1
|
Quintero JM, Diaz LE, Galve-Roperh I, Bustos RH, Leon MX, Beltran S, Dodd S. The endocannabinoid system as a therapeutic target in neuropathic pain: a review. Expert Opin Ther Targets 2024; 28:739-755. [PMID: 39317147 DOI: 10.1080/14728222.2024.2407824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION This review highlights the critical role of the endocannabinoid system (ECS) in regulating neuropathic pain and explores the therapeutic potential of cannabinoids. Understanding the mechanisms of the ECS, including its receptors, endogenous ligands, and enzymatic routes, can lead to innovative treatments for chronic pain, offering more effective therapies for neuropathic conditions. This review bridges the gap between preclinical studies and clinical applications by emphasizing ECS modulation for better pain management outcomes. AREAS COVERED A review mapped the existing literature on neuropathic pain and the effects of modulating the ECS using natural and synthetic cannabinoids. This analysis examined ECS components and their alterations in neuropathic pain, highlighting the peripheral, spinal, and supraspinal mechanisms. This review aimed to provide a thorough understanding of the therapeutic potential of cannabinoids in the management of neuropathic pain. EXPERT OPINION Advances in cannabinoid research have shown significant potential for the management of chronic neuropathic pain. The study emphasizes the need for high-quality clinical trials and collaborative efforts among researchers, clinicians, and regulatory bodies to ensure safe and effective integration of cannabinoids into pain management protocols. Understanding the mechanisms and optimizing cannabinoid formulations and delivery methods are crucial for enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Jose-Manuel Quintero
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía, Colombia
| | | | - Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology, School of Chemistry and Instituto de Investigación en Neuroquímica, Complutense University, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosa-Helena Bustos
- Department of Clinical Pharmacology, Evidence-Based Therapeutics Group, Faculty of Medicine, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía, Cundinamarca, Colombia
| | - Marta-Ximena Leon
- Grupo Dolor y Cuidados Paliativos, Universidad de La Sabana, Chía, Colombia
| | | | - Seetal Dodd
- Faculty of Medicine, Universidad de La Sabana, Chía, Colombia
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Carrascosa AJ, García-Gutiérrez MS, Saldaña R, Manzanares J. Additive antinociceptive action of intrathecal anandamide reuptake inhibitor and morphine in the management of post-incisional pain in rats. Biomed Pharmacother 2024; 177:117054. [PMID: 38943991 DOI: 10.1016/j.biopha.2024.117054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Spinal opioids have mixed efficacy and their adverse effects force treatment cessation of postoperative pain. Consequently, there is an ongoing search for new therapeutic strategies. Here, we evaluated the analgesic efficacy of intrathecal UCM707, an anandamide reuptake inhibitor, and morphine combination. Firstly, we assessed the effects of morphine (1, 5 and 10 μg), UCM707 (75 μg) and its combination in the hot plate. Then, morphine + UCM707 at sub-effective doses was evaluated in a rat post-incisional pain model. In addition, μ-, CB1r-, CB2r- and TRPV1-antagonists were pre-administered before the combination. Activation of μ-opioid and CB1r, and Cnr1, Cnr2, Oprm1 and TRPV1 expressions were evaluated in the lumbar sacra and periaqueductal grey by [35 S]-GTPγS binding autoradiography and qPCR studies. In the hot plate, morphine (1 μg) and UCM707 (75 μg) induced a more robust analgesic effect than each drug alone. Morphine plus UCM707 did not modify μ-opioid nor CB1 receptor function in the PAG or LS. Cnr1 and TRPV1 expression increased in the lumbar sacra (LS). Morphine plus UCM707 significantly reduced post-incisional pain at 1 and 4 days after surgery. Cnr1, Cnr2 and TRPV1 expressions increased in the LS. Blockade of μ-opioid receptor reduced combination effects on days 1 and 4. CB1r- and CB2r-antagonism reduced morphine + UCM707 effects on days 1 and 4, respectively. CB1r and TRPV1-antagonism improved their antinociceptive effects on day 4. These results revealed a synergistic/additive analgesic effect of UCM707 and morphine combination controlling postincisional pain. CB1r, CB2r and TRPV1 contribute differently as central sensitization occurs.
Collapse
MESH Headings
- Animals
- Morphine/pharmacology
- Morphine/administration & dosage
- Male
- Pain, Postoperative/drug therapy
- Pain, Postoperative/metabolism
- Endocannabinoids/metabolism
- Injections, Spinal
- Rats
- Arachidonic Acids/pharmacology
- Arachidonic Acids/administration & dosage
- Polyunsaturated Alkamides/pharmacology
- Polyunsaturated Alkamides/administration & dosage
- Drug Synergism
- Analgesics/pharmacology
- Analgesics/administration & dosage
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Receptors, Opioid, mu/metabolism
- TRPV Cation Channels/metabolism
- Rats, Wistar
- Drug Therapy, Combination
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Antonio J Carrascosa
- Department of Anesthesiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María S García-Gutiérrez
- Instituto de Neurociencias, Campus de San Juan, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Raquel Saldaña
- Department of Anesthesiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Campus de San Juan, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
3
|
Tomašević N, Emser FS, Muratspahić E, Gattringer J, Hasinger S, Hellinger R, Keov P, Felkl M, Gertsch J, Becker CFW, Gruber CW. Discovery and development of macrocyclic peptide modulators of the cannabinoid 2 receptor. J Biol Chem 2024; 300:107330. [PMID: 38679329 PMCID: PMC11154713 DOI: 10.1016/j.jbc.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 μM and a potency (EC50) of 8 μM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.
