1
|
Kuo CH, Zhang BH, Huang SE, Hsu JH, Wang YH, Nguyen TTN, Lai CH, Yeh JL. Xanthine Derivative KMUP-1 Attenuates Experimental Periodontitis by Reducing Osteoclast Differentiation and Inflammation. Front Pharmacol 2022; 13:821492. [PMID: 35571109 PMCID: PMC9097136 DOI: 10.3389/fphar.2022.821492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
Periodontitis is an inflammatory disease of gum that may predispose to serious systemic complications such as diabetes and cardiovascular diseases. Activation of macrophages and osteoclasts around periodontal tissue can accelerate gum inflammation. In addition, alteration of cyclic nucleotide levels is associated with the severity of periodontitis. Our previous study has shown that KMUP-1, a xanthine derivative exhibiting phosphodiesterase inhibition and soluble guanylyl cyclase activation, can inhibit lipopolysaccharide (LPS)-induced inflammation and receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclastogenesis. This study was aimed to investigate whether KMUP-1 could attenuate periodontitis both in vitro and in vivo. In vitro, the protective effect of KMUP-1 on inflammation and osteoclastogenesis was investigated in RANKL-primed RAW264.7 cells treated by Porphyromonas gingivalis LPS (PgLPS). The results showed that KMUP-1 attenuated PgLPS-induced osteoclast differentiation as demonstrated by decreased TRAP-positive multinuclear cells and TRAP activity. This reduction of osteoclast differentiation by KMUP-1 was reversed by KT5823, a protein kinase G inhibitor. Similarly, pro-inflammatory cytokine levels induced by PgLPS were inhibited by KMUP-1 in a dose-dependent manner whereas reversed by KT5823. Mechanistically, suppression of MAPKs, PI3K/Akt, and NF-κB signaling pathways and decrease of c-Fos and NFATc1 expression in osteoclast precursors by KMUP-1 may mediate its protective effect. In vivo, two models of periodontitis in rats were induced by gingival injections of PgLPS and ligature placement around molar teeth, respectively. Our results showed that KMUP-1 inhibited alveolar bone loss in both rat models, and this effect mediated at least partly by reduced osteoclastogenesis. In conclusion, our study demonstrated the therapeutic potential of KMUP-1 on periodontitis through suppression of inflammation and osteoclast differentiation.
Collapse
Affiliation(s)
- Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ban-Hua Zhang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-En Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Thi Tuyet Ngan Nguyen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Han Lai
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Jwu-Lai Yeh,
| |
Collapse
|
2
|
Cheng KI, Yang KT, Kung CL, Cheng YC, Yeh JL, Dai ZK, Wu BN. BK Ca Channel Inhibition by Peripheral Nerve Injury Is Restored by the Xanthine Derivative KMUP-1 in Dorsal Root Ganglia. Cells 2021; 10:949. [PMID: 33923953 PMCID: PMC8073306 DOI: 10.3390/cells10040949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 12/02/2022] Open
Abstract
This study explored whether KMUP-1 improved chronic constriction injury (CCI)-induced BKCa current inhibition in dorsal root ganglion (DRG) neurons. Rats were randomly assigned to four groups: sham, sham + KMUP-1, CCI, and CCI + KMUP-1 (5 mg/kg/day, i.p.). DRG neuronal cells (L4-L6) were isolated on day 7 after CCI surgery. Perforated patch-clamp and inside-out recordings were used to monitor BKCa currents and channel activities, respectively, in the DRG neurons. Additionally, DRG neurons were immunostained with anti-NeuN, anti-NF200 and anti-BKCa. Real-time PCR was used to measure BKCa mRNA levels. In perforated patch-clamp recordings, CCI-mediated nerve injury inhibited BKCa currents in DRG neurons compared with the sham group, whereas KMUP-1 prevented this effect. CCI also decreased BKCa channel activity, which was recovered by KMUP-1 administration. Immunofluorescent staining further demonstrated that CCI reduced BKCa-channel proteins, and KMUP-1 reversed this. KMUP-1 also changed CCI-reduced BKCa mRNA levels. KMUP-1 prevented CCI-induced neuropathic pain and BKCa current inhibition in a peripheral nerve injury model, suggesting that KMUP-1 could be a potential agent for controlling neuropathic pain.
Collapse
Affiliation(s)
- Kuang-I Cheng
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kan-Ting Yang
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.K.); (Y.-C.C.); (J.-L.Y.)
| | - Chien-Lun Kung
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.K.); (Y.-C.C.); (J.-L.Y.)
| | - Yu-Chi Cheng
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.K.); (Y.-C.C.); (J.-L.Y.)
| | - Jwu-Lai Yeh
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.K.); (Y.-C.C.); (J.-L.Y.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.K.); (Y.-C.C.); (J.-L.Y.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Ren LS, Zhang L, Zhu D, Li T, Wang Q, Yuan XY, Hao LR. KMUP-1 regulates the vascular calcification in chronic renal failure by mediating NO/cGMP/PKG signaling pathway. Life Sci 2020; 253:117683. [PMID: 32315727 DOI: 10.1016/j.lfs.2020.117683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To explore the potential mechanism of KMUP-1 in the vascular calcification of chronic renal failure (CRF) through mediating NO/cGMP/PKG pathway, and provide novel insights into the CRF treatment. METHODS CRF rats were treated by KMUP-1 with/without L-NNA (a NOS inhibitor) and then performed by ELISA, alizarin red staining, Von Kossa staining, Masson's trichrome, Sirius red staining and CD3 immunohistochemical staining. Simultaneously, vascular smooth muscle cells (VSMCs) were collected from rats to confirm the effect of KMUP-1 on vascular calcification in vitro via NO/cGMP/PKG pathway. Besides, protein and mRNA expressions were determined via Western blotting and qRT-PCR, respectively. RESULTS CRF rats were elevated in 24-h urine protein, blood urea nitrogen (BUN), serum creatinine, Cys-C levels and inflammatory cytokines. Besides, CRF rats also showed increased calcium content and ALP level with up-regulated mRNA of osteogenic differentiation-related markers. Furthermore, the up-regulated expressions of eNOS and PKG, as well as down-regulated levels of NOx and cGMP were also found in CRF rats. However, renal failure and vascular calcification of CRF were improved significantly by KMUP-1 treatment via activation of NO/cGMP/PKG pathway. Moreover, KMUP-1 treatment attenuated calcified VSMCs, accompanied by the decreases in the calcified nodules, level of calcium and activity of ALP. In addition, either L-NNA treatment for CRF rats or the calcified VSMCs could antagonize the improving effect of KMUP-1. CONCLUSION KMUP-1 can improve the renal function and vascular calcification in CRF rats at least in part by activating NO/cGMP/PKG pathway.
Collapse
Affiliation(s)
- Lian-Sheng Ren
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Dan Zhu
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tong Li
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Qi Wang
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xue-Ying Yuan
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Li-Rong Hao
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
5
|
KMUP-1 Ameliorates Ischemia-Induced Cardiomyocyte Apoptosis through the NO⁻cGMP⁻MAPK Signaling Pathways. Molecules 2019; 24:molecules24071376. [PMID: 30965668 PMCID: PMC6479774 DOI: 10.3390/molecules24071376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
To test whether KMUP-1 (7-[2-[4-(2-chlorophenyl) piperazinyl]ethyl]-1,3-dimethylxanthine) prevents myocardial ischemia-induced apoptosis, we examined KMUP-1-treated H9c2 cells culture. Recent attention has focused on the activation of nitric oxide (NO)-guanosine 3’, 5’cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway triggered by mitogen-activated protein kinase (MAPK) family, including extracellular-signal regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 in the mechanism of cardiac protection during ischemia-induced cell-death. We propose that KMUP-1 inhibits ischemia-induced apoptosis in H9c2 cells culture through these pathways. Cell viability was assessed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and apoptotic evaluation was conducted using DNA ladder assay and Hoechst 33342 staining. The level of intracellular calcium was detected using-Fura2-acetoxymethyl (Fura2-AM) staining, and mitochondrial calcium with Rhod 2-acetoxymethyl (Rhod 2-AM) staining under fluorescence microscopic observation. The expression of endothelium NO synthase (eNOS), inducible NO synthase (iNOS), soluble guanylate cyclase α1 (sGCα1), PKG, Bcl-2/Bax ratio, ERK1/2, p38, and JNK proteins were measured by Western blotting assay. KMUP-1 pretreatment improved cell viability and inhibited ischemia-induced apoptosis of H9c2 cells. Calcium overload both in the intracellular and mitochondrial sites was attenuated by KMUP-1 pretreatment. Moreover, KMUP-1 reduced intracellular reactive oxygen species (ROS), increased plasma NOx (nitrite and nitrate) level, and the expression of eNOS. Otherwise, the iNOS expression was downregulated. KMUP-1 pretreatment upregulated the expression of sGCα1 and PKG protein. The ratio of Bcl-2/Bax expression was increased by the elevated level of Bcl2 and decreased level of Bax. In comparison with the ischemia group, KMUP-1 pretreatment groups reduced the expression of phosphorylated extracellular signal-regulated kinases ERK1/2, p-p38, and p-JNK as well. Therefore, KMUP-1 inhibits myocardial ischemia-induced apoptosis by restoration of cellular calcium influx through the mechanism of NO-cGMP-MAPK pathways.
Collapse
|
6
|
Singh N, Shreshtha AK, Thakur M, Patra S. Xanthine scaffold: scope and potential in drug development. Heliyon 2018; 4:e00829. [PMID: 30302410 PMCID: PMC6174542 DOI: 10.1016/j.heliyon.2018.e00829] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, anti-microbial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - M.S. Thakur
- Fermentation Technology and Bioengineering Department, Central Food Technological Research Institute, Mysore, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
7
|
Lee CH, Dai ZK, Yen CT, Hsieh SL, Wu BN. KMUP-1 protects against streptozotocin-induced mesenteric artery dysfunction via activation of ATP-sensitive potassium channels. Pharmacol Rep 2018; 70:746-752. [PMID: 29936361 DOI: 10.1016/j.pharep.2018.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/11/2018] [Accepted: 02/19/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia accompanied by impaired vascular and endothelial function. Activation of ATP-sensitive potassium (KATP) channels can protect endothelial function against hypertension and hyperglycemia. KMUP-1, a xanthine derivative, has been demonstrated to modulate K+-channel activity in smooth muscles. This study investigated protective mechanisms of KMUP-1 in impaired mesenteric artery (MA) reactivity in streptozotocin (STZ)-induced diabetic rats. METHODS Rats were divided into three groups: control, STZ (65 mg/kg, ip) and STZ + KMUP-1 (5 or 10 mg/kg/day, ip). MA reactivity was measured by dual wire myograph. MA smooth muscle cells (MASMCs) were enzymatically dissociated and the KATP currents recorded by a whole-cell patch-clamp technique. RESULTS STZ decreased MA KATP currents in a time-course dependent manner and achieved steady inhibition at day 14. In the MASMCs of STZ-treated rats, KMUP-1 partially recovered the KATP currents, suggesting that vascular KATP channels were activated by KMUP-1. K+ (80 mM KCl)-induced MA contractions in STZ-treated rats were higher than those of control rats. KMUP-1 significantly attenuated STZ-stimulated MA contractions in response to high K+, suggesting that KMUP-1 may partly restore the vascular reactivity of MAs. In addition, STZ decreased the expression of endothelial nitric oxide synthase (eNOS) and this effect was reversed by KMUP-1, suggesting that KMUP-1 could improve STZ-induced vascular endothelial dysfunction. CONCLUSION KMUP-1 prevents STZ impairment of MA reactivity, eNOS levels and KATP channels, and accordingly protects against vascular dysfunction in diabetic rats.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Ting Yen
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Molsidomine Attenuates Ventricular Electrical Remodeling and Arrhythmogenesis in Rats With Chronic β-Adrenergic Receptor Activation Through the NO/cGMP/PKG Pathway. J Cardiovasc Pharmacol 2017; 68:342-355. [PMID: 27482866 DOI: 10.1097/fjc.0000000000000422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigated the effects and associated underlying mechanisms of molsidomine, a nitric oxide (NO) donor, on cardiac electrical remodeling and ventricular tachycardias (VTs) induced by chronic isoprenaline (ISO) stimulation in rats. The rats were randomly divided into groups that were treated with saline (control group), ISO (ISO group), ISO + molsidomine (ISO + M group), and ISO + molsidomine + the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, ISO + M + O group) for 14 days. An electrophysiological study was performed to assess cardiac repolarization, action potential duration restitution, and the induction of action potential duration alternans and VTs in vitro. The properties of the Ca transients, Ca handling-related proteins, and NO/guanosine 3'5'-cyclic monophosphate (cGMP)/protein kinase G (PKG) pathway were examined. Compared with the control group, chronic ISO stimulation prolonged the cardiac repolarization, decreased the Ca transient alternans and action potential duration alternans thresholds, and increased the maximum slope (Smax) of the action potential duration restitution curve and incidence of VTs in vitro. All these effects were attenuated by molsidomine treatment (P < 0.05). Moreover, molsidomine activated cGMP/PKG signaling and stabilized the expression of calcium handling-related proteins compared with the ISO group. However, the protective effects of molsidomine were partially inhibited by ODQ. Our results suggest that molsidomine stabilizes calcium handling and attenuates cardiac electrical remodeling and arrhythmogenesis in rats with chronic β-adrenergic receptor activation. These effects are at least partially mediated by the activation of NO/cGMP/PKG pathway.
