1
|
Gottlieb N, Li TY, Young AH, Stokes PRA. The 5-HT7 receptor system as a treatment target for mood and anxiety disorders: A systematic review. J Psychopharmacol 2023; 37:1167-1181. [PMID: 37994803 PMCID: PMC10714716 DOI: 10.1177/02698811231211228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Preclinical animal and preliminary human studies indicate that 5-HT7 antagonists have the potential as a new treatment approach for mood and anxiety disorders. In this systematic review, we aimed to review the relationship between the 5-HT7 receptor system and mood and anxiety disorders, and to explore the pharmacology and therapeutic potential of medications that target the 5-HT7 receptor for their treatment. METHODS Medline, Cochrane Library, EMBASE, PsycINFO databases, the National Institute of Health website Clinicaltrials.gov, controlled-trials.com, and relevant grey literature were used to search for original research articles, and reference lists of included articles were then hand searched. RESULTS Sixty-four studies were included in the review: 52 animal studies and 12 human studies. Studies used a variety of preclinical paradigms and questionnaires to assess change in mood, and few studies examined sleep or cognition. Forty-four out of 47 (44/47) preclinical 5-HT7 modulation studies identified potential antidepressant effects and 20/23 studies identified potential anxiolytic effects. In clinical studies, 5/7 identified potential antidepressant effects in major depressive disorder, 1/2 identified potential anxiolytic effects in generalized anxiety disorder, and 3/3 identified potential antidepressant effects in bipolar disorders. CONCLUSION While there is some evidence that the 5-HT7 receptor system may be a potential target for treating mood and anxiety disorders, many agents included in the review also bind to other receptors. Further research is needed using drugs that bind specifically to 5-HT7 receptors to examine treatment proof of concept further.
Collapse
Affiliation(s)
- Natalie Gottlieb
- Natalie Gottlieb, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK.
| | | | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paul RA Stokes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
2
|
Kucwaj-Brysz K, Baltrukevich H, Czarnota K, Handzlik J. Chemical update on the potential for serotonin 5-HT 6 and 5-HT 7 receptor agents in the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2021; 49:128275. [PMID: 34311086 DOI: 10.1016/j.bmcl.2021.128275] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
Despite the better understanding of the mechanisms underlying Alzheimer's Disease (AD) and launched clinical trials, no AD-modifying treatment based on a synthetic drug has been introduced for almost twenty years. The serotonin 5-HT6 and 5-HT7 receptors turned out to be promising biological targets for modulation of central nervous system dysfunctions including cognitive impairment. Within this paper, we evaluate the pharmacological potency of both, 5-HT6R and 5-HT7R, agents in search for novel AD treatment. An overview of chemical structures of the 5-HTRs ligands with simultaneous procognitive action which have undergone preclinical and clinical studies within the last 10 years has been performed.
Collapse
Affiliation(s)
- Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Hanna Baltrukevich
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Kinga Czarnota
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| |
Collapse
|
3
|
Esquivel-Franco DC, de Boer SF, Waldinger M, Olivier B, Olivier JDA. Pharmacological Studies on the Role of 5-HT 1 A Receptors in Male Sexual Behavior of Wildtype and Serotonin Transporter Knockout Rats. Front Behav Neurosci 2020; 14:40. [PMID: 32296313 PMCID: PMC7136541 DOI: 10.3389/fnbeh.2020.00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Brain serotonin (5-HT) neurotransmission plays an important role in male sexual behavior and it is well established that activating 5-HT1 A receptors in rats facilitate ejaculatory behavior. However, the relative contribution of 5-HT1 A somatodendritic autoreceptors and heteroreceptors in this pro-sexual behavior is unclear. Moreover, it is unclear whether the contribution of somatodendritic 5-HT1 A autoreceptors and postsynaptic 5-HT1 A heteroreceptors alter when extracellular 5-HT levels are chronically increased. Serotonin transporter knockout (SERT-/-) rats exhibit enhanced extracellular 5-HT levels and desensitized 5-HT1 A receptors. These rats model neurochemical changes underlying chronic SSRI-induced sexual dysfunction. We want to determine the role of presynaptic versus postsynaptic 5-HT1 A receptors in the pro-sexual effects of 5-HT1 A receptor agonists in SERT+/+ and in SERT-/- rats. Therefore, acute effects of the biased 5-HT1 A receptor agonists F-13714, a preferential 5-HT1 A autoreceptor agonist, or F-15599, a preferential 5-HT1 A heteroreceptor agonist, and S15535 a mixed 5-HT1 A autoreceptor agonist/heteroreceptor antagonist, on male sexual behavior were assessed. A clear and stable genotype effect was found after training where SERT+/+ performed sexual behavior at a higher level than SERT-/- rats. Both F-15599 and F-13714 induced pro-sexual activity in SERT+/+ and SERT-/- animals. Compared to SERT+/+, the F13714-dose-response curve in SERT-/- rats was shifted to the right. SERT+/+ and SERT-/- rats responded similar to F15599. Within both SERT+/+ and SERT-/- rats the potency of F-13714 was much stronger compared to F-15599. S15535 had no effect on sexual behavior in either genotype. In SERT+/+ and SERT-/- rats that were selected on comparable low sexual activity (SERT+/+ 3 or less ejaculations and SERT-/- 5 or less ejaculations in 10 weeks) S15535 also did not influence sexual behavior. The two biased compounds with differential effects on 5-HT1 A auto- and hetero-receptors, exerted pro-sexual activity in both SERT+/+ and SERT-/- rats. Applying these specific pharmacological tools has not solved whether pre- or post-synaptic 5-HT1 A receptors are involved in pro-sexual activity. Moreover, the inactivity of S15535 in male sexual behavior in either genotype was unexpected. The question is whether the in vivo pharmacological profile of the different 5-HT1 A receptor ligands used, is sufficient to differentiate pre- and/or post-synaptic 5-HT1 A receptor contributions in male rat sexual behavior.
Collapse
Affiliation(s)
- Diana Carolina Esquivel-Franco
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sietse F de Boer
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Marcel Waldinger
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Berend Olivier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.,Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, Netherlands.,Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | - Jocelien D A Olivier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Ulsund AH, Dahl M, Frimurer TM, Manfra O, Schwartz TW, Levy FO, Andressen KW. Preassociation between the 5‐HT
7
serotonin receptor and G protein G
s
: molecular determinants and association with low potency activation of adenylyl cyclase. FASEB J 2018; 33:3870-3886. [DOI: 10.1096/fj.201800805rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Andrea Hembre Ulsund
- Department of PharmacologyInstitute of Clinical MedicineUniversity of OsloOslo University Hospital Oslo Norway
- Center for Heart Failure ResearchFaculty of MedicineUniversity of OsloOslo University Hospital Oslo Norway
| | - Marie Dahl
- Department of PharmacologyInstitute of Clinical MedicineUniversity of OsloOslo University Hospital Oslo Norway
- Center for Heart Failure ResearchFaculty of MedicineUniversity of OsloOslo University Hospital Oslo Norway
| | - Thomas M. Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of Copenhagen Copenhagen Denmark
| | - Ornella Manfra
- Department of PharmacologyInstitute of Clinical MedicineUniversity of OsloOslo University Hospital Oslo Norway
- Center for Heart Failure ResearchFaculty of MedicineUniversity of OsloOslo University Hospital Oslo Norway
| | - Thue W. Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of Copenhagen Copenhagen Denmark
- Department for Biomedical ResearchLaboratory for Molecular PharmacologyFaculty of Health SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Finn Olav Levy
- Department of PharmacologyInstitute of Clinical MedicineUniversity of OsloOslo University Hospital Oslo Norway
- Center for Heart Failure ResearchFaculty of MedicineUniversity of OsloOslo University Hospital Oslo Norway
| | - Kjetil Wessel Andressen
- Department of PharmacologyInstitute of Clinical MedicineUniversity of OsloOslo University Hospital Oslo Norway
- Center for Heart Failure ResearchFaculty of MedicineUniversity of OsloOslo University Hospital Oslo Norway
| |
Collapse
|
5
|
Li YH, Han L, Wu KLK, Chan YS. Activation of 5-HT 7 receptors reverses NMDA-R-dependent LTD by activating PKA in medial vestibular neurons. Neuropharmacology 2017; 123:242-248. [PMID: 28483393 DOI: 10.1016/j.neuropharm.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 11/30/2022]
Abstract
The medial vestibular nucleus (MVN) is a major output station for neurons that project to the vestibulo-spinal pathway. MVN neurons show capacity for long-term depression (LTD) during the juvenile period. We investigated LTD of MVN neurons using whole-cell patch-clamp recordings. High frequency stimulation (HFS) robustly induced LTD in 90% of type B neurons in the MVN, while only 10% of type A neurons were responsive, indicating that type B neurons are the major contributors to LTD in the MVN. The neuromodulator serotonin (5-HT) is known to modulate LTD in neural circuits of the cerebral cortex and the hippocampus. We therefore aim to determine the action of 5-HT on the LTD of type B MVN neurons and elucidate the relevant 5-HT receptor subtypes responsible for its action. Using specific agonists and antagonists of 5-HT receptors, we found that selective activation of 5-HT7 receptor in type B neurons in the MVN of juvenile (P13-16) rats completely abolished NMDA-receptor-mediated LTD in a protein kinase A (PKA)-dependent manner. Our finding that 5-HT restricts plasticity of type B MVN neurons via 5-HT7 receptors offers a mechanism whereby vestibular tuning contributes to the maturation of the vestibulo-spinal circuit and highlights the role of 5-HT in postural control.
Collapse
Affiliation(s)
- Yan-Hai Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Research Center of Rehabilitation Science and Technology, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong, PR China
| | - Lei Han
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong, PR China
| | - Kenneth Lap Kei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong, PR China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong, PR China; State Key Laboratory of Brain and Congnitive Sciences, The University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
6
|
Andreetta F, Carboni L, Grafton G, Jeggo R, Whyment AD, van den Top M, Hoyer D, Spanswick D, Barnes NM. Hippocampal 5-HT7 receptors signal phosphorylation of the GluA1 subunit to facilitate AMPA receptor mediated-neurotransmission in vitro and in vivo. Br J Pharmacol 2016; 173:1438-51. [PMID: 26773257 PMCID: PMC4831309 DOI: 10.1111/bph.13432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The 5-HT7 receptor is a GPCR that is the target of a broad range of antidepressant and antipsychotic drugs. Various studies have demonstrated an ability of the 5-HT7 receptor to modulate glutamatergic neurotransmission and cognitive processes although the potential impact upon AMPA receptors has not been investigated directly. The purposes of the present study were to investigate a direct modulation of the GluA1 AMPA receptor subunit and determine how this might influence AMPA receptor function. EXPERIMENTAL APPROACH The influence of pharmacological manipulation of the 5-HT7 receptor system upon phosphorylation of GluA1 subunits was assessed by Western blotting of fractionated proteins from hippocampal neurones in culture (or proteins resident at the neurone surface) and the functional impact assessed by electrophysiological recordings in rat hippocampus in vitro and in vivo. KEY RESULTS 5-HT7 receptor activation increased cAMP and relative pCREB levels in cultures of rat hippocampal neurones along with an increase in phosphorylation (Ser845) of the GluA1 AMPA receptor subunit evident in whole neurone extracts and within the neurone surface compartment. Electrophysiological recordings in rat hippocampus demonstrated a 5-HT7 receptor-mediated increase in AMPA receptor-mediated neurotransmission in vitro and in vivo. CONCLUSIONS AND IMPLICATIONS The 5-HT7 receptor-mediated phosphorylation of the GluA1 AMPA receptor provides a molecular mechanism consistent with the 5-HT7 receptor-mediated increase in AMPA receptor-mediated neurotransmission.