Collapse
Affiliation(s)
- Nataša Tomašević
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabiola Susanna Emser
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Simon Hasinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Keov
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Manuel Felkl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Kosar M, Sarott RC, Sykes DA, Viray AEG, Vitale RM, Tomašević N, Li X, Ganzoni RLZ, Kicin B, Reichert L, Patej KJ, Gómez-Bouzó U, Guba W, McCormick PJ, Hua T, Gruber CW, Veprintsev DB, Frank JA, Grether U, Carreira EM. Flipping the GPCR Switch: Structure-Based Development of Selective Cannabinoid Receptor 2 Inverse Agonists. ACS CENTRAL SCIENCE 2024; 10:956-968. [PMID: 38799662 PMCID: PMC11117691 DOI: 10.1021/acscentsci.3c01461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024]
Abstract
We report a blueprint for the rational design of G protein coupled receptor (GPCR) ligands with a tailored functional response. The present study discloses the structure-based design of cannabinoid receptor type 2 (CB2R) selective inverse agonists (S)-1 and (R)-1, which were derived from privileged agonist HU-308 by introduction of a phenyl group at the gem-dimethylheptyl side chain. Epimer (R)-1 exhibits high affinity for CB2R with Kd = 39.1 nM and serves as a platform for the synthesis of a wide variety of probes. Notably, for the first time these fluorescent probes retain their inverse agonist functionality, high affinity, and selectivity for CB2R independent of linker and fluorophore substitution. Ligands (S)-1, (R)-1, and their derivatives act as inverse agonists in CB2R-mediated cAMP as well as G protein recruitment assays and do not trigger β-arrestin-receptor association. Furthermore, no receptor activation was detected in live cell ERK1/2 phosphorylation and Ca2+-release assays. Confocal fluorescence imaging experiments with (R)-7 (Alexa488) and (R)-9 (Alexa647) probes employing BV-2 microglial cells visualized CB2R expressed at endogenous levels. Finally, molecular dynamics simulations corroborate the initial docking data in which inverse agonists restrict movement of toggle switch Trp2586.48 and thereby stabilize CB2R in its inactive state.
Collapse
Affiliation(s)
- Miroslav Kosar
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Roman C. Sarott
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - David A. Sykes
- Faculty
of Medicine & Health Sciences, University
of Nottingham, Nottingham NG7 2UH, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), University of Birmingham
and University of Nottingham, https://www.birmingham-nottingham.ac.uk/compare
| | - Alexander E. G. Viray
- Department
of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Rosa Maria Vitale
- Institute
of Biomolecular Chemistry, National Research
Council, Via Campi Flegrei
34, 80078 Pozzuoli, Italy
| | - Nataša Tomašević
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstrasse
17, 1090 Vienna, Austria
| | - Xiaoting Li
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Rudolf L. Z. Ganzoni
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Bilal Kicin
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Lisa Reichert
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Kacper J. Patej
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Uxía Gómez-Bouzó
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Wolfgang Guba
- Roche
Pharma Research & Early Development, Roche Innovation Center Basel,
F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Peter J. McCormick
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Ashton
Street, Liverpool L69 3GE, U.K.
| | - Tian Hua
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Christian W. Gruber
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstrasse
17, 1090 Vienna, Austria
| | - Dmitry B. Veprintsev
- Faculty
of Medicine & Health Sciences, University
of Nottingham, Nottingham NG7 2UH, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), University of Birmingham
and University of Nottingham, https://www.birmingham-nottingham.ac.uk/compare
| | - James A. Frank
- Department
of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
- Vollum
Institute, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Uwe Grether
- Roche
Pharma Research & Early Development, Roche Innovation Center Basel,
F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Erick M. Carreira
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Grotsch K, Sadybekov AV, Hiller S, Zaidi S, Eremin D, Le A, Liu Y, Smith EC, Illiopoulis-Tsoutsouvas C, Thomas J, Aggarwal S, Pickett JE, Reyes C, Picazo E, Roth BL, Makriyannis A, Katritch V, Fokin VV. Virtual Screening of a Chemically Diverse "Superscaffold" Library Enables Ligand Discovery for a Key GPCR Target. ACS Chem Biol 2024; 19:866-874. [PMID: 38598723 DOI: 10.1021/acschembio.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The advent of ultra-large libraries of drug-like compounds has significantly broadened the possibilities in structure-based virtual screening, accelerating the discovery and optimization of high-quality lead chemotypes for diverse clinical targets. Compared to traditional high-throughput screening, which is constrained to libraries of approximately one million compounds, the ultra-large virtual screening approach offers substantial advantages in both cost and time efficiency. By expanding the chemical space with compounds synthesized from easily accessible and reproducible reactions and utilizing a large, diverse set of building blocks, we can enhance both the diversity and quality of the discovered lead chemotypes. In this study, we explore new chemical spaces using reactions of sulfur(VI) fluorides to create a combinatorial library consisting of several hundred million compounds. We screened this virtual library for cannabinoid type II receptor (CB2) antagonists using the high-resolution structure in conjunction with a rationally designed antagonist, AM10257. The top-predicted compounds were then synthesized and tested in vitro for CB2 binding and functional antagonism, achieving an experimentally validated hit rate of 55%. Our findings demonstrate the effectiveness of reliable reactions, such as sulfur fluoride exchange, in diversifying ultra-large chemical spaces and facilitate the discovery of new lead compounds for important biological targets.
