoreceptor antagonist and 5-HT re-uptake inhibitor in native tissue systems and represents a novel mechanism that could offer fast acting antidepressant action.
Collapse
Affiliation(s)
- Claire Scott
- Psychiatry and Neurology and GI Centres of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW and Via Fleming 4, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Marek GJ, Martin-Ruiz R, Abo A, Artigas F. The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine. Neuropsychopharmacology 2005; 30:2205-15. [PMID: 15886717 DOI: 10.1038/sj.npp.1300762] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The addition of low doses of atypical antipsychotic drugs, which saturate 5-HT(2A) receptors, enhances the therapeutic effect of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) in patients with major depression as well as treatment-refractory obsessive-compulsive disorder. The purpose of the present studies was to test the effects of combined treatment with a low dose of a highly selective 5-HT(2A) receptor antagonist (M100907; formerly MDL 100,907) and low doses of a SSRI using a behavioral screen in rodents (the differential-reinforcement-of low rate 72-s schedule of reinforcement; DRL 72-s) which previously has been shown to be sensitive both to 5-HT(2) antagonists and SSRIs. M100907 has a approximately 100-fold or greater selectivity at 5-HT(2A) receptors vs other 5-HT receptor subtypes, and would not be expected to appreciably occupy non-5-HT(2A) receptors at doses below 100 microg/kg. M100907 increased the reinforcement rate, decreased the response rate, and shifted the inter-response time distributions to the right in a pattern characteristic of antidepressant drugs. In addition, a positive synergistic interaction occurred when testing low doses of the 5-HT(2A) receptor antagonist (6.25-12.5 microg/kg) with clinically relevant doses of the SSRI fluoxetine (2.5-5 mg/kg), which both exerted minimal antidepressant-like effects by themselves. In vivo microdialysis study revealed that a low dose of M100907 (12.5 microg/kg) did not elevate extracellular 5-HT levels in the prefrontal cortex over those observed with fluoxetine alone (5 mg/kg). These results will be discussed in the context that the combined blockade of 5-HT(2A) receptors and serotonin transporters (SERT) may result in greater efficacy in treating neuropsychiatric syndromes than blocking either site alone.
Collapse
Affiliation(s)
- Gerard J Marek
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center and the Ribicoff Research Facilities, New Haven, CT, USA.
| | | | | | | |
Collapse
|
12
|
Honda M, Imaida K, Tanabe M, Ono H. Endogenously released 5-hydroxytryptamine depresses the spinal monosynaptic reflex via 5-HT1D receptors. Eur J Pharmacol 2005; 503:55-61. [PMID: 15496296 DOI: 10.1016/j.ejphar.2004.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/06/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
In the spinal cord, various 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the modulation of motor output. Previously, we have shown that 5-HT1B receptors mediate the monosynaptic reflex depression induced by exogenously applied 5-HT that was formed from the precursor L-5-hydroxytryptophan in spinalized rats. In this study, we determined the effects of endogenous 5-HT, which was released from serotonergic terminals by DL-p-chloroamphetamine, on spinal reflexes. DL-p-chloroamphetamine depressed the monosynaptic reflex and increased the polysynaptic reflex. The depletion of 5-HT abolished the monosynaptic reflex depression, but the increase in polysynaptic reflexes was maintained, suggesting that endogenous 5-HT released by DL-p-chloroamphetamine mediates depression of the monosynaptic reflex in the spinal cord. The depression of the monosynaptic reflex was antagonized by GR127935 (N-[methoxy-3-(4-methyl-l-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)[1,1-biphenyl]-4-carboxamide; 5-HT1B/1D receptor antagonist) and BRL15572 (3-[4-(4-chlorophenyl)piperazin-1-yl]-1,1-diphenyl-2-propanol; 5-HT1D receptor antagonist) but not by isamoltane (5-HT(1B) receptor antagonist). These results suggest that 5-HT released from serotonergic terminals depresses monosynaptic reflex transmission via 5-HT1D receptors.