Collapse
Affiliation(s)
- Filippo Andreetta
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Neurosciences CEDD, GlaxoSmithKline Medicine Research Centre, Verona, Italy
| | - Lucia Carboni
- Neurosciences CEDD, GlaxoSmithKline Medicine Research Centre, Verona, Italy
| | - Gillian Grafton
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Vic., Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Nicholas M Barnes
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
7
|
Dos Santos TS, Krüger J, Melleu FF, Herold C, Zilles K, Poli A, Güntürkün O, Marino-Neto J. Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia). Behav Brain Res 2015; 295:45-63. [PMID: 25843559 DOI: 10.1016/j.bbr.2015.03.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 02/06/2023]
Abstract
Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69 nmol) for 20 min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150 nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30 nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan hydroxylase expression in the raphe nuclei and decreased prosencephalic 5-HT release but failed to affect 5-HT- or DPAT-induced drinking or sleep behavior. 5-HT- and DPAT-induced ingestive and sleep behaviors in pigeons appear to be mediated by heterosynaptic and/or non-somatodendritic presynaptic 5-HT1ARs localized to periventricular diencephalic circuits.
Collapse
Affiliation(s)
- Tiago Souza Dos Santos
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Jéssica Krüger
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Fernando Falkenburger Melleu
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Christina Herold
- C & O. Vogt Institute for Brain Research, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, 52425 Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany; JARA - Translational Brain Medicine, 52074 Aachen, Germany.
| | - Anicleto Poli
- Department of Pharmacology, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| | - Onur Güntürkün
- Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany.
| | - José Marino-Neto
- Department of Physiological Sciences, CCB, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Institute of Biomedical Engineering, EEL-CTC, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
8
|
Watts SW, Darios ES, Seitz BM, Thompson JM. 5-HT is a potent relaxant in rat superior mesenteric veins. Pharmacol Res Perspect 2015; 3:e00103. [PMID: 25692021 PMCID: PMC4317234 DOI: 10.1002/prp2.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023] Open
Abstract
Serotonin (5-HT, 5-hydroxytryptamine) reduces blood pressure of the conscious rat when administered chronically (1 week). 5-HT does not directly relax isolated arteries, and microsphere experiments in 5-HT-infused rats suggested that 5-HT increased flow to the splanchnic bed. We hypothesized that 5-HT increased splanchnic flow because of direct venous relaxation; our focus was thus on the superior mesenteric vein (SMV) as an important vein in splanchnic circulation. Real-time RT-PCR, immunohistochemistry and Western analyses supported the predominant expression of the 5-HT2B and 5-HT7 receptor in the SMV. The SMV was mounted in tissue baths for measurement of isometric contraction. 5-HT caused a concentration-dependent relaxation of the endothelin-1 (ET-1)-contracted vein. The threshold of 5-HT-induced venous relaxation was significantly lower than for 5-HT-induced venous contraction (∼2 vs. 700 nmol/L, respectively). A series of serotonergic agonists established in their use of receptor characterization was tested, and the following rank order of potency found for agonist-induced relaxation (receptor selectivity): 5-CT (5-HT1/5-HT7)>5-HT = LP-44 (5-HT7)>PNU109291 (5-HT1D) = BW723C86 (5-HT2B). 8-OH-DPAT (5-HT1A/7), CP93129 (5-HT1B), mCPBG (5-HT3/4), AS19 (5-HT7) and TCB-2 (5-HT2A) did not relax the isolated vein. Consistent with these findings, two different 5-HT7 receptor antagonists SB 269970 and LY215840 but not the 5-HT2B receptor antagonist LY272015 nor the nitric oxide synthase inhibitor LNNA abolished 5-CT-induced relaxation of the isolated SMV. 5-CT (1 μg kg−1 min−1, sc) also reduced blood pressure over 7 days. These findings suggest that 5-HT directly relaxes the SMV primarily through activation of the 5-HT7 receptor.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, Michigan, 48824
| | - Emma S Darios
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, Michigan, 48824
| | - Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, Michigan, 48824
| | - Janice M Thompson
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, Michigan, 48824
| |
Collapse
|
9
|
The serotonin 5-HT7 receptors: two decades of research. Exp Brain Res 2013; 230:555-68. [PMID: 24042216 DOI: 10.1007/s00221-013-3694-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/26/2013] [Indexed: 01/12/2023]
Abstract
Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson's disease, obsessive-compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking.
Collapse
|
10
|
Vasefi MS, Kruk JS, Heikkila JJ, Beazely MA. 5-Hydroxytryptamine type 7 receptor neuroprotection against NMDA-induced excitotoxicity is PDGFβ receptor dependent. J Neurochem 2013; 125:26-36. [PMID: 23336565 DOI: 10.1111/jnc.12157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 01/07/2023]
Abstract
The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors regulates growth factor receptor expression, including the expression of platelet-derived growth factor (PDGF) β receptors. Direct activation of PDGFβ receptors in primary hippocampal and cortical neurons inhibits NMDA receptor activity and attenuates NMDA receptor-induced neurotoxicity. Our objective was to investigate whether the 5-HT7 receptor-induced increase in PDGFβ receptor expression would be similarly neuroprotective. We demonstrate that 5-HT7 receptor agonist treatment in primary hippocampal neurons also increases the expression of phospholipase C (PLC) γ, a downstream effector of PDGFβ receptors associated with the inhibition of NMDA receptor activity. To determine if the up-regulation of PDGFβ receptors is neuroprotective, primary hippocampal neurons were incubated with the 5-HT7 receptor agonist, LP 12, for 24 h. Indeed, LP 12 treatment prevented NMDA-induced neurotoxicity and this effect was dependent on PDGFβ receptor kinase activity. Treatment of primary neurons with LP 12 also differentially altered NMDA receptor subunit expression, reducing the expression of NR1 and NR2B, but not NR2A. These findings demonstrate the potential for providing growth factor receptor-dependent neuroprotective effects using small-molecule ligands of G protein-coupled receptors.
Collapse
Affiliation(s)
- Maryam S Vasefi
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Roberts AJ, Hedlund PB. The 5-HT(7) receptor in learning and memory. Hippocampus 2011; 22:762-71. [PMID: 21484935 DOI: 10.1002/hipo.20938] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 12/22/2022]
Abstract
The 5-HT(7) receptor is a more recently discovered G-protein-coupled receptor for serotonin. The functions and possible clinical relevance of this receptor are not yet fully understood. The present paper reviews to what extent the use of animal models of learning and memory and other techniques have implicated the 5-HT(7) receptor in such processes. The studies have used a combination of pharmacological and genetic tools targeting the receptor to evaluate effects on behavior and cellular mechanisms. In tests such as the Barnes maze, contextual fear conditioning and novel location recognition that involve spatial learning and memory there is a considerable amount of evidence supporting an involvement of the 5-HT(7) receptor. Supporting evidence has also been obtained in studies of mRNA expression and cellular signaling as well as in electrophysiological experiments. Especially interesting are the subtle but distinct effects observed in hippocampus-dependent models of place learning where impairments have been described in mice lacking the 5-HT(7) receptor or after administration of a selective antagonist. While more work is required, it appears that 5-HT(7) receptors are particularly important in allocentric representation processes. In instrumental learning tasks both procognitive effects and impairments in memory have been observed using pharmacological tools targeting the 5-HT(7) receptor. In conclusion, the use of pharmacological and genetic tools in animal studies of learning and memory suggest a potentially important role for the 5-HT(7) receptor in cognitive processes.
Collapse
Affiliation(s)
- Amanda J Roberts
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
12
|
Briones-Aranda A, Castillo-Salazar M, Picazo O. Adrenalectomy modifies the hippocampal 5-HT1A receptors and the anxiolytic-like effect of 8-OH-DPAT in rats. Pharmacol Biochem Behav 2009; 92:182-9. [DOI: 10.1016/j.pbb.2008.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 11/15/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
13
|
Bosker FJ, Folgering JHA, Gladkevich AV, Schmidt A, van der Hart MCG, Sprouse J, den Boer JA, Westerink BHC, Cremers TIFH. Antagonism of 5-HT1Areceptors uncovers an excitatory effect of SSRIs on 5-HT neuronal activity, an action probably mediated by 5-HT7receptors. J Neurochem 2009; 108:1126-35. [DOI: 10.1111/j.1471-4159.2008.05850.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
5-HT7 receptor deletion enhances REM sleep suppression induced by selective serotonin reuptake inhibitors, but not by direct stimulation of 5-HT1A receptor. Neuropharmacology 2008; 56:448-54. [PMID: 18948124 DOI: 10.1016/j.neuropharm.2008.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 11/24/2022]
Abstract
5-HT(7) receptors are involved in REM sleep and possibly in mood disorders. REM sleep suppression and antidepressant-like behavior is observed in 5-HT(7)(-/-) mice and in rats treated with 5-HT(7) receptor antagonists. We recently demonstrated that pharmacological blockade of 5-HT(7) receptors enhances REM sleep suppression and antidepressant-like behavior induced by citalopram in rodents. It has been hypothesized that the effect of citalopram on sleep is essentially mediated by the activation of 5-HT(1A) receptors. The present study investigates the impact of 5-HT(7) receptor gene deletion on the effect of various reuptake inhibitors on REM sleep and probes the role of 5-HT(1A) receptors in this response. Three SSRIs (citalopram, fluoxetine and paroxetine) but not the tricyclic antidepressant desipramine had a significantly stronger REM sleep suppressive effect in 5-HT(7)(-/-) mice compared to 5-HT(7)(+/+) mice. In contrast, REM sleep was similarly reduced in 5-HT(7)(+/+) mice and 5-HT(7)(-/-) mice after treatment with the 5-HT(1A) receptor agonist ipsapirone. Furthermore, both 5-HT(7)(+/+) and 5-HT(7)(-/-) mice displayed the same increase in REM sleep duration produced by the 5-HT(1A) receptor antagonist WAY-100635. These findings indicate that 5-HT(7) receptor deletion augments the effect of various SSRIs on REM sleep suppression and that this effect is distinct from those mediated via 5-HT(1A) receptors.
Collapse
|
15
|
Rauly-Lestienne I, Boutet-Robinet E, Ailhaud MC, Newman-Tancredi A, Cussac D. Differential profile of typical, atypical and third generation antipsychotics at human 5-HT7a receptors coupled to adenylyl cyclase: detection of agonist and inverse agonist properties. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:93-105. [PMID: 17786406 DOI: 10.1007/s00210-007-0182-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 07/29/2007] [Indexed: 11/24/2022]
Abstract
5-HT(7) receptors are present in thalamus and limbic structures, and a possible role of these receptors in the pathology of schizophrenia has been evoked. In this study, we examined binding affinity and agonist/antagonist/inverse agonist properties at these receptors of a large series of antipsychotics, i.e., typical, atypical, and third generation compounds preferentially targeting D(2) and 5-HT(1A) sites. Adenylyl cyclase (AC) activity was measured in HEK293 cells stably expressing the human (h) 5-HT(7a) receptor isoform. 5-HT and 5-CT increased cyclic adenosine monophosphate level by about 20-fold whereas (+)-8-OH-DPAT, the antidyskinetic agent sarizotan, and the novel antipsychotic compound bifeprunox exhibited partial agonist properties at h5-HT(7a) receptors stimulating AC. Other compounds antagonized 5-HT-induced AC activity with pK (B) values which correlated with their pK (i) as determined by competition binding vs [(3)H]5-CT. The selective 5-HT(7) receptor ligand, SB269970, was the most potent antagonist. For antipsychotic compounds, the following rank order of antagonism potency (pK (B)) was ziprasidone > tiospirone > SSR181507 > or = clozapine > or = olanzapine > SLV-314 > SLV-313 > or = aripiprazole > or = chlorpromazine > nemonapride > haloperidol. Interestingly, pretreatment of HEK293-h5-HT(7a) cells with forskolin enhanced basal AC activity and revealed inverse agonist properties for both typical and atypical antipsychotics as well as for aripiprazole. In contrast, other novel antipsychotics exhibited diverse 5-HT(7a) properties; SLV-313 and SLV-314 behaved as quasi-neutral antagonists, SSR181507 acted as an inverse agonist, and bifeprunox as a partial agonist, as mentioned above. In conclusion, the differential properties of third generation antipsychotics at 5-HT(7) receptors may influence their antipsychotic profile.