Collapse
|
9
|
Lee CH, Chu CS, Tsai HJ, Ke LY, Lee HC, Yeh JL, Chen CH, Wu BN. Xanthine-derived KMUP-1 reverses glucotoxicity-activated Kv channels through the cAMP/PKA signaling pathway in rat pancreatic β cells. Chem Biol Interact 2017; 279:171-176. [PMID: 29183753 DOI: 10.1016/j.cbi.2017.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Hyperglycemia-associated glucotoxicity induces β-cell dysfunction and a reduction in insulin secretion. Voltage-dependent K+ (Kv) channels in pancreatic β-cells play a key role in glucose-dependent insulin secretion. KMUP-1, a xanthine derivative, has been demonstrated to modulate Kv channel activity in smooth muscles; however, the role of KMUP-1 in glucotoxicity-activated Kv channels in pancreatic β-cells remains unclear. In this study we examined the mechanisms by which KMUP-1 could inhibit high glucose (25 mM) activated Kv currents (IKv) in pancreatic β-cells. Pancreatic β-cells were isolated from Wistar rats and IKv was monitored by perforated patch-clamp recording. The peak IKv in high glucose-treated β-cells was ∼1.4-fold greater than for normal glucose (5.6 mM). KMUP-1 (1, 10, 30 μM) prevented high glucose-stimulated IKv in a concentration-dependent manner. Reduction of high glucose-activated IKv was also found for protein kinase A (PKA) activator 8-Br-cAMP (100 μM). Additionally, KMUP-1 (30 μM) current inhibition was reversed by the PKA inhibitor H-89 (1 μM). Otherwise, pretreatment with the PKC activator or inhibitor had no effect on IKv in high glucose exposure. In conclusion, glucotoxicity-diminished insulin secretion was due to IKv activation. KMUP-1 attenuated high glucose-stimulated IKv via the PKA but not the PKC signaling pathway. This finding provides evidence that KMUP-1 might be a promising agent for treating hyperglycemia-induced insulin resistance.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Sheng Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Han-Jie Tsai
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Liang-Yin Ke
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chu-Huang Chen
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
10
|
Lin SH, Chen IJ, Chuang CT, Ho WT, Chuang LY, Guh JY. KMUP-1 attenuates high glucose and transforming growth factor-β1-induced pro-fibrotic proteins in mesangial cells. Mol Med Rep 2017; 15:4199-4206. [PMID: 28440482 DOI: 10.3892/mmr.2017.6486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/26/2017] [Indexed: 11/05/2022] Open
Abstract
We have previously demonstrated that KMUP-1, a xanthine-based nitric oxide enhancer, attenuates diabetic glomerulosclerosis, while increasing renal endothelial nitric oxide synthase expression in rats. However, the anti‑fibrotic mechanisms of KMUP‑1 treatment in diabetic nephropathy in terms of cell biology and transforming growth factor-β1 (TGF‑β1) remain unclear. Therefore, the present study involved investigating the effects of KMUP‑1 on high glucose (HG) or TGF‑β1‑induced pro‑fibrotic proteins in mouse mesangial (MES13) cells, and the effects of KMUP‑1 on streptozotocin (STZ)‑induced diabetic rats. It was identified that KMUP‑1 (10 µM) attenuated HG (30 mM)‑induced cell hypertrophy while attenuating TGF‑β1 gene transcription and bioactivity in MES13 cells. In addition, KMUP‑1 attenuated TGF‑β1 (5 ng/ml)‑induced Smad2/3 phosphorylation while attenuating HG or TGF‑β1‑induced collagen IV and fibronectin protein expression. Furthermore, KMUP‑1 attenuated HG‑decreased Suv39h1 and H3K9me3 levels. Finally, KMUP‑1 attenuated diabetes-induced collagen IV and fibronectin protein expression in STZ‑diabetic rats at 8 weeks. In conclusion, KMUP‑1 attenuates HG and TGF‑β1‑induced pro‑fibrotic proteins in mesangial cells and attenuation of TGF‑β1‑induced signaling and attenuation of HG‑decreased Suv39h1 expression may be two of the anti-fibrotic mechanisms of KMUP‑1.
Collapse
Affiliation(s)
- Sheng-Hsuan Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Ing-Jun Chen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Chao-Tang Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Wan-Ting Ho
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Lea-Yea Chuang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Jinn-Yuh Guh
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| |
Collapse
|
11
|
Wu JR, Hsu JH, Dai ZK, Wu BN, Chen IJ, Liou SF, Yeh JL. Activation of endothelial NO synthase by a xanthine derivative ameliorates hypoxia-induced apoptosis in endothelial progenitor cells. ACTA ACUST UNITED AC 2016; 68:810-8. [PMID: 27109251 DOI: 10.1111/jphp.12555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/13/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Endothelial damage is strongly associated with cardiovascular diseases such as atherosclerosis, thrombosis and hypertension. Endothelial progenitor cells (EPCs) are primitive bone marrow (BM) cells that possess the capacity to mature into endothelial cells and play a role in neovascularization and vascular remodelling. This study aimed to investigate whether KMUP-1, a synthetic xanthine-based derivative, atorvastatin and simvastatin, can prevent endothelial dysfunction and apoptosis induced by hypoxia and to elucidate the underlying mechanisms. METHODS Mononuclear cells were separated and were induced to differentiate into EPCs. KMUP-1, atorvastatin or simvastatin were administered prior to hypoxia. KEY FINDINGS We found that EPCs exposed to hypoxia increased apoptosis as well as diminished proliferation. Pretreatment with KMUP-1, atorvastatin and simvastatin significantly prevented hypoxia-induced EPCs death and apoptosis, with associated increased of the Bcl-2/Bax ratio, and reduced caspase-3 and caspase-9 expression. We also assessed the nitrite production and Ser(1177)-phospho-eNOS expression and found that KMUP-1, atorvastatin and simvastatin not only increased the secretion of NO compared with the hypoxia group but also upregulated the eNOS activation. CONCLUSIONS KMUP-1 inhibited hypoxia-induced dysfunction and apoptosis in EPCs, which may be mediated through suppressing oxidative stress, upregulating eNOS and downregulating the caspase-3 signalling pathway.
Collapse
Affiliation(s)
- Jiunn-Ren Wu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department and Graduate Institute of Pharmacology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department and Graduate Institute of Pharmacology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Fen Liou
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department and Graduate Institute of Pharmacology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Lo YC, Tseng YT, Liu CM, Wu BN, Wu SN. Actions of KMUP-1, a xanthine and piperazine derivative, on voltage-gated Na(+) and Ca(2+) -activated K(+) currents in GH3 pituitary tumour cells. Br J Pharmacol 2015; 172:5110-22. [PMID: 26276211 DOI: 10.1111/bph.13276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE 7-[2-[4-(2-Chlorophenyl)piperazinyl]ethyl]-1,3-dimethylxanthine (KMUP-1) is a xanthine-based derivative. It has soluble GC activation and K(+) -channel opening activity. Effects of this compound on ion currents in pituitary GH3 cells were investigated in this study. EXPERIMENTAL APPROACH The aim of this study was to evaluate effects of KMUP-1 on the amplitude and gating of voltage-gated Na(+) current (INa ) in pituitary GH3 cells and in HEKT293T cells expressing SCN5A. Both the amplitude of Ca(2+) -activated K(+) current and the activity of large-conductance Ca(2+) -activated K(+) (BKCa ) channels were also studied. KEY RESULTS KMUP-1 depressed the transient and late components of INa with different potencies. The IC50 values required for its inhibitory effect on transient and late INa were 22.5 and 1.8 μM respectively. KMUP-1 (3 μM) shifted the steady-state inactivation of INa to a hyperpolarized potential by -10 mV, despite inability to alter the recovery of INa from inactivation. In cell-attached configuration, KMUP-1 applied to bath increased BKCa -channel activity; however, in inside-out patches, this compound applied to the intracellular surface had no effect on it. It prolonged the latency in the generation of action currents elicited by triangular voltage ramps. Additionally, KMUP-1 decreased the peak INa with a concomitant increase of current inactivation in HEKT293T cells expressing SCN5A. CONCLUSIONS AND IMPLICATIONS Apart from activating BKCa channels, KMUP-1 preferentially suppresses late INa . The effects of KUMP-1 on ion currents presented here constitute an underlying ionic mechanism of its actions.
Collapse
Affiliation(s)
- Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ting Tseng
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ming Liu
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| |
Collapse
|
13
|
Liou SF, Hsu JH, Chu HC, Lin HH, Chen IJ, Yeh JL. KMUP-1 Promotes Osteoblast Differentiation Through cAMP and cGMP Pathways and Signaling of BMP-2/Smad1/5/8 and Wnt/β-Catenin. J Cell Physiol 2015; 230:2038-48. [PMID: 25536014 DOI: 10.1002/jcp.24904] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022]
Abstract
Phosphodiesterase (PDE) inhibitors have been suggested as a possible candidate for the treatment of osteopenia, including osteoporosis. KMUP-1 is a novel xanthine derivative with inhibitory activities on the PDE 3, 4, and 5 iso-enzymes to suppress the degradation of cAMP and cGMP. This study aimed to investigate the effect of KMUP-1 on osteoblast differentiation and the underlying cellular and molecular mechanisms. Primary osteoblasts and osteoblastic MC3T3-E1 cells were examined. KMUP-1 enhanced alkaline phosphatase (ALP) activity and mineralization compared to untreated controls in primary osteoblasts and MC3T3-E1 cells. KMUP-1 also increased the mRNA expression of the osteoblastic differentiation markers, including collagen type 1a, ALP, osteocalcin, osteoprotegerin, BMP-2, and Runx2, a key transcription regulator for osteoblastic differentiation. The osteogenic effect of KMUP-1 was abolished by BMP signaling inhibitor, noggin. Furthermore, we found that KMUP-1 upregulated Smad1/5/8 phosphorylations with subsequent BRE-Luc activation confirmed by transient transfection assay. In addition, KMUP-1 inactivated glycogen synthase kinase-3β (GSK-3β), with associated nuclear translocation of β-catenin. Co-treatment with H89 and KT5823, cAMP and cGMP pathway inhibitors, respectively, reversed the KMUP-1-induced activations of Smad1/5/8, β-catenin, and Runx2. The findings demonstrate for the first time that KMUP-1 can promote osteoblast maturation and differentiation in vitro via BMP-2/Smad1/5/8 and Wnt/β-catenin pathways. These effects are mediated, in part, by the cAMP and cGMP signaling. Thus, KMUP-1 may be a novel osteoblast activator and a potential new therapy for osteoporosis.
