1
|
Billard E, Torbey A, Inserra A, Grant E, Bertazzo A, De Gregorio D, Comai S, Chatenet D, Gobbi G, Hébert TE. Pharmacological characterization of cannabidiol as a negative allosteric modulator of the 5-HT 2A receptor. Cell Signal 2025; 127:111588. [PMID: 39761844 DOI: 10.1016/j.cellsig.2025.111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Promising clinical evidence suggests that psychedelic compounds, like lysergic acid diethylamide (LSD), have therapeutic value for treatment of psychiatric disorders. However, they often produce hallucinations and dissociative states, likely mediated by the serotonin (5-HT) receptor 5-HT2A, raising challenges regarding therapeutic scalability. Given the reported antipsychotic effects of cannabidiol (CBD) and its promiscuous binding at many receptors, we assessed whether CBD could modulate 5-HT2A signalling. Activation of the 5-HT2A intracellular signalling events were assessed using resonance energy transfer- or fluorescence-based biosensors in HEK 293 cells and in rat primary cortical neurons. In 5-HT2A-transfected HEK 293 T cells, CBD antagonized LSD-mediated Gq activation in a saturable way, while leaving β-arrestin2 recruitment unaffected. CBD decreased Gq activation mediated by the 5-HT2A-specific agonist DOI as well as LSD-mediated activity in primary rat neonatal cortical neurons. Using Site Identification by Ligand Competitive Saturation (SILCS) simulations, we also predicted that the putative binding site of CBD overlapped with that of oleamide, a positive allosteric modulator of 5-HT2A, and could displace the binding of orthosteric ligands toward the external binding pocket. Based on these findings, we propose that CBD acts as a negative allosteric modulator of 5-HT2A.
Collapse
Affiliation(s)
- Etienne Billard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Alexandre Torbey
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Canada
| | - Emily Grant
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Canada
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Italy
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - David Chatenet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Canada; Research Institute of the McGill University Health Center, Montréal, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.
| |
Collapse
|
2
|
Song Z, Wu H, Fang X, Feng X, Zhou L. The cardiovascular toxicity of polystyrene microplastics in rats: based on untargeted metabolomics analysis. Front Pharmacol 2024; 15:1336369. [PMID: 38799170 PMCID: PMC11127592 DOI: 10.3389/fphar.2024.1336369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Background Polystyrene microplastics (PS-MPs) exhibit multi-target, multi-dimensional, chronic, and low toxicity to the cardiovascular system. They enter the bloodstream through the gastrointestinal tract and respiratory system, altering blood parameters and conditions, inducing thrombotic diseases, and damaging myocardial tissue through the promotion of oxidative stress and inflammatory responses in myocardial cells. However, many of the links and mechanisms remain unclear. Methods In this study, 48 wistar rats were randomly divided into four groups and exposed to different concentrations of PS-MPs: control group (0 mg/kg/d), low dose group (0.5 mg/kg/d), middle dose group (5 mg/kg/d) and high dose group (50 mg/kg/d), with 12 rats in each group. After 90 consecutive days of intragastric administration of PS-MPs, biochemical markers in myocardium, aorta and blood were detected, and HE staining was performed to observe the toxic effects of PS-mps on cardiovascular system. Furthermore, non-targeted metabolomics methods were used to analyze the effect of PS-MPs exposure on the metabolism of cardiovascular system in rats, and to explore its potential molecular mechanism. Results The results revealed no pathological changes in the heart and aorta following PS-MPs exposure. However, the myocardial enzyme levels in the high dose PS-MPs group of rats showed a significant increase. Moreover, exposure to polystyrene microplastics caused a disorder in lipid metabolism in rats, and led to an increase in indicators of inflammation and oxidative stress in myocardial and aortic tissues, but resulted in a decrease in the level of IL-6. Untargeted metabolomics results showed that metabolites with antioxidant and anti-inflammatory effects, including equol and 4-hydroxybenzoic acid, were significantly upregulated. Conclusion These results suggest that long-term exposure to high concentrations of PS-MPs may lead to abnormal lipid metabolism and cardiovascular system damage. The mechanism may be related to oxidative stress and inflammatory response. Exogenous antioxidants and changes in own metabolites may have a protective effect on the injury. Therefore, understanding the toxicological mechanism of PS-MPs not only helps to elucidate its pathogenesis, but also provides new ideas for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Zikai Song
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Haidi Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoqi Fang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xuemin Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
3
|
Loots DT, Adeniji AA, Van Reenen M, Ozturk M, Brombacher F, Parihar SP. The metabolomics of a protein kinase C delta (PKCδ) knock-out mouse model. Metabolomics 2022; 18:92. [PMID: 36371785 PMCID: PMC9660189 DOI: 10.1007/s11306-022-01949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION PKCδ is ubiquitously expressed in mammalian cells and its dysregulation plays a key role in the onset of several incurable diseases and metabolic disorders. However, much remains unknown about the metabolic pathways and disturbances induced by PKC deficiency, as well as the metabolic mechanisms involved. OBJECTIVES This study aims to use metabolomics to further characterize the function of PKC from a metabolomics standpoint, by comparing the full serum metabolic profiles of PKC deficient mice to those of wild-type mice. METHODS The serum metabolomes of PKCδ knock-out mice were compared to that of a wild-type strain using a GCxGC-TOFMS metabolomics research approach and various univariate and multivariate statistical analyses. RESULTS Thirty-seven serum metabolite markers best describing the difference between PKCδ knock-out and wild-type mice were identified based on a PCA power value > 0.9, a t-test p-value < 0.05, or an effect size > 1. XERp prediction was also done to accurately select the metabolite markers within the 2 sample groups. Of the metabolite markers identified, 78.4% (29/37) were elevated and 48.65% of these markers were fatty acids (18/37). It is clear that a total loss of PKCδ functionality results in an inhibition of glycolysis, the TCA cycle, and steroid synthesis, accompanied by upregulation of the pentose phosphate pathway, fatty acids oxidation, cholesterol transport/storage, single carbon and sulphur-containing amino acid synthesis, branched-chain amino acids (BCAA), ketogenesis, and an increased cell signalling via N-acetylglucosamine. CONCLUSION The charaterization of the dysregulated serum metabolites in this study, may represent an additional tool for the early detection and screening of PKCδ-deficiencies or abnormalities.
Collapse
Affiliation(s)
- Du Toit Loots
- Human Metabolomics, North-West University, Hoffman Street, 2531, Potchefstroom, South Africa.
| | | | - Mari Van Reenen
- Human Metabolomics, North-West University, Hoffman Street, 2531, Potchefstroom, South Africa
| | - Mumin Ozturk
- Human Metabolomics, North-West University, Hoffman Street, 2531, Potchefstroom, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa
| | - Frank Brombacher
- Human Metabolomics, North-West University, Hoffman Street, 2531, Potchefstroom, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Center for Infectious Disease Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P Parihar
- Human Metabolomics, North-West University, Hoffman Street, 2531, Potchefstroom, South Africa.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa.
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Wellcome Center for Infectious Disease Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
4
|
Mensah E, Tabrizchi R, Daneshtalab N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol Transl Sci 2022; 5:1034-1049. [PMID: 36407955 PMCID: PMC9667477 DOI: 10.1021/acsptsci.2c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Understanding the pharmacodynamics of cannabinoids is an essential subject due to the recent increasing global acceptance of cannabis and its derivation for recreational and therapeutic purposes. Elucidating the interaction between cannabinoids and the vascular system is critical to exploring cannabinoids as a prospective therapeutic agent for treating vascular-associated clinical conditions. This review aims to examine the effect of cannabinoids on the vascular system and further discuss the fundamental pharmacological properties and mechanisms of action of cannabinoids in the vascular system. Data from literature revealed a substantial interaction between endocannabinoids, phytocannabinoids, and synthetic cannabinoids within the vasculature of both humans and animal models. However, the mechanisms and the ensuing functional response is blood vessels and species-dependent. The current understanding of classical cannabinoid receptor subtypes and the recently discovered atypical cannabinoid receptors and the development of new synthetic analogs have further enhanced the pharmacological characterization of the vascular cannabinoid receptors. Compelling evidence also suggest that cannabinoids represent a formidable therapeutic candidate for vascular-associated conditions. Nonetheless, explanations of the mechanisms underlining these processes are complex and paradoxical based on the heterogeneity of receptors and signaling pathways. Further insight from studies that uncover the mechanisms underlining the therapeutic effect of cannabinoids in the treatment of vascular-associated conditions is required to determine whether the known benefits of cannabinoids thus currently outweigh the known/unknown risks.