Collapse
Affiliation(s)
- Isabelle Rauly-Lestienne
- Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, 17 avenue Jean Moulin, 81106 Castres Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Leopoldo M, Lacivita E, Colabufo NA, Niso M, Berardi F, Perrone R. Bivalent ligand approach on 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine: Synthesis and binding affinities for 5-HT7 and 5-HT1A receptors. Bioorg Med Chem 2007; 15:5316-21. [PMID: 17517509 DOI: 10.1016/j.bmc.2007.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/23/2007] [Accepted: 05/02/2007] [Indexed: 01/10/2023]
Abstract
We here report on the synthesis and binding properties at 5-HT(7) and 5-HT(1A) receptors of ligands 3-12, that were designed according to the 'bivalent ligand' approach. Two moieties of the 5-HT(7)/5-HT(1A) ligand 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine (1) were linked through their 3-methoxy substituent by polymethylene chains of variable length, with the aim to increase the affinity for 5-HT(7) receptor and the selectivity over 5-HT(1A) receptors. In the best cases, the dimers showed affinities for 5-HT(7) receptors as high as the monomer with no improvement in selectivity. Some dimers displayed 5-HT(1A) receptor affinities slightly higher than monomer 1.
Collapse
Affiliation(s)
- Marcello Leopoldo
- Università degli Studi di Bari, Dipartimento Farmaco-Chimico, via Orabona, 4, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Siddiqui A, Niazi A, Shaharyar S, Wilson CA. The 5HT(7) receptor subtype is involved in the regulation of female sexual behaviour in the rat. Pharmacol Biochem Behav 2007; 87:386-92. [PMID: 17561239 DOI: 10.1016/j.pbb.2007.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/04/2007] [Accepted: 05/17/2007] [Indexed: 11/16/2022]
Abstract
5-Hydroxytryptamine (5-HT) regulates sexual behaviour in the female rat via a number of its receptors. The role of the 5HT(7) receptor was investigated in ovariectomised rats primed with 10 mug oestradiol benzoate (OB) followed at 48 h by 0.5 mg progesterone, which induced receptivity in approximately half of the animals. These animals were treated with three agonists all effective at 5HT(1A) and 5HT(7) receptors; 5-hydroxytryptophan, 8-hydroxy-2-(di-n-propylamino)tetralin 1-Br (8-OH DPAT) and 5-carboxy-aminotryptamine (5-CT) in the presence or absence of selective 5HT(1A) and 5HT(7) antagonists: WAY 100135 and SB 269970-A. The three agonists inhibited lordosis in the receptive group, and this was prevented by both the selective 5HT(1A) and 5HT(7) antagonists. When given alone, both WAY 100135 and SB 269970-A increased the lordosis in the non-receptive rats indicating that endogenous 5-HT acting on 5HT(1A) and 5HT(7) receptors may have a tonic inhibitory effect on receptivity. A comparison of OB priming doses on the effect of serotoninergic agents showed that the higher OB doses attenuated the inhibitory effect of 8-OH DPAT and enhanced the stimulatory effect of WAY 100135, but did not affect the actions of 5-CT or SB 269970-A. The interaction between oestradiol and 5-HT activity on sexual behaviour may therefore be selective to the 5HT(1A) pathway.
Collapse
Affiliation(s)
- Arif Siddiqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan.
| | | | | | | |
Collapse
|
18
|
Müller CP, Carey RJ, Huston JP, De Souza Silva MA. Serotonin and psychostimulant addiction: Focus on 5-HT1A-receptors. Prog Neurobiol 2007; 81:133-78. [PMID: 17316955 DOI: 10.1016/j.pneurobio.2007.01.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/04/2006] [Accepted: 01/03/2007] [Indexed: 01/03/2023]
Abstract
Serotonin(1A)-receptors (5-HT(1A)-Rs) are important components of the 5-HT system in the brain. As somatodendritic autoreceptors they control the activity of 5-HT neurons, and, as postsynaptic receptors, the activity in terminal areas. Cocaine (COC), amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine ("Ecstasy", MDMA) are psychostimulant drugs that can lead to addiction-related behavior in humans and in animals. At the neurochemical level, these psychostimulant drugs interact with monoamine transporters and increase extracellular 5-HT, dopamine and noradrenalin activity in the brain. The increase in 5-HT, which, in addition to dopamine, is a core mechanism of action for drug addiction, hyperactivates 5-HT(1A)-Rs. Here, we first review the role of the various 5-HT(1A)-R populations in spontaneous behavior to provide a background to elucidate the contribution of the 5-HT(1A)-Rs to the organization of psychostimulant-induced addiction behavior. The progress achieved in this field shows the fundamental contribution of brain 5-HT(1A)-Rs to virtually all behaviors associated with psychostimulant addiction. Importantly, the contribution of pre- and postsynaptic 5-HT(1A)-Rs can be dissociated and frequently act in opposite directions. We conclude that 5-HT(1A)-autoreceptors mainly facilitate psychostimulant addiction-related behaviors by a limitation of the 5-HT response in terminal areas. Postsynaptic 5-HT(1A)-Rs, in contrast, predominantly inhibit the expression of various addiction-related behaviors directly. In addition, they may also influence the local 5-HT response by feedback mechanisms. The reviewed findings do not only show a crucial role of 5-HT(1A)-Rs in the control of brain 5-HT activity and spontaneous behavior, but also their complex role in the regulation of the psychostimulant-induced 5-HT response and subsequent addiction-related behaviors.
Collapse
Affiliation(s)
- Christian P Müller
- Institute of Physiological Psychology I, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
19
|
Greasley PJ, Clapham JC. Inverse agonism or neutral antagonism at G-protein coupled receptors: A medicinal chemistry challenge worth pursuing? Eur J Pharmacol 2006; 553:1-9. [PMID: 17081515 DOI: 10.1016/j.ejphar.2006.09.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 11/15/2022]
Abstract
The identification of constitutive, or intrinsic, activity of G-protein coupled receptors has had major impact on receptor theory, the identification of agents that inhibit this ligand-independent receptor activity has led, in turn, to the concept of inverse agonism. It has subsequently emerged that the majority, around 85%, of all known G-protein coupled receptor antagonists are, in fact, inverse agonists. Agents that affect only ligand-dependent receptor activation, i.e. have no effect on constitutive receptor signalling, are termed neutral antagonists and turn out to be relatively rare in pharmacology. Is this relevant for medicinal chemistry? That question is difficult to answer with certainty because there has been little or no effort to understand the structure activity relationships of neutral antagonist vs. inverse agonist molecules. In this review, we suggest that these pharmacological differences may well be translated to differential effects in the whole animal and in medicine. We argue that having either option to inhibit a particular receptor may reveal differences in efficacy and tolerability thus increasing the potential value of a G-protein coupled receptor inhibitor programme. However, since inverse agonists appear to constitute a default inhibitor mode, a systematic survey of the structure activity relationships around what makes a neutral antagonist will be an essential first step towards this goal.
Collapse
Affiliation(s)
- Peter J Greasley
- Department of Molecular Pharmacology, AstraZeneca R&D Mölndal, Sweden
| | | |
Collapse
|
20
|
Wesołowska A, Nikiforuk A, Stachowicz K. Potential anxiolytic and antidepressant effects of the selective 5-HT7 receptor antagonist SB 269970 after intrahippocampal administration to rats. Eur J Pharmacol 2006; 553:185-90. [PMID: 17097082 DOI: 10.1016/j.ejphar.2006.09.064] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
Using conflict drinking and forced swimming tests in rats, we examined the anxiolytic- and the antidepressant-like activity, respectively, of (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]-pyrrolidine (SB 269970), a selective 5-HT(7) receptor antagonist, after its intrahippocampal administration. SB 269970 at doses of 0.3, 1 and 3 mug showed an anticonflict effect which was weaker than that of diazepam (40 mug), whereas SB 269970 at doses of 3 and 10 mug had marked anti-immobility action comparable to that of imipramine (0.1 mug). Importantly, the anxiolytic- and antidepressant-like activity of SB 269970 seemed to be specific, since that agent - when given by the same route in doses effective in either model - affected neither the shock threshold, nor the non-punished water consumption, nor the exploratory activity of rats. The obtained results indicate that the hippocampus is one of the neuroanatomical structures involved in the potential anxiolytic and, in particular, antidepressant activity of SB 269970.
Collapse
Affiliation(s)
- Anna Wesołowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Kraków PL 31-343, Poland.
| | | | | |
Collapse
|
21
|
Thomas DR, Soffin EM, Roberts C, Kew JNC, de la Flor RM, Dawson LA, Fry VA, Coggon SA, Faedo S, Hayes PD, Corbett DF, Davies CH, Hagan JJ. SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), a novel 5-ht5A receptor-selective antagonist, enhances 5-HT neuronal function: Evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain. Neuropharmacology 2006; 51:566-77. [PMID: 16846620 DOI: 10.1016/j.neuropharm.2006.04.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/10/2006] [Accepted: 04/28/2006] [Indexed: 11/16/2022]
Abstract
This study utilised the selective 5-ht(5A) receptor antagonist, SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4'-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), to investigate 5-ht5A receptor function in guinea pig brain. SB-699551-A competitively antagonised 5-HT-stimulated [35S]GTPgammaS binding to membranes from human embryonic kidney (HEK293) cells transiently expressing the guinea pig 5-ht5A receptor (pA2 8.1+/-0.1) and displayed 100-fold selectivity versus the serotonin transporter and those 5-HT receptor subtypes (5-HT(1A/B/D), 5-HT2A/C and 5-HT7) reported to modulate central 5-HT neurotransmission in the guinea pig. In guinea pig dorsal raphe slices, SB-699551-A (1 microM) did not alter neuronal firing per se but attenuated the 5-CT-induced depression in serotonergic neuronal firing in a subpopulation of cells insensitive to the 5-HT1A receptor-selective antagonist WAY-100635 (100 nM). In contrast, SB-699551-A (100 or 300 nM) failed to affect both electrically-evoked 5-HT release and 5-CT-induced inhibition of evoked release measured using fast cyclic voltammetry in vitro. SB-699551-A (0.3, 1 and 3 mg/kg s.c.) did not modulate extracellular levels of 5-HT in the guinea pig frontal cortex in vivo. However, when administered in combination with WAY-100635 (0.3 mg/kg s.c.), SB-699551-A (0.3, 1 or 3 mg/kg s.c.) produced a significant increase in extracellular 5-HT levels. These studies provide evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain.