Collapse
Affiliation(s)
- Shu-Fen Liou
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jong-Hau Hsu
- Department of Paediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chieh Chu
- Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hong Lin
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ing-Jun Chen
- Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Liou SF, Hsu JH, Chen YT, Chen IJ, Yeh JL. KMUP-1 Attenuates Endothelin-1-Induced Cardiomyocyte Hypertrophy through Activation of Heme Oxygenase-1 and Suppression of the Akt/GSK-3β, Calcineurin/NFATc4 and RhoA/ROCK Pathways. Molecules 2015; 20:10435-49. [PMID: 26056815 PMCID: PMC6272697 DOI: 10.3390/molecules200610435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
The signaling cascades of the mitogen activated protein kinase (MAPK) family, calcineurin/NFATc4, and PI3K/Akt/GSK3, are believed to participate in endothelin-1 (ET-1)-induced cardiac hypertrophy. The aim of this study was to investigate whether KMUP-1, a synthetic xanthine-based derivative, prevents cardiomyocyte hypertrophy induced by ET-1 and to elucidate the underlying mechanisms. We found that in H9c2 cardiomyocytes, stimulation with ET-1 (100 nM) for 4 days induced cell hypertrophy and enhanced expressions of hypertrophic markers, including atrial natriuretic peptide and brain natriuretic peptide, which were all inhibited by KMUP-1 in a dose-dependent manner. In addition, KMUP-1 prevented ET-1-induced intracellular reactive oxygen species generation determined by the DCFH-DA assay in cardiomyocytes. KMUP-1 also attenuated phosphorylation of ERK1/2 and Akt/GSK-3β, and activation of calcineurin/NFATc4 and RhoA/ROCK pathways induced by ET-1. Furthermore, we found that the expression of heme oxygenase-1 (HO-1), a stress-response enzyme implicated in cardio-protection, was up-regulated by KMUP-1. Finally, KMUP-1 attenuated ET-1-stimulated activator protein-1 DNA binding activity. In conclusion, KMUP-1 attenuates cardiomyocyte hypertrophy induced by ET-1 through inhibiting ERK1/2, calcineurin/NFATc4 and RhoA/ROCK pathways, with associated cardioprotective effects via HO-1 activation. Therefore, KMUP-1 may have a role in pharmacological therapy of cardiac hypertrophy.
Collapse
Affiliation(s)
- Shu-Fen Liou
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jong-Hau Hsu
- Department of Paediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Ting Chen
- Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ing-Jun Chen
- Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jwu-Lai Yeh
- Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
15
|
Dai ZK, Liu YW, Hsu JH, Yeh JL, Chen IJ, Wu JR, Wu BN. The Xanthine Derivative KMUP-1 Attenuates Serotonin-Induced Vasoconstriction and K⁺-Channel Inhibitory Activity via the PKC Pathway in Pulmonary Arteries. Int J Biol Sci 2015; 11:633-42. [PMID: 25999786 PMCID: PMC4440253 DOI: 10.7150/ijbs.11127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/23/2015] [Indexed: 01/17/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a potent pulmonary vasoconstrictor that promotes pulmonary artery smooth muscle cell (PASMC) proliferation. 5-HT-induced K+ channel inhibition increases [Ca2+]i in PASMCs, which is a major trigger for pulmonary vasoconstriction and development of pulmonary arterial hypertension (PAH). This study investigated whether KMUP-1 reduces pulmonary vasoconstriction in isolated pulmonary arteries (PAs) and attenuates 5-HT-inhibited K+ channel activities in PASMCs. In endothelium-denuded PA rings, KMUP-1 (1 μM) dose-dependently reduced 5-HT (100 μM) mediated contractile responses. Responses to KMUP-1 were reversed by K+ channel inhibitors (TEA, 10 mM, 4-aminopyridine, 5 mM, and paxilline, 10 μM). In primary PASMCs, KMUP-1 also dose-dependently restored 5-HT-inhibited voltage-gated K+-channel (Kv1.5 and Kv2.1) and large-conductance Ca2+-activated K+-channel (BKCa) proteins, as confirmed by immunofluorescent staining. Furthermore, 5-HT (10 μM)-inhibited Kv1.5 protein was unaffected by the PKA inhibitor KT5720 (1 μM) and the PKC activator PMA (1 μM), but these effects were reversed by KMUP-1 (1 μM), 8-Br-cAMP (100 μM), chelerythrine (1 μM), and KMUP-1 combined with a PKA/PKC activator or inhibitor. Notably, KMUP-1 reversed 5-HT-inhibited Kv1.5 protein and this response was significantly attenuated by co-incubation with the PKC activator PMA, suggesting that 5-HT-mediated PKC signaling can be modulated by KMUP-1. In conclusion, KMUP-1 ameliorates 5-HT-induced vasoconstriction and K+-channel inhibition through the PKC pathway, which could be valuable to prevent the development of PAH.
Collapse
Affiliation(s)
- Zen-Kong Dai
- 1. Department of Pediatrics, Division of Pediatric Pulmonology and Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wei Liu
- 2. Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- 1. Department of Pediatrics, Division of Pediatric Pulmonology and Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- 2. Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- 2. Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiunn-Ren Wu
- 1. Department of Pediatrics, Division of Pediatric Pulmonology and Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- 2. Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Dai ZK, Lin TC, Liou JC, Cheng KI, Chen JY, Chu LW, Chen IJ, Wu BN. Xanthine derivative KMUP-1 reduces inflammation and hyperalgesia in a bilateral chronic constriction injury model by suppressing MAPK and NFκB activation. Mol Pharm 2014; 11:1621-31. [PMID: 24669856 DOI: 10.1021/mp5000086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is characterized by spontaneous pain, hyperalgesia, and allodynia. The aim of this study was to investigate whether KMUP-1 (7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) could improve pain hypersensitivity and reduce inflammatory mediators, and also explore possible mechanisms in the rat sciatic nerve using bilateral chronic constriction injury (CCI) to induce neuropathic pain. Sprague-Dawley rats were randomly divided into four groups: Sham, Sham+KMUP-1, CCI, and CCI+KMUP-1. KMUP-1 (5 mg/kg/day) was injected intraperitoneally starting at day 1 after surgery. Mechanical and thermal responses were assessed before surgery and at days 3, 7, and 14 after CCI. Sciatic nerves around the injury site were isolated for Western blots and enzyme-linked immunosorbent assay to analyze protein and cytokine levels. The results show that thermal hyperalgesia and mechanical allodynia were reduced in the KMUP-1 treated group as compared to that in the CCI group. Inflammatory proteins (COX2, iNOS, and nNOS) and proinflammatory cytokines (TNF-α and IL-1β) induced by CCI were decreased in the KMUP-1 treated group at day 7 after surgery. KMUP-1 also inhibited neuropathic pain-related mechanisms, including p38 and ERK activation, but not JNK. Furthermore, KMUP-1 blocked IκB phosphorylation (p-IκB) and phospho-nuclear factor κB (p-NF-κB) translocation to nuclei. Double immunofluorescent staining further demonstrated that p-IκB (an indicator of activated NFκB) and p-NFκB proteins were almost abolished by KMUP-1 in peripheral macrophages and spinal microglia cells at day 7 after surgery. On the basis of these findings, we concluded that KMUP-1 has antiinflammatory and antihyperalgesia properties in CCI-induced neuropathic pain via decreases in MAPKs and NF-κB activation.
Collapse
Affiliation(s)
- Zen-Kong Dai
- Department of Pediatrics, Division of Pediatric Pulmonology and Cardiology, Kaohsiung Medical University Hospital , 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Raphemot R, Swale DR, Dadi PK, Jacobson DA, Cooper P, Wojtovich AP, Banerjee S, Nichols CG, Denton JS. Direct activation of β-cell KATP channels with a novel xanthine derivative. Mol Pharmacol 2014; 85:858-65. [PMID: 24646456 DOI: 10.1124/mol.114.091884] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP-regulated potassium (KATP) channel complexes of inward rectifier potassium channel (Kir) 6.2 and sulfonylurea receptor (SUR) 1 critically regulate pancreatic islet β-cell membrane potential, calcium influx, and insulin secretion, and consequently, represent important drug targets for metabolic disorders of glucose homeostasis. The KATP channel opener diazoxide is used clinically to treat intractable hypoglycemia caused by excessive insulin secretion, but its use is limited by off-target effects due to lack of potency and selectivity. Some progress has been made in developing improved Kir6.2/SUR1 agonists from existing chemical scaffolds and compound screening, but there are surprisingly few distinct chemotypes that are specific for SUR1-containing KATP channels. Here we report the serendipitous discovery in a high-throughput screen of a novel activator of Kir6.2/SUR1: VU0071063 [7-(4-(tert-butyl)benzyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione]. The xanthine derivative rapidly and dose-dependently activates Kir6.2/SUR1 with a half-effective concentration (EC50) of approximately 7 μM, is more efficacious than diazoxide at low micromolar concentrations, directly activates the channel in excised membrane patches, and is selective for SUR1- over SUR2A-containing Kir6.1 or Kir6.2 channels, as well as Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and voltage-gated potassium channel 2.1. Finally, we show that VU0071063 activates native Kir6.2/SUR1 channels, thereby inhibiting glucose-stimulated calcium entry in isolated mouse pancreatic β cells. VU0071063 represents a novel tool/compound for investigating β-cell physiology, KATP channel gating, and a new chemical scaffold for developing improved activators with medicinal chemistry.
Collapse
Affiliation(s)
- Rene Raphemot
- Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kuo HF, Lai YJ, Wu JC, Lee KT, Chu CS, Chen IJ, Wu JR, Wu BN. A xanthine-derivative K(+)-channel opener protects against serotonin-induced cardiomyocyte hypertrophy via the modulation of protein kinases. Int J Biol Sci 2013; 10:64-72. [PMID: 24391452 PMCID: PMC3879592 DOI: 10.7150/ijbs.7894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 11/13/2022] Open
Abstract
This study investigated whether KMUP-1, a xanthine-derivative K+ channel opener, could prevent serotonin-induced hypertrophy in H9c2 cardiomyocytes via L-type Ca2+ channels (LTCCs). Rat heart-derived H9c2 cells were incubated with serotonin (10 μM) for 4 days. The cell size increased by 155.5%, and this was reversed by KMUP-1 (≥1 μM), and attenuated by the LTCC blocker verapamil (1 μM) and the 5-HT2A antagonist ketanserin (0.1 μM), but unaffected by the 5-HT2B antagonist SB206553. A perforated whole-cell patch-clamp technique was used to investigate Ca2+ currents through LTCCs in serotonin-induced H9c2 hypertrophy, in which cell capacitance and current density were increased. The LTCC current (ICa,L) increased ~2.9-fold in serotonin-elicited H9c2 hypertrophy, which was attenuated by verapamil and ketanserin, but not affected by SB206553 (0.1 μM). Serotonin-increased ICa,L was reduced by KMUP-1, PKA and PKC inhibitors (H-89, 1 μM and chelerythrine, 1 μM) while the current was enhanced by the PKC activator PMA, (1 μM) but not the PKA activator 8-Br-cAMP (100 μM), and was abolished by KMUP-1. In contrast, serotonin-increased ICa,L was blunted by the PKG activator 8-Br-cGMP (100 μM), but unaffected by the PKG inhibitor KT5823 (1 μM). Notably, KMUP-1 blocked serotonin-increased ICa,L but this was partially reversed by KT5823. In conclusion, serotonin-increased ICa,L could be due to activated 5-HT2A receptor-mediated PKA and PKC cascades, and/or indirect interaction with PKG. KMUP-1 prevents serotonin-induced H9c2 cardiomyocyte hypertrophy, which can be attributed to its PKA and PKC inhibition, and/or PKG stimulation.