Collapse
Affiliation(s)
- Eric Mensah
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Reza Tabrizchi
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Noriko Daneshtalab
- School
of Pharmacy, Memorial University of Newfoundland
and Labrador, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
5
|
Pulgar VM, Howlett AC, Eldeeb K. WIN55212-2 Modulates Intracellular Calcium via CB 1 Receptor-Dependent and Independent Mechanisms in Neuroblastoma Cells. Cells 2022; 11:2947. [PMID: 36230909 PMCID: PMC9563019 DOI: 10.3390/cells11192947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
The CB1 cannabinoid receptor (CB1R) and extracellular calcium (eCa2+)-stimulated Calcium Sensing receptor (CaSR) can exert cellular signaling by modulating levels of intracellular calcium ([Ca2+]i). We investigated the mechanisms involved in the ([Ca2+]i) increase in N18TG2 neuroblastoma cells, which endogenously express both receptors. Changes in [Ca2+]i were measured in cells exposed to 0.25 or 2.5 mM eCa2+ by a ratiometric method (Fura-2 fluorescence) and expressed as the difference between baseline and peak responses (ΔF340/380). The increased ([Ca2+]i) in cells exposed to 2.5 mM eCa2+ was blocked by the CaSR antagonist, NPS2143, this inhibition was abrogated upon stimulation with WIN55212-2. WIN55212-2 increased [Ca2+]i at 0.25 and 2.5 mM eCa2+ by 700% and 350%, respectively, but this increase was not replicated by CP55940 or methyl-anandamide. The store-operated calcium entry (SOCE) blocker, MRS1845, attenuated the WIN55212-2-stimulated increase in [Ca2+]i at both levels of eCa2+. Simultaneous perfusion with the CB1 antagonist, SR141716 or NPS2143 decreased the response to WIN55212-2 at 0.25 mM but not 2.5 mM eCa2+. Co-perfusion with the non-CB1/CB2 antagonist O-1918 attenuated the WIN55212-2-stimulated [Ca2+]i increase at both eCa2+ levels. These results are consistent with WIN55212-2-mediated intracellular Ca2+ mobilization from store-operated calcium channel-filled sources that could occur via either the CB1R or an O-1918-sensitive non-CB1R in coordination with the CaSR. Intracellular pathway crosstalk or signaling protein complexes may explain the observed effects.
Collapse
Affiliation(s)
- Victor M. Pulgar
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
- Biomedical Research and Infrastructure Center, Winston-Salem State University, Winston-Salem, NC 27101, USA
- Department of Obstetrics & Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Allyn C. Howlett
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Khalil Eldeeb
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- AL Azhar Faculty of Medicine, New Damietta 34518, Egypt
| |
Collapse
|
6
|
López-Canales OA, Pavón N, Ubaldo-Reyes LM, Juárez-Oropeza MA, Torres-Durán PV, Regla I, Paredes-Carbajal MC. Characterization of hypotensive and vasorelaxant effects of PHAR-DBH-Me a new cannabinoid receptor agonist. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:77-86. [PMID: 35203058 PMCID: PMC8890940 DOI: 10.4196/kjpp.2022.26.2.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/30/2021] [Accepted: 12/04/2021] [Indexed: 12/04/2022]
Abstract
The effect of PHAR-DBH-Me, a cannabinoid receptor agonist, on different cardiovascular responses in adult male rats was analyzed. The blood pressure was measured directly and indirectly. The coronary flow was measured by Langendorff preparation, and vasomotor responses induced by PHAR-DBH-Me in aortic rings pre-contracted with phenylephrine (PHEN) were analyzed. The intravenous injection of the compound PHAR-DBH-Me (0.018–185 µg/kg) resulted in decreased blood pressure; maximum effect was observed at the dose of 1,850 µg/kg. A concentration-dependent increase in the coronary flow was observed in a Langendorff preparation. In the aortic rings, with and without endothelium, pre-contracted with PHEN (10–6 M), the addition of PHAR-DBH-Me to the superfusion solution (10–12–10–5 M), produced a vasodilator response, which depends on the concentration and presence of the endothelium. L-NAME inhibited these effects. Addition of CB1 receptor antagonist (AM 251) did not modify the response, while CB2 receptor antagonist (AM630) decreased the potency of relaxation elicited by PHAR-DBH-Me. Indomethacin shifted the curve concentration-response to the left and produced an increase in the magnitude of the maximum endothelium dependent response to this compound. The maximum effect of PHAR-DBH-Me was observed with the concentration of 10–5 M. These results show that PHAR-DBH-Me has a concentration-dependent and endothelium-dependent vasodilator effect through CB2 receptor. This vasodilation is probably mediated by the synthesis/release of NO. On the other hand, it is suggested that PHAR-DBH-Me also induces the release of a vasoconstrictor prostanoid.
Collapse
Affiliation(s)
- Oscar Alberto López-Canales
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Natalia Pavón
- Department of Pharmacology, National Institute of Cardiology, Mexico City 14080, Mexico
| | - Laura Matilde Ubaldo-Reyes
- Department of Anatomy, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Marco Antonio Juárez-Oropeza
- Department of Biochemistry, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | - Ignacio Regla
- Drug Synthesis Laboratory, UMIEZ, Zaragoza School of Higher Education, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | | |
Collapse
|
7
|
Roy A, Kundu M, Chakrabarti S, Patel DR, Pahan K. Oleamide, a Sleep-Inducing Supplement, Upregulates Doublecortin in Hippocampal Progenitor Cells via PPARα. J Alzheimers Dis 2021; 84:1747-1762. [PMID: 34744082 PMCID: PMC10075226 DOI: 10.3233/jad-215124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Doublecortin (DCX), a microtubule associated protein, has emerged as a central biomarker of hippocampal neurogenesis. However, molecular mechanisms by which DCX is regulated are poorly understood. OBJECTIVE Since sleep is involved with the acquisition of memory and oleamide or 9-Octadecenamide (OCT) is a sleep-inducing supplement in human, we examined whether OCT could upregulate DCX in hippocampal progenitor cells (HPCs). METHODS We employed real-time PCR, western blot, immunostaining, chromatin immunoprecipitation, lentiviral transduction in HPCs, and the calcium influx assay. RESULTS OCT directly upregulated the transcription of Dcx in HPCs via activation of peroxisome proliferator-activated receptor α (PPARα), a lipid-lowering transcription factor. We observed that, HPCs of Ppara-null mice displayed significant impairment in DCX expression and neuronal differentiation as compared to that of wild-type mice. Interestingly, treatment with OCT stimulated the differentiation process of HPCs in wild-type, but not Ppara-null mice. Reconstruction of PPARα in mouse Ppara-null HPCs restored the expression of DCX, which was further stimulated with OCT treatment. In contrast, a dominant-negative mutant of PPARα significantly attenuated the stimulatory effect of OCT on DCX expression and suppressed neuronal differentiation of human neural progenitor cells. Furthermore, RNA microarray, STRING, chromatin immunoprecipitation, site-directed mutagenesis, and promoter reporter assay have identified DCX as a new target of PPARα. CONCLUSION These results indicate that OCT, a sleep supplement, directly controls the expression of DCX and suggest that OCT may be repurposed for stimulating the hippocampal neurogenesis.