Collapse
Affiliation(s)
- Motoko Honda
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | | | | | | |
Collapse
|
13
|
Pullar IA, Boot JR, Broadmore RJ, Eyre TA, Cooper J, Sanger GJ, Wedley S, Mitchell SN. The role of the 5-HT1D receptor as a presynaptic autoreceptor in the guinea pig. Eur J Pharmacol 2004; 493:85-93. [PMID: 15189767 DOI: 10.1016/j.ejphar.2004.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 04/15/2004] [Accepted: 04/20/2004] [Indexed: 11/23/2022]
Abstract
The present study investigated the role of the 5-hydroxytryptamine (5-HT, serotonin)1D receptor as a presynaptic autoreceptor in the guinea pig. In keeping with the literature, the 5-HT1B selective antagonist, 1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydrospiro [furo[2,3-f]indole-3,4'-piperidine]oxalate (SB224289) potentiated [3H]5-HT outflow from pre-labelled slices of guinea pig cerebral cortex confirming its role as a presynaptic autoreceptor in this species. In addition, the 5-HT1D receptor-preferring antagonists, 1-[2-[4-(6-fluoro-1H-indol-3-yl)-3,6-dihydro-2H-pyridin-1-yl]-ethyl]-3-pyridin-4-yl-methyl-tetrahydro-pyrimidin-2-one (LY367642), (R)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456219), (S)-1-[2-(4-(6-fluoro-1H-indol-3-yl-)-3,6-dihydro-1(2H)-pyridinyl)ethyl]-3,4-dihydro-1H-2-benzopyran-6-carboxamide (LY456220) and 1-[2-[4-(4-fluoro-benzoyl)-piperidin-1-yl]-ethyl]-3,3-dimethyl-1,2-dihydro-indol-2-one (LY310762), potentiated [3H]5-HT outflow from this preparation with potencies (EC50 values=31-140 nM) in the same range as their affinities for the guinea pig 5-HT1D receptor (Ki values=100-333 nM). The selective 5-HT1D receptor agonist, R-2-(4-fluoro-phenyl)-2-[1-[3-(5-[1,2,4]triazol-4-yl-1H-indol-3-yl)-propyl]-piperidin-4-ylamino]-ethanol dioxylate (L-772,405), inhibited [3H]5-HT outflow. In microdialysis studies, administration of either SB224289 or LY310762 at 10 mg/kg by the intraperitoneal (i.p.) route, potentiated the increase in extracellular 5-HT concentration produced by a maximally effective dose of the selective serotonin re-uptake inhibitor, fluoxetine (at 20 mg/kg i.p.). In addition, the 5-HT1D receptor-preferring antagonist and 5-HT transporter inhibitor, LY367642 (at 10 mg/kg i.p.), elevated extracellular 5-HT concentrations to a greater extent than a maximally effective dose of fluoxetine. It is concluded that the 5-HT1D receptor, like the 5-HT1B receptor, may be a presynaptic autoreceptor in the guinea pig.
Collapse
Affiliation(s)
- Ian A Pullar
- Eli Lilly and Company Limited, Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Clitherow JW, King FD, Middlemiss DN, Wyman PA. The discovery and development of 5-HT-terminal autoreceptor antagonists. PROGRESS IN MEDICINAL CHEMISTRY 2003; 41:129-65. [PMID: 12774693 DOI: 10.1016/s0079-6468(02)41004-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
15
|
Pullar IA, Boot JR, Carney SL, Cohen ML, Colvin EM, Conway RG, Hardy CH, Lucaites VL, Nelson DL, Schenck KW, Tomlinson R, Wedley S. In vitro activity of LY393558, an inhibitor of the 5-hydroxytryptamine transporter with 5-HT(1B/1D/2) receptor antagonist properties. Eur J Pharmacol 2001; 432:9-17. [PMID: 11734182 DOI: 10.1016/s0014-2999(01)01468-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1-[2-[4-(6-fluoro-1H-indol-3-yl)-3,6-dihydro-1(2H)-pyridinyl]ethyl]-3-isopropyl-6-(methylsulphonyl)-3,4-dihydro-1H-2,1,3-benzothiadiazine-2,2-dioxide (LY393558) is a potent inhibitor of [3H]5-hydroxytryptamine ([3H]5-HT) uptake into rat cortical synaptosomes (pIC(50)=8.48+/-0.12). It produces a dextral shift of the 5-HT dose-response curves for the binding of GTPgamma[35S] to human 5-HT(1B) (pK(b)=9.05+/-0.14) and 5-HT(1D) (pK(b)=8.98+/-0.07) receptors and inhibits the contractile response of the rabbit saphenous vein to the 5-HT(1B/D) receptor agonist, sumatriptan (pK(b)=8.4+/-0.2). In addition, it is an antagonist at the 5-HT(2A) (pK(i)=7.29+/-0.19) and 5-HT(2B) (pK(i)=7.35+/-0.11) receptors. Presynaptic autoreceptor antagonist activity was demonstrated by its ability to potentiate the K(+)-induced outflow of [3H]5-HT from guinea pig cortical slices (pEC(50)=7.74+/-0.05 nM) in which the 5-HT transporter had been inhibited by a maximally effective concentration of paroxetine. It is concluded that LY393558 should be an effective antidepressant with the potential to produce an earlier onset of efficacy than selective serotonin uptake inhibitors.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/metabolism
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cyclic S-Oxides/metabolism
- Cyclic S-Oxides/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- In Vitro Techniques
- Male
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/metabolism
- Membrane Transport Proteins
- Mice
- Nerve Tissue Proteins
- Norepinephrine/pharmacokinetics
- Potassium/pharmacology
- Rabbits
- Receptor, Serotonin, 5-HT1B
- Receptor, Serotonin, 5-HT1D
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2B
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Saphenous Vein/drug effects
- Saphenous Vein/physiology
- Serotonin/metabolism
- Serotonin/pharmacokinetics
- Serotonin Antagonists/metabolism
- Serotonin Antagonists/pharmacology
- Serotonin Plasma Membrane Transport Proteins
- Serotonin Receptor Agonists/pharmacology
- Sulfur Radioisotopes
- Sumatriptan/pharmacology
- Thiadiazines/metabolism
- Thiadiazines/pharmacology
- Tritium
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- I A Pullar
- Eli Lilly and Company, Lilly Research Centre Ltd., Erl Wood Manor, Windlesham, GU20 6PH, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Varnäs K, Hall H, Bonaventure P, Sedvall G. Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human brain using [(3)H]GR 125743. Brain Res 2001; 915:47-57. [PMID: 11578619 DOI: 10.1016/s0006-8993(01)02823-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of 5-HT(1B) and 5-HT(1D) receptors in the human post mortem brain was examined using whole hemisphere autoradiography and the radioligand [(3)H]GR 125743. [(3)H]GR 125743 binding was highest in the substantia nigra and the globus pallidus. Lower levels were detected in the striatum, with the highest densities in the ventromedial parts. In the amygdala, the hippocampus, the septal region and the hypothalamus, lower [(3)H]GR 125743 binding was observed, reflecting low densities of 5-HT(1B/1D) receptors. In the cerebral cortex, binding was similar in most regions, although restricted parts of the medial occipital cortex were markedly more densely labeled. Binding densities were very low in the cerebellar cortex and in the thalamus. Two methods were used to distinguish between the two receptor subtypes, the first using ketanserin to block 5-HT(1D) receptors and the second using SB 224289 to inhibit 5-HT(1B) receptor binding. The autoradiograms indicated that in the human brain, the 5-HT(1B) receptor is much more abundant than the 5-HT(1D) receptor, which seemed to occur only in low amounts mainly in the ventral pallidum. Although [(3)H]GR 125743 is a suitable radioligand to examine the distribution of 5-HT(1B) receptors in the human brain in vitro, the selectivities of ketanserin and SB 224289 are not sufficiently high to give definite evidence for the occurrence of the 5-HT(1D) receptor in the human brain.
Collapse
Affiliation(s)
- K Varnäs
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | | | | | | |
Collapse
|
17
|
Bhalla P, Sharma HS, Ma X, Wurch T, Pauwels PJ, Saxena PR. Molecular cloning, pharmacological properties and tissue distribution of the porcine 5-HT(1B) receptor. Br J Pharmacol 2001; 133:891-901. [PMID: 11454663 PMCID: PMC1572856 DOI: 10.1038/sj.bjp.0704150] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Using a combination of RT - PCR and inverse-PCR techniques, we amplified, cloned and sequenced a full-length porcine 5-HT(1B) receptor cDNA derived from porcine cerebral cortex. Sequence analysis revealed 1170 bp encoding an open reading frame of 390 amino acids showing a 95% similarity with the human 5-HT(1B) receptor. The recombinant porcine 5-HT(1B) cDNA was expressed in monkey Cos-7 cells and its pharmacological profile was determined by radioligand binding assay using [(3)H]-GR125743. The affinities of several agonists (L694247>ergotamine > or =5-carboxamidotryptamine=dihydroergotamine=5-HT>CP122638=zolmitriptan>sumatriptan) and putative antagonists (GR127935>methiothepin>SB224289>>ritanserin>ketanserin > or =BRL15572) correlated highly with those described for the recombinant human 5-HT(1B) receptor. In membranes obtained from cells co-expressing the porcine 5-HT(1B) receptor and a mutant G(alphao)Cys(351)Ile protein, 5-HT and zolmitriptan increased, while the 5-HT(1B) receptor antagonist SB224289 decreased basal [(35)S]-GTPgammaS binding, thus showing inverse agonism. The potency of zolmitriptan in the [(35)S]-GTPgammaS binding assay (pEC(50): 7.64+/-0.04) agreed with its affinity in displacing the antagonist [(3)H]-GR125743 (pK(i): 7.36+/-0.07). The 5-HT(1B) receptor mRNA was observed by RT-PCR in several blood vessels, cerebral cortex, cerebellum and trigeminal ganglion. In situ hybridization performed in frontal cerebral cortex sections revealed the expression of 5-HT(1B) receptor mRNA in pyramidal cells. In conclusion, we have cloned and established the amino acid sequence, ligand binding profile and location of the porcine 5-HT(1B) receptor. This information may be useful in exploring the role of 5-HT(1B) receptor in pathophysiological processes relevant for novel drug discovery in diseases such as migraine.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Benzamides/metabolism
- Binding, Competitive/drug effects
- COS Cells
- Cerebral Cortex/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dose-Response Relationship, Drug
- Gene Expression
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- In Situ Hybridization
- Molecular Sequence Data
- Pyridines/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radioligand Assay
- Receptor, Serotonin, 5-HT1B
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Recombinant Proteins/drug effects
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Sulfur Radioisotopes
- Swine
- Tissue Distribution
- Tritium
Collapse
Affiliation(s)
- Pankaj Bhalla
- Department of Pharmacology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Hari S Sharma
- Department of Pharmacology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Xiaoqian Ma
- Department of Pharmacology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Thierry Wurch
- Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, Castres Cédex, France
| | - Petrus J Pauwels
- Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, Castres Cédex, France
| | - Pramod R Saxena
- Department of Pharmacology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Author for correspondence:
| |
Collapse
|
18
|
Pullar IA, Carney SL, Colvin EM, Lucaites VL, Nelson DL, Wedley S. LY367265, an inhibitor of the 5-hydroxytryptamine transporter and 5-hydroxytryptamine(2A) receptor antagonist: a comparison with the antidepressant, nefazodone. Eur J Pharmacol 2000; 407:39-46. [PMID: 11050288 DOI: 10.1016/s0014-2999(00)00728-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The potential antidepressant, LY367265 (1-[2-[4-(6-fluoro-1H-indol-3-yl)-3, 6-dihydro-1(2H)-pyridinyl]ethyl]-5,6-dihydro-1H,4H-[1,2, 5]thiadiazolo[4.3.2-ij]quinoline-2,2,-dioxide) has been shown to have a higher affinity for the 5-hydroxytryptamine (5-HT) transporter (K(i)=2.3 nM) and 5-HT(2A) (K(i)=0.81 nM) receptor than the clinically effective antidepressant, nefazodone. It is a potent inhibitor of [3H]5-HT uptake into rat cortical synaptosomes (IC(50)=3.1 nM) and shows selectivity over that for [3H]noradrenaline (IC(50)>1000 nM). It potentiates potassium-induced [3H]5-HT outflow from prelabelled guinea pig cortical slices both in the presence (EC(50)=950 nM) and absence (EC(50)=250 nM) of a saturating concentration of the 5-HT transport inhibitor, paroxetine, indicating a low level of activity at the 5-HT(1B/1D) autoreceptor. These studies indicate that LY367265 is a putative antidepressant which, because of its 5-HT(2A) receptor antagonist activity, has the potential to produce less sleep disturbance and sexual dysfunction than selective serotonin uptake inhibitors.
Collapse
Affiliation(s)
- I A Pullar
- Eli Lilly and Company, Lilly Research Centre Ltd., Erl Wood Manor, Surrey GU20 6PH, Windlesham, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Superfused synaptosomes have been utilized in studies of neurotransmitter release during 25 years. This review summarizes the aspects of neurotransmission that have been and could be successfully investigated with this technique. The major aim of the article is to draw attention on the versatility of superfused synaptosomes and to suggest how the system could be exploited in clarifying several aspects of synaptic neurochemistry including neurotransmitter transport, receptor localization, receptor-receptor interactions, functional aspects of multi-sited receptor complexes, receptor heterogeneity and mechanisms of neurotransmitter exocytosis-endocytosis.
Collapse
Affiliation(s)
- L Raiteri
- Dipartimento di Medicina Sperimentale, Genova, Italy
| | | |
Collapse
|
20
|
Maura G, Marcoli M, Pepicelli O, Rosu C, Viola C, Raiteri M. Serotonin inhibition of the NMDA receptor/nitric oxide/cyclic GMP pathway in human neocortex slices: involvement of 5-HT(2C) and 5-HT(1A) receptors. Br J Pharmacol 2000; 130:1853-8. [PMID: 10952674 PMCID: PMC1572268 DOI: 10.1038/sj.bjp.0703510] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The NMDA receptor/nitric oxide (NO)/cyclic GMP pathway and its modulation by 5-hydroxytryptamine (5-HT) was studied in slices of neocortical samples obtained from patients undergoing neurosurgery. The cyclic GMP elevation produced by 100 microM NMDA was blocked by 100 microM of the NO synthase inhibitor N(G)-nitro-L-arginine (L-NOARG) or by 10 microM of the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-alpha] quinoxaline-1-one (ODQ). The NMDA effect was prevented by 5-HT or by the 5-HT(2) agonist (+/-)-1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane ((+/-)-DOI; EC(50)=22 nM). The (+/-)-DOI inhibition was insensitive to the 5-HT(2A) receptor antagonist MDL 100907 or the 5-HT(2B) antagonist rauwolscine; it was largely prevented by 1 microM of the non-selective 5-HT(2C) antagonists mesulergine (5-HT(2A,B,C)), ketanserin (5-HT(2A,C)) or SB 200646A (5-HT(2B,C)); it was completely abolished by 0.1 microM of the selective 5-HT(2C) receptor antagonist SB 242084. The NMDA-induced cyclic GMP elevation also was potently inhibited by the selective 5-HT(2C) agonist RO 60-0175 and by the antidepressant trazodone, both added at 1 microM, in an SB 242084-sensitive manner. Finally, the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; 1 microM) inhibited the NMDA-evoked cyclic GMP response, an effect blocked by the selective 5-HT(1A) receptor antagonist WAY 100635. In conclusion, the NMDA receptor/NO/cyclic GMP pathway in human neocortex slices can be potently inhibited by activation of 5-HT(2C) or 5-HT(1A) receptors.
Collapse
Affiliation(s)
- G Maura
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Przegaliński E, Siwanowicz J, Baran L, Filip M. Activation of serotonin (5-HT)1A receptors inhibits amphetamine sensitization in mice. Life Sci 2000; 66:1011-9. [PMID: 10724448 DOI: 10.1016/s0024-3205(99)00666-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of serotonin (5-HT)1A drugs on the development and expression of sensitization to the locomotor effect of amphetamine (AMPH) were studied in mice. 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A agonist, dose-dependently reduced the expression of AMPH (2.5 mg/kg)-induced sensitization. The latter inhibitory effect of 8-OH-DPAT was reversed by (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-phenyl propamine (WAY 100135), a 5-HT1A antagonist. WAY 100135 given alone did not affect expression of AMPH sensitization. Combined injections of 8-OH-DPAT, but not WAY 100135, with AMPH (2.5 mg/kg) during the development of sensitization, protected against the expression of sensitization to a challenge dose of AMPH (2.5 mg/kg) 3 days after withdrawal. The above inhibitory effect of 8-OH-DPAT on the development of AMPH sensitization was blocked by pretreatment with WAY 100135. The AMPH-induced conditioned locomotion was unaffected by pretreatment with 8-OH-DPAT. These results indicate that 5-HT1A receptors are not involved in AMPH-induced sensitization per-se, whereas their pharmacological activation leads to the inhibition of both the development and the expression of AMPH-induced sensitization.
Collapse
Affiliation(s)
- E Przegaliński
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences.
| | | | | | | |
Collapse
|