Collapse
Affiliation(s)
- Hsuan-Fu Kuo
- 1. Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Jie Lai
- 2. Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-Chou Wu
- 3. Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Kun-Tai Lee
- 4. Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- 1. Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan ; 4. Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- 2. Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiunn-Ren Wu
- 5. Department of Pediatrics, Division of Pediatric Pulmonology and Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- 2. Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Liou SF, Hsu JH, Lin IL, Ho ML, Hsu PC, Chen LW, Chen IJ, Yeh JL. KMUP-1 suppresses RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss: roles of MAPKs, Akt, NF-κB and calcium/calcineurin/NFATc1 pathways. PLoS One 2013; 8:e69468. [PMID: 23936022 PMCID: PMC3723916 DOI: 10.1371/journal.pone.0069468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Background KMUP-1 is a xanthine derivative with inhibitory activities on the phosphodiesterase (PDE) 3,4 and 5 isoenzymes to suppress the degradation of cyclic AMP and cyclic GMP. However, the effects of KMUP-1 on osteoclast differentiation are still unclear. In this study, we investigated whether KMUP-1 inhibits osteoclastogenesis induced by RANKL in RAW 264.7 cells and bone loss induced by ovariectomy in mice, and the underlying mechanisms. Principal Findings In vitro, KMUP-1 inhibited RANKL-induced TRAP activity, the formation of multinucleated osteoclasts and resorption-pit formation. It also inhibited key mediators of osteoclastogenesis including IL-1β, IL-6, TNF-α and HMGB1. In addition, KMUP-1 inhibited RANKL-induced activation of signaling molecules (Akt, MAPKs, calcium and NF-κB), mRNA expression of osteoclastogensis-associated genes (TRAP, MMP-9, Fra-1, and cathepsin K) and transcription factors (c-Fos and NFATc1). Furthermore, most inhibitory effects of KMUP-1 on RANKL-mediated signal activations were reversed by a protein kinase A inhibitor (H89) and a protein kinase G inhibitor (KT5823). In vivo, KMUP-1 prevented loss of bone mineral content, preserved serum alkaline phosphate and reduced serum osteocalcin in ovariectomized mice. Conclusions KMUP-1 inhibits RANKL-induced osteoclastogenesis in vitro and protects against ovariectomy-induced bone loss in vivo. These effects are mediated, at least in part, by cAMP and cGMP pathways. Therefore, KMUP-1 may have a role in pharmacologic therapy of osteoporosis.
Collapse
Affiliation(s)
- Shu-Fen Liou
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jong-Hau Hsu
- Department of Paediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Paediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chuan Hsu
- Departments of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Wen Chen
- Departments of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Departments of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Departments of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Chung CL, Tsai HP, Lee KS, Chen KI, Wu SC, Kuo YH, Winardi W, Chen IC, Kwan AL. Assisted peripheral nerve recovery by KMUP-1, an activator of large-conductance Ca(2+)-activated potassium channel, in a rat model of sciatic nerve crush injury. Acta Neurochir (Wien) 2012; 154:1773-9. [PMID: 22772399 DOI: 10.1007/s00701-012-1433-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Axonal regeneration in peripheral nerves after injury is a complicated process. Numerous cytokines, growth factors, channels, kinases, and receptors are involved, and matrix metalloproteinase-9 (MMP-9) has been implicated in the pathogenesis subsequent to nerve injury. In this study, the effect of KMUP-1, an activator of large-conductance Ca(2+)-activated potassium channel, on functional recovery, myelinated axon growth, and immunoreactivity of MMP-9 was evaluated in rats subjected to sciatic nerve crush injury. METHOD A total of 144 male Sprague-Dawley rats were divided into the following six groups (n = 24/group): group 1, sham-operated; group 2, sciatic nerve injury without treatment; group 3, injured and vehicle-treated; group 4, injured and treated with 1 mM KMUP-1 by topical application; group 5, injured and treated with 10 mM KMUP-1; group 6, injured and treated with 50 mM KMUP-1. Functional recovery was evaluated using walking track analysis at 1, 2, 3, and 4 weeks (n = 6/group at each time point) after injury. In addition, the number of myelinated axons and MMP-9 in the nerve was also examined. FINDINGS Animals subjected to sciatic nerve crush injury had decreased motor function, a reduced number of myelinated axons, and increased MMP-9 in the nerve. Treatment with KMUP-1 concentration-dependently improved functional recovery, increased the number of myelinated axons, and decreased MMP-9. CONCLUSIONS These results suggest that KMUP-1 may be a novel agent for assisting peripheral nerve recovery after injury. The beneficial effect is probably due to known ability of the compound in activating the nitric oxide/cGMP/protein kinase G pathway.
Collapse
Affiliation(s)
- Chia-Li Chung
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Potassium-Channel Openers KMUP-1 and Pinacidil Prevent Subarachnoid Hemorrhage–Induced Vasospasm by Restoring the BKCa-Channel Activity. Shock 2012; 38:203-12. [DOI: 10.1097/shk.0b013e31825b2d82] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Wu BN, Chen HY, Liu CP, Hsu LY, Chen IJ. KMUP-1 inhibits H441 lung epithelial cell growth, migration and proinflammation via increased NO/CGMP and inhibited RHO kinase/VEGF signaling pathways. Int J Immunopathol Pharmacol 2012; 24:925-39. [PMID: 22230399 DOI: 10.1177/039463201102400411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigates whether KMUP-1 protects soluble guanylate cyclase (sGC) and inhibits vascular endothelial growth factor (VEGF) expression in lung epithelial cells in hypoxia, therapeutically targeting epithelial proinflammation. H441 cells were used as a representative epithelial cell line to examine the role of sGC and VEGF in hypoxia and the anti-proinflammatory activity of KMUP-1 in normoxia. Human H441 cells were grown in hypoxia for 24-72 h. KMUP-1 (1, 10, 100 microM) arrested cells at the G0/G1 phase of the cell cycle, reduced cell survival and migration, increased p21/p27, restored eNOS, increased soluble guanylate cyclase (sGC) and PKG and inhibited Rho kinase II (ROCK-II). KMUP-1 (0.001-0.1 microM) concentration dependently increased eNOS in normoxia and did not inhibit phosphodiesterase-5A (PDE-5A) in hypoxic cells. Hypoxia-induced factor-1alpha (HIF-1alpha) and VEGF were suppressed by KMUP-1 but not by L-NAME (100 microM). The PKG inhibitor Rp-8-CPT-cGMPS (10 microM) blunted the inhibition of ROCK-II by KMUP-1. KMUP-1 inhibited thromboxane A2-mimetic agonist U46619-induced PDE-5A, TNF-alpha (100 ng/ml)-induced iNOS, and ROCK-II and associated phospho-p38 MAPK, suggesting multiple anti-proinflammatory activities. In addition, increased p21/p27 by KMUP-1 at higher concentrations might contribute to an increased Bax/Bcl-2 and active caspase-3/procaspase-3 ratio, concomitantly causing apoptosis. KMUP-1 inhibited ROCK-II/VEGF in hypoxia, indicating its anti-neoplastic and anti-inflammatory properties. KMUP-1 inhibited TNF-alpha-induced iNOS and U46619-induced PDE-5A and phospho-p38 MAPK in normoxia, confirming its anti-proinflammatory action. KMUP-1 could be used as an anti-proinflammatory to reduce epithelial inflammation.
Collapse
Affiliation(s)
- B N Wu
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Olsen PC, Coelho LP, da Costa JCS, Cordeiro RSB, Silva PMR, Martins MA. Two for one: cyclic AMP mediates the anti-inflammatory and anti-spasmodic properties of the non-anesthetic lidocaine analog JMF2-1. Eur J Pharmacol 2012; 680:102-7. [PMID: 22329902 DOI: 10.1016/j.ejphar.2012.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/24/2012] [Accepted: 01/28/2012] [Indexed: 01/23/2023]
Abstract
Inhalation of JMF2-1, an analog of lidocaine with reduced anesthetic activity, prevents airway contraction and lung inflammation in experimental asthma models. We sought to test if the JMF2-1 effects are a consequence of increased intracellular cAMP levels in asthma cell targets, such as smooth muscle cells and T cells. Functional effect of JMF2-1 on carbachol-induced contraction of intact or epithelial-denuded rat trachea was assessed in conventional organ baths. cAMP was quantified by radioimmunoassay in cultured guinea pig tracheal smooth muscle cells, as well as lymph node cells from BALB/c mice, exposed to JMF2-1. We found that JMF2-1 (0.1-1mM) concentration-dependently inhibited epithelium-intact tracheal ring contraction induced by carbachol challenge. The antispasmodic effect remained unaltered following epithelium removal or pretreatment with NG-nitro-L-arginine methyl ester (100μM), but it was clearly sensitive to 9-(tetrahydro-2-furyl) adenine (SQ22,536, 100μM), an adenylate cyclase inhibitor. JMF2-1 (300 and 600μM) also dose-dependently increased cAMP intracellular levels of both cultured airway smooth muscle cells and T lymphocytes. This effect was consistently abrogated by SQ22,536 and reproduced by forskolin in both systems. JMF2-1 induced apoptosis of anti-CD3 activated T cells in a mechanism sensitive to zIETD, indicating that JMF2-1 mediates caspase-8-dependent apoptosis. Furthermore, forskolin also inhibited anti-CD3 induced T cell proliferation and survival. Our results suggest that JMF2-1 inhibits respiratory smooth muscle contraction as well as T cell proliferation and survival through enhancement of intracellular cAMP levels. These findings may help to explain the anti-inflammatory and antispasmodic effects of JMF2-1 observed in previous studies.
Collapse
Affiliation(s)
- Priscilla C Olsen
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
KMUP-1 inhibits L-type Ca2+ channels involved the protein kinase C in rat basilar artery myocytes. Kaohsiung J Med Sci 2011; 27:538-43. [DOI: 10.1016/j.kjms.2011.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/10/2011] [Indexed: 11/23/2022] Open
|
25
|
Liu CP, Yeh JL, Wu BN, Chai CY, Chen IJ, Lai WT. KMUP-3 attenuates ventricular remodelling after myocardial infarction through eNOS enhancement and restoration of MMP-9/TIMP-1 balance. Br J Pharmacol 2011; 162:126-35. [PMID: 20840538 DOI: 10.1111/j.1476-5381.2010.01024.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Previously, 7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1, 3-dimethylxanthine (KMUP-3) has been shown to induce aortic smooth muscle relaxation through K(ATP) channel opening and endothelial nitric oxide synthase (eNOS) enhancement. We further investigated whether KMUP-3 protects against myocardial remodelling after myocardial infarction (MI), and whether KMUP-3 increases the expression of eNOS in MI rats. EXPERIMENTAL APPROACH Wistar rats were randomly allocated into three groups: MI (n= 10), MI + KMUP-3 group (n= 10) and sham group (n= 10). MI was induced by ligation of the left anterior descending coronary artery. After recovery, the MI + KMUP-3 group received KMUP-3 (0.3 mg·kg(-1) ·day(-1) ) infusion for 4 weeks, while the MI and sham group received vehicle only. To further confirm that the effect of KMUP-3 is dependent on eNOS, KMUP-3 was applied in the culture of transforming growth factor-β-stimulated human cardiac fibroblasts. KEY RESULTS KMUP-3 treatment attenuated cardiac hypertrophy post-MI and improved cardiac function. The fibrotic area was reduced by KMUP-3 both in central-, peri- and non-infarction areas. KMUP-3 enhanced the expression of eNOS and tissue inhibitor of metalloproteinase-1 (TIMP-1), but reduced matrix metalloproteinase-9 (MMP-9) expression. In vitro, the activities of KMUP-3 were blocked by pretreatment with the eNOS inhibitor N(ω) -nitro-L-arginine methyl ester. CONCLUSIONS AND IMPLICATIONS The K(ATP) channel opener KMUP-3 preserved cardiac function after MI by enhancing the expression of eNOS. In addition, KMUP-3 restored the myocardial MMP-9/TIMP-1 balance and attenuated ventricular remodelling by an eNOS-dependent mechanism.