Collapse
Affiliation(s)
- Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sudipta Chakrabarti
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Dhruv R Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
8
|
Davic A, Cascio M. Development of a Microfluidic Platform for Trace Lipid Analysis. Metabolites 2021; 11:metabo11030130. [PMID: 33668377 PMCID: PMC7996208 DOI: 10.3390/metabo11030130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
The inherent trace quantity of primary fatty acid amides found in biological systems presents challenges for analytical analysis and quantitation, requiring a highly sensitive detection system. The use of microfluidics provides a green sample preparation and analysis technique through small-volume fluidic flow through micron-sized channels embedded in a polydimethylsiloxane (PDMS) device. Microfluidics provides the potential of having a micro total analysis system where chromatographic separation, fluorescent tagging reactions, and detection are accomplished with no added sample handling. This study describes the development and the optimization of a microfluidic-laser induced fluorescence (LIF) analysis and detection system that can be used for the detection of ultra-trace levels of fluorescently tagged primary fatty acid amines. A PDMS microfluidic device was designed and fabricated to incorporate droplet-based flow. Droplet microfluidics have enabled on-chip fluorescent tagging reactions to be performed quickly and efficiently, with no additional sample handling. An optimized LIF optical detection system provided fluorescently tagged primary fatty acid amine detection at sub-fmol levels (436 amol). The use of this LIF detection provides unparalleled sensitivity, with detection limits several orders of magnitude lower than currently employed LC-MS techniques, and might be easily adapted for use as a complementary quantification platform for parallel MS-based omics studies.
Collapse
|
9
|
Hernández-Díaz C, Juárez-Oropeza MA, Mascher D, Pavón N, Regla I, Paredes-Carbajal MC. Effects of Oleamide on the Vasomotor Responses in the Rat. Cannabis Cannabinoid Res 2020; 5:42-50. [PMID: 32322675 DOI: 10.1089/can.2019.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Introduction: Cardiovascular effects of endocannabinoids (eCBs) have generated considerable interest since it has been suggested that the eCB system could become the new pharmacological target, either by blocking its activity or by promoting its effects on several cardiovascular diseases such as hypovolemic and septic shock or hypertension. The purpose of this study was to examine the effects of oleamide on several vasomotor responses in adult rats. Materials and Methods: Blood pressure (BP) was measured both directly and indirectly. Coronary flow was quantified with Langendorf preparation, and the vasomotor responses induced by oleamide were analyzed in the aortic rings. Results: Oleamide induced a decrease in BP, by both direct and indirect methods, which were dose dependent. An increase in coronary flow was observed with Langendorf preparation depending on the dose. Oleamide produced a vasodilator response in aortic rings pre-contracted with phenylephrine (10-5 M), which was concentration and endothelium dependent. This relaxing effect was of minor magnitude than that induced with the same dose on BP. L-NAME did not modify these effects. However, indomethacin induced a shift to the left of the concentration-response curve to oleamide and an increase in the magnitude of maximum vasodilation in rings with endothelium. Oleamide produced the maximal relaxant response at 10-5 M concentration. Conclusions: Oleamide has both in vivo and in vitro vasodilator effects. Vasodilator effects could be mediated by compounds synthesized/released by the endothelium (hyperpolarizing factor) or acting directly on vascular smooth muscle in aortic rings. The TRPV1 and CB1R receptors could mediate these effects. Finally, the results suggest that oleamide probably induces the synthesis/release of a vasoconstrictor prostanoid.
Collapse
Affiliation(s)
- Carlos Hernández-Díaz
- Hospital Universitario de Burgos, Burgos, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Distrito Federal, Mexico
| | - Marco Antonio Juárez-Oropeza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, Mexico
| | - Dieter Mascher
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Distrito Federal, Mexico
| | - Natalia Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología, Ciudad de Mexico, Mexico
| | - Ignacio Regla
- Laboratorio Síntesis de Fármacos, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Cristina Paredes-Carbajal
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Distrito Federal, Mexico
| |
Collapse
|
10
|
Jee SH, Kim M, Kim M, Yoo HJ, Kim H, Jung KJ, Hong S, Lee JH. Metabolomics Profiles of Hepatocellular Carcinoma in a Korean Prospective Cohort: The Korean Cancer Prevention Study-II. Cancer Prev Res (Phila) 2018; 11:303-312. [DOI: 10.1158/1940-6207.capr-17-0249] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/11/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
|
11
|
Awakan OJ, Malomo SO, Adejare AA, Igunnu A, Atolani O, Adebayo AH, Owoyele BV. Anti-inflammatory and bronchodilatory constituents of leaf extracts of Anacardium occidentale L. in animal models. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2017; 16:62-70. [PMID: 29397096 DOI: 10.1016/j.joim.2017.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/05/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Anacardium occidentale L. leaf is useful in the treatment of inflammation and asthma, but the bioactive constituents responsible for these activities have not been characterized. Therefore, this study was aimed at identifying the bioactive constituent(s) of A. occidentale ethanolic leaf extract (AOEL) and its solvent-soluble portions, and evaluating their effects on histamine-induced paw edema and bronchoconstriction. METHODS The bronchodilatory effect was determined by measuring the percentage protection provided by plant extracts in the histamine-induced bronchoconstriction model in guinea pigs. The anti-inflammatory effect of the extracts on histamine-induced paw edema in rats was determined by measuring the increase in paw diameter, after which the percent edema inhibition was calculated. The extracts were analyzed using gas chromatography-mass spectrometry to identify the bioactive constituents. Column chromatography and Fourier transform infrared spectroscopy were used respectively to isolate and characterize the constituents. The bronchodilatory and anti-inflammatory activities of the isolated bioactive constituent were evaluated. RESULTS Histamine induced bronchoconstriction in the guinea pigs and edema in the rat paw. AOEL, hexane-soluble portion of AOEL, ethyl acetate-soluble portion of AOEL, and chloroform-soluble portion of AOEL significantly increased bronchodilatory and anti-inflammatory activities (P < 0.05). Oleamide (9-octadecenamide) was identified as the most abundant compound in the extracts and was isolated. Oleamide significantly increased bronchodilatory and anti-inflammatory activities by 32.97% and 98.41%, respectively (P < 0.05). CONCLUSION These results indicate that oleamide is one of the bioactive constituents responsible for the bronchodilatory and anti-inflammatory activity of A. occidentale leaf, and can therefore be employed in the management of bronchoconstriction and inflammation.
Collapse
Affiliation(s)
- Oluwakemi Josephine Awakan
- Department of Biological Sciences, College of Science and Engineering, Landmark University, PMB 1001, Omu-Aran, Nigeria.
| | - Sylvia Omonirume Malomo
- Department of Biological Sciences, College of Science and Engineering, Landmark University, PMB 1001, Omu-Aran, Nigeria; Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Abdullahi Adeyinka Adejare
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, PMB 12003, Lagos, Nigeria
| | - Adedoyin Igunnu
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Olubunmi Atolani
- Department of Chemistry, Faculty of Physical Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Abiodun Humphrey Adebayo
- Department of Biochemistry, College of Science and Technology, Covenant University, PMB 1023, Ota, Nigeria
| | - Bamidele Victor Owoyele
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
| |
Collapse
|
12
|
Al Suleimani YM, Al Mahruqi AS. The endogenous lipid N-arachidonoyl glycine is hypotensive and nitric oxide-cGMP-dependent vasorelaxant. Eur J Pharmacol 2016; 794:209-215. [PMID: 27890711 DOI: 10.1016/j.ejphar.2016.11.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/13/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
N-arachidonoyl glycine (NAGLY), is the endogenous lipid that activates the G protein-couple receptor 18 (GPR18) with vasodilatory activity in resistance arteries. This study investigates its hemodynamic effects and mechanisms of vasorelaxation. Hemodynamic effects of NAGLY in rats were assessed using a Biopac system and its vascular responses were assessed using a wire myograph. NAGLY (1mg/kg) decreased blood pressure by 69.4±5.5% and reduced renal blood flow by 88±12% and the effects were not sensitive to inhibition by O-1918 (3mg/kg). In resistant vessels, NAGLY (1-30µM) induced concentration- and endothelium-dependent vasorelaxation and the effect was inhibited by the nitric oxide synthase inhibitor, L-NAME (300µM), a cGMP synthase inhibitor, ODQ (10µM), the antagonists of "endothelial anandamide" receptor, rimonabant (3µM) and O-1918 (10µM) and the inhibitor of Na+/Ca2+ exchanger (NCX), KB-R7943 (10µM). On the other hand, NAGLY-induced vasorelaxation was not affected by CID 16020046 (GPR55 antagonist), AM 251 (cannabinoid CB1 receptor antagonist), AM 630 (cannabinoid CB2 receptor antagonist), capsazepine (TRPV1 antagonist), indomethacin (cyclooxygenase inhibitor), TRAM34 (IKCa channel blocker), iberiotoxin (BKCa channel blocker) and GW9662 (PPARɤ antagonist). At low concentrations of carbachol, NAGLY potentiated carbachol-induced vasorelaxation. NAGLY is an endothelium-dependent vasodilator and hypotensive lipid. The vasorelaxation is predominantly via activation of nitric oxide-cGMP pathway and NCX and probably mediated by the "endothelial anandamide" receptor, while the hypotensive effect of NAGLY appears not to involve the anandamide receptor. NAGLY also potentiates carbachol-induced vasorelaxation, the mechanism of which might involve stimulation of NO release.