Collapse
Affiliation(s)
- David R Thomas
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park (North), Harlow, Essex, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Verleysdonk S, Kistner S, Pfeiffer-Guglielmi B, Wellard J, Lupescu A, Laske J, Lang F, Rapp M, Hamprecht B. Glycogen metabolism in rat ependymal primary cultures: regulation by serotonin. Brain Res 2005; 1060:89-99. [PMID: 16202983 DOI: 10.1016/j.brainres.2005.08.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/18/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Ependymal primary cultures are a model for studying ependymal energy metabolism. Intracellular glycogen is built up in the cultures dependent on culture age and the presence of glucose and glutamate. This energy store is mobilized upon glucose withdrawal, stimulation with isoproterenol, forskolin or serotonin and after uncoupling of oxidative phosphorylation from ATP production. Serotonin regulates ependymal glycogen metabolism predominantly via 5-HT receptor (5-HTR) 7, which elicits an increase in the level of ependymal cyclic AMP. Although the most abundant mRNAs for serotonin receptors are those of 5-HTR 2B and 5-HTR 3A, ependymal cells in primary culture do not respond to serotonin with an increase in their concentration of cytosolic calcium ions. The mRNAs of 5-HTRs 1A, 6, 1B, 5B, 7, 1/2C and 5A are also detectable in order of decreasing abundance. The mRNAs for 5-HTRs 1D, 1F, 3B and 4 are absent from the cultured cells. The ability of serotonin to mobilize ependymal glycogen depends on the culture age and the time allowed for glycogen buildup. During glycogen buildup time, glutamate is consumed by the cells. An increased ability of 5-HT to mobilize ependymal glycogen stores is noticed after the depletion of glutamate from the glycogen buildup medium. In ependymal primary cultures, cilia are colocalized with glycogen phosphorylase isozyme BB, while the MM isoform is not expressed. It is known from the literature that an increase in the concentration of cytosolic cAMP in ependymal cells leads to a decrease in ciliary beat frequency. Therefore, the present data point towards a function for ependymal glycogen other than supplying energy for the movement of cilia.
Collapse
Affiliation(s)
- Stephan Verleysdonk
- Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Norum JH, Méthi T, Mattingly RR, Levy FO. Endogenous expression and protein kinase A-dependent phosphorylation of the guanine nucleotide exchange factor Ras-GRF1 in human embryonic kidney 293 cells. FEBS J 2005; 272:2304-16. [PMID: 15853814 DOI: 10.1111/j.1742-4658.2005.04658.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously reported the Ras-dependent activation of the mitogen-activated protein kinases p44 and p42, also termed extracellular signal-regulated kinases (ERK)1 and 2 (ERK1/2), mediated through Gs-coupled serotonin receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Whereas Gi- and Gq-coupled receptors have been shown to activate Ras through the guanine nucleotide exchange factor (GEF) called Ras-GRF1 (CDC25Mm) by binding of Ca2+/calmodulin to its N-terminal IQ domain, the mechanism of Ras activation through Gs-coupled receptors is not fully understood. We report the endogenous expression of Ras-GRF1 in HEK293 cells. Serotonin stimulation of HEK293 cells transiently expressing Gs-coupled 5-HT7 receptors induced protein kinase A-dependent phosphorylation of the endogenous human Ras-GRF1 on Ser927 and of transfected mouse Ras-GRF1 on Ser916. Ras-GRF1 overexpression increased basal and serotonin-stimulated ERK1/2 phosphorylation. Mutations of Ser916 inhibiting (Ser916Ala) or mimicking (Ser916Asp/Glu) phosphorylation did not alter these effects. However, the deletion of amino acids 1-225, including the Ca2+/calmodulin-binding IQ domain, from Ras-GRF1 reduced both basal and serotonin-stimulated ERK1/2 phosphorylation. Furthermore, serotonin treatment of HEK293 cells stably expressing 5-HT7 receptors increased [Ca2+]i, and the serotonin-induced ERK1/2 phosphorylation was Ca2+-dependent. Therefore, both cAMP and Ca2+ may contribute to the Ras-dependent ERK1/2 activation after 5-HT7 receptor stimulation, through activation of a guanine nucleotide exchange factor with activity towards Ras.
Collapse
|
24
|
Levita L, Hammack SE, Mania I, Li XY, Davis M, Rainnie DG. 5-hydroxytryptamine1A-like receptor activation in the bed nucleus of the stria terminalis: electrophysiological and behavioral studies. Neuroscience 2005; 128:583-96. [PMID: 15381287 DOI: 10.1016/j.neuroscience.2004.06.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2004] [Indexed: 11/28/2022]
Abstract
The anteriorlateral bed nucleus of the stria terminalis (BNST AL) and the serotonergic system are believed to modulate behavioral responses to stressful and/or anxiogenic stimuli. However, although the BNST AL receives heavy serotonergic innervation, the functional significance of this input is not known. Data obtained from in vitro whole-cell patch clamp recording in the rat BNST slice show that exogenous application of 5-hydroxytryptamine (5-HT) evoked a heterogeneous response in BNST AL neurons. The principal action of 5-HT in this region was inhibitory, evoking a membrane hyperpolarization (5-HTHyp) and a concomitant reduction in input resistance in the majority of neurons tested. The broad-spectrum 5-HT1 agonist, 5-carboxamindotryptamine (5-CT), but not R(+/-)8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT), mimicked the 5-HTHyp response in the BNST. Moreover, the outward current mediating 5-HTHyp was inwardly rectifying and sensitive to the G protein activated inwardly rectifying K+ (G IRK) channel blocker, tertiapin-Q. In the CNS 5-HT1A receptors are thought to couple to GIRK channels, suggesting that 5-HTHyp in BNST AL neurons was mediated by activation of 5-HT1A-like receptors. This was confirmed by the blockade of both 5-HTHyp and 5-CTHyp by the specific 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate salt (WAY100635 200nM). Furthermore, an in vivo examination of the functional consequences of 5-HT1A-like induced inhibition of BNST neurons revealed that infusion of 5-CT into the BNST significantly reduced the acoustic startle response, without affecting the general motor activity of the animals. These data point to the possibility that 5-HT1A mediated inhibition of the BNST AL could contribute to an anxiolytic action. Hence, we propose that in response to stressful stimuli, enhanced levels of 5-HT in the BNST AL plays a critical homeostatic role in feedback inhibition of the anxiogenic response to these stimuli.
Collapse
Affiliation(s)
- L Levita
- Department of Psychiatry and Behavioral Neuroscience, Emory University, Yerkes Neuroscience Building, 954 Gatewood Drive, Room 5220, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
25
|
Williams WR, Pugh WJ, Nicholls PJ. Receptor regulatory properties evident in the molecular similarity of serotonin receptor ligands and purine nucleotides. J Pharm Pharmacol 2005; 56:1563-72. [PMID: 15563764 DOI: 10.1211/0022357044940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Previous computational studies have explored the relative molecular similarity inherent in the ligands of neurotransmitter-regulated cell receptors and purine nucleotides. This study presents the results of an investigation of the major serotonin (5-HT) receptor classes, using molecular superimposition and fitting data. Ligands for 5HT(1B/C/D) and 5HT(4/7) receptors identified pharmacophores in the adenine ring of ATP. 5-HT(2) and 5-HT(3) receptor ligands identified pharmacophores in the guanosine nucleotide and cyclic nucleotide, respectively. The described molecular similarity is consistent with the cyclic nucleotide responses observed during signal transduction events initiated by 5-HT, and the reported similarity between ligands of the 5-HT(1B) and 5-HT(1D), 5-HT(1A) and 5-HT(7), and 5-HT(4) and 5-HT(3) receptors. The results are discussed in terms of current pharmacophoric models and signal transduction events involving interaction between G-protein receptors and catalytic sites.
Collapse
Affiliation(s)
- W R Williams
- School of Care Sciences, University of Glamorgan, Wales, UK
| | | | | |
Collapse
|
26
|
Kellett DO, Ramage AG, Jordan D. Central 5-HT7 receptors are critical for reflex activation of cardiac vagal drive in anaesthetized rats. J Physiol 2005; 563:319-31. [PMID: 15611034 PMCID: PMC1665571 DOI: 10.1113/jphysiol.2004.076521] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/30/2004] [Accepted: 12/15/2004] [Indexed: 12/12/2022] Open
Abstract
5-Hydroxytryptamine (5-HT; serotonin)-containing neurones contribute to reflex activation of parasympathetic outflow in a number of species, but the 5-HT receptors mediating these effects have yet to be fully determined. The present experiments demonstrate that central 5-HT7 receptors are involved in the vagal bradycardia evoked during the cardiopulmonary reflex, baroreflexes and the chemoreflex, as well as other autonomic changes caused by these reflexes. The experiments examined the effects of the selective 5-HT7 receptor antagonists SB-269970 and SB-656104 on these reflexes. For the cardiopulmonary reflex, when compared to time-matched vehicle control experiments, intracisternal application of SB-269970 (30-300 microg kg(-1), i.c.) dose-dependently attenuated the evoked bradycardia. At the highest dose, SB-269970 also attenuated the reflex hypotension and sympathoinhibition. The structurally different 5-HT7 receptor antagonist SB-656104 (100 microg kg(-1), i.c.) similarly attenuated the reflex bradycardia and hypotension. SB-269970 (100 microg kg(-1), i.c.) also attenuated the bradycardias evoked by electrical stimulation of aortic nerve afferents and the baroreflex evoked by the pressor response to phenylephrine (3-25 microg kg(-1), i.v.). The gain of the baroreflex was also significantly attenuated (0.15 +/- 0.06 versus 0.34 +/- 0.06 ms mmHg(-1)). Finally, SB-269970 (100 microg kg(-1), i.c.) significantly attenuated both the bradycardia and sympathoexcitation evoked by the chemoreflex. These data indicate that central 5-HT7 receptors play an important facilitatory role in the reflex activation of vagal outflow to the heart.
Collapse
Affiliation(s)
- Daniel O Kellett
- Department of Physiology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | | | | |
Collapse
|
27
|
Roberts C, Thomas DR, Bate ST, Kew JNC. GABAergic modulation of 5-HT7 receptor-mediated effects on 5-HT efflux in the guinea-pig dorsal raphe nucleus. Neuropharmacology 2004; 46:935-41. [PMID: 15081790 DOI: 10.1016/j.neuropharm.2004.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 01/09/2004] [Accepted: 01/19/2004] [Indexed: 11/23/2022]
Abstract
5-HT(7) receptor mRNA and protein are localised in the dorsal raphe nucleus (DRN) on non-serotonergic neurones. The effect of 5-HT(7) receptor antagonism on 5-HT efflux was measured from guinea-pig DRN slices, using the technique of fast cyclic voltammetry. The 5-HT(7) receptor antagonist, SB-269970-A, significantly inhibited 5-HT efflux. The GABA(A) receptor agonist, muscimol, significantly inhibited 5-HT efflux, to a similar degree as SB-269970-A. In contrast, the GABA(A) receptor antagonist, bicuculline, significantly increased 5-HT efflux and attenuated the muscimol-induced inhibition. The muscimol and SB-269970-A effects were not additive and in the presence of bicuculline the SB-269970-A-induced inhibition of 5-HT efflux was attenuated. These data suggest that 5-HT(7) receptor antagonist-induced inhibition of 5-HT efflux occurs indirectly via activation of GABA(A) receptors. That is, 5-HT(7) receptors may be located on GABA interneurones and when activated decrease GABA release and hence decrease the inhibitory tone on 5-HT neurones, increasing 5-HT efflux in the DRN. Therefore, in the presence of GABAergic tone 5-HT(7) receptor antagonists would decrease 5-HT release from the DRN.