Collapse
Affiliation(s)
- Chung-Pin Liu
- Depart of Internal Medicine, Yuan's General hospital, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Chung HH, Dai ZK, Wu BN, Yeh JL, Chai CY, Chu KS, Liu CP, Chen IJ. The xanthine derivative KMUP-1 inhibits models of pulmonary artery hypertension via increased NO and cGMP-dependent inhibition of RhoA/Rho kinase. Br J Pharmacol 2010; 160:971-86. [PMID: 20590592 DOI: 10.1111/j.1476-5381.2010.00740.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE KMUP-1 is known to increase cGMP, enhance endothelial nitric oxide synthase (eNOS) and suppress Rho kinase (ROCK) expression in smooth muscle. Here, we investigated the mechanism of action of KMUP-1 on acute and chronic pulmonary artery hypertension (PAH) in rats. EXPERIMENTAL APPROACH We measured pulmonary vascular contractility, wall thickening, eNOS immunostaining, expressions of ROCK II, RhoA activation, myosin phosphatase target subunit 1 (MYPT1) phosphorylation, eNOS, soluble guanylyl cyclase (sGC), protein kinase G (PKG) and phosphodiesterase 5A (PDE-5A), blood oxygenation and cGMP/cAMP, and right ventricular hypertrophy (RVH) in rats. KEY RESULTS In rings of intact pulmonary artery (PA), KMUP-1 relaxed the vasoconstriction induced by phenylephrine (10 microM) or the thromboxane A(2)-mimetic U46619 (0.5 microM). In endothelium-denuded PA rings, this relaxation was reduced. In acute PAH induced by U46619 (2.5 microg x kg(-1) x min(-1), 30 min), KMUP-1 relaxed vasoconstriction by enhancing levels of eNOS, sGC and PKG, suppressing those of PDE-5A, RhoA/ROCK II activation and MYPT1 phosphorylation, and restoring oxygenation in blood and cGMP/cAMP in plasma. Incubating smooth muscle cells from PA (PASMCs) with KMUP-1 inhibited thapsigargin-induced Ca(2+) efflux and angiotensin II-induced Ca(2+) influx. In chronic PAH model induced by monocrotaline, KMUP-1 increased eNOS and reduced RhoA/ROCK II activation/expression, PA wall thickening, eNOS immunostaining and RVH. KMUP-1 and sildenafil did not inhibit monocrotaline-induced PDE-5A expression. CONCLUSION AND IMPLICATIONS KMUP-1 decreased PAH by enhancing NO synthesis by eNOS, with consequent cGMP-dependent inhibition of RhoA/ROCK II and Ca(2+) desensitization in PASMCs. KMUP-1 has the potential to reduce vascular resistance, remodelling and RVH in PAH.
Collapse
Affiliation(s)
- Hui-Hsuan Chung
- Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin YL, Dai ZK, Lin RJ, Chu KS, Chen IJ, Wu JR, Wu BN. Baicalin, a flavonoid from Scutellaria baicalensis Georgi, activates large-conductance Ca2+-activated K+ channels via cyclic nucleotide-dependent protein kinases in mesenteric artery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:760-70. [PMID: 20171070 DOI: 10.1016/j.phymed.2010.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 01/18/2010] [Indexed: 05/24/2023]
Abstract
Baicalin isolated from Scutellaria baicalensis is a traditional Chinese herbal medicine used for cardiovascular dysfunction. The ionic mechanism of the vasorelaxant effects of baicalin remains unclear. We investigated whether baicalin relaxes mesenteric arteries (MAs) via large-conductance Ca2+-activated K+ (BK(Ca)) channel activation and voltage-dependent Ca2+ channel (VDCC) inhibition. The contractility of MA was determined by dual wire myograph. BK(Ca) channels and VDCCs were measured using whole-cell recordings in single myocytes, enzymatically dispersed from rat MAs. Baicalin (10-100 microM) attenuated 80 mM KCl-contracted MA in a concentration-related manner. L-NAME (30 microM) and indomethacin (10 microM) little affected baicalin (100 microM)-induced vasorelaxations. Contractions induced by iberiotoxin (IbTX, 0.1 microM), Bay K8644 (0.1 microM) or PMA (10 microM) were abolished by baicalin 100 microM. In MA myocytes, baicalin (0.3-30 microM) enhanced BK(Ca) channel activity in a concentration-dependent manner. Increased BK(Ca) currents were abolished by IbTX (0.1 microM). Baicalin-mediated (30 microM) BK(Ca) current activation was significantly attenuated by an adenylate cyclase inhibitor (SQ 22536, 10 microM), a soluble guanylate cyclase inhibitor (ODQ, 10 microM), competitive antagonists of cAMP and cGMP (Rp-cAMP, 100 microM and Rp-cGMP, 100 microM), and cAMP- and cGMP-dependent protein kinase inhibitors (KT5720, 0.3 microM and KT5823, 0.3 microM). Perfusate with PMA (0.1 microM) abolished baicalin-enhanced BK(Ca) currents. Additionally, baicalin (0.3-30 microM) reduced the amplitude of VDCC currents in a concentration-dependent manner and abolished VDCC activator Bay K8644-enhanced (0.1 microM) currents. Baicalin produced MA relaxation by activating BK(Ca) and inhibiting VDCC channels by endothelium-independent mechanisms and by stimulating the cGMP/PKG and cAMP/PKA pathways.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
28
|
Yeh JL, Hsu JH, Wu PJ, Liou SF, Liu CP, Chen IJ, Wu BN, Dai ZK, Wu JR. KMUP-1 attenuates isoprenaline-induced cardiac hypertrophy in rats through NO/cGMP/PKG and ERK1/2/calcineurin A pathways. Br J Pharmacol 2010; 159:1151-60. [PMID: 20132211 DOI: 10.1111/j.1476-5381.2009.00587.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE To determine whether KMUP-1, a novel xanthine-based derivative, attenuates isoprenaline (ISO)-induced cardiac hypertrophy in rats, and if so, whether the anti-hypertrophic effect is mediated by the nitric oxide (NO) pathway. EXPERIMENTAL APPROACH In vivo, cardiac hypertrophy was induced by injection of ISO (5 mg.kg(-1).day(-1), s.c.) for 10 days in Wistar rats. In the treatment group, KMUP-1 was administered 1 h before ISO. After 10 days, effects of KMUP-1 on survival, cardiac hypertrophy and fibrosis, the NO/guanosine 3'5'-cyclic monophosphate (cGMP)/protein kinase G (PKG) and hypertrophy signalling pathways [calcineurin A and extracellular signal-regulated kinase (ERK)1/2] were examined. To investigate the role of nitric oxide synthase (NOS) in the effects of KMUP-1, a NOS inhibitor, N(omega)-nitro-L-arginine (L-NNA) was co-administered with KMUP-1. In vitro, anti-hypertrophic effects of KMUP-1 were studied in ISO-induced hypertrophic neonatal rat cardiomyocytes. KEY RESULTS In vivo, KMUP-1 pretreatment attenuated the cardiac hypertrophy and fibrosis and improved the survival of ISO-treated rats. Plasma NOx (nitrite and nitrate) and cardiac endothelial NOS, cGMP and PKG were all increased by KMUP-1. The activation of hypertrophic signalling by calcineurin A and ERK1/2 in ISO-treated rats was also attenuated by KMUP-1. All these effects of KMUP-1 were inhibited by simultaneous administration of L-NNA. Similarly, in vitro, KMUP-1 attenuated hypertrophic responses and signalling induced by ISO in neonatal rat cardiomyocytes. CONCLUSIONS AND IMPLICATIONS KMUP-1 attenuates the cardiac hypertrophy in rats induced by administration of ISO. These effects are mediated, at least in part, by NOS activation. This novel agent, which targets the NO/cGMP pathway, has a potential role in the prevention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Jwu-Lai Yeh
- Department and Graduate Institute of Pharmacology, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hsu YY, Liu CM, Tsai HH, Jong YJ, Chen IJ, Lo YC. KMUP-1 attenuates serum deprivation-induced neurotoxicity in SH-SY5Y cells: roles of PKG, PI3K/Akt and Bcl-2/Bax pathways. Toxicology 2009; 268:46-54. [PMID: 19962417 DOI: 10.1016/j.tox.2009.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/04/2009] [Accepted: 11/27/2009] [Indexed: 11/19/2022]
Abstract
Aging populations with neurodegenerative disorders will gradually become a greater problem for society. Serum deprivation-induced cell death is recognized as one of the standard models for the study of neurotoxicity. Increasing evidence indicates that cGMP/PKG pathway may play a rescue role in serum deprivation-induced toxicity. The aim of this study was to investigate protective effects of KMUP-1, an enhancer of cGMP/PKG signaling on serum deprivation-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Under normal serum condition, KMUP-1 enhanced protein expression of nNOS, PKG and sGCalpha1, increased intracellular cyclic GMP level, and attenuated PDE5 expression. KMUP-1 also increased expression of BDNF and Bcl-2, but it did not affect Bax expression. The phosphorylation of Akt and CREB induced by KMUP-1 was inhibited by tyrosine kinase (TrK) inhibitor K252a and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, respectively. Under serum deprivation condition, flow cytometric analysis using Annexin V showed KMUP-1 increased cell viability, but lacked protective effects in the presence of nitric oxide synthase inhibitor l-NAME, PKG inhibitor Rp-8-pCPT-cGMPS or LY294002. KMUP-1 not only enhanced expression of nNOS, sGCalpha1, PKG, p-CREB, p-Akt and Bcl-2, but also attenuated Bax expression in serum deprivation-treated cultures. In conclusion, cGMP/PKG, PI3K/Akt/CREB and Bcl-2/Bax signals play critical roles in the neuroprotective effects of KMUP-1 on serum deprivation-induced toxicity.
Collapse
Affiliation(s)
- Ya-Yun Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Liu CM, Lo YC, Tai MH, Wu BN, Wu WJ, Chou YH, Chai CY, Huang CH, Chen IJ. Piperazine-designed alpha 1A/alpha 1D-adrenoceptor blocker KMUP-1 and doxazosin provide down-regulation of androgen receptor and PSA in prostatic LNCaP cells growth and specifically in xenografts. Prostate 2009; 69:610-23. [PMID: 19143029 DOI: 10.1002/pros.20919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND KMUP-1 has been suggested to be beneficial in the treatment of benign prostatic hyperplasia. This study is aimed to further investigate whether KMUP-1 and doxazosin prevent from prostate cancer cell growth via androgen-dependent and -independent pathway in vivo and in vitro. METHODS KMUP-1 was measured the activity on proliferation, apoptosis and cell cycle distribution in prostate cancer cells (LNCaP, DU-145, PC-3) by MTT assay, flow cytometry, Western Blotting and enzyme-linked immunosorbent assay (ELISA). The inhibition activities on androgen receptor (AR) and AR-targeting molecular prostate-specific antigen (PSA) expression by KMUP-1 and doxazosin were measured by RT-PCR, Western Blotting, and ELISA. Furthermore, we confirmed the effects of KMUP-1 on growth of LNCaP xenografts in nude mice. RESULTS KMUP-1 significantly inhibited LNCaP cell growth and induced apoptosis in time- and dose-dependent manner. KMUP-1 and doxazosin further inhibited the expression of AR and PSA. Treatment of LNCaP cells with KMUP-1 resulted in cell cycle arrest and apoptotic activities, increasing p21 and p27 and decreasing expressions of cyclin D1, cyclin E, cyclin dependent kinase (CDK) 4, CDK2 and CDK6. Moreover, KMUP-1 activated p53, cleaved poly (ADP-ribose) polymerase and caspase-3, but reduced the expression of Bcl-2. Regular administration of KMUP-1 suppressed the LNCaP xenograft tumor growth in nude mice. CONCLUSION These evidences indicate that KMUP-1 and doxazosin inhibit LNCaP cell growth and downregulate expression of AR and PSA. KMUP-1 might be used as a chemoprevention agent for preventing the development of prostate cancer without cardiovascular adverse effect of doxazosin.