Collapse
Affiliation(s)
- Yousuf M Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, 35, Alkoudh 123, Sultanate of Oman.
| | - Ahmed S Al Mahruqi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, 35, Alkoudh 123, Sultanate of Oman
| |
Collapse
|
13
|
Stanley CP, Hind WH, Tufarelli C, O'Sullivan SE. The endocannabinoid anandamide causes endothelium-dependent vasorelaxation in human mesenteric arteries. Pharmacol Res 2016; 113:356-363. [PMID: 27633407 PMCID: PMC5113919 DOI: 10.1016/j.phrs.2016.08.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/14/2016] [Accepted: 08/27/2016] [Indexed: 12/12/2022]
Abstract
The endocannabinoid anandamide (AEA) causes vasorelaxation in animal studies. Although circulating AEA levels are increased in many pathologies, little is known about its vascular effects in humans. The aim of this work was to characterise the effects of AEA in human arteries. Ethical approval was granted to obtain mesenteric arteries from patients (n = 31) undergoing bowel resection. Wire myography was used to probe the effects and mechanisms of action of AEA. RT‐PCR was used to confirm the presence of receptor mRNA in human aortic endothelial cells (HAECs) and intracellular signalling proteins were measured using multiplex technology. AEA caused vasorelaxation of precontracted human mesenteric arteries with an Rmax of ∼30%. A synthetic CB1 agonist (CP55940) caused greater vasorelaxation (Rmax ∼60%) while a CB2 receptor agonist (HU308) had no effect on vascular tone. AEA-induced vasorelaxation was inhibited by removing the endothelium, inhibition of nitric oxide (NO) synthase, antagonising the CB1 receptor and antagonising the proposed novel endothelial cannabinoid receptor (CBe). AEA‐induced vasorelaxation was not affected by CB2 antagonism, by depleting sensory neurotransmitters, or inhibiting cyclooxygenase activity. RT‐PCR showed CB1 but not CB2 receptors were present in HAECs, and AEA and CP55940 had similar profiles in HAECs (increased phosphorylation of JNK, NFκB, ERK, Akt, p70s6K, STAT3 and STAT5). Post hoc analysis of the data set showed that overweight patients and those taking paracetamol had reduced vasorelaxant responses to AEA. These data show that AEA causes moderate endothelium-dependent, NO-dependent vasorelaxation in human mesenteric arteries via activation of CB1 receptors.
Collapse
Affiliation(s)
- Christopher P Stanley
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - William H Hind
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Christina Tufarelli
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK.
| |
Collapse
|
14
|
Inhibitory action of linoleamide and oleamide toward sarco/endoplasmic reticulum Ca 2+-ATPase. Biochim Biophys Acta Gen Subj 2016; 1861:3399-3405. [PMID: 27595606 DOI: 10.1016/j.bbagen.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/30/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND SERCA maintains intracellular Ca2+ homeostasis by sequestering cytosolic Ca2+ into SR/ER stores. Two primary fatty acid amides (PFAAs), oleamide (18:19-cis) and linoleamide (18:29,12-cis), induce an increase in intracellular Ca2+ levels, which might be caused by their inhibition of SERCA. METHODS Three major SERCA isoforms, rSERCA1a, hSERCA2b, and hSERCA3a, were individually overexpressed in COS-1 cells, and the inhibitory action of PFAAs on Ca2+-ATPase activity of SERCA was examined. RESULTS The Ca2+-ATPase activity of each SERCA was inhibited in a concentration-dependent manner strongly by linoleamide (IC50 15-53μM) and partially by oleamide (IC50 8.3-34μM). Inhibition by other PFAAs, such as stearamide (18:0) and elaidamide (18:19-trans), was hardly or slightly observed. With increasing dose, linoleamide decreased the apparent affinity for Ca2+ and the apparent maximum velocity of Ca2+-ATPase activity of all SERCAs tested. Oleamide also lowered these values for hSERCA3a. Meanwhile, oleamide uniquely reduced the apparent Ca2+ affinity of rSERCA1a and hSERCA2b: the reduction was considerably attenuated above certain concentrations of oleamide. The dissociation constants for SERCA interaction varied from 6 to 45μM in linoleamide and from 1.6 to 55μM in oleamide depending on the isoform. CONCLUSIONS Linoleamide and oleamide inhibit SERCA activity in the micromolar concentration range, and in a different manner. Both amides mainly suppress SERCA activity by lowering the Ca2+ affinity of the enzyme. GENERAL SIGNIFICANCE Our findings imply a novel role of these PFAAs as modulators of intracellular Ca2+ homeostasis via regulation of SERCA activity.
Collapse
|
15
|
Abstract
The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. In hypertension, there is evidence for changes in the expression of CB(1), and CB(1) antagonism reduces blood pressure in obese hypertensive and diabetic patients. The endocannabinoid system is also upregulated in cardiac pathologies. This is likely to be cardioprotective, via CB(2) and CB(1) (lesser extent). In the vasculature, endocannabinoids cause vasorelaxation through activation of multiple target sites, inhibition of calcium channels, activation of potassium channels, NO production and the release of vasoactive substances. Changes in the expression or function of any of these pathways alter the vascular effect of endocannabinoids. Endocannabinoids have positive (CB(2)) and negative effects (CB(1)) on the progression of atherosclerosis. However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.
Collapse
Affiliation(s)
- Saoirse Elizabeth O'Sullivan
- Faculty of Medicine and Health Sciences, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Room 4107, Uttoxeter Road, Derby, DE22 3DT, UK.
| |
Collapse
|
16
|
Mechanisms of vasorelaxation induced by the cannabidiol analogue compound O-1602 in the rat small mesenteric artery. Eur J Pharmacol 2015; 765:107-14. [DOI: 10.1016/j.ejphar.2015.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022]
|
17
|
AlSuleimani YM, Hiley CR. The GPR55 agonist lysophosphatidylinositol relaxes rat mesenteric resistance artery and induces Ca(2+) release in rat mesenteric artery endothelial cells. Br J Pharmacol 2015; 172:3043-57. [PMID: 25652040 DOI: 10.1111/bph.13107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 01/11/2015] [Accepted: 02/02/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Lysophosphatidylinositol (LPI), a lipid signalling molecule, activates GPR55 and elevates intracellular Ca(2+). Here, we examine the actions of LPI in the rat resistance mesenteric artery and Ca(2+) responses in endothelial cells isolated from the artery. EXPERIMENTAL APPROACH Vascular responses were studied using wire myographs. Single-cell fluorescence imaging was performed using a MetaFluor system. Hypotensive effects of LPI were assessed using a Biopac system. KEY RESULTS In isolated arteries, LPI-induced vasorelaxation was concentration- and endothelium-dependent and inhibited by CID 16020046, a GPR55 antagonist. The CB1 receptor antagonist AM 251 had no effect, whereas rimonabant and O-1918 significantly potentiated LPI responses. Vasorelaxation was reduced by charybdotoxin and iberiotoxin, alone or combined. LPI decreased systemic arterial pressure. GPR55 is expressed in rat mesenteric artery. LPI caused biphasic elevations of endothelial cell intracellular Ca(2+). Pretreatment with thapsigargin or 2-aminoethoxydiphenyl borate abolished both phases. The PLC inhibitor U73122 attenuated the initial phase and enhanced the second phase, whereas the Rho-associated kinase inhibitor Y-27632 abolished the late phase but not the early phase. CONCLUSIONS AND IMPLICATIONS LPI is an endothelium-dependent vasodilator in the rat small mesenteric artery and a hypotensive agent. The vascular response involves activation of Ca(2+)-sensitive K(+) channels and is not mediated by CB1 receptors, but unexpectedly enhanced by antagonists of the 'endothelial anandamide' receptor. In endothelial cells, LPI utilizes PLC-IP3 and perhaps ROCK-RhoA pathways to elevate intracellular Ca(2+). Overall, these findings support an endothelial site of action for LPI and suggest a possible role for GPR55 in vasculature.