Collapse
Affiliation(s)
- Claire Roberts
- Psychiatry CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM 19 5AW, UK.
| | | | | | | |
Collapse
|
28
|
Sprouse J, Reynolds L, Li X, Braselton J, Schmidt A. 8-OH-DPAT as a 5-HT7 agonist: phase shifts of the circadian biological clock through increases in cAMP production. Neuropharmacology 2004; 46:52-62. [PMID: 14654097 DOI: 10.1016/j.neuropharm.2003.08.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurons in the suprachiasmatic nucleus (SCN), the site of the endogenous biological clock in mammals, fire spontaneously, peaking in firing rate near ZT6 or at the midpoint of the light phase in a 12:12 light-dark cycle. In rat hypothalamic slices, tissue incubations with drugs can produce a shift in this daily rhythm, the magnitude of which is dependent upon dose and the time of treatment. Previous work with 8-OH-DPAT had noted its ability to produce a phase advance, an earlier occurrence of the peak in neuronal firing, when applied at ZT6. Activation of 5-HT7 receptors was thought to be responsible for the shift, despite the clear preference of 8-OH-DPAT for 5-HT1A sites in terms of receptor binding affinity. In the present work, the actions of 8-OH-DPAT in SCN slices were confirmed and expanded to include additional dose-response and antagonist treatments. By itself, 8-OH-DPAT produced a concentration-dependent phase advance that was sensitive to co-application with 5-HT7 antagonists (ritanserin, mesulergine, SB-269970), but not to 5-HT1A antagonists (WAY-100,635, UH-301). Assignment of the receptor mechanisms for the antagonists employed was accomplished in experiments measuring binding affinities and the generation of cAMP, the latter monitored in a HEK-293 cell line expressing the r5-HT7 receptor and in tissue derived from rat SCN. The results indicate that the increases observed in cAMP levels are small but appear to be sufficient to produce a pharmacological resetting of the clock pacemaker. By aiding in the identification of the 5-HT receptor subtype responsible for the observed phase shifts and cAMP changes, 8-OH-DPAT represents an important pharmacological tool for 5-HT7 receptor activation, essentially broadening its role as the prototypical 5-HT1A agonist to one combining these two receptor activities.
Collapse
Affiliation(s)
- Jeffrey Sprouse
- Pfizer Global Research & Development, Groton, CT 06340, USA.
| | | | | | | | | |
Collapse
|
29
|
Siddiqui A, Abu-Amara M, Aldairy C, Hagan JJ, Wilson C. 5-HT7 receptor subtype as a mediator of the serotonergic regulation of luteinizing hormone release in the zona incerta. Eur J Pharmacol 2004; 491:77-84. [PMID: 15102536 DOI: 10.1016/j.ejphar.2004.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 03/02/2004] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
5-Hydroxytryptamine (5-HT) and the 5-HT(1A/7) receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralinHBr (8-OH-DPAT), injected into the zona incerta (an area in the dorsal hypothalamus) of the female rat, inhibit the release of luteinizing hormone (LH) and the effects of both are blocked by the 5-HT(2/7) receptor antagonist, ritanserin. As both 8-OH-DPAT and ritanserin have moderate activity at the 5-HT7 receptor subtype, the possibility that this subtype might mediate their effects in the zona incerta has been investigated. Ovariectomised rats were primed with 5 microg oestradiol benzoate followed at 48 h by 0.5 mg progesterone, which induces an LH surge. 5-Carboxamidotryptamine (5-CT), a potent but non-selective agonist at 5-HT7 receptors, like 5-HT and 8-OH-DPAT, inhibited the LH surge at 5 and 1.25 nmol injected bilaterally into the zona incerta. The non-selective 5-HT(2/7) receptor antagonist ritanserin and the selective 5-HT7 receptor antagonist, (R)-3-(2-(2-(4-methyl-piperidin-1-yl)-pyrrolidine-1-sulfonyl)-phenol (SB-269970-A) at 0.5 microg/side blocked all three receptor agonists when injected concurrently into the zona incerta. However, lower (0.2 microg) and higher doses (2 and 5 microg) of SB-269970-A were less effective, indicating a bell-shaped dose-response curve. SB-269970-A was also inhibitory when administered systemically (1 mg/kg intraperitoneally (i.p.)). When LH release was suppressed by 5 microg oestradiol benzoate, SB-269970-A (0.5 and 2 microg) did not elevate levels, indicating it is unlikely that 5-HT7 receptors mediate a tonic inhibition on release but rather are involved in terminating the pre-ovulatory LH surge. These data demonstrate that 5-HT7 receptors play a role in the regulation of LH by the zona incerta in rat brain.
Collapse
Affiliation(s)
- Arif Siddiqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | | | | | | | | |
Collapse
|
30
|
Roberts AJ, Krucker T, Levy CL, Slanina KA, Sutcliffe JG, Hedlund PB. Mice lacking 5-HT7 receptors show specific impairments in contextual learning. Eur J Neurosci 2004; 19:1913-22. [PMID: 15078565 DOI: 10.1111/j.1460-9568.2004.03288.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using 5-HT(7) receptor knockout mice it has been shown that the 5-HT(7) receptor is the main mediator of serotonin-induced hypothermia but very little is known about the relevance of 5-HT(7) receptors in behaviour. We here report that lack of 5-HT(7) receptors leads to a specific learning deficit that is not due to general sensory or behavioural deficits. The knockout mice show impaired contextual fear conditioning but no significant deficits in motor and spatial learning or cued and operant conditioning. In addition, we demonstrate that 5-HT(7) receptor knockout mice display decreased long-term synaptic plasticity within the CA1 region of the hippocampus. The results indicate an important role for the 5-HT(7) receptor in contextual hippocampal-dependent learning and suggest a possible neuronal correlate for such a role is present within the CA1 region of the hippocampus.
Collapse
Affiliation(s)
- Amanda J Roberts
- Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
31
|
Dremencov E, Gur E, Lerer B, Newman ME. Effects of chronic antidepressants and electroconvulsive shock on serotonergic neurotransmission in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:729-39. [PMID: 12921903 DOI: 10.1016/s0278-5846(03)00123-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hippocampus may play a critical role in the pathophysiology and treatment of depression. There are two main lines of evidence for this: firstly, many of its functions correspond to those altered in depression, and secondly, many hippocampal functions are regulated by the serotonergic (5-HT) system, which is a common target of antidepressant treatments. Chronic effects of antidepressants and electroconvulsive shock (ECS) have been studied by various methods using electrophysiology, in vivo microdialysis or ex vivo neurochemical measurements. The aim of the current review is to point out possible correlations between these studies based on different methods and to suggest neurochemical mechanisms that result in the observed changes in hippocampal physiology and neurogenesis. These changes in hippocampal neurochemistry are reviewed and compared with the abnormalities associated with stress, corticosterone or depression.
Collapse
Affiliation(s)
- Eliyahu Dremencov
- Life Sciences Faculty, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | |
Collapse
|
32
|
Thomas DR, Melotto S, Massagrande M, Gribble AD, Jeffrey P, Stevens AJ, Deeks NJ, Eddershaw PJ, Fenwick SH, Riley G, Stean T, Scott CM, Hill MJ, Middlemiss DN, Hagan JJ, Price GW, Forbes IT. SB-656104-A, a novel selective 5-HT7 receptor antagonist, modulates REM sleep in rats. Br J Pharmacol 2003; 139:705-14. [PMID: 12812993 PMCID: PMC1573887 DOI: 10.1038/sj.bjp.0705290] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Revised: 02/28/2003] [Accepted: 03/25/2003] [Indexed: 11/09/2022] Open
Abstract
1 (6-((R)-2-[2-[4-(4-Chloro-phenoxy)-piperidin-1-yl]-ethyl]-pyrrolidine-1-sulphonyl)-1H-indole hydrochloride) (SB-656104-A), a novel 5-hydroxytryptamine (5-HT(7)) receptor antagonist, potently inhibited [(3)H]-SB-269970 binding to the human cloned 5-HT(7(a)) (pK(i) 8.7+/-0.1) and 5-HT(7(b)) (pK(i) 8.5+/-0.2) receptor variants and the rat native receptor (pK(i) 8.8+/-0.2). The compound displayed at least 30-fold selectivity for the human 5-HT(7(a)) receptor versus other human cloned 5-HT receptors apart from the 5-HT(1D) receptor ( approximately 10-fold selective). 2 SB-656104-A antagonised competitively the 5-carboxamidotryptamine (5-CT)-induced accumulation of cyclic AMP in h5-HT(7(a))/HEK293 cells with a pA(2) of 8.5. 3 Following a constant rate iv infusion to steady state in rats, SB-656104 had a blood clearance (CL(b)) of 58+/-6 ml min(-1) kg(-1) and was CNS penetrant with a steady-state brain : blood ratio of 0.9 : 1. Following i.p. administration to rats (10 mg kg(-1)), the compound displayed a t(1/2) of 1.4 h with mean brain and blood concentrations (at 1 h after dosing) of 0.80 and 1.0 micro M, respectively. 4 SB-656104-A produced a significant reversal of the 5-CT-induced hypothermic effect in guinea pigs, a pharmacodynamic model of 5-HT(7) receptor interaction in vivo (ED(50) 2 mg kg(-1)). 5 SB-656104-A, administered to rats at the beginning of the sleep period (CT 0), significantly increased the latency to onset of rapid eye movement (REM) sleep at 30 mg kg(-1) i.p. (+93%) and reduced the total amount of REM sleep at 10 and 30 mg kg(-1) i.p. with no significant effect on the latency to, or amount of, non-REM sleep. SB-269970-A produced qualitatively similar effects in the same study. 6 In summary, SB-656104-A is a novel 5-HT(7) receptor antagonist which has been utilised in the present study to provide further evidence for a role for 5-HT(7) receptors in the modulation of REM sleep.
Collapse
Affiliation(s)
- David R Thomas
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park (North), Harlow, Essex.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ho MY, Body S, Kheramin S, Bradshaw CM, Szabadi E. Effects of 8-OH-DPAT and WAY-100635 on performance on a time-constrained progressive-ratio schedule. Psychopharmacology (Berl) 2003; 167:137-44. [PMID: 12655461 DOI: 10.1007/s00213-002-1375-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Accepted: 11/28/2002] [Indexed: 10/20/2022]
Abstract
RATIONALE Performance on progressive-ratio schedules has been proposed as a means of assessing the effects of drugs on motivation. We have adopted a mathematical model proposed by Killeen to analyse the effects of drugs acting at 5-HT(1A) receptors on progressive-ratio performance. According to this model, the relationship between response rate and ratio size is described by a bitonic (inverted-U) function. One parameter of the function, a, expresses the motivational or "activating" effect of the reinforcer (duration of activation of responding produced by the reinforcer), whereas another parameter, delta, expresses the minimum time needed to execute a response and is regarded as an index of "motor capacity". OBJECTIVE To examine the effect of the selective 5-HT(1A) receptor agonist 8-OH-DPAT [8-hydroxy-2-(di- n-propylamino)tetralin] and the antagonist WAY-100635 [ N-[2-(4-[2-methoxyphenyl]-1-piperazinyl)ethyl]- N-2-pyridinylcyclo-hexanecarboxamide] on progressive-ratio schedule performance. METHODS Sixteen rats responded for a food-pellet reinforcer on a time-constrained progressive-ratio schedule (55-min sessions). In phase 1, they received single doses (s.c.) of 8-OH-DPAT (25, 50, 100, 200 microg kg(-1), four treatments at each dose) or the vehicle (0.9% saline solution). In phase 2, they received WAY-100635 (30, 100, 300 microg kg(-1)) according to the same regimen. In phase 3, they received 8-OH-DPAT (100 microg kg(-1)) alone or in combination with WAY-100635 (30 microg kg(-1)). 8-OH-DPAT dose dependently increased the value of a, significant increases being seen with the 50, 100 and 200 microg kg(-1) doses. The highest dose also increased delta. WAY-100635 did not significantly alter either a or delta. WAY-100635 significantly attenuated the effect of 8-OH-DPAT on both a and delta. CONCLUSIONS The results suggest that 8-OH-DPAT enhanced the activating effect of the reinforcer (the highest dose may also have induced motor debilitation). The finding that the effect of 8-OH-DPAT on a was attenuated by WAY-100635 implicates 5-HT(1A) receptors in this effect. The results are consistent with previous reports that 8-OH-DPAT facilitates feeding and food-reinforced operant responding in rats and suggest that these effects may be brought about by an increase in food motivation.