Collapse
Affiliation(s)
- Chi-Ming Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shen KP, Liou SF, Hsieh SL, Chen IJ, Wu BN. Eugenosedin-A amelioration of lipopolysaccharide-induced up-regulation of p38 MAPK, inducible nitric oxide synthase and cyclooxygenase-2. J Pharm Pharmacol 2007; 59:879-89. [PMID: 17637181 DOI: 10.1211/jpp.59.6.0015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In this study, we investigate the protective effects of eugenosedin-A on p38 mitogen-activated protein kinase (MAPK), inflammatory nitric oxide (NO) and cyclooxygenase-2 (COX-2) pathways in a rat model of endotoxin shock. Rats were pretreated with eugenosedin-A, trazodone, yohimbine (1 mg kg(-1), i.v.), aminoguanidine or ascorbic acid (15 mg kg(-1), i.v.) 30 min before endotoxin challenge. Endotoxaemia was induced by a single i.v. injection of lipopolysaccharide (LPS, 10 mg kg(-1)). In rats not treated with eugenosedin-A, LPS increased plasma concentrations of NO and prostaglandin E(2) (PGE(2)), and levels of p38 MAPK, inducible NO synthase (iNOS) and COX-2 proteins in the liver, lung, aorta and lymphocytes. In the pre-treated rats, eugenosedin-A not only inhibited the LPS-induced NO and PGE(2) levels but also attenuated the LPS-induced increase in p38 MAPK and iNOS levels in the liver, aorta and lymphocytes. Eugenosedin-A also reduced LPS-induced COX-2 proteins in the aorta and lymphocytes. Likewise, aminoguanidine, ascorbic acid, yohimbine and trazodone were also found to decrease NO and PGE(2) concentrations after endotoxin challenge. While aminoguanidine and ascorbic acid also attenuated the LPS-induced increase in p38 MAPK, iNOS and COX-2 proteins in the aorta and lymphocytes, trazodone and yohimbine inhibited only the increase in p38 MAPK, iNOS and COX-2 proteins in lymphocytes. Finally, eugenosedin-A (10(-10)-10(-8) M) significantly inhibited the biphasic response induced by hydrogen peroxide (10(-6)-3 x 10(-5) M) in rat denudated aorta. Taken together, the results of this study indicate that eugenosedin-A, as well as ascorbic acid, can attenuate free-radical-mediated aortic contraction and relaxation. It may therefore be able to reduce the damage caused by septic shock by inhibiting formation of p38 MAPK, iNOS, COX-2 and free radicals.
Collapse
Affiliation(s)
- Kuo-Ping Shen
- Department of Early Childhood Care and Education, Meiho Institute of Technology, Pingtung, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Liu CM, Lo YC, Wu BN, Wu WJ, Chou YH, Huang CH, An LM, Chen IJ. cGMP-enhancing- and alpha1A/alpha1D-adrenoceptor blockade-derived inhibition of Rho-kinase by KMUP-1 provides optimal prostate relaxation and epithelial cell anti-proliferation efficacy. Prostate 2007; 67:1397-410. [PMID: 17639498 DOI: 10.1002/pros.20634] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) and Rho kinase (ROCK2) pathways are important in the regulation of prostate smooth muscle tone. This study is aimed to examine the relaxation activities of a sGC activator and PDE5A/ROCK2 inhibitor KMUP-1 in rat prostate and associated anti-proliferation activity in human prostatic epithelial cells. METHODS The action characteristics of KMUP-1 were identified by isometric tension measurement, receptor binding assay, Western blotting and radioimmunoassay in rat prostate. Anti-proliferation activity of KMUP-1 in human prostatic epithelial PZ-HPV-7 cells was identified using flow cytometry and real time QRT-PCR. RESULTS KMUP-1 inhibited phenylephrine-induced contractility in a concentration-dependent manner. KMUP-1 possessed potent alpha(1A/)alpha(1D)-adrenoceptor binding inhibition activity, increased cAMP/cGMP levels and increased the expression of sGC, PKG, and PKA protein in rat prostate. Moreover, KMUP-1 inhibited phenylephrine-induced ROCK2 expression. KMUP-1 inhibited cell growth, arrested the cell cycle at G(0)/G(1) phase and increased the expression of p21 in PZ-HPV-7 cells. CONCLUSIONS These results broaden our knowledge of sGC/cGMP/PKG and ROCK2 regulation on the relaxation and proliferation of prostate, which may help in the design of benign prostate hyperplasia (BPH) therapies that target these signaling pathways. KMUP-1 possesses the potential benefit in the treatment of BPH by its alpha(1A/)alpha(1D)-adrenoceptor blockade, sGC activation, inhibition of PDE5A and ROCK2 and p21 protein enhancement, leading to attenuation of the smooth muscle tone and the proliferation of epithelial PZ-HPV-7 cells. The synergistic contribution of these pathways by KMUP-1 may benefit BPH patients with lower urinary tract symptoms.
Collapse
Affiliation(s)
- Chi-Ming Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wu BN, Chen CF, Hong YR, Howng SL, Lin YL, Chen IJ. Activation of BKCa channels via cyclic AMP- and cyclic GMP-dependent protein kinases by eugenosedin-A in rat basilar artery myocytes. Br J Pharmacol 2007; 152:374-85. [PMID: 17700725 PMCID: PMC2042951 DOI: 10.1038/sj.bjp.0707406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The study investigated whether eugenosedin-A, a 5-hydroxytryptamine and alpha/beta adrenoceptor antagonist, enhanced delayed-rectifier potassium (K(DR))- or large-conductance Ca(2+)-activated potassium (BK(Ca))-channel activity in basilar artery myocytes through cyclic AMP/GMP-dependent and -independent protein kinases. EXPERIMENTAL APPROACH Cerebral smooth muscle cells (SMCs) were enzymatically dissociated from rat basilar arteries. Conventional whole cell, perforated and inside-out patch-clamp electrophysiology was used to monitor K(+)- and Ca(2+)-channel activities. KEY RESULTS Eugenosedin-A (1 microM) did not affect the K(DR) current but dramatically augmented BK(Ca) channel activity in a concentration-dependent manner. Increased BK(Ca) current was abolished by charybdotoxin (ChTX, 0.1 microM) or iberiotoxin (IbTX, 0.1 microM), but not affected by a small-conductance K(Ca) blocker (apamin, 100 microM). BK(Ca) current activation by eugenosedin-A was significantly inhibited by an adenylate cyclase inhibitor (SQ 22536, 10 microM), a soluble guanylate cyclase inhibitor (ODQ, 10 microM), competitive antagonists of cAMP and cGMP (Rp-cAMP, 100 microM and Rp-cGMP, 100 microM), and cAMP- and cGMP-dependent protein kinase inhibitors (KT5720, 0.3 microM and KT5823, 0.3 microM). Eugenosedin-A reversed the inhibition of BK(Ca) current induced by the protein kinase C activator, phorbol myristyl acetate (PMA, 0.1 microM). Eugenosedin-A also prevented BK(Ca) current inhibition induced by adding PMA, KT5720 and KT5823. Moreover, eugenosedin-A reduced the amplitude of voltage-dependent L-type Ca(2+) current (I(Ca,L)), but without modifying the voltage-dependence of the current. CONCLUSIONS AND IMPLICATIONS Eugenosedin-A enhanced BK(Ca) currents by stimulating the activity of cyclic nucleotide-dependent protein kinases. Physiologically, this activation would result in the closure of voltage-dependent calcium channels and thereby relax cerebral SMCs.
Collapse
Affiliation(s)
- B-N Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | - C-F Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Y-R Hong
- Graduate Institute of Biochemistry, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | - S-L Howng
- Department of Neurosurgery, Kaohsiung Medical University Hospital Kaohsiung, Taiwan
| | - Y-L Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | - I-J Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
- Author for correspondence:
| |
Collapse
|
34
|
Wu BN, Chen CW, Liou SF, Yeh JL, Chung HH, Chen IJ. Inhibition of proinflammatory tumor necrosis factor-{alpha}-induced inducible nitric-oxide synthase by xanthine-based 7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine (KMUP-1) and 7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1, 3-dimethylxanthine (KMUP-3) in rat trachea: The involvement of soluble guanylate cyclase and protein kinase G. Mol Pharmacol 2006; 70:977-85. [PMID: 16754782 DOI: 10.1124/mol.106.024919] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the study of anti-proinflammation by 7-[2-[4-(2-chlorobenzene)piperazinyl] ethyl]-1,3-dimethylxanthine (KMUP-1) and 7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine (KMUP-3), exposure of rat tracheal smooth muscle cells (TSMCs) to tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, increased the expression of inducible nitric-oxide synthase (iNOS) and NO production and decreased the expression of soluble guanylate cyclase alpha1 (sGCalpha1), soluble guanylate cyclase beta1 (sGCbeta1), protein kinase G (PKG), and the release of cGMP in TSMCs. The cell-permeable cGMP analog 8-Br-cGMP, xanthine-based KMUP-1 and KMUP-3, and the phosphodiesterase 5 inhibitor zaprinast all inhibited TNF-alpha-induced increases of iNOS expression and NO levels and reversed TNF-alpha-induced decreases of sGCalpha1, sGCbeta1, and PKG expression. These results imply that cGMP enhancers could have anti-proinflammatory potential in TSMCs. TNF-alpha also increased protein kinase A (PKA) expression and cAMP levels, cyclooxygenase-2 (COX-2) expression, and activated productions of prostaglandin (PG) E2 and 6-keto-PGF1alpha (stable PGI2 metabolite). Dexamethasone and N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS-398; a selective COX-2 inhibitor) attenuated TNF-alpha-induced expression of COX-2 and activated productions PGE2 and PGI2. However, KMUP-1 and KMUP-3 did not affect COX-2 activities and did not further enhance cAMP levels in the presence of TNF-alpha. It is suggested that TNF-alpha-induced increases of PKA expression and cAMP levels are mediated by releasing PGE2 and PGI2, the activation products of COX-2. In conclusion, xanthine-based KMUP-1 and KMUP-3 inhibit TNF-alpha-induced expression of iNOS in TSMCs, involving the sGC/cGMP/PKG expression pathway but without the involvement of COX-2.