Collapse
Affiliation(s)
- Katharina Grotsch
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Anastasiia V Sadybekov
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles 90089, California, United States
| | - Sydney Hiller
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Saheem Zaidi
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles 90089, California, United States
| | - Dmitry Eremin
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Austen Le
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Yongfeng Liu
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
- Psychoactive Drug Screening Program, National Institute of Mental Health, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
| | - Evan Carlton Smith
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Boston 02115, Massachusetts, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston 02115, Massachusetts, United States
| | - Christos Illiopoulis-Tsoutsouvas
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Boston 02115, Massachusetts, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston 02115, Massachusetts, United States
| | - Joice Thomas
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Shubhangi Aggarwal
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Julie E Pickett
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
- Psychoactive Drug Screening Program, National Institute of Mental Health, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
| | - Cesar Reyes
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Elias Picazo
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill 27599, North Carolina, United States
- Psychoactive Drug Screening Program, National Institute of Mental Health, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
| | - Alexandros Makriyannis
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Boston 02115, Massachusetts, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston 02115, Massachusetts, United States
| | - Vsevolod Katritch
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles 90089, California, United States
| | - Valery V Fokin
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| |
Collapse
|
6
|
Brust CA, Swanson MA, Bohn LM. Structural and functional insights into the G protein-coupled receptors: CB1 and CB2. Biochem Soc Trans 2023; 51:1533-1543. [PMID: 37646476 PMCID: PMC10586759 DOI: 10.1042/bst20221316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
The cannabinoid receptors CB1 and CB2 mediate a variety of physiological processes and continue to be explored as desirable drug targets. Both receptors are activated by the endogenous endocannabinoids and the psychoactive components of marijuana. Over the years, many efforts have been made to make selective ligands; however, the high degree of homology between cannabinoid receptor subtypes introduces challenges in studying either receptor in isolation. Recent advancements in structure biology have resulted in a surge of high-resolution structures, enriching our knowledge and understanding of receptor structure and function. In this review, of recent cannabinoid receptor structures, key features of the inactive and active state CB1 and CB2 are presented. These structures will provide additional insight into the modulation and signaling mechanism of cannabinoid receptors CB1 and CB2 and aid in the development of future therapeutics.
Collapse
Affiliation(s)
- Christina A. Brust
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, U.S.A
- The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, La Jolla, CA 92037, U.S.A
| | - Matthew A. Swanson
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, U.S.A
- The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, La Jolla, CA 92037, U.S.A
| | - Laura M. Bohn
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, U.S.A
- The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, La Jolla, CA 92037, U.S.A
| |
Collapse
|
7
|
Mugnaini C, Kostrzewa M, Casini M, Kumar P, Catallo V, Allarà M, Guastaferro L, Brizzi A, Paolino M, Tafi A, Kapatais C, Giorgi G, Vacondio F, Mor M, Corelli F, Ligresti A. Systematic Modification of the Substitution Pattern of the 7-Hydroxy-5-oxopyrazolo[4,3- b]pyridine-6-carboxamide Scaffold Enabled the Discovery of New Ligands with High Affinity and Selectivity for the Cannabinoid Type 2 Receptor. Molecules 2023; 28:4958. [PMID: 37446625 DOI: 10.3390/molecules28134958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Selective ligands of the CB2 receptor are receiving considerable attention due to their potential as therapeutic agents for a variety of diseases. Recently, 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives were shown to act at the CB2 receptor either as agonists or as inverse agonists/antagonists in vitro and to have anti-osteoarthritic activity in vivo. In this article, we report the synthesis, pharmacological profile, and molecular modeling of a series of twenty-three new 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamides with the aim of further developing this new class of selective CB2 ligands. In addition to these compounds, seven other analogs that had been previously synthesized were included in this study to better define the structure-activity relationship (SAR). Ten of the new compounds studied were found to be potent and selective ligands of the CB2 receptor, with Ki values ranging from 48.46 to 0.45 nM and CB1/CB2 selectivity indices (SI) ranging from >206 to >4739. In particular, compounds 54 and 55 were found to be high-affinity CB2 inverse agonists that were not active at all at the CB1 receptor, whereas 57 acted as an agonist. The functional activity profile of the compounds within this structural class depends mainly on the substitution pattern of the pyrazole ring.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Magdalena Kostrzewa
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Marta Casini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Valeria Catallo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marco Allarà
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Laura Guastaferro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Andrea Tafi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Christelos Kapatais
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Gianluca Giorgi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| |
Collapse
|
8
|
Vasincu A, Rusu RN, Ababei DC, Neamțu M, Arcan OD, Macadan I, Beșchea Chiriac S, Bild W, Bild V. Exploring the Therapeutic Potential of Cannabinoid Receptor Antagonists in Inflammation, Diabetes Mellitus, and Obesity. Biomedicines 2023; 11:1667. [PMID: 37371762 DOI: 10.3390/biomedicines11061667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, research has greatly expanded the knowledge of the endocannabinoid system (ECS) and its involvement in several therapeutic applications. Cannabinoid receptors (CBRs) are present in nearly every mammalian tissue, performing a vital role in different physiological processes (neuronal development, immune modulation, energy homeostasis). The ECS has an essential role in metabolic control and lipid signaling, making it a potential target for managing conditions such as obesity and diabetes. Its malfunction is closely linked to these pathological conditions. Additionally, the immunomodulatory function of the ECS presents a promising avenue for developing new treatments for various types of acute and chronic inflammatory conditions. Preclinical investigations using peripherally restricted CBR antagonists that do not cross the BBB have shown promise for the treatment of obesity and metabolic diseases, highlighting the importance of continuing efforts to discover novel molecules with superior safety profiles. The purpose of this review is to examine the roles of CB1R and CB2Rs, as well as their antagonists, in relation to the above-mentioned disorders.
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin Beșchea Chiriac
- Department of Toxicology, "Ion Ionescu de la Brad" University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania
| | - Walther Bild
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
9
|
Omar AM, Aljahdali AS, Safo MK, Mohamed GA, Ibrahim SRM. Docking and Molecular Dynamic Investigations of Phenylspirodrimanes as Cannabinoid Receptor-2 Agonists. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010044. [PMID: 36615238 PMCID: PMC9821895 DOI: 10.3390/molecules28010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Cannabinoid receptor ligands are renowned as being therapeutically crucial for treating diverse health disorders. Phenylspirodrimanes are meroterpenoids with unique and varied structural scaffolds, which are mainly reported from the Stachybotrys genus and display an array of bioactivities. In this work, 114 phenylspirodrimanes reported from Stachybotrys chartarum were screened for their CB2 agonistic potential using docking and molecular dynamic simulation studies. Compound 56 revealed the highest docking score (-11.222 kcal/mol) compared to E3R_6KPF (native agonist, gscore value -12.12 kcal/mol). The molecular docking and molecular simulation results suggest that compound 56 binds to the putative binding site in the CB2 receptor with good affinity involving key interacting amino acid residues similar to that of the native ligands, E3R. The molecular interactions displayed π-π stacking with Phe183 and hydrogen bond interactions with Thr114, Leu182, and Ser285. These findings identified the structural features of these metabolites that might lead to the design of selective novel ligands for CB2 receptors. Additionally, phenylspirodrimanes should be further investigated for their potential as a CB2 ligand.