Collapse
Affiliation(s)
- M-Y Ho
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen's Medical Centre, NG7 2UH, Nottingham, UK
| | | | | | | | | |
Collapse
|
34
|
Hedlund PB, Danielson PE, Thomas EA, Slanina K, Carson MJ, Sutcliffe JG. No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc Natl Acad Sci U S A 2003; 100:1375-80. [PMID: 12529502 PMCID: PMC298780 DOI: 10.1073/pnas.0337340100] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With data from recently available selective antagonists for the 5-HT(7) receptor, it has been hypothesized that 5-hydroxytryptamine (5-HT)-induced hypothermia is mediated by the 5-HT(7) receptor, an effect previously attributed to other receptor subtypes. It has been established that the biologically active lipid oleamide allosterically interacts with the 5-HT(7) receptor to regulate its transmission. The most well characterized effects of oleamide administration are induction of sleep and hypothermia. Here, we demonstrate, by using mice lacking the 5-HT(7) receptor, that 5-HT-induced hypothermia is mediated by the 5-HT(7) receptor. Both 5-HT and 5-carboxamidotryptamine, a 5-HT(1) and 5-HT(7) receptor agonist, in physiological doses fail to induce hypothermia in 5-HT(7) knockout mice. In contrast, oleamide was equally effective in inducing hypothermia in mice lacking the 5-HT(7) receptors as in wild-type mice. When administered together, 5-HT and oleamide showed additive or greater than additive effects in reducing body temperature. Taken together, the results show that 5-HT-induced hypothermia is mediated by the 5-HT(7) receptor, and that oleamide may act through an independent mechanism as well as at an allosteric 5-HT(7) receptor site to regulate body temperature.
Collapse
Affiliation(s)
- P B Hedlund
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
35
|
Norum JH, Hart K, Levy FO. Ras-dependent ERK activation by the human G(s)-coupled serotonin receptors 5-HT4(b) and 5-HT7(a). J Biol Chem 2003; 278:3098-104. [PMID: 12446729 DOI: 10.1074/jbc.m206237200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor tyrosine kinases activate mitogen-activated protein (MAP) kinases through Ras, Raf-1, and MEK. Receptor tyrosine kinases can be transactivated by G protein-coupled receptors coupling to G(i) and G(q). The human G protein-coupled serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) couple to G(s) and elevate intracellular cAMP. Certain G(s)-coupled receptors have been shown to activate MAP kinases through a protein kinase A- and Rap1-dependent pathway. We report the activation of the extracellular signal-regulated kinases (ERKs) 1 and 2 (p44 and p42 MAP kinase) through the human serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) in COS-7 and human embryonic kidney HEK293 cells. In transfected HEK293 cells, 5-HT-induced activation of ERK1/2 is sensitive to H89, which indicates a role for protein kinase A. The observed activation of ERK1/2 does not require transactivation of epidermal growth factor receptors. Furthermore, 5-HT induced activation of both Ras and Rap1. Whereas the presence of Rap1GAP1 did not influence the 5-HT-mediated activation of ERK1/2, the activation of ERK1/2 was abolished in the presence of dominant negative Ras (RasN17). ERK1/2 activation was reduced in the presence of "dominant negative" Raf1 (RafS621A) and slightly reduced by dominant negative B-Raf, indicating the involvement of one or more Raf isoforms. These findings suggest that activation of ERK1/2 through the human G(s)-coupled serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) in HEK293 cells is dependent on Ras, but independent of Rap1.
Collapse
Affiliation(s)
- Jens Henrik Norum
- Merck Sharp and Dohme Cardiovascular Research Center, Institute for Surgical Research and Department of Pharmacology, Rikshospitalet University Hospital, University of Oslo, N-0316 Oslo, Norway
| | | | | |
Collapse
|
36
|
Bonaventure P, Nepomuceno D, Kwok A, Chai W, Langlois X, Hen R, Stark K, Carruthers N, Lovenberg TW. Reconsideration of 5-hydroxytryptamine (5-HT)(7) receptor distribution using [(3)H]5-carboxamidotryptamine and [(3)H]8-hydroxy-2-(di-n-propylamino)tetraline: analysis in brain of 5-HT(1A) knockout and 5-HT(1A/1B) double-knockout mice. J Pharmacol Exp Ther 2002; 302:240-8. [PMID: 12065723 DOI: 10.1124/jpet.302.1.240] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The characterization and anatomical distribution of 5-hydroxytryptamine (5-HT)(7) receptor binding sites in brain tissue has been hampered by the lack of a specific radioligand. In the present autoradiographic study, we took advantage of 5-HT(1A) knockout and 5-HT(1A/1B) double-knockout mice to revisit the pharmacological characterization and anatomical localization of 5-HT(7) binding sites in mouse brain using [(3)H]5-carboxamidotryptamine (5-CT) and [(3)H]8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT). The distribution pattern of [(3)H]5-CT binding sites (2 nM) in the brain of mice lacking the 5-HT(1A/1B) receptor was scarce and confined to the septum, globus pallidus, thalamus, hypothalamus, amygdala, cortex, and substantia nigra. The low densities of [(3)H]5-CT binding sites detected in septum, thalamus, hypothalamus, amygdala, and cortex were displaced by 10 microM of the selective 5-HT(7) receptor antagonist (R)-3-(2-(2-(4-methylpiperidin-1-yl) ethyl)pyrrolidine-1-sulfonyl) phenol (SB-269970). The SB-269970-insensitive [(3)H]5-CT binding sites detected in globus pallidus and substantia nigra of 5-HT(1A/1B) knockout mice were displaced by N-[3-(2-dimethylamino)ethoxy-4-methoxy-phenyl]-2'-methyl-4'- (5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-carboxamide hydrochloride (SB-216641) (1 microM), demonstrating the 5-HT(1D) nature of these binding sites. In contrast to the low densities of [(3)H]5-CT binding sites, high-to-moderate densities of [(3)H]8-OH-DPAT binding sites (10 nM) were found throughout the brain of 5-HT(1A) and 5-HT(1A/1B) knockout mice (olfactory system, septum, thalamus, hypothalamus, amygdala, CA3 field of the hippocampus, cortical mantle, and central gray). These [(3)H]8-OH-DPAT binding sites were displaced by 10 microM SB-269970, risperidone, and methiothepin but not by pindolol, N-tert-butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropanamide (WAY- 100135), or citalopram. We conclude that despite its high affinity for the 5-HT(7) receptor in tissue homogenates, [(3)H]5-CT is not a good tracer for measuring 5-HT(7) receptor binding sites autoradiographically. Also, the lower affinity ligand [(3)H]8-OH-DPAT is a much better tracer for autoradiographic studies at the 5-HT(7) receptor binding sites.
Collapse
Affiliation(s)
- Pascal Bonaventure
- Johnson & Johnson Pharmaceutical Research and Development L.L.C, 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lenglet S, Louiset E, Delarue C, Vaudry H, Contesse V. Activation of 5-HT(7) receptor in rat glomerulosa cells is associated with an increase in adenylyl cyclase activity and calcium influx through T-type calcium channels. Endocrinology 2002; 143:1748-60. [PMID: 11956157 DOI: 10.1210/endo.143.5.8817] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Serotonin (5-HT) stimulates aldosterone secretion from the rat adrenal gland through 5-HT(7) receptors. The aim of the present study was to investigate the transduction mechanisms associated with activation of 5-HT(7) receptors in rat glomerulosa cells. The stimulatory effect of 5-HT on aldosterone secretion and cAMP formation was significantly reduced by the 5-HT(7) receptor antagonist LY 215840. Pretreatment of cells with the adenylyl cyclase inhibitor SQ 22536 or the PKA inhibitor H-89 markedly attenuated the effect of 5-HT on aldosterone secretion. Conversely, type 2 and 4 phosphodiesterase inhibitors potentiated the 5-HT-induced stimulation of aldosterone secretion. Administration of 5-HT in the vicinity of cultured glomerulosa cells induced a slowly developing and robust increase in cytosolic calcium concentration ([Ca(2+)](i)). The effect of 5-HT on [Ca(2+)](i) was suppressed by mibefradil, a T-type calcium channel blocker. Patch-clamp studies confirmed that 5-HT activated a T-type calcium current. Mibefradil also induced a dose-dependent inhibition of 5-HT-induced aldosterone secretion. The sequence of events associated with activation of 5-HT(7) receptors was investigated. The PKA inhibitor H-89 markedly attenuated both the [Ca(2+)](i) response and the activation of T-type calcium current induced by 5-HT. In contrast, reduction of the calcium concentration in the incubation medium did not affect 5-HT- induced cAMP formation. Preincubation of glomerulosa cells with cholera toxin abolished the stimulatory effect of 5-HT on aldosterone secretion, but pertussis toxin had no effect. Taken together, these data demonstrate that, in rat glomerulosa cells, activation of native 5-HT(7) receptors stimulates cAMP formation through a G(salpha) protein, which in turn provokes calcium influx through T-type calcium channels. Both the adenylyl cyclase/PKA pathway and the calcium influx are involved in 5-HT-induced aldosterone secretion.
Collapse
Affiliation(s)
- Sebastien Lenglet
- European Institute for Peptide Research (IFRMP 23), Institut National de la Santé et Recherche Médicale Unité-413, Unité Affiliée Centre National de la Recherche Scientifique, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | |
Collapse
|
38
|
Body S, Chiang TJ, Mobini S, Ho MY, Bradshaw CM, Szabadi E. Effect of 8-OH-DPAT on temporal discrimination following central 5-hydroxytryptamine depletion. Pharmacol Biochem Behav 2002; 71:787-93. [PMID: 11888569 DOI: 10.1016/s0091-3057(01)00674-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 5-hydroxytryptamine (5-HT)(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) alters performance in discrete-trials timing schedules. 5-HT(1A) receptors occur both presynaptically and postsynaptically, but it is not known which receptor population mediates the effects of 8-OH-DPAT on timing. Rats received intra-raphe injections of 5,7-dihydroxytryptamine (n=16) or sham lesions (n=14). They were trained in a discrete-trials psychophysical procedure in which levers were presented at a predetermined time after the onset of each trial (2.5, 7.5,., 47.5 s). A response on lever A was reinforced if lever presentation occurred < 25 s after trial onset; a response on lever B was reinforced if lever presentation occurred >25 s after trial onset. After 70 preliminary sessions, the rats received 8-OH-DPAT (25, 50, 100, 200 microg kg(-1) sc) and saline vehicle. The percentage of responses on lever B (%B) increased as a function of time from trial onset. Under the baseline (vehicle-treatment) condition, performance did not differ between the two groups. 8-OH-DPAT did not alter the indifference point (time corresponding to %B=50%), but dose-dependently increased the Weber fraction in both groups. Forebrain concentrations of 5-HT and 5-HIAA in the lesioned group were approximately 10% of control levels. The results suggest that the effect of 8-OH-DPAT on performance on discrete-trials timing schedules is mediated by postsynaptic 5-HT(1A) receptors.
Collapse
Affiliation(s)
- S Body
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen's Medical Centre, NG7 2UH, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
39
|
Wood MD, Thomas DR, Watson JM. Therapeutic potential of serotonin antagonists in depressive disorders. Expert Opin Investig Drugs 2002; 11:457-67. [PMID: 11922855 DOI: 10.1517/13543784.11.4.457] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although the precise neurochemical imbalances in depression are still unknown, a role for the neurotransmitter 5-hydroxytryptamine (serotonin) has been implicated since the identification of the first effective antidepressants, imipramine and iproniazid. This led to the development of the selective serotonin re-uptake inhibitors which are widely used in the treatment of depression and depressive disorders, including generalised anxiety disorder, social phobia, obsessive compulsive disorder etc. Studies involving chronic administration in rats led to the hypothesis that the different classes of antidepressant treatment produce a common neuroadaptive change, namely an enhancement of serotonin neurotransmission, albeit via different pre and postsynaptic mechanisms. From this, it was suggested that serotonin antagonists should induce similar neuroadaptive changes, either directly or through a potentiation of other antidepressant agents. Here, the profiles of novel serotonin antagonists currently in preclinical development are reviewed and their therapeutic potential is assessed.