Collapse
Affiliation(s)
- Bin-Nan Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Wu BN, Chen IC, Lin RJ, Chiu CC, An LM, Chen IJ. Aortic smooth muscle relaxants KMUP-3 and KMUP-4, two nitrophenylpiperazine derivatives of xanthine, display cGMP-enhancing activity: roles of endothelium, phosphodiesterase, and K+ channel. J Cardiovasc Pharmacol 2006; 46:600-8. [PMID: 16220066 DOI: 10.1097/01.fjc.0000180900.32489.f9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cellular mechanisms of vasorelaxant effects of newly synthesized KMUP-3 and KMUP-4 were investigated in rat aortic smooth muscle (RASM). KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) and KMUP-4 (7-[2-[4-(2-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) elicited concentration-dependent relaxation of endothelium-intact and denuded RASM precontracted with phenylephrine. Relaxant responses were also produced by the PDE inhibitors theophylline, milrinone, rolipram, and zaprinast (1 nM-100 microM). The relaxant responses of KMUP-3 and KMUP-4 were reduced by endothelium removal and by the presence of the NOS inhibitor L-NAME (100 microM), the sGC inhibitor ODQ (1 microM), the adenylyl cyclase (AC) inhibitor SQ 22536 (100 microM), and the prostaglandin inhibitor indomethacin (10 microM). Additionally, the vasorelaxations of both agents were also attenuated by pretreatment with the nonselective K+ channel blocker TEA (10 mM), the KATP channel blocker glibenclamide (1 microM), the voltage-dependent K+ (KV) channel blocker 4-AP (100 microM), and Ca(2+)-dependent K+ (KCa) channel blockers apamin (1 microM) and charybdotoxin (ChTX, 0.1 microM). In addition, elevated extracellular K+ (80 mM) interferes with KMUP-3- and KMUP-4-induced vasorelaxations. Preincubation with both agents (1 microM) significantly enhanced the dilator responses of isoproterenol and SNP. KMUP-3 and KMUP-4 inhibited PDE activities and increased cAMP and cGMP levels in primary culture of RASM that were inhibited by SQ 22536 and ODQ, respectively. In cultured HUVECs, KMUP-3 and KMUP-4 (0.1 microM), more potent than YC-1, significantly increased the expression of eNOS protein. In summary, KMUP-3 and KMUP-4 induce aortic relaxations through both endothelium-dependent and -independent mechanisms. Mechanisms of vasorelaxation induced by both compounds involve multiple processes, such as accumulation of cyclic nucleotides partly as a result of PDE inhibition, K-channel activation, and indomethacin-sensitive endothelium function.
Collapse
MESH Headings
- Animals
- Aorta
- Cell Line
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Phosphoric Diester Hydrolases/metabolism
- Piperazines/chemistry
- Piperazines/pharmacology
- Piperidines/chemistry
- Piperidines/pharmacology
- Potassium Channels/metabolism
- Rats
- Rats, Wistar
- Vasoconstrictor Agents/pharmacology
- Vasodilator Agents/chemistry
- Vasodilator Agents/pharmacology
- Xanthines/chemistry
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Bin-Nan Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Wu BN, Tu HF, Welsh DG, Chen IJ. KMUP-1 activates BKCa channels in basilar artery myocytes via cyclic nucleotide-dependent protein kinases. Br J Pharmacol 2006; 146:862-71. [PMID: 16151435 PMCID: PMC1751209 DOI: 10.1038/sj.bjp.0706387] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study investigated whether KMUP-1, a synthetic xanthine-based derivative, augments the delayed-rectifier potassium (K(DR))- or large-conductance Ca2+-activated potassium (BKCa) channel activity in rat basilar arteries through protein kinase-dependent and -independent mechanisms. Cerebral smooth muscle cells were enzymatically dissociated from rat basilar arteries. Conventional whole cell, perforated and inside-out patch-clamp electrophysiology was used to monitor K+- and Ca2+ channel activities. KMUP-1 (1 microM) had no effect on the K(DR) current but dramatically enhanced BKCa channel activity. This increased BKCa current activity was abolished by charybdotoxin (100 nM) and iberiotoxin (100 nM). Like KMUP-1, the membrane-permeable analogs of cGMP (8-Br-cGMP) and cAMP (8-Br-cAMP) enhanced the BKCa current. BKCa current activation by KMUP-1 was markedly inhibited by a soluble guanylate cyclase inhibitor (ODQ 10 microM), an adenylate cyclase inhibitor (SQ 22536 10 microM), competitive antagonists of cGMP and cAMP (Rp-cGMP, 100 microM and Rp-cAMP, 100 microM), and cGMP- and cAMP-dependent protein kinase inhibitors (KT5823, 300 nM and KT5720, 300 nM). Voltage-dependent L-type Ca2+ current was significantly suppressed by KMUP-1 (1 microM), and nearly abolished by a calcium channel blocker (nifedipine, 1 microM). In conclusion, KMUP-1 stimulates BKCa currents by enhancing the activity of cGMP-dependent protein kinase, and in part this is due to increasing cAMP-dependent protein kinase. Physiologically, this activation would result in the closure of voltage-dependent calcium channels and the relaxation of cerebral arteries.
Collapse
Affiliation(s)
- Bin-Nan Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
37
|
Lin RJ, Wu BN, Lo YC, An LM, Dai ZK, Lin YT, Tang CS, Chen IJ. A xanthine-based epithelium-dependent airway relaxant KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) increases respiratory performance and protects against tumor necrosis factor-alpha-induced tracheal contraction, involving nitric oxide release and expression of cGMP and protein kinase G. J Pharmacol Exp Ther 2005; 316:709-17. [PMID: 16234412 DOI: 10.1124/jpet.105.092171] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) was investigated in guinea pig tracheal smooth muscle. Intratracheal instillation of tumor necrosis factor (TNF)-alpha (0.01 mg/kg/300 microl) induced bronchoconstriction, increases of lung resistance, and decreases of dynamic lung compliance. Instillation of KMUP-3 (0.5-2.0 mg/kg) reversed this situation. In isolated trachea precontracted with carbachol, KMUP-3 (10-100 microM)-caused relaxations were attenuated by epithelium removal and by pretreatments with an inhibitor of K(+) channel, tetraethylammonium (10 mm); K(ATP) channel, glibenclamide (1 microM); voltage-dependent K(+) channel, 4-aminopyridine (100 microM); Ca(2+)-dependent K(+) channel, charybdotoxin (0.1 microM) or apamin (1 microM); soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1one (ODQ, 1 microM); nitric-oxide (NO) synthase, N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM); and adenylate cyclase, SQ 22536 [9-(terahydro-2-furanyl)-9H-purin-6-amine] (100 microM). KMUP-3 (0.01-100 microM) induced increases of cGMP and cAMP in primary culture of tracheal smooth muscle cells (TSMCs). The increase in cGMP by KMUP-3 was reduced by ODQ and L-NAME; the increase in cAMP was reduced by SQ 22536. Western blot analysis indicated that KMUP-3 (1 microM) induced expression of protein kinase A (PKA)(ri) and protein kinase G (PKG)(1alpha 1beta) in TSMCs.SQ 22536 inhibited KMUP-3-induced expression of (PKA)(ri). On the contrary, ODQ inhibited KMUP-3-induced expression of PKG(1alpha 1beta) In epithelium-intact trachea, KMUP-3 increased the NO release. Activation of sGC, NO release, and inhibition of phosphodiesterases in TSMCs by KMUP-3 may result in increases of intracellular cGMP and cAMP, which subsequently activate PKG and PKA, efflux of K(+) ion, and associated reduction in Ca(2+) influx in vitro, indicating the action mechanism to protect against TNF-alpha-induced airway dysfunction in vivo.
Collapse
Affiliation(s)
- Rong-Jyh Lin
- Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yeh JL, Liou SF, Liang JC, Lee CH, Chiu CC, Lin YT, Chen IJ. Labedipinedilol-C: A Third-Generation Dihydropyridine-Type Calcium Channel Antagonist Displaying K+ Channel Opening, NO-Dependent and Adrenergic Antagonist Activities. J Cardiovasc Pharmacol 2005; 46:130-40. [PMID: 16044023 DOI: 10.1097/01.fjc.0000167016.61845.c8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intravenous and oral labedipinedilol-C showed a dose-dependent long-lasting hypotension and a decrease of heart rate in normotensive and conscious spontaneously hypertensive rats (SHR). In isolated Wistar rat and guinea pig tissues, labedipinedilol-C competitively antagonized (-)isoproterenol-induced cardiac stimulation, tracheal relaxation, and phenylephrine-, CaCl2-, and high-K-induced aorta contractions in a concentration-dependent manner. The estimated pA2 and pKCa values were 8.22+/-0.04 and 7.11+/-0.52, respectively. [H]CGP-12177 binding to ventricle and lung tissues as well as [H]prazosin and [H]nitrendipine binding to brain membranes were inhibited by labedipinedilol-C with Ki values of 2.86, 9.03, 0.39, and 0.05 muM, respectively. The vasorelaxant effects of labedipinedilol-C on phenylephrine (10 microM)-induced contractions were attenuated by removing endothelium, by pretreatment with soluble guanylyl cyclase (sGC) inhibitors ODQ (10 microM) and methylene blue (10 microM), a NOS inhibitor L-NAME (100 microM), a K channel blocker TEA (10 mM), a KATP channel blocker glibenclamide (1 microM), and Ca-dependent K channel blockers apamin (1 microM) and charybdotoxin (0.1 microM). In human umbilical vein endothelial cells (HUVECs), labedipinedilol-C increased NO release, which was significantly inhibited by L-NAME. The Western blot analysis on HUVECs indicated that labedipinedilol-C increased the expression of eNOS. These results indicate that hypotension effects of labedipinedilol-C result from alpha-adrenoceptor and Ca entry-blocking activities and release of NO or NO-related substance from vascular endothelium. The endothelium-independent relaxation of vascular smooth muscle is probably linked to K channel opening and alpha-adrenoceptor-blocking activities.
Collapse
Affiliation(s)
- Jwu-Lai Yeh
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
39
|
Rohra DK, Sharif HM, Zubairi HS, Sarfraz K, Ghayur MN, Gilani AH. Acidosis-induced relaxation of human internal mammary artery is due to activation of ATP-sensitive potassium channels. Eur J Pharmacol 2005; 514:175-81. [PMID: 15910804 DOI: 10.1016/j.ejphar.2005.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 02/14/2005] [Accepted: 02/24/2005] [Indexed: 11/17/2022]
Abstract
Metabolic acidosis is associated with various clinical situations including diabetes mellitus and renal diseases. The aim of this study was to investigate the effects of acidosis on the resting as well as precontracted human left internal mammary artery. The vessels were obtained from the patients undergoing coronary artery bypass grafting surgery at The Aga Khan University Hospital, Karachi. Left internal mammary artery was cut into rings and isometric tension recording experiments were performed. Decrease in pH of the bathing solution from 7.4 to 6.8 had no effect on the resting tension of left internal mammary artery, whereas, acidic pH markedly relaxed the contractions to 24.8 mM KCl and 300 nM phenylephrine. Interestingly, when the KCl- or phenylephrine-contracted rings were treated with 3 microM glibenclamide; an inhibitor of ATP-sensitive potassium (K(ATP)) channels, the relaxant effect of acidosis was abolished. Similarly, acidosis failed to cause relaxation of 100 nM endothelin-1-induced contraction in Ca2+-free bathing solution or in the presence of a voltage-dependent Ca2+ channel inhibitor, verapamil (10 microM), whereas, endothelin-1-induced contraction was attenuated by acidosis in Ca2+-containing normal solution. From all these data, it is concluded that under the acidic pH conditions, opening of K(ATP) channels occurs; resulting in the hyperpolarization, decrease in Ca2+ influx via voltage-dependent Ca2+ channels and subsequent relaxation of human left internal mammary artery.