Collapse
Affiliation(s)
- Y M AlSuleimani
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Alkoudh, Sultanate of Oman
| | - C R Hiley
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Proteomic and metabonomic biomarkers for hepatocellular carcinoma: a comprehensive review. Br J Cancer 2015; 112:1141-56. [PMID: 25826224 PMCID: PMC4385954 DOI: 10.1038/bjc.2015.38] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/04/2014] [Accepted: 12/20/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks third in overall global cancer-related mortality. Symptomatic presentation often means advanced disease where potentially curative treatment options become very limited. Numerous international guidelines propose the routine monitoring of those with the highest risk factors for the condition in order to diagnose potential tumourigenesis early. To aid this, the fields of metabonomic- and proteomic-based biomarker discovery have applied advanced tools to identify early changes in protein and metabolite expression in HCC patients vs controls. With robust validation, it is anticipated that from these candidates will rise a high-performance non-invasive test able to diagnose early HCC and related conditions. This review gathers the numerous markers proposed by studies using mass spectrometry and proton nuclear magnetic resonance spectroscopy and evaluates areas of consistency as well as discordance.
Collapse
|
19
|
Bondarenko AI. Endothelial atypical cannabinoid receptor: do we have enough evidence? Br J Pharmacol 2014; 171:5573-88. [PMID: 25073723 PMCID: PMC4290703 DOI: 10.1111/bph.12866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1 , non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, O.O.Bogomoletz Institute of PhysiologyKiev, Ukraine
- Institute of Molecular Biology and Biochemistry, Medical University of GrazGraz, Austria
| |
Collapse
|
20
|
Stanley C, O'Sullivan SE. Vascular targets for cannabinoids: animal and human studies. Br J Pharmacol 2014; 171:1361-78. [PMID: 24329566 DOI: 10.1111/bph.12560] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/18/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Application of cannabinoids and endocannabinoids to perfused vascular beds or individual isolated arteries results in changes in vascular resistance. In most cases, the result is vasorelaxation, although vasoconstrictor responses are also observed. Cannabinoids also modulate the actions of vasoactive compounds including acetylcholine, methoxamine, angiotensin II and U46619 (thromboxane mimetic). Numerous mechanisms of action have been proposed including receptor activation, potassium channel activation, calcium channel inhibition and the production of vasoactive mediators such as calcitonin gene-related peptide, prostanoids, NO, endothelial-derived hyperpolarizing factor and hydrogen peroxide. The purpose of this review is to examine the evidence for the range of receptors now known to be activated by cannabinoids. Direct activation by cannabinoids of CB1 , CBe , TRPV1 (and potentially other TRP channels) and PPARs in the vasculature has been observed. A potential role for CB2, GPR55 and 5-HT1 A has also been identified in some studies. Indirectly, activation of prostanoid receptors (TP, IP, EP1 and EP4 ) and the CGRP receptor is involved in the vascular responses to cannabinoids. The majority of this evidence has been obtained through animal research, but recent work has confirmed some of these targets in human arteries. Vascular responses to cannabinoids are enhanced in hypertension and cirrhosis, but are reduced in obesity and diabetes, both due to changes in the target sites of action. Much further work is required to establish the extent of vascular actions of cannabinoids and the application of this research in physiological and pathophysiological situations. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- Christopher Stanley
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, UK
| | | |
Collapse
|
21
|
Divito EB, Cascio M. Metabolism, physiology, and analyses of primary fatty acid amides. Chem Rev 2013; 113:7343-53. [PMID: 23927536 DOI: 10.1021/cr300363b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Erin B Divito
- Department of Chemistry and Biochemistry, Duquesne University , 308 Mellon Hall, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282-1530, United States
| | | |
Collapse
|
22
|
Bertin MJ, Moeller P, Guillette LJ, Chapman RW. Using machine learning tools to model complex toxic interactions with limited sampling regimes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2728-2736. [PMID: 23402624 DOI: 10.1021/es3033549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A major impediment to understanding the impact of environmental stress, including toxins and other pollutants, on organisms, is that organisms are rarely challenged by one or a few stressors in natural systems. Thus, linking laboratory experiments that are limited by practical considerations to a few stressors and a few levels of these stressors to real world conditions is constrained. In addition, while the existence of complex interactions among stressors can be identified by current statistical methods, these methods do not provide a means to construct mathematical models of these interactions. In this paper, we offer a two-step process by which complex interactions of stressors on biological systems can be modeled in an experimental design that is within the limits of practicality. We begin with the notion that environment conditions circumscribe an n-dimensional hyperspace within which biological processes or end points are embedded. We then randomly sample this hyperspace to establish experimental conditions that span the range of the relevant parameters and conduct the experiment(s) based upon these selected conditions. Models of the complex interactions of the parameters are then extracted using machine learning tools, specifically artificial neural networks. This approach can rapidly generate highly accurate models of biological responses to complex interactions among environmentally relevant toxins, identify critical subspaces where nonlinear responses exist, and provide an expedient means of designing traditional experiments to test the impact of complex mixtures on biological responses. Further, this can be accomplished with an astonishingly small sample size.
Collapse
Affiliation(s)
- Matthew J Bertin
- MUSC/Marine Biomedicine & Environmental Sciences, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, USA
| | | | | | | |
Collapse
|
23
|
AlSuleimani YM, Hiley CR. Mechanisms of vasorelaxation induced by oleoylethanolamide in the rat small mesenteric artery. Eur J Pharmacol 2013; 702:1-11. [DOI: 10.1016/j.ejphar.2013.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
24
|
Enhanced vasorelaxant effects of the endocannabinoid-like mediator, oleamide, in hypertension. Eur J Pharmacol 2012; 684:102-7. [DOI: 10.1016/j.ejphar.2012.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 02/07/2023]
|
25
|
Dionisi M, Alexander SPH, Bennett AJ. Oleamide activates peroxisome proliferator-activated receptor gamma (PPARγ) in vitro. Lipids Health Dis 2012; 11:51. [PMID: 22584002 PMCID: PMC3414753 DOI: 10.1186/1476-511x-11-51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/14/2012] [Indexed: 01/25/2023] Open
Abstract
Background Oleamide (ODA) is a fatty acid primary amide first identified in the cerebrospinal fluid of sleep-deprived cats, which exerts effects on vascular and neuronal tissues, with a variety of molecular targets including cannabinoid receptors and gap junctions. It has recently been reported to exert a hypolipidemic effect in hamsters. Here, we have investigated the nuclear receptor family of peroxisome proliferator-activated receptors (PPARs) as potential targets for ODA action. Results Activation of PPARα, PPARβ and PPARγ was assessed using recombinant expression in Chinese hamster ovary cells with a luciferase reporter gene assay. Direct binding of ODA to the ligand binding domain of each of the three PPARs was monitored in a cell-free fluorescent ligand competition assay. A well-established assay of PPARγ activity, the differentiation of 3T3-L1 murine fibroblasts into adipocytes, was assessed using an Oil Red O uptake-based assay. ODA, at 10 and 50 μM, was able to transactivate PPARα, PPARβ and PPARγ receptors. ODA bound to the ligand binding domain of all three PPARs, although complete displacement of fluorescent ligand was only evident for PPARγ, at which an IC50 value of 38 μM was estimated. In 3T3-L1 cells, ODA, at 10 and 20 μM, induced adipogenesis. Conclusions We have, therefore, identified a novel site of action of ODA through PPAR nuclear receptors and shown how ODA should be considered as a weak PPARγ ligand in vitro.
Collapse
Affiliation(s)
- Mauro Dionisi
- FRAME Laboratory, School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, England
| | | | | |
Collapse
|
26
|
Divito EB, Davic AP, Johnson ME, Cascio M. Electrospray ionization and collision induced dissociation mass spectrometry of primary fatty acid amides. Anal Chem 2012; 84:2388-94. [PMID: 22283789 DOI: 10.1021/ac203158u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Primary fatty acid amides are a group of bioactive lipids that have been linked with a variety of biological processes such as sleep regulation and modulation of monoaminergic systems. As novel forms of these molecules continue to be discovered, more emphasis will be placed on selective, trace detection. Currently, there is no published experimental determination of collision induced dissociation of PFAMs. A select group of PFAM standards, 12 to 22 length carbon chains, were directly infused into an electrospray ionization source Quadrupole Time of Flight Mass Spectrometer. All standards were monitored in positive mode using the [M + H](+) peak. Mass Hunter Qualitative Analysis software was used to calculate empirical formulas of the product ions. All PFAMs showed losses of 14 m/z indicative of an acyl chain, while the monounsaturated group displayed neutral losses corresponding to H(2)O and NH(3). The resulting spectra were used to propose fragmentation mechanisms. Isotopically labeled PFAMs were used to validate the proposed mechanisms. Patterns of saturated versus unsaturated standards were distinctive, allowing for simple differentiation. This determination will allow for fast, qualitative identification of PFAMs. Additionally, it will provide a method development tool for selection of unique product ions when analyzed in multiple reaction monitoring mode.
Collapse
Affiliation(s)
- Erin B Divito
- Department of Chemistry and Biochemistry, Duquesne University, 308 Mellon Hall of Sciences, Pittsburgh, Pennsylvania 15282-1530, USA
| | | | | | | |
Collapse
|
27
|
Farrell EK, Chen Y, Barazanji M, Jeffries KA, Cameroamortegui F, Merkler DJ. Primary fatty acid amide metabolism: conversion of fatty acids and an ethanolamine in N18TG2 and SCP cells. J Lipid Res 2011; 53:247-56. [PMID: 22095832 DOI: 10.1194/jlr.m018606] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary fatty acid amides (PFAM) are important signaling molecules in the mammalian nervous system, binding to many drug receptors and demonstrating control over sleep, locomotion, angiogenesis, and many other processes. Oleamide is the best-studied of the primary fatty acid amides, whereas the other known PFAMs are significantly less studied. Herein, quantitative assays were used to examine the endogenous amounts of a panel of PFAMs, as well as the amounts produced after incubation of mouse neuroblastoma N(18)TG(2) and sheep choroid plexus (SCP) cells with the corresponding fatty acids or N-tridecanoylethanolamine. Although five endogenous primary amides were discovered in the N(18)TG(2) and SCP cells, a different pattern of relative amounts were found between the two cell lines. Higher amounts of primary amides were found in SCP cells, and the conversion of N-tridecanoylethanolamine to tridecanamide was observed in the two cell lines. The data reported here show that the N(18)TG(2) and SCP cells are excellent model systems for the study of PFAM metabolism. Furthermore, the data support a role for the N-acylethanolamines as precursors for the PFAMs and provide valuable new kinetic results useful in modeling the metabolic flux through the pathways for PFAM biosynthesis and degradation.
Collapse
Affiliation(s)
- Emma K Farrell
- Department of Chemistry, University of South Florida, Tampa, FL 33620-5250, USA
| | | | | | | | | | | |
Collapse
|
28
|
Scotter EL, Abood ME, Glass M. The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol 2010; 160:480-98. [PMID: 20590559 DOI: 10.1111/j.1476-5381.2010.00735.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Cannabis sativa plant has been exploited for medicinal, agricultural and spiritual purposes in diverse cultures over thousands of years. Cannabis has been used recreationally for its psychotropic properties, while effects such as stimulation of appetite, analgesia and anti-emesis have lead to the medicinal application of cannabis. Indeed, reports of medicinal efficacy of cannabis can been traced back as far as 2700 BC, and even at that time reports also suggested a neuroprotective effect of the cultivar. The discovery of the psychoactive component of cannabis resin, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) occurred long before the serendipitous identification of a G-protein coupled receptor at which Delta(9)-THC is active in the brain. The subsequent finding of endogenous cannabinoid compounds, the synthesis of which is directed by neuronal excitability and which in turn served to regulate that excitability, further widened the range of potential drug targets through which the endocannabinoid system can be manipulated. As a result of this, alterations in the endocannabinoid system have been extensively investigated in a range of neurodegenerative disorders. In this review we examine the evidence implicating the endocannabinoid system in the cause, symptomatology or treatment of neurodegenerative disease. We examine data from human patients and compare and contrast this with evidence from animal models of these diseases. On the basis of this evidence we discuss the likely efficacy of endocannabinoid-based therapies in each disease context.
Collapse
Affiliation(s)
- Emma L Scotter
- Centre for Brain Research and Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
29
|
Sudhahar V, Shaw S, Imig JD. Mechanisms involved in oleamide-induced vasorelaxation in rat mesenteric resistance arteries. Eur J Pharmacol 2009; 607:143-50. [PMID: 19326479 DOI: 10.1016/j.ejphar.2009.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fatty acid amides are a new class of signaling lipids that have been implicated in diverse physiological and pathological conditions. Oleamide is a fatty acid amide that induces vasorelaxation. Here, we investigated the mechanisms behind the vasorelaxation effect of oleamide in rat mesenteric resistance arteries. Oleamide-induced concentration dependent (0.01 microM-10 microM) vasorelaxation in mesenteric resistance arteries. This relaxation was unaffected by the presence of the fatty acid amide hydrolase (FAAH) inhibitors. The cannabinoid type 1 (CB1) receptor antagonist, AM251 and the non-CB1/CB2 cannabinoid receptor antagonist, O-1918, attenuated the oleamide vasodilatory response, however the cannabinoid CB2 receptor antagonist, AM630, did not affect the vascular response. Moreover, inhibition of the transient receptor potential vanilloid (TRPV) 1 receptor with capsazepine shifted the oleamide-induced vasorelaxation response to the right. In agreement with the vascular functional data, the cannabinoid CB1 and TRPV1 receptor proteins were expressed in mesenteric resistance arteries but cannabinoid CB2 receptors and the FAAH enzyme were not. In endothelium-denuded arteries, the oleamide-mediated vasorelaxation was attenuated and cannabinoid CB1 or non-CB1/CB2 cannabinoid receptor blockade did not further reduce the dilatory response whereas TRPV1 antagonism further decreased the response. These findings indicate that cannabinoid receptors on the endothelium and endothelium-independent TRPV1 receptors contribute to the oleamide vasodilatory response. Taken together, these results demonstrate that the oleamide-induced vasorelaxation is mediated, in part, by cannabinoid CB1 receptors, non-CB1/CB2 cannabinoid receptors, and TRPV1 receptors in rat mesenteric resistance arteries. These mechanisms are overlapping in respect to oleamide-induced mesenteric resistance artery dilation.
Collapse
Affiliation(s)
- Varadarajan Sudhahar
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | | | | |
Collapse
|
30
|
Time-dependent vascular effects of Endocannabinoids mediated by peroxisome proliferator-activated receptor gamma (PPARγ). PPAR Res 2009; 2009:425289. [PMID: 19421417 PMCID: PMC2676321 DOI: 10.1155/2009/425289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/05/2009] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to examine whether endocannabinoids cause PPARγ-mediated vascular actions. Functional vascular studies were carried out in rat aortae. Anandamide and N-arachidonoyl-dopamine (NADA), but not palmitoylethanolamide, caused significant vasorelaxation over time (2 hours). Vasorelaxation to NADA, but not anandamide, was inhibited by CB1 receptor antagonism (AM251, 1 μM), and vasorelaxation to both anandamide and NADA was inhibited by PPARγ antagonism (GW9662, 1 μM). Pharmacological inhibition of
de novo protein synthesis, nitric oxide synthase, and super oxide dismutase abolished the responses to anandamide and NADA. Removal of the endothelium partly inhibited the vasorelaxant responses to anandamide and NADA. Inhibition of fatty acid amide hydrolase (URB597, 1 μM) inhibited the vasorelaxant response to NADA, but not anandamide. These data indicate that endocannabinoids cause time-dependent, PPARγ-mediated vasorelaxation. Activation of PPARγ in the vasculature may represent a novel mechanism by which endocannabinoids are involved in vascular regulation.
Collapse
|
31
|
Hanus LO. Pharmacological and therapeutic secrets of plant and brain (endo)cannabinoids. Med Res Rev 2009; 29:213-71. [PMID: 18777572 DOI: 10.1002/med.20135] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Research on the chemistry and pharmacology of cannabinoids and endocannabinoids has reached enormous proportions, with approximately 15,000 articles on Cannabis sativa L. and cannabinoids and over 2,000 articles on endocannabinoids. The present review deals with the history of the Cannabis sativa L. plant, its uses, constituent compounds and their biogeneses, and similarity to compounds from Radula spp. In addition, details of the pharmacology of natural cannabinoids, as well as synthetic agonists and antagonists are presented. Finally, details regarding the pioneering isolation of the endocannabinoid anandamide, as well as the pharmacology and potential therapeutic uses of endocannabinoid congeners are presented.
Collapse
Affiliation(s)
- Lumír Ondrej Hanus
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
32
|
Kreitzer FR, Stella N. The therapeutic potential of novel cannabinoid receptors. Pharmacol Ther 2009; 122:83-96. [PMID: 19248809 DOI: 10.1016/j.pharmthera.2009.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 12/20/2022]
Abstract
Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.
Collapse
Affiliation(s)
- Faith R Kreitzer
- Department of Pharmacology, University of Washington, Seattle, WA 98115-7280, USA
| | | |
Collapse
|
33
|
Ng KFJ, Leung SWS, Man RYK, Vanhoutte PM. Endothelium-derived hyperpolarizing factor mediated relaxations in pig coronary arteries do not involve Gi/o proteins. Acta Pharmacol Sin 2008; 29:1419-24. [PMID: 19026160 DOI: 10.1111/j.1745-7254.2008.00905.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM Endothelium-dependent relaxations to certain neurohumoral substances are mediated by pertussis toxin-sensitive Gi/o protein. Our experiments were designed to determine the role, if any, of pertussis toxin-sensitive G-proteins in relaxations attributed to endothelium-derived hyperpolarizing factor (EDHF). METHODS Pig coronary arterial rings with endothelia were suspended in organ chambers filled with Krebs-Ringer bicarbonate solution maintained at 37 degrees and continuously aerated with 95%O2 and 5% CO2. Isometric tension was measured during contractions to prostaglandin F2alpha in the presence of indomethacin and N(omega)- nitro-L-arginine methyl ester (L-NAME). RESULTS Thrombin, the thrombin receptor- activating peptide SFLLRN, bradykinin, substance P, and calcimycin produced dose-dependent relaxations. These relaxations were not inhibited by prior incubation with pertussis toxin, but were abolished upon the addition of charybdotoxin plus apamin. Relaxations to the alpha2-adrenergic agonist UK14304 and those to serotonin were abolished in the presence of indomethacin and L-NAME. CONCLUSION Unlike nitric oxide-mediated relaxations, EDHF-mediated relaxations of pig coronary arteries do not involve pertussis toxin-sensitive pathways and are Gi/o protein independent.
Collapse
Affiliation(s)
- Kwok Fu Jacobus Ng
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China.
| | | | | | | |
Collapse
|
34
|
van Diepen H, Schlicker E, Michel MC. Prejunctional and peripheral effects of the cannabinoid CB1 receptor inverse agonist rimonabant (SR 141716). Naunyn Schmiedebergs Arch Pharmacol 2008; 378:345-69. [DOI: 10.1007/s00210-008-0327-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/23/2008] [Indexed: 02/06/2023]
|
35
|
Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M, Malli R, Graier WF. Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 2008; 121:1704-1717. [PMID: 18445684 PMCID: PMC4067516 DOI: 10.1242/jcs.020958] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although the endocannabinoid anandamide is frequently described to act predominantly in the cardiovascular system, the molecular mechanisms of its signaling remained unclear. In human endothelial cells, two receptors for anandamide were found, which were characterized as cannabinoid 1 receptor (CB1R; CNR1) and G-protein-coupled receptor 55 (GPR55). Both receptors trigger distinct signaling pathways. It crucially depends on the activation status of integrins which signaling cascade becomes promoted upon anandamide stimulation. Under conditions of inactive integrins, anandamide initiates CB1R-derived signaling, including Gi-protein-mediated activation of spleen tyrosine kinase (Syk), resulting in NFkappaB translocation. Furthermore, Syk inhibits phosphoinositide 3-kinase (PI3K) that represents a key protein in the transduction of GPR55-originated signaling. However, once integrins are clustered, CB1R splits from integrins and, thus, Syk cannot further inhibit GPR55-triggered signaling resulting in intracellular Ca2+ mobilization from the endoplasmic reticulum (ER) via a PI3K-Bmx-phospholipase C (PLC) pathway and activation of nuclear factor of activated T-cells. Altogether, these data demonstrate that the physiological effects of anandamide on endothelial cells depend on the status of integrin clustering.
Collapse
Affiliation(s)
| | - Cristina Zoratti
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Karin Osibow
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Nariman Balenga
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, A8010, Austria
| | - Edith Goessnitzer
- Institute of Pharmaceutical Chemistry, University Graz, Graz Austria
| | - Maria Waldhoer
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, A8010, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, A8010, Austria
| |
Collapse
|
36
|
Smid SD, Bjorklund CK, Svensson KM, Heigis S, Revesz A. The endocannabinoids anandamide and 2-arachidonoylglycerol inhibit cholinergic contractility in the human colon. Eur J Pharmacol 2007; 575:168-76. [PMID: 17706636 DOI: 10.1016/j.ejphar.2007.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/10/2007] [Accepted: 07/17/2007] [Indexed: 11/25/2022]
Abstract
The effects of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) were determined on cholinergic contractility in strips of human colonic longitudinal muscle and circular muscle in vitro, in the presence of nitric oxide synthase blockade with N-nitro-l-arginine (10(-4) M). Anandamide and 2-AG inhibited longitudinal muscle and circular muscle contractile responses to acetylcholine (10(-9)-10(-4) M) in a concentration-dependent manner. This was unaltered following pretreatment with the cannabinoid CB(1) receptor-selective antagonist AM251 (10(-7) M), however in isolation AM251 elicited a significant rightward shift in the potency of acetylcholine-evoked contraction in both longitudinal muscle and circular muscle preparations. Pretreatment with an inhibitor of anandamide catabolism, arachidonoyl trifluoromethyl ketone (10(-5) M), alone caused a significant decrease in the potency of acetylcholine-evoked contraction in both longitudinal and circular muscle, but had no significant additional effect on the anandamide-induced (10(-5) M) suppression of contraction. Pretreatment with the cannabinoid CB(2) receptor inverse agonist JTE 907 (10(-6) M) neither influenced the potency of acetylcholine-evoked contraction alone nor prevented the potency shift in acetylcholine-evoked contraction in the presence of anandamide (10(-5) M). The findings of the present study indicate that the endocannabinoids anandamide and 2-arachidonoylglycerol suppress colonic cholinergic contractility via a non conventional cannabinoid or non-cannabinoid receptor-mediated pathway. Cholinergic contraction may be tonically modulated by endocannabinoids and/or products of arachidonate metabolism unrelated to endocannabinoid production. The extent of anandamide metabolism is not sufficient to influence the functional effects of its exogenous administration in human colonic tissue in vitro.
Collapse
Affiliation(s)
- Scott D Smid
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
37
|
Alexander SPH, Kendall DA. The complications of promiscuity: endocannabinoid action and metabolism. Br J Pharmacol 2007; 152:602-23. [PMID: 17876303 PMCID: PMC2190010 DOI: 10.1038/sj.bjp.0707456] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 01/27/2023] Open
Abstract
In this review, we present our understanding of the action and metabolism of endocannabinoids and related endogenous molecules. It is clear that the interactions between the multiple endocannabinoid-like molecules (ECLs) are highly complex, both at the level of signal transduction and metabolism. Thus, ECLs are a group of ligands active at 7-transmembrane and nuclear receptors, as well as transmitter-gated and ion channels. ECLs and their metabolites can converge on common endpoints (either metabolic or signalling) through contradictory or reinforcing pathways. We highlight the complexity of the endocannabinoid system, based on the promiscuous nature of ECLs and their metabolites, as well as the synthetic modulators of the endocannabinoid system.