Collapse
Affiliation(s)
- Martyn D Wood
- Psychiatry Centre for Excellence in Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK.
| | | | | |
Collapse
|
40
|
Pouzet B, Didriksen M, Arnt J. Effects of the 5-HT(7) receptor antagonist SB-258741 in animal models for schizophrenia. Pharmacol Biochem Behav 2002; 71:655-65. [PMID: 11888557 DOI: 10.1016/s0091-3057(01)00744-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 5-HT(7) receptor is targeted by several new antipsychotics such as clozapine and risperidone. We studied the effect of R-(+)-1-(toluene-3-sulfonyl)-2-[2-(4-methylpiperidin-1-yl)ethyl]-pyrrolidine (SB-258741), a specific 5-HT(7) receptor antagonist, in three models for positive symptoms, D-amphetamine-induced hyperactivity and D-amphetamine- and phencyclidine (PCP)-disrupted prepulse inhibition (PPI) in rats, with the aim of investigating the role of this receptor in the clinical effect of antipsychotics. We also tested this compound in a model for negative symptoms, PCP-disrupted social interaction (SIT) in rats. Induction of side effects by this compound was evaluated by testing its potency to reduce spontaneous motility and to induce catalepsy in rats. The effect of SB-258741 was compared to risperidone in all models. This study showed that SB-258741 had no beneficial effect on PCP-disrupted SIT. SB-258741 did not reverse D-amphetamine-disrupted PPI; however, it dose-dependently normalised PCP-disrupted PPI. SB-258741 antagonised D-amphetamine-induced hyperactivity but reduced motility of rats at similar doses. Thus, this specific 5-HT(7) receptor antagonist brought a clear positive outcome in only one model for positive symptoms of schizophrenia and had no beneficial effect in the model for negative symptoms. Consequently, it is clear that SB-258741 affects the PPI phenomenon but is not expected to have an antipsychotic effect on its own in clinic.
Collapse
Affiliation(s)
- B Pouzet
- Psychopharmacology--Psychosis Department, H. Lundbeck A/S, Ottiliavej 7-9, DK-2500, Valby, Denmark.
| | | | | |
Collapse
|
41
|
Abstract
Recently, a series of 5-HT7 receptor antagonists have been developed (24,29,36,68). Among them SB-258741, R-(+)-1-(toluene-3-sulfonyl)-2-[2-(4-methylpiperidin-1-yl)ethyl]-pyrrolidine, (compound "13" in 36,37) was one of the most potent and specific compounds. Due to a lack of specific ligands the pharmacology of 5-HT7 receptor antagonists is still relatively unexplored. It has been suggested, however, that 5-HT7 receptor ligands could be useful in the therapy of various disorders such as sleep disorders, schizophrenia, depression, migraine, epilepsy, pain, or memory impairment. Many of these conceivable indications are not supported by pharmacological data. It is, therefore, of particular interest to review the data generated from studies of one of these most potent and specific 5-HT7 receptor antagonists, SB-258741, with a goal of testing the validity of the proposed clinical indications. In this review, the author describes pharmacology of this compound in order to define its potential clinical use. The available safety pharmacology data are discussed in an attempt to predict potential side effects of specific 5-HT7 receptor antagonists.
Collapse
Affiliation(s)
- Bruno Pouzet
- H. Luncbeck A/S, Department of Psychopharmacology, Ottiliavej 7-9, Dk-2500 Valby, Denmark.
| |
Collapse
|
42
|
Thomas DR, Atkinson PJ, Hastie PG, Roberts JC, Middlemiss DN, Price GW. [3H]-SB-269970 radiolabels 5-HT7 receptors in rodent, pig and primate brain tissues. Neuropharmacology 2002; 42:74-81. [PMID: 11750917 DOI: 10.1016/s0028-3908(01)00151-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The selective 5-HT7 receptor antagonist radioligand, [3H]-SB-269970, has been reported to radiolabel the human cloned 5-HT7(a) receptor and 5-HT7 receptors in guinea pig cortex (thomas et al, 2000). Saturation analysis of [3H]-SB-269970 binding to mouse forebrain, rat cortex, pig cortex, marmoset cortex and human thalamus membranes was consistent with labelling a homogenous population of binding sites in each tissue. K(D) values for [3H]-SB-269970 binding in these tissues ranged from 0.9 to 2.3 nM, being similar to those reported for the human cloned and guinea pig cortex 5-HT7 receptors (1.3 and 1.7 nM, respectively). Bmax values for [3H]-SB-269970 binding to the mouse, rat, pig, marmoset and human brain membranes were 20, 30, 31, 14 and 68 fmoles x mg x protein(-1), respectively. For each species the profile of inhibition of [3H]-SB-269970 binding, using a number of 5-HT7 receptor agonists and antagonists, correlated well with that reported for the human cloned 5-HT7(a) receptor (correlation coefficients were 0.95, 0.94, 0.92, 0.95, 0.97 versus the mouse, rat, pig, marmoset and human tissues, respectively). In conclusion, [3H]-SB-269970 has been shown to radiolabel 5-HT7 receptors in rodent, pig and primate brain and represents a valuable tool with which to further characterise the distribution and function of 5-HT7 receptors in native tissues and elucidate their potential role in disease states.
Collapse
Affiliation(s)
- D R Thomas
- GlaxoSmithKline Pharmaceuticals, Psychiatry Centre of Excellence for Drug Discovery, New Frontiers Science Park (North), Third Avenue, CM19 5AW, Harlow, Essex, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Gill CH, Soffin EM, Hagan JJ, Davies CH. 5-HT7 receptors modulate synchronized network activity in rat hippocampus. Neuropharmacology 2002; 42:82-92. [PMID: 11750918 DOI: 10.1016/s0028-3908(01)00149-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the CA3 region of rat hippocampal slices gamma-amino-butyric acid (GABA)(A/B) receptor antagonists induce low frequency bursting activity that was either inhibited (in 21% of slices) or increased by the selective 5-HT receptor agonists 5-carboxy-tryptamine (0.1-1 microM) and 8-hydroxydipropylaminotetralin (8-OH-DPAT). The selective 5-HT1A receptor antagonist N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexane carboxamide (WAY 100635) reversed the depression of bursting activity whereas the 5-HT7 receptor antagonist, (R)-3-(2-(2-(4-methylpiperidin-1-yl)-ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970; 1-10 microM), but not the 5-HT1A, 4 or 6 receptor antagonists WAY100635 (10 microM), SB-204070 (10 microM) and SB-271046 (10 microM), reversed the increase in bursting activity. The apparent -log10 K(D) value (8.4) for the effect of SB-269970 was consistent with a selective action at 5-HT7 receptors. Accompanying the 5-CT-induced increase in bursting frequency there was a shortening of the burst event waveform and a reduction in the after-hyperpolarization following each bursting event both of which were inhibited by SB-269970. These effects appeared to result predominantly from a direct 5-HT(7) receptor-mediated inhibition of a Ca2+ activated K+ channel.
Collapse
Affiliation(s)
- Catherine H Gill
- Department of Neuroscience Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park North, Third Avenue, CM19 5AW, Harlow, UK
| | | | | | | |
Collapse
|
44
|
Harris LC, Awe SO, Opere CA, Leday AM, Ohia SE, Sharif NA. [(3)H]-serotonin release from bovine iris-ciliary body: pharmacology of prejunctional serotonin (5-HT(7)) autoreceptors. Exp Eye Res 2001; 73:59-67. [PMID: 11428863 DOI: 10.1006/exer.2001.1012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we investigated the pharmacological characteristics of electrically stimulated [(3)H]-serotonin release from mammalian iris-ciliary bodies. Isolated bovine and human iris-ciliary bodies were loaded with [(3)H]-serotonin, superfused with Krebs buffer solution and then stimulated with trains of 300 direct current (d.c.) pulses to initiate the release of the transmitter. The modification of this [(3)H]-serotonin release process by various serotonergic agonists and antagonists was studied in order to define the pharmacology of serotonin receptor(s) present in the iris-ciliary body. In bovine iris-ciliary body, electrically-evoked [(3)H]-serotonin release was calcium-dependent, tetrodotoxin-sensitive and was enhanced by serotonin (EC(50) = 200 n M) and 5-carboxmidotryptamine (EC(50) = 4 n M). The rank order of potency of agonists in enhancing field-stimulated [(3)H]-serotonin release was: 5-carboamidotryptamine > m-chlorophenylbiguanide > 2-methyl-5-hydroxytryptamine = 5-methoxy-dimethyltryptamine > serotonin > 5-methoxy-tryptamine > L-694,247 = alpha-methyl-5-hydroxytryptamine > CGS 12066A = 8-hydroxy-2-(di- n -propylamino)tetraline. Serotonin and m-chlorophenylbiguanide also enhanced electrically-evoked [(3)H]-serotonin release from human iris-ciliary bodies with EC(50)s of 3 microM and 30 n M, respectively. The pharmacological profile displayed by serotonin receptor agonists was supported by the potent antagonism of the serotonin-induced enhancement of [(3)H]-serotonin release by 5HT(7)receptor antagonists SB-258718 (IC(50) = 18.6 +/- 1.2 nM; n = 4) and mesulergine (IC(50) = 0.26 +/- 0.05 nM; n = 4). However, antagonists at 5HT(6)and 5HT(3)receptors exhibited a relatively weak blockade of serotonin induced enhancement of field-stimulated [(3)H]-serotonin release. These studies have shown the presence of functionally active prejunctional 5HT(7)autoreceptors regulating the release of [(3)H]-serotonin from bovine iris-ciliary bodies. Excitatory prejunctional 5-HT autoreceptors also exist in human iris-ciliary bodies. It is possible that these serotonin autoreceptors may have relevance to the regulation of aqueous humor dynamics in the anterior uvea.
Collapse
Affiliation(s)
- L C Harris
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy and Allied Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, U.S.A
| | | | | | | | | | | |
Collapse
|
45
|
Roberts C, Allen L, Langmead CJ, Hagan JJ, Middlemiss DN, Price GW. The effect of SB-269970, a 5-HT(7) receptor antagonist, on 5-HT release from serotonergic terminals and cell bodies. Br J Pharmacol 2001; 132:1574-80. [PMID: 11264252 PMCID: PMC1572709 DOI: 10.1038/sj.bjp.0703979] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The presence of 5-HT(7) receptor mRNA and protein in 5-HT neurons suggests that this receptor may act as a 5-HT autoreceptor. In this study, the effect of the 5-HT(7) receptor antagonist, SB-269970 ((R)-1-[3-hydroxy phenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine), was investigated on 5-HT release in the guinea-pig and rat cortex and the rat dorsal raphe nucleus (DRN), using the techniques of in vitro [(3)H]-5-HT release or fast cyclic voltammetry, respectively. 2. Cortical slices were loaded with [(3)H]-5-HT and release was evoked by electrical stimulation. 5-CT inhibited the evoked release of [(3)H]-5-HT in a concentration-dependent manner. SB-269970 had no significant effect on [(3)H]-5-HT release while the 5-HT(1B) receptor antagonist, SB-224289 significantly potentiated [(3)H]-5-HT release. In addition, SB-269970 was unable to attenuate the 5-CT-induced inhibition of release while SB-224289 produced a rightward shift of the 5-CT response, generating estimated pK(B) values of 7.8 and 7.6 at the guinea-pig and rat terminal 5-HT autoreceptors respectively. 3. Rat DRN slices were electrically stimulated and the evoked 5-HT efflux detected by voltammetric analysis. 8-OH-DPAT inhibited evoked 5-HT efflux and was fully reversed by WAY 100635. SB-269970 had no effect on either 5-HT efflux per se or 8-OH-DPAT-induced inhibition of 5-HT efflux. In addition, 5-CT inhibited 5-HT efflux in a concentration-dependent manner. SB-269970 was unable to attenuate the 5-CT-induced inhibition of 5-HT efflux. 4. In conclusion, we were unable to provide evidence to suggest a 5-HT autoreceptor role for 5-HT(7) receptors. However, investigations with more selective 5-HT(7) receptor agonists are needed to confirm the data reported here.
Collapse
Affiliation(s)
- C Roberts
- Department of Neuroscience Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW.
| | | | | | | | | | | |
Collapse
|
46
|
Schmeer C, Obregón F, Urbina M, Lima L. Further characterization of 5-HT1A receptors in the goldfish retina: role of cyclic AMP in the regulation of the in vitro outgrowth of retinal explants. Neurochem Res 2001; 26:213-23. [PMID: 11495544 DOI: 10.1023/a:1010960332229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The presence of serotonin 5-HT1A receptors and their physiological role were further characterized in the goldfish retina. The effects of the 5-HT6/7 receptor antagonists pimozide, fluphenazine and amoxapine, the 5-HT1A receptor antagonist WAY-100,135, and the alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, on the 5-HT1A receptor agonist [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes, were evaluated. In addition, the effects of serotonin, 8-hydroxy-2-(di-n-propylamino)tetralin, WAY-100,135, the adenylate cyclase inhibitors SQ22536 and MDL12330A, and the cyclic AMP analog 8-bromoadenosine-3':5' cyclic monophosphate were also studied on neuritic outgrowth from retinal explants. WAY-100,135 but not 5-HT6/7 receptor antagonists inhibited [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline decreased [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding sites up to 70%, while receptor turnover was similar to that reported in other tissues. Serotonin and 8-hydroxy-2-(di-n-propylamino)tetralin stimulated cyclic AMP production, both ex vivo and in vitro, and these increases were related to inhibition of neuritic outgrowth. The inhibitory effect was reduced by SQ22536 and by WAY-100,135, and was mimicked by 8-bromoadenosine-3':5'cyclic monophosphate. This study supports previous findings about the role of serotonin as a regulator of axonal outgrowth during in vitro regeneration of the goldfish retina and demonstrates that this effect is mediated, at least in part, by 5-HT1A receptors through a mechanism which involves an increase of cyclic AMP levels.
Collapse
Affiliation(s)
- C Schmeer
- Laboratorio de Neuroquímica, Centro de Biofisica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | |
Collapse
|
47
|
Gregg TR, Siegel A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:91-140. [PMID: 11263761 DOI: 10.1016/s0278-5846(00)00150-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
1. Violence and aggression are major public health problems. 2. The authors have used techniques of electrical brain stimulation, anatomical-immunohistochemical techniques, and behavioral pharmacology to investigate the neural systems and circuits underlying aggressive behavior in the cat. 3. The medial hypothalamus and midbrain periaqueductal gray are the most important structures mediating defensive rage behavior, and the perifornical lateral hypothalamus clearly mediates predatory attack behavior. The hippocampus, amygdala, bed nucleus of the stria terminalis, septal area, cingulate gyrus, and prefrontal cortex project to these structures directly or indirectly and thus can modulate the intensity of attack and rage. 4. Evidence suggests that several neurotransmitters facilitate defensive rage within the PAG and medial hypothalamus, including glutamate, Substance P, and cholecystokinin, and that opioid peptides suppress it; these effects usually depend on the subtype of receptor that is activated. 5. A key recent discovery was a GABAergic projection that may underlie the often-observed reciprocally inhibitory relationship between these two forms of aggression. 6. Recently, Substance P has come under scrutiny as a possible key neurotransmitter involved in defensive rage, and the mechanism by which it plays a role in aggression and rage is under investigation. 7. It is hoped that this line of research will provide a better understanding of the neural mechanisms and substrates regulating aggression and rage and thus establish a rational basis for treatment of disorders associated with these forms of aggression.
Collapse
Affiliation(s)
- T R Gregg
- Department of Neurosciences, University of Medicine and Dentistry of New Jersey, Newark 07103, USA
| | | |
Collapse
|
48
|
Newman ME, Gur E, Dremencov E, Garcia F, Lerer B, Van de Kar LD. Chronic clomipramine alters presynaptic 5-HT(1B) and postsynaptic 5-HT(1A) receptor sensitivity in rat hypothalamus and hippocampus, respectively. Neuropharmacology 2000; 39:2309-17. [PMID: 10974314 DOI: 10.1016/s0028-3908(00)00077-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clomipramine is a tricyclic antidepressant drug with a high affinity for the serotonin (5-HT) uptake site or transporter. Electrophysiological experiments have provided evidence that repeated administration of clomipramine induces an increase in the sensitivity of postsynaptic 5-HT(1A) receptors in the hippocampus. We have studied the effects of clomipramine, administered to rats at a dose of 10mg/kg/day for 28 days by osmotic minipumps, on presynaptic 5-HT(1A) and 5-HT(1B) autoreceptors in the hypothalamus, and on postsynaptic 5-HT(1A) receptors in the hippocampus, by using in vivo microdialysis to measure 5-HT and cyclic adenosine monophosphate (cAMP) levels. Postsynaptic 5-HT(1A) receptor sensitivity in the hypothalamus was determined by means of a neuroendocrine challenge procedure. Although the sensitivity of presynaptic 5-HT(1A) autoreceptors, as measured by the effect of a subcutaneous (s.c.) injection of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.2mg/kg or 50 microg/kg) to reduce 5-HT levels, did not change, there was a reduction in sensitivity of presynaptic 5-HT(1B) receptors, as measured by the effect of an injection of the 5-HT(1B/1D) antagonist GR 127935 (5mg/kg, s.c.) to increase 5-HT levels. This effect probably accounted for the increase in basal 5-HT levels observed in the hypothalamus after chronic clomipramine administration. Postsynaptic 5-HT(1A) receptor sensitivity in the hippocampus, measured by the effect of 8-OH-DPAT to increase cAMP levels in the dialysate, was increased after chronic clomipramine. Animals that had received daily intraperitoneal injections of 10mg/kg clomipramine for 28 days did not show a change in postsynaptic 5-HT(1A) receptor sensitivity in the hypothalamus as measured by the ability of 8-OH-DPAT (50 microg/kg, s.c.) to stimulate secretion of corticosterone. Taken together with the results of previous experiments involving the cerebral cortex, these in vivo results show that chronic clomipramine exerts effects on both pre- and postsynaptic serotonin receptors, but that these effects are highly region-specific.
Collapse
Affiliation(s)
- M E Newman
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah - Hebrew University Medical Center, PO Box 12000, 91120, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
49
|
Hagan JJ, Price GW, Jeffrey P, Deeks NJ, Stean T, Piper D, Smith MI, Upton N, Medhurst AD, Middlemiss DN, Riley GJ, Lovell PJ, Bromidge SM, Thomas DR. Characterization of SB-269970-A, a selective 5-HT(7) receptor antagonist. Br J Pharmacol 2000; 130:539-48. [PMID: 10821781 PMCID: PMC1572114 DOI: 10.1038/sj.bjp.0703357] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2000] [Revised: 03/14/2000] [Accepted: 03/14/2000] [Indexed: 11/08/2022] Open
Abstract
The novel 5-HT(7) receptor antagonist, SB-269970-A, potently displaced [(3)H]-5-CT from human 5-HT(7(a)) (pK(i) 8.9+/-0.1) and 5-HT(7) receptors in guinea-pig cortex (pK(i) 8.3+/-0.2). 5-CT stimulated adenylyl cyclase activity in 5-HT(7(a))/HEK293 membranes (pEC(50) 7.5+/-0.1) and SB-269970-A (0.03 - 1 microM) inhibited the 5-CT concentration-response with no significant alteration in the maximal response. The pA(2) (8.5+/-0.2) for SB-269970-A agreed well with the pK(i) determined from [(3)H]-5-CT binding studies. 5-CT-stimulated adenylyl cyclase activity in guinea-pig hippocampal membranes (pEC(50) of 8.4+/-0.2) was inhibited by SB-269970-A (0.3 microM) with a pK(B) (8.3+/-0.1) in good agreement with its antagonist potency at the human cloned 5-HT(7(a)) receptor and its binding affinity at guinea-pig cortical membranes. 5-HT(7) receptor mRNA was highly expressed in human hypothalamus, amygdala, thalamus, hippocampus and testis. SB-269970-A was CNS penetrant (steady-state brain : blood ratio of ca. 0.83 : 1 in rats) but was rapidly cleared from the blood (CLb=ca. 140 ml min(-1) kg(-1)). Following a single dose (3 mg kg(-1)) SB-269970 was detectable in rat brain at 30 (87 nM) and 60 min (58 nM). In guinea-pigs, brain levels averaged 31 and 51 nM respectively at 30 and 60 min after dosing, although the compound was undetectable in one of the three animals tested. 5-CT (0.3 mg kg(-1) i.p.) induced hypothermia in guinea-pigs was blocked by SB-269970-A (ED(50) 2.96 mg kg(-1) i.p.) and the non-selective 5-HT(7) receptor antagonist metergoline (0.3 - 3 mg kg(-1) s.c.), suggesting a role for 5-HT(7) receptor stimulation in 5-CT induced hypothermia in guinea-pigs. SB-269970-A (30 mg kg(-1)) administered at the start of the sleep period, significantly reduced time spent in Paradoxical Sleep (PS) during the first 3 h of EEG recording in conscious rats.
Collapse
Affiliation(s)
- J J Hagan
- Neuroscience Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wood M, Chaubey M, Atkinson P, Thomas DR. Antagonist activity of meta-chlorophenylpiperazine and partial agonist activity of 8-OH-DPAT at the 5-HT(7) receptor. Eur J Pharmacol 2000; 396:1-8. [PMID: 10822046 DOI: 10.1016/s0014-2999(00)00213-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study compared the use of adapter G-proteins to link G(s) coupled G-protein receptors to a Ca(2+) signal, enabling high throughput functional studies using a fluorescent imaging plate reader (FLIPR, Molecular Devices). The pharmacological profile of the human 5-hydroxytryptamine (5-HT(7)) receptor was studied using the adapter G-proteins G(alpha16) and G(qs5) and compared to previously published adenylyl cyclase and receptor binding data. Human embryonic kidney (HEK) 293 cells stably expressing the human 5-HT(7(a)) receptor were transiently transfected with the adapter G-proteins. Changes in intracellular Ca(2+) were monitored using the fluorescent Ca(2+)-indicator Fluo-4.5-Carboxamidotryptamine (5-CT) induced an increase in fluorescence in transfected cells only, which was attenuated by N-ethylmalaeimide and abolished by thapsigargin, consistent with a G-protein mediated mobilisation of intracellular Ca(2+). The pharmacological profile of agonists at the 5-HT(7) receptor was similar using either adapter G-protein. Agonist potency estimates were similar to that reported in binding studies but were greater than that seen in adenylyl cyclase studies. 8-Hydroxy-N, N-dipropylaminotetralin (8-OH-DPAT) and tryptamine acted as partial agonists using the adapter G-proteins, but were full agonists in recombinant systems using adenylyl cyclase. meta-Chlorophenylpiperazine (mCPP) and trifluoro-methylphenyl piperazine (TFMPP) were antagonists on intracellular Ca(2+). Antagonist pharmacological profiles were similar between adapter G-proteins, receptor binding, and adenylyl cyclase studies. These results show that adapter G-proteins can be used to study G(s)-linked receptors using the high throughput FLIPR system measuring changes in intracellular Ca(2+) and provide novel information on mCPP and 8-OH-DPAT.
Collapse
Affiliation(s)
- M Wood
- Neuroscience Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, CM19 5AW, Essex, UK.
| | | | | | | |
Collapse
|