Collapse
Affiliation(s)
- Dileep Kumar Rohra
- Department of Biological and Biomedical Sciences, Faculty of Health Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan.
| | | | | | | | | | | |
Collapse
|
40
|
Shen KP, Lo YC, Yang RC, Liu HW, Chen IJ, Wu BN. Antioxidant eugenosedin-A protects against lipopolysaccharide-induced hypotension, hyperglycaemia and cytokine immunoreactivity in rats and mice. J Pharm Pharmacol 2005; 57:117-25. [PMID: 15639000 DOI: 10.1211/0022357055137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Eugenosedin-A has been demonstrated to possess alpha/beta-adrenoceptor and serotonergic receptor blocking activities. We have investigated by what mechanisms eugenosedin-A prevents lipopolysaccharide (LPS)-induced hypotension, vascular hyporeactivity, hyperglycaemia, oxidative injury or inflammatory cytokines formation in rats. Intravenous administration of eugenosedin-A, trazodone, yohimbine (1 mg kg(-1)), aminoguanidine or ascorbic acid (15 mg kg(-1)) normalized LPS (10 mg kg(-1))-induced hypotension. Pretreatment with eugenosedin-A or the other agents 30 min before LPS injection reduced aortic hyporeactivity. LPS-induced increases in plasma interleukin-1beta (IL-beta), IL-6, interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha) and blood glucose levels were significantly inhibited by eugenosedin-A (1 mg kg(-1), i. v.). The same dose of trazodone, a chloropiperazinylbenzene-type antidepressant, and yohimbine, an alpha(2)-adrenoceptor antagonist, reduced IL-1beta and TNF-alpha, but it could not inhibit hyperglycaemia. Aminoguanidine, an inducible nitric oxide synthase (iNOS) inhibitor, and ascorbic acid, an antioxidant, decreased IL-1beta, TNF-alpha contents and hyperglycaemia. Eugenosedin-A and the other agents inhibited Fe(2+)-ascorbic acid-induced peroxidation in rat cortex, indicating that those agents had antioxidant effects, with the exception of aminoguanidine. In free radical scavenged experiments, eugenosedin-A and ascorbic acid eliminated peroxyl radicals. All test agents inhibited the LPS-induced increase of malondialdehyde (MDA) content in rat brain homogenates. When mice were administered an intraperitoneal injection of LPS alone, mortality occurred from 4 to 16 h, after which time all were dead. However, eugenosedin-A significantly prolonged the survival time after LPS injection, suggesting that eugenosedin-A protected against LPS-induced cardiovascular dysfunction, hyperglycaemia, tissue injury and inflammatory cytokine production. This was attributable mainly to the antioxidant and peroxyl radical scavenged effects of eugenosedin-A, and which may be, at least in part, due to its blockade on alpha/beta-adrenergic and serotonergic receptors.
Collapse
Affiliation(s)
- Kuo-Pyng Shen
- Department and Graduate Institute of Pharmacology, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Lo YC, Tsou HH, Lin RJ, Wu DC, Wu BN, Lin YT, Chen IJ. Endothelium-dependent and -independent vasorelaxation by a theophylline derivative MCPT: roles of cyclic nucleotides, potassium channel opening and phosphodiesterase inhibition. Life Sci 2005; 76:931-44. [PMID: 15589969 DOI: 10.1016/j.lfs.2004.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 09/27/2004] [Indexed: 11/15/2022]
Abstract
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- In Vitro Techniques
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nucleotides, Cyclic/metabolism
- Organothiophosphorus Compounds/pharmacology
- Phosphodiesterase Inhibitors/metabolism
- Potassium Channels/metabolism
- Rats
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Yi-Ching Lo
- Department and post graduate institute of Pharmacology, College of Medicine, Kaohsiung Medical University, 100 Shin-Chuan 1st road, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
Wu BN, Lin RJ, Lo YC, Shen KP, Wang CC, Lin YT, Chen IJ. KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: the role of the epithelium, cyclic nucleotides and K+ channels. Br J Pharmacol 2004; 142:1105-14. [PMID: 15237094 PMCID: PMC1575170 DOI: 10.1038/sj.bjp.0705791] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
7-[2-[4-(2-chlorophenyl)piperazinyl]ethyl]-1,3-dimethylxanthine (KMUP-1) produces tracheal relaxation, intracellular accumulation of cyclic nucleotides, inhibition of phosphodiesterases (PDEs) and activation of K+ channels. KMUP-1 (0.01-100 microm) induced concentration-dependent relaxation responses in guinea-pig epithelium-intact trachea precontracted with carbachol. Relaxation responses were also elicited by the PDE inhibitors theophylline, 3-isobutyl-1-methylxanthine (IBMX), milrinone, rolipram and zaprinast (100 microm), and a KATP channel opener, levcromakalim. Tracheal relaxation induced by KMUP-1 was attenuated by epithelium removal and by pretreatment with inhibitors of soluble guanylate cyclase (sGC) (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), 1 microm), nitric oxide synthase (Nomega-nitro-L-arginine methyl ester, 100 microm), K+ channels (tetraethylammonium, 10 mm), KATP channels (glibenclamide, 1 microm), voltage-dependent K+ channels (4-aminopyridine, 100 microm) and Ca2+-dependent K+ channels (charybdotoxin, 0.1 microm or apamin, 1 microm). Both KMUP-1 (10 microm) and theophylline nonselectively and slightly inhibited the enzyme activity of PDE3, 4 and 5, suggesting that they are able to inhibit the metabolism of adenosine 3',5'-cyclic monophosphate (cyclic AMP) and guanosine 3',5'-cyclic monophosphate (cyclic GMP). Likewise, the effects of IBMX were also measured and its IC50 values for PDE3, 4 and 5 were 6.5 +/- 1.2, 26.3 +/- 3.9 and 31.7 +/- 5.3 microm, respectively. KMUP-1 (0.01-10 microm) augmented intracellular cyclic AMP and cyclic GMP levels in guinea-pig cultured tracheal smooth muscle cells. These increases in cyclic AMP and cyclic GMP were abolished in the presence of an adenylate cyclase inhibitor SQ 22536 (100 microm) and an sGC inhibitor ODQ (10 microm), respectively. KMUP-1 (10 microm) increased the expression of protein kinase A (PKARI) and protein kinase G (PKG1alpha1beta) in a time-dependent manner, but this was only significant for PKG after 9 h. Intratracheal administration of tumour necrosis factor-alpha (TNF-alpha, 0.01 mg kg(-1)) induced bronchoconstriction and exhibited a time-dependent increase in lung resistance (RL) and decrease in dynamic lung compliance (Cdyn). KMUP-1 (1.0 mg kg(-1)), injected intravenously for 10 min before the intratracheal TNF-alpha, reversed these changes in RL and Cdyn. These data indicate that KMUP-1 activates sGC, produces relaxation that was partly dependent on an intact epithelium, inhibits PDEs and increases intracellular cyclic AMP and cyclic GMP, which then increases PKA and PKG, leading to the opening of K+ channels and resulting tracheal relaxation.
Collapse
Affiliation(s)
- Bin-Nan Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rong-Jyh Lin
- Basic Medical Science Education Center, Fooyin University, Taliou, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuo-Pyng Shen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Chuan Wang
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Young-Tso Lin
- Department of Cardiovascular Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Author for correspondence:
| |
Collapse
|
43
|
Lo YC, Hsiao HC, Wu DC, Lin RJ, Liang JC, Yeh JL, Chen IJ. A novel capsaicin derivative VOA induced relaxation in rat mesenteric and aortic arteries: involvement of CGRP, NO, cGMP, and endothelium-dependent activities. J Cardiovasc Pharmacol 2004; 42:511-20. [PMID: 14508237 DOI: 10.1097/00005344-200310000-00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The vasorelaxant effects of N-[4-O-[2-methoxy, phenoxyethylaminobutyl]-3-methoxy benzyl]-nonamide (VOA), a novel capsaicin derivative, and associated releasing activities of nitric oxide (NO) and calcitonin gene-related peptide (CGRP) were investigated in this study. Systemic administration of VOA decreased blood pressure and heart rate in a dose-dependent manner in both normotensive as well as spontaneously hypertensive rats. Nw-nitro-L-arginine methyl ester (L-NAME), glibenclamide, and capsazepine inhibited VOA-induced hypotension. In phenylephrine-precontracted rat aortic rings and mesenteric arteries with intact endothelium, VOA caused a concentration-dependent relaxation. This relaxation was reduced after endothelium was removed or pretreated with L-NAME, methylene blue, 1 H-[1,2,4]oxidazolol [4,3-a] quinoxalin-1-one, tetraethylammonium, glibenclamide, CGRP (8-37), or capsazepine, respectively. In endothelially denuded vessel rings, tetraethylammonium, glibenclamide, CGRP (8-37), and capsazepine also reduced VOA-induced relaxation. In high potassium (80 mmol/L)-precontracted rat aortic rings with intact endothelium, VOA failed to induce relaxation. VOA induced a concentration-dependent increase of CGRP-like enzyme immunoreactivity, which was also significantly inhibited by capsazepine. In human umbilical vein endothelial cells, VOA increased NO release and guanosine-3', 5'-cyclic monophosphate level, which were significantly inhibited by L-NAME. The Western blot analysis on human umbilical vein endothelial cells indicated that VOA increased the expression of endothelium nitric oxide synthase. In conclusion, VOA might exert its relaxation effects in rat vascular smooth muscle through the CGRP/KATP channel and the NO/ cGMP pathway.
Collapse
Affiliation(s)
- Yi-Ching Lo
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Lin RJ, Wu BN, Shen KP, Huang CH, Liu ZI, Lin CY, Cheng CJ, Chen IJ. Xanthine-analog, KMUP-2, enhances cyclic GMP and K+ channel activities in rabbit aorta and corpus cavernosum with associated penile erection. Drug Dev Res 2002. [DOI: 10.1002/ddr.10048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Lin RJ, Wu BN, Lo YC, Shen KP, Lin YT, Huang CH, Chen IJ. KMUP-1 relaxes rabbit corpus cavernosum smooth muscle in vitro and in vivo: involvement of cyclic GMP and K(+) channels. Br J Pharmacol 2002; 135:1159-66. [PMID: 11877322 PMCID: PMC1573218 DOI: 10.1038/sj.bjp.0704554] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In isolated endothelium-intact or denuded rabbit corpus cavernosum preconstricted with phenylephrine, KMUP-1 (0.001 - 10 microM) caused a concentration-dependent relaxation. 2. This relaxation of KMUP-1 was attenuated by endothelium removed, high K(+) and pretreatments with a soluble guanylyl cyclase (sGC) inhibitor ODQ (1 microM), a NOS inhibitor L-NAME (100 microM), a K(+) channel blocker TEA (10 mM), a K(ATP) channel blocker glibenclamide (1 microM), a voltage-dependent K(+) channel blocker 4-AP (100 microM) and Ca(2+)-dependent K(+) channel blockers apamin (1 microM) and charybdotoxin (ChTX, 0.1 microM). 3. The relaxant responses of KMUP-1 (0.01, 0.05, 0.1 microM) together with a PDE inhibitor IBMX (0.5 microM) had additive actions on rabbit corpus cavernosum smooth muscle (CCSM). 4. KMUP-1 (0.01 - 10 microM) induced increase of intracellular cyclic GMP level in the primary cell culture of rabbit CCSM. This increase in cyclic GMP content was abolished in the presence of ODQ (10 microM). 5. Both KMUP-1 and sildenafil at 0.2, 0.4, 0.6 mg kg(-1) caused increases of intracavernous pressure (ICP) and duration of tumescene (DT) in a dose-dependent manner. These in vivo activities of ICP for sildenafil and KMUP-1 are consistent with those of in vitro effects of cyclic GMP. 6. KMUP-1 has the following merits: (1) inhibition of PDE or cyclic GMP breakdown, (2) stimulation of NO/sGC/cyclic GMP pathway, and (3) subsequent stimulation of K(+) channels, in rabbit CCSM. We suggest that these merits play prominent roles in KMUP-1-induced CCSM relaxation-associated increases of ICP and penile erection.
Collapse
Affiliation(s)
- Rong-Jyh Lin
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuo-Pyng Shen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Young-Tso Lin
- Department of Cardiovascular Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hsiung Huang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Author for correspondence:
| |
Collapse
|