Collapse
Affiliation(s)
- S P H Alexander
- School of Biomedical Sciences and Institute of Neuroscience, University of Nottingham Medical School, Nottingham NG7 7LP, UK.
| | | |
Collapse
|
38
|
Hoi PM, Visintin C, Okuyama M, Gardiner SM, Kaup SS, Bennett T, Baker D, Selwood DL, Hiley CR. Vascular pharmacology of a novel cannabinoid-like compound, 3-(5-dimethylcarbamoyl-pent-1-enyl)-N-(2-hydroxy-1-methyl-ethyl)benzamide (VSN16) in the rat. Br J Pharmacol 2007; 152:751-64. [PMID: 17891160 PMCID: PMC2190032 DOI: 10.1038/sj.bjp.0707470] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE A putative novel cannabinoid receptor mediates vasorelaxation to anandamide and abnormal-cannabidiol and is blocked by O-1918 and by high concentrations of rimonabant. This study investigates VSN16, a novel water-soluble agonist, as a vasorelaxant potentially acting at non-CB1, non-CB2 cannabinoid receptors in the vasculature. EXPERIMENTAL APPROACH VSN16 and some analogues were synthesized and assayed for vasodilator activity in the rat third generation mesenteric artery using wire myography. Also carried out with VSN16 were haemodynamic studies in conscious rats and binding studies to CB1 receptors of rat cerebellum. KEY RESULTS VSN16 relaxed mesenteric arteries in an endothelium-dependent manner. The vasorelaxation was antagonized by high concentrations of the classical cannabinoid antagonists, rimonabant and AM 251, as well as by O-1918, an antagonist at the abnormal-cannabidiol receptor but not at CB1 or CB2 receptors. It did not affect [3H]CP55,940 binding to CB1 receptors in rat cerebellum. The vasorelaxation was not pertussis toxin-sensitive but was reduced by inhibition of nitric oxide synthesis, Ca(2+)-sensitive K+ channels (KCa) and TRPV1 receptors. In conscious rats VSN16 transiently increased blood pressure and caused a longer-lasting increase in mesenteric vascular conductance. Structure-activity studies on vasorelaxation showed a stringent interaction with the target receptor. CONCLUSIONS AND IMPLICATIONS VSN16 is an agonist at a novel cannabinoid receptor of the vasculature. It acts on the endothelium to release nitric oxide and activate KCa and TRPV1. As it is water-soluble it might be useful in bringing about peripheral cannabinoid-like effects without accompanying central or severe cardiovascular responses.
Collapse
Affiliation(s)
- P M Hoi
- Department of Pharmacology, University of Cambridge Cambridge, UK
| | - C Visintin
- The Wolfson Institute for Biomedical Research, University College London London, UK
| | - M Okuyama
- The Wolfson Institute for Biomedical Research, University College London London, UK
| | - S M Gardiner
- School of Biomedical Sciences, Queen's Medical Centre, University of NottinghamUK
| | - S S Kaup
- Department of Pharmacology, University of Cambridge Cambridge, UK
| | - T Bennett
- School of Biomedical Sciences, Queen's Medical Centre, University of NottinghamUK
| | - D Baker
- Institute of Cell and Molecular Science, Barts and The London, Queen Mary's School of Medicine and Dentistry London, UK
| | - D L Selwood
- The Wolfson Institute for Biomedical Research, University College London London, UK
| | - C R Hiley
- Department of Pharmacology, University of Cambridge Cambridge, UK
- Author for correspondence:
| |
Collapse
|
39
|
Affiliation(s)
- Lumír O Hanus
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, 12065, Hebrew University, Jerusalem 91120,
| |
Collapse
|
40
|
Abstract
Oleamide (cis-9,10-octadecenoamide), a fatty acid primary amide discovered in the cerebrospinal fluid of sleep-deprived cats, has a variety of actions that give it potential as a signaling molecule, although these actions have not been extensively investigated in the cardiovascular system. The synthetic pathway probably involves synthesis of oleoylglycine and then conversion to oleamide by peptidylglycine alpha-amidating monooxygenase (PAM); breakdown of oleamide is by fatty acid amide hydrolase (FAAH). Oleamide interacts with voltage-gated Na(+) channels and allosterically with GABA(A) and 5-HT(7) receptors as well as having cannabinoid-like actions. The latter have been suggested to be due to potentiation of the effects of endocannabinoids such as anandamide by inhibiting FAAH-mediated hydrolysis. This might underlie an "entourage effect" whereby co-released endogenous nonagonist congeners of endocannabinoids protect the active molecule from hydrolysis by FAAH. However, oleamide has direct agonist actions at CB(1) cannabinoid receptors and also activates the TRPV1 vanilloid receptor. Other actions include inhibition of gap-junctional communication, and this might give oleamide a role in myocardial development. Many of these actions are absent from the trans isomer of 9,10-octadecenoamide. One of the most potent actions of oleamide is vasodilation. In rat small mesenteric artery the response does not involve CB(1) cannabinoid receptors but another pertussis toxin-sensitive, G protein-coupled receptor, as yet unidentified. This receptor is sensitive to rimonabant and O-1918, an antagonist at the putative "abnormal-cannabidiol" or endothelial "anandamide" receptors. Vasodilation is mediated by endothelium-derived nitric oxide, endothelium-dependent hyperpolarization, and also through activation of TRPV1 receptors. A physiological role for oleamide in the heart and circulation has yet to be demonstrated, as has production by cells of the cardiovascular system, but this molecule has a range of actions that could give it considerable modulatory power.
Collapse
Affiliation(s)
- C Robin Hiley
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | | |
Collapse
|
41
|
Su JY, Vo AC. 2-Arachidonylglyceryl ether and abnormal cannabidiol-induced vascular smooth muscle relaxation in rabbit pulmonary arteries via receptor-pertussis toxin sensitive G proteins-ERK1/2 signaling. Eur J Pharmacol 2007; 559:189-95. [PMID: 17292352 DOI: 10.1016/j.ejphar.2006.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/09/2006] [Accepted: 12/14/2006] [Indexed: 12/14/2022]
Abstract
The receptor(s) used by cannabinoids to relax vascular smooth muscle is unknown. Here, we investigated the effects of 2-arachidonylglyceryl ether (2-AG ether), a metabolically stable endocannabinoid, and abnormal cannabidiol (abn-CBD) on relaxation of permeabilized pulmonary arterial strips monitored with force, and on extracellular signal-regulated mitogen-activated protein kinases (ERK1/2) phosphorylation in permeabilized vascular smooth muscle cells using immunoblotting. We found that 2-AG ether and abn-CBD caused relaxation and increased phosphorylation of ERK1/2. 2-AG ether effects were completely abolished by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), and N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A), and partially blocked by (-)-1.3-dimethoxy-2-(3-3,4-trans-p-menthadien-(1,8)-yl)-orcinol (O-1918). In contrast, abn-CBD effects were completely abolished by O-1918, and only partially blocked by AM251, and SR141716A. Both 2-AG ether and abn-CBD effects were partially blocked by pertussis toxin, an inhibitor of Gi/o proteins. PD98059, an inhibitor of mitogen activated protein kinase kinase (MEK), completely abolished the relaxation, but only partially blocked the increased phosphorylation of ERK1/2 by 2-AG ether. In contrast, abn-CBD-induced relaxation was partially blocked and the increased phosphorylation of ERK1/2 was abolished by PD98059. These findings suggest that 2-AG ether and abn-CBD-induced vascular smooth muscle relaxation are mediated by the cannabinoid CB1 receptor, and the abn-CBD receptor, respectively, and are modulated by cross-talk between the receptors. These responses occur mainly by coupling to pertussis toxin sensitive G proteins, but also, in part independent of these G proteins, which have been classically thought to initiate MEK/ERK1/2 signaling to relax vascular smooth muscle.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Dose-Response Relationship, Drug
- Flavonoids/pharmacology
- Glycerides/pharmacology
- In Vitro Techniques
- MAP Kinase Signaling System/drug effects
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Pertussis Toxin/pharmacology
- Phosphorylation
- Piperidines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pyrazoles/pharmacology
- Rabbits
- Receptor Cross-Talk
- Receptor, Cannabinoid, CB1/drug effects
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Resorcinols/pharmacology
- Rimonabant
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Judy Y Su
- Department of Anesthesiology, University of Washington, Box 356540, Seattle, WA 98195, USA.
| | | |
Collapse
|
42
|
|