Collapse
Affiliation(s)
- Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.M.O.); (S.R.M.I.); Tel.: +966-56-768-1466 (A.M.O.); +966-58-118-3034 (S.R.M.I.)
| | - Anfal S. Aljahdali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Martin K. Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (A.M.O.); (S.R.M.I.); Tel.: +966-56-768-1466 (A.M.O.); +966-58-118-3034 (S.R.M.I.)
| |
Collapse
|
10
|
2-Arylpropionic Acid Pyrazolamides as Cannabinoid CB2 Receptor Inverse Agonists Endowed with Anti-Inflammatory Properties. Pharmaceuticals (Basel) 2022; 15:ph15121519. [PMID: 36558970 PMCID: PMC9781268 DOI: 10.3390/ph15121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Among the most recent proposals regarding the mechanism of action of dipyrone, the modulation of cannabinoid receptors CB1 and CB2 appears to be a promising hypothesis. In this context, the present work describes a series of five novel pyrazolamides (7-11) designed as molecular hybrids of dipyrone metabolites and NSAIDs, such as ibuprofen and flurbiprofen. Target compounds were obtained in good overall yields (50-80%) by classical amide coupling between 4-aminoantipyrine and arylacetic or arylpropionic acids, followed in some cases by N-methylation of the amide group. The compounds presented good physicochemical properties in addition to stability to chemical (pH 2 and 7.4) and enzymatic (plasma esterases) hydrolysis and showed medium to high gastrointestinal and BBB permeabilities in the PAMPA assay. When subjected to functional testing on CB1- or CB2-transfected cells, compounds demonstrated an inverse agonist profile on CB2 receptors and the further characterization of compound LASSBio-2265 (11) revealed moderate binding affinity to CB2 receptor (Ki = 16 µM) with an EC50 = 0.36 µM (Emax = 63%). LASSBio-2265 (11) (at 1, 3, and 10 mg/kg p.o.) was investigated in the formalin test in mice and a remarkable analgesic activity in the late inflammatory phase was observed, suggesting it could be promising for the treatment of pain syndromes associated with chronic inflammatory diseases.
Collapse
|
11
|
Gianquinto E, Sodano F, Rolando B, Kostrzewa M, Allarà M, Mahmoud AM, Kumar P, Spyrakis F, Ligresti A, Chegaev K. N-[1,3-Dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulphonamides as Novel Selective Human Cannabinoid Type 2 Receptor (hCB2R) Ligands; Insights into the Mechanism of Receptor Activation/Deactivation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238152. [PMID: 36500256 PMCID: PMC9738591 DOI: 10.3390/molecules27238152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure-activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands.
Collapse
Affiliation(s)
- Eleonora Gianquinto
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Federica Sodano
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Magdalena Kostrzewa
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Marco Allarà
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Ali Mokhtar Mahmoud
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
- Correspondence: (A.L.); (K.C.); Tel.: +39-0818675093 (A.L.); +39-0116707140 (K.C.)
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
- Correspondence: (A.L.); (K.C.); Tel.: +39-0818675093 (A.L.); +39-0116707140 (K.C.)
| |
Collapse
|
12
|
Basile MS, Mazzon E. The Role of Cannabinoid Type 2 Receptors in Parkinson's Disease. Biomedicines 2022; 10:biomedicines10112986. [PMID: 36428554 PMCID: PMC9687889 DOI: 10.3390/biomedicines10112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disease and currently represents a clear unmet medical need. Therefore, novel preventive and therapeutic strategies are needed. Cannabinoid type 2 (CB2) receptors, one of the components of the endocannabinoid system, can regulate neuroinflammation in PD. Here, we review the current preclinical and clinical studies investigating the CB2 receptors in PD with the aim to clarify if these receptors could have a role in PD. Preclinical data show that CB2 receptors could have a neuroprotective action in PD and that the therapeutic targeting of CB2 receptors could be promising. Indeed, it has been shown that different CB2 receptor-selective agonists exert protective effects in different PD models. Moreover, the alterations in the expression of CB2 receptors observed in brain tissues from PD animal models and PD patients suggest the potential value of CB2 receptors as possible novel biomarkers for PD. However, to date, there is no direct evidence of the role of CB2 receptors in PD. Further studies are strongly needed in order to fully clarify the role of CB2 receptors in PD and thus pave the way to novel possible diagnostic and therapeutic opportunities for PD.
Collapse
Affiliation(s)
- Maria Sofia Basile
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
13
|
Honig MG, Del Mar NA, Moore BM, Reiner A. Raloxifene Mitigates Emotional Deficits after Mild Traumatic Brain Injury in Mice. Neurotrauma Rep 2022; 3:534-544. [DOI: 10.1089/neur.2022.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Marcia G. Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Nobel A. Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bob M. Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
14
|
Whiting ZM, Yin J, de la Harpe SM, Vernall AJ, Grimsey NL. Developing the Cannabinoid Receptor 2 (CB2) pharmacopoeia: past, present, and future. Trends Pharmacol Sci 2022; 43:754-771. [PMID: 35906103 DOI: 10.1016/j.tips.2022.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022]
Abstract
Cannabinoid Receptor 2 (CB2) is a G protein-coupled receptor (GPCR) with considerable, though as yet unrealised, therapeutic potential. Promising preclinical data supports the applicability of CB2 activation in autoimmune and inflammatory diseases, pain, neurodegeneration, and osteoporosis. A diverse pharmacopoeia of cannabinoid ligands is available, which has led to considerable advancements in the understanding of CB2 function and extensive preclinical evaluation. However, until recently, most CB2 ligands were highly lipophilic and as such not optimal for clinical application due to unfavourable physicochemical properties. A number of strategies have been applied to develop CB2 ligands to achieve closer to 'drug-like' properties and a few such compounds have now undergone clinical trial. We review the current state of CB2 ligand development and progress in optimising physicochemical properties, understanding advanced molecular pharmacology such as functional selectivity, and clinical evaluation of CB2-targeting compounds.
Collapse
Affiliation(s)
- Zak M Whiting
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiazhen Yin
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Sara M de la Harpe
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Andrea J Vernall
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
15
|
Abidi AH, Alghamdi SS, Derefinko K. A critical review of cannabis in medicine and dentistry: A look back and the path forward. Clin Exp Dent Res 2022; 8:613-631. [PMID: 35362240 PMCID: PMC9209799 DOI: 10.1002/cre2.564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction In the last two decades, our understanding of the therapeutic utility and medicinal properties of cannabis has greatly changed. This change has been accompanied by widespread cannabis use in various communities and different age groups, especially within the United States. With this increase, we should consider the potential effects of cannabis–hemp on general public health and how they could alter therapeutic outcomes. Material and Methods The present investigation examined cannabis use for recreational and therapeutic use and a review of pertinent indexed literature was performed. The focused question evaluates “how cannabis or hemp products impact health parameters and do they provide potential therapeutic value in dentistry, and how do they interact with conventional medicines (drugs).” Indexed databases (PubMed/Medline, EMBASE) were searched without any time restrictions but language was restricted to English. Results The review highlights dental concerns of cannabis usage, the need to understand the endocannabinoid system (ECS), cannabinoid receptor system, its endogenous ligands, pharmacology, metabolism, current oral health, and medical dilemma to ascertain the detrimental or beneficial effects of using cannabis–hemp products. The pharmacological effects of pure cannabidiol (CBD) have been studied extensively while cannabis extracts can vary significantly and lack empirical studies. Several metabolic pathways are affected by cannabis use and could pose a potential drug interaction. The chronic use of cannabis is associated with health issues, but the therapeutic potential is multifold since there is a regulatory role of ECS in many pathologies. Conclusion Current shortcomings in understanding the benefits of cannabis or hemp products are limited due to pharmacological and clinical effects not being predictable, while marketed products vary greatly in phytocompounds warrant further empirical investigation. Given the healthcare challenges to manage acute and chronic pain, this review highlights both cannabis and CBD‐hemp extracts to help identify the therapeutic application for patient populations suffering from anxiety, inflammation, and dental pain.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Dentistry, Department of General Dentistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sahar S Alghamdi
- Department of Phamaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Karen Derefinko
- College of Medicine, Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,College of Medicine, Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
16
|
Honig MG, Del Mar NA, Henderson DL, O'Neal D, Yammanur M, Cox R, Li C, Perry AM, Moore BM, Reiner A. Raloxifene, a cannabinoid type-2 receptor inverse agonist, mitigates visual deficits and pathology and modulates microglia after ocular blast. Exp Eye Res 2022; 218:108966. [PMID: 35143834 DOI: 10.1016/j.exer.2022.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Visual deficits after ocular blast injury (OBI) are common, but pharmacological approaches to improve long-term outcomes have not been identified. Blast forces frequently damage the retina and optic nerves, and work on experimental animals has shown the pro-inflammatory actions of microglia can further exacerbate such injuries. Cannabinoid type-2 receptor (CB2) inverse agonists specifically target activated microglia, biasing them away from the harmful pro-inflammatory M1 state toward the helpful reparative M2 state. We previously found that treating mice with CB2 inverse agonists after traumatic brain injury, produced by either focal cranial air blast or dorsal cranial impact, greatly attenuated the visual deficits and pathology that otherwise resulted. Here we examined the consequences of single and repeat OBI and the benefit provided by raloxifene, an FDA-approved estrogen receptor drug that possesses noteworthy CB2 inverse agonism. After single OBI, although the amplitudes of the A- and B-waves of the electroretinogram and pupil light response appeared to be normal, the mice showed hints of deficits in contrast sensitivity and visual acuity, a trend toward optic nerve axon loss, and significantly increased light aversion, which were reversed by 2 weeks of daily treatment with raloxifene. Mice subjected to repeat OBI (5 blasts spaced 1 min apart), exhibited more severe visual deficits, including decreases in contrast sensitivity, visual acuity, the amplitudes of the A- and B-waves of the electroretinogram, light aversion, and resting pupil diameter (i.e. hyperconstriction), accompanied by the loss of photoreceptor cells and optic nerve axons, nearly all of which were mitigated by raloxifene. Interestingly, optic nerve axon abundance was strongly correlated with contrast sensitivity and visual acuity across all groups of experimental mice in the repeat OBI study, suggesting optic nerve axon loss with rOBI and its attenuation with raloxifene are associated with the extent of these two deficits while photoreceptor abundance was highly correlated with A-wave amplitude and resting pupil size, suggesting a prominent role for photoreceptors in these two deficits. Quantitative PCR (qPCR) showed levels of M1-type microglial markers (e.g. iNOS, IL1β, TNFα, and CD32) in retina, optic nerve, and thalamus were increased 3 days after repeat OBI. With raloxifene treatment, the overall expression of M1 markers was more similar to that in sham mice. Raloxifene treatment was also associated with the elevation of IL10 transcripts in all three tissues compared to repeat OBI alone, but the results for the three other M2 microglial markers we examined were more varied. Taken together, the qPCR results suggest that raloxifene benefit for visual function and pathology was associated with a lessening of the pro-inflammatory actions of microglia. The benefit we find for raloxifene following OBI provides a strong basis for phase-2 efficacy testing in human clinical trials for treating ocular injury.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology(,) the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology(,) the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Desmond L Henderson
- Department of Anatomy and Neurobiology(,) the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Dylan O'Neal
- Department of Anatomy and Neurobiology(,) the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Meghna Yammanur
- Department of Anatomy and Neurobiology(,) the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Rachel Cox
- Department of Anatomy and Neurobiology(,) the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Chunyan Li
- Department of Anatomy and Neurobiology(,) the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Aaron M Perry
- Department of Anatomy and Neurobiology(,) the University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology(,) the University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
17
|
Sadybekov AA, Sadybekov AV, Liu Y, Iliopoulos-Tsoutsouvas C, Huang XP, Pickett J, Houser B, Patel N, Tran NK, Tong F, Zvonok N, Jain MK, Savych O, Radchenko DS, Nikas SP, Petasis NA, Moroz YS, Roth BL, Makriyannis A, Katritch V. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 2022; 601:452-459. [PMID: 34912117 PMCID: PMC9763054 DOI: 10.1038/s41586-021-04220-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
Structure-based virtual ligand screening is emerging as a key paradigm for early drug discovery owing to the availability of high-resolution target structures1-4 and ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial libraries7, new approaches to compound screening are needed8,9. Here we introduce a modular synthon-based approach-V-SYNTHES-to perform hierarchical structure-based screening of a REAL Space library of more than 11 billion compounds. V-SYNTHES first identifies the best scaffold-synthon combinations as seeds suitable for further growth, and then iteratively elaborates these seeds to select complete molecules with the best docking scores. This hierarchical combinatorial approach enables the rapid detection of the best-scoring compounds in the gigascale chemical space while performing docking of only a small fraction (<0.1%) of the library compounds. Chemical synthesis and experimental testing of novel cannabinoid antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 submicromolar ligands, substantially improving over a standard virtual screening of the Enamine REAL diversity subset, which required approximately 100 times more computational resources. Synthesis of selected analogues of the best hits further improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 selectivity (50-200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, further supporting its use for lead discovery. The approach is easily scalable for the rapid growth of combinatorial libraries and potentially adaptable to any docking algorithm.
Collapse
Affiliation(s)
- Arman A. Sadybekov
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA,Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Anastasiia V. Sadybekov
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA,Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA,Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA,National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Julie Pickett
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA,National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Blake Houser
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Nilkanth Patel
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ngan K. Tran
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Fei Tong
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nikolai Zvonok
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Manish K Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Olena Savych
- Enamine Ltd, 78 Chervonotkatska Street, 02094, Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd, 78 Chervonotkatska Street, 02094, Ukraine,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Spyros P. Nikas
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nicos A. Petasis
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yurii S. Moroz
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine,Chemspace LLC, 85 Chervonotkatska Street, 02094, Ukraine
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA,Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA,National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA,Corresponding authors: Bryan L. Roth (), Alexandros Makriyannis (), Vsevolod Katritch ()
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA. .,Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA. .,Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Honig MG, Del Mar NA, Henderson DL, O'Neal D, Doty JB, Cox R, Li C, Perry AM, Moore BM, Reiner A. Raloxifene Modulates Microglia and Rescues Visual Deficits and Pathology After Impact Traumatic Brain Injury. Front Neurosci 2021; 15:701317. [PMID: 34776838 PMCID: PMC8585747 DOI: 10.3389/fnins.2021.701317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Mild traumatic brain injury (TBI) involves widespread axonal injury and activation of microglia, which initiates secondary processes that worsen the TBI outcome. The upregulation of cannabinoid type-2 receptors (CB2) when microglia become activated allows CB2-binding drugs to selectively target microglia. CB2 inverse agonists modulate activated microglia by shifting them away from the harmful pro-inflammatory M1 state toward the helpful reparative M2 state and thus can stem secondary injury cascades. We previously found that treatment with the CB2 inverse agonist SMM-189 after mild TBI in mice produced by focal cranial blast rescues visual deficits and the optic nerve axon loss that would otherwise result. We have further shown that raloxifene, which is Food and Drug Administration (FDA)-approved as an estrogen receptor modulator to treat osteoporosis, but also possesses CB2 inverse agonism, yields similar benefit in this TBI model through its modulation of microglia. As many different traumatic events produce TBI in humans, it is widely acknowledged that diverse animal models must be used in evaluating possible therapies. Here we examine the consequences of TBI created by blunt impact to the mouse head for visual function and associated pathologies and assess raloxifene benefit. We found that mice subjected to impact TBI exhibited decreases in contrast sensitivity and the B-wave of the electroretinogram, increases in light aversion and resting pupil diameter, and optic nerve axon loss, which were rescued by daily injection of raloxifene at 5 or 10 mg/ml for 2 weeks. Raloxifene treatment was associated with reduced M1 activation and/or enhanced M2 activation in retina, optic nerve, and optic tract after impact TBI. Our results suggest that the higher raloxifene dose, in particular, may be therapeutic for the optic nerve by enhancing the phagocytosis of axonal debris that would otherwise promote inflammation, thereby salvaging less damaged axons. Our current work, together with our prior studies, shows that microglial activation drives secondary injury processes after both impact and cranial blast TBI and raloxifene mitigates microglial activation and visual system injury in both cases. The results thus provide a strong basis for phase 2 human clinical trials evaluating raloxifene as a TBI therapy.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Desmond L Henderson
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dylan O'Neal
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John B Doty
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rachel Cox
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chunyan Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Aaron M Perry
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Bob M Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
19
|
Paudel P, Ross S, Li XC. Molecular Targets of Cannabinoids Associated with Depression. Curr Med Chem 2021; 29:1827-1850. [PMID: 34165403 DOI: 10.2174/0929867328666210623144658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
Novel therapeutic strategies are needed to address depression, a major neurological disorder affecting hundreds of millions of people worldwide. Cannabinoids and their synthetic derivatives have demonstrated numerous neurological activities and may potentially be developed into new treatments for depression. This review highlights cannabinoid (CB) receptors, monoamine oxidase (MAO), N-methyl-D-aspartate (NMDA) receptor, gamma-aminobutyric acid (GABA) receptor, and cholecystokinin (CCK) receptor as key molecular targets of cannabinoids that are associated with depression. The anti-depressant activity of cannabinoids and their binding modes with cannabinoid receptors are discussed, providing insights into rational design and discovery of new cannabinoids or cannabimimetic agents with improved druggable properties.
Collapse
Affiliation(s)
- Pradeep Paudel
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Samir Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Xing-Cong Li
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
20
|
Ferrisi R, Ceni C, Bertini S, Macchia M, Manera C, Gado F. Medicinal Chemistry approach, pharmacology and neuroprotective benefits of CB 2R modulators in neurodegenerative diseases. Pharmacol Res 2021; 170:105607. [PMID: 34089867 DOI: 10.1016/j.phrs.2021.105607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
In the last decades, cannabinoid receptor 2 (CB2R) has continued to receive attention as a key therapeutic target in neuroprotection. Indeed, several findings highlight the neuroprotective effects of CB2R through suppression of both neuronal excitability and reactive microglia. Additionally, CB2R seems to be a more promising target than cannabinoid receptor 1 (CB1R) thanks to the lack of central side effects, its lower expression levels in the central nervous system (CNS), and its inducibility, since its expression enhances quickly in the brain following pathological conditions. This review aims to provide a thorough overview of the main natural and synthetic selective CB2R modulators, their chemical classification and their potential therapeutic usefulness in neuroprotection, a crucial aspect for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Costanza Ceni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Francesca Gado
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
21
|
Alghamdi SS, Mustafa SM, Moore Ii BM. Synthesis and biological evaluation of a ring analogs of the selective CB2 inverse agonist SMM-189. Bioorg Med Chem 2021; 33:116035. [PMID: 33550084 DOI: 10.1016/j.bmc.2021.116035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022]
Abstract
Microglia are the principle cell type driving sustained neuroinflammation in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. Interestingly, microglia locked into a chronic M1 pro-inflammatory phenotype significantly up-regulate the cannabinoid receptor 2 (CB2) expression. Our approach to exploiting CB2 as a therapeutic target in neuroinflammatory diseases focuses on the development of selective CB2 inverse agonists to shift microglia bias to a M2 pro-wound healing phenotype. Herein we report work designed to refine the structure activity relationship of the 2,6-dihydroxy-biphenyl-aryl-methanone CB2 inverse agonist scaffold. A series of analogs of our lead compound SMM-189 were synthesized and measured for affinity/selectivity, potency, and efficacy in regulating cAMP production and β-arrestin recruitment. In this series compound 40 demonstrated a significant increase in potency and efficacy for cAMP stimulation compared to SMM-189. Akin to our lead SMM-189, this compound was highly efficacious in biasing microglia to an M2 pro-wound healing phenotype in LPS stimulated cell lines. These results advance our understanding of the structure-activity relationship of the 2,6-dihydroxy-biphenyl-aryl-methanone scaffold and provide further support for regulating microglia activation using CB2 inverse agonists.
Collapse
Affiliation(s)
- Sahar S Alghamdi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bob M Moore Ii
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
22
|
Pinheiro S, Pinheiro EMC, Muri EMF, Pessôa JC, Cadorini MA, Greco SJ. Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02609-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
An D, Peigneur S, Hendrickx LA, Tytgat J. Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products. Int J Mol Sci 2020; 21:E5064. [PMID: 32709050 PMCID: PMC7404216 DOI: 10.3390/ijms21145064] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cannabinoid receptors (CB1 and CB2), as part of the endocannabinoid system, play a critical role in numerous human physiological and pathological conditions. Thus, considerable efforts have been made to develop ligands for CB1 and CB2, resulting in hundreds of phyto- and synthetic cannabinoids which have shown varying affinities relevant for the treatment of various diseases. However, only a few of these ligands are clinically used. Recently, more detailed structural information for cannabinoid receptors was revealed thanks to the powerfulness of cryo-electron microscopy, which now can accelerate structure-based drug discovery. At the same time, novel peptide-type cannabinoids from animal sources have arrived at the scene, with their potential in vivo therapeutic effects in relation to cannabinoid receptors. From a natural products perspective, it is expected that more novel cannabinoids will be discovered and forecasted as promising drug leads from diverse natural sources and species, such as animal venoms which constitute a true pharmacopeia of toxins modulating diverse targets, including voltage- and ligand-gated ion channels, G protein-coupled receptors such as CB1 and CB2, with astonishing affinity and selectivity. Therefore, it is believed that discovering novel cannabinoids starting from studying the biodiversity of the species living on planet earth is an uncharted territory.
Collapse
Affiliation(s)
| | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (D.A.); (S.P.); (L.A.H.)
| |
Collapse
|
24
|
Hua T, Li X, Wu L, Iliopoulos-Tsoutsouvas C, Wang Y, Wu M, Shen L, Brust CA, Nikas SP, Song F, Song X, Yuan S, Sun Q, Wu Y, Jiang S, Grim TW, Benchama O, Stahl EL, Zvonok N, Zhao S, Bohn LM, Makriyannis A, Liu ZJ. Activation and Signaling Mechanism Revealed by Cannabinoid Receptor-G i Complex Structures. Cell 2020; 180:655-665.e18. [PMID: 32004463 DOI: 10.1016/j.cell.2020.01.008] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with Gi, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.
Collapse
Affiliation(s)
- Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | | | - Yuxia Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Meng Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ling Shen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Christina A Brust
- Departments of Molecular Medicine and Neuroscience, Scripps Research, Jupiter, FL 33458, USA
| | - Spyros P Nikas
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Feng Song
- School of Life Science, Dezhou University, Dezhou 253023, Shandong Province, China
| | - Xiyong Song
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Shuguang Yuan
- The Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qianqian Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Travis W Grim
- Departments of Molecular Medicine and Neuroscience, Scripps Research, Jupiter, FL 33458, USA
| | - Othman Benchama
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Edward L Stahl
- Departments of Molecular Medicine and Neuroscience, Scripps Research, Jupiter, FL 33458, USA
| | - Nikolai Zvonok
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, Scripps Research, Jupiter, FL 33458, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan Province, China.
| |
Collapse
|
25
|
Gado F, Arena C, Fauci CL, Reynoso-Moreno I, Bertini S, Digiacomo M, Meini S, Poli G, Macchia M, Tuccinardi T, Gertsch J, Chicca A, Manera C. Modification on the 1,2-dihydro-2-oxo-pyridine-3-carboxamide core to obtain multi-target modulators of endocannabinoid system. Bioorg Chem 2020; 94:103353. [DOI: 10.1016/j.bioorg.2019.103353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
|
26
|
Mugnaini C, Brizzi A, Vinciarelli G, Paolino M, Corelli F. New synthesis of N1- and N2-substituted pyrazolo[4,3- b]pyridine-5-one derivatives as CB2 receptor ligands. NEW J CHEM 2020. [DOI: 10.1039/d0nj03400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This synthesis of pyrazolo[4,3-b]pyridine-5-one derivatives, recently described as potent and selective agonists/inverse agonists of the cannabinoid type-2 receptor (CB2R), allows for a wider exploration of the structure-activity relationship.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Dipartimento di Biotecnologie
- Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022)
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Antonella Brizzi
- Dipartimento di Biotecnologie
- Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022)
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Giorgia Vinciarelli
- Dipartimento di Biotecnologie
- Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022)
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie
- Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022)
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Federico Corelli
- Dipartimento di Biotecnologie
- Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022)
- Università degli Studi di Siena
- 53100 Siena
- Italy
| |
Collapse
|
27
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
28
|
Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2019; 16:9-29. [PMID: 31831863 DOI: 10.1038/s41582-019-0284-z] [Citation(s) in RCA: 536] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|
29
|
Honig MG, Del Mar NA, Henderson DL, Ragsdale TD, Doty JB, Driver JH, Li C, Fortugno AP, Mitchell WM, Perry AM, Moore BM, Reiner A. Amelioration of visual deficits and visual system pathology after mild TBI via the cannabinoid Type-2 receptor inverse agonism of raloxifene. Exp Neurol 2019; 322:113063. [DOI: 10.1016/j.expneurol.2019.113063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/09/2019] [Accepted: 09/07/2019] [Indexed: 11/29/2022]
|
30
|
Sharaf A, Mensching L, Keller C, Rading S, Scheffold M, Palkowitsch L, Djogo N, Rezgaoui M, Kestler HA, Moepps B, Failla AV, Karsak M. Systematic Affinity Purification Coupled to Mass Spectrometry Identified p62 as Part of the Cannabinoid Receptor CB2 Interactome. Front Mol Neurosci 2019; 12:224. [PMID: 31616248 PMCID: PMC6763791 DOI: 10.3389/fnmol.2019.00224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/03/2019] [Indexed: 01/29/2023] Open
Abstract
The endocannabinoid system (ECS) consists particularly of cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, and enzymes that synthesize and degrade their ligands. It acts in a variety of organs and disease states ranging from cancer progression over neuropathic pain to neurodegeneration. Protein components engaged in the signaling, trafficking, and homeostasis machinery of the G-protein coupled CB2, are however largely unknown. It is therefore important to identify further interaction partners to better understand CB2 receptor functions in physiology and pathophysiology. For this purpose, we used an affinity purification and mass spectrometry-based proteomics approach of Strep-HA-CB2 receptor in HEK293 cells. After subtraction of background interactions and protein frequency library assessment we could identify 83 proteins that were classified by the identification of minimally 2 unique peptides as highly probable interactors. A functional protein association network analysis obtained an interaction network with a significant enrichment of proteins functionally involved in protein metabolic process, in endoplasmic reticulum, response to stress but also in lipid metabolism and membrane organization. The network especially contains proteins involved in biosynthesis and trafficking like calnexin, Sec61A, tubulin chains TUBA1C and TUBB2B, TMED2, and TMED10. Six proteins that were only expressed in stable CB2 expressing cells were DHC24, DHRS7, GGT7, HECD3, KIAA2013, and PLS1. To exemplify the validity of our approach, we chose a candidate having a relatively low number of edges in the network to increase the likelihood of a direct protein interaction with CB2 and focused on the scaffold/phagosomal protein p62/SQSTM1. Indeed, we independently confirmed the interaction by co-immunoprecipitation and immunocytochemical colocalization studies. 3D reconstruction of confocal images furthermore showed CB2 localization in close proximity to p62 positive vesicles at the cell membrane. In summary, we provide a comprehensive repository of the CB2 interactome in HEK293 cells identified by a systematic unbiased approach, which can be used in future experiments to decipher the signaling and trafficking complex of this cannabinoid receptor. Future studies will have to analyze the exact mechanism of the p62-CB2 interaction as well as its putative role in disease pathophysiology.
Collapse
Affiliation(s)
- Ahmed Sharaf
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonore Mensching
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Keller
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Rading
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Scheffold
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pharmacology and Toxicology, Ulm University, Ulm, Germany
| | | | - Nevena Djogo
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meriem Rezgaoui
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Barbara Moepps
- Institute of Pharmacology and Toxicology, Ulm University, Ulm, Germany
| | | | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Páez JA, Campillo NE. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem 2019; 26:3300-3340. [DOI: 10.2174/0929867325666180226095132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
:
The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 cloned
in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics
could only be justified by the existence of endogenous ligands that are capable of binding to
them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the
isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA),
two years later and the subsequent identification of a family of lipid transmitters known as the
fatty acid ester 2-arachidonoylglycerol (2-AG).
:
The endogenous cannabinoid system is a complex signalling system that comprises transmembrane
endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the
specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation.
:
The endocannabinoid system has been implicated in a wide diversity of biological processes,
in both the central and peripheral nervous systems, including memory, learning, neuronal development,
stress and emotions, food intake, energy regulation, peripheral metabolism, and
the regulation of hormonal balance through the endocrine system.
:
In this context, this article will review the current knowledge of the therapeutic potential of
cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases
that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome.
:
The therapeutic applications will be addressed through the study of cannabinoid agonists acting
as single drugs and multi-target drugs highlighting the CB2 receptor agonist.
Collapse
Affiliation(s)
- Juan A. Páez
- Instituto de Quimica Medica (IQM-CSIC). C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologicas (CIB-CSIC). C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
32
|
Montanari S, Mahmoud AM, Pruccoli L, Rabbito A, Naldi M, Petralla S, Moraleda I, Bartolini M, Monti B, Iriepa I, Belluti F, Gobbi S, Di Marzo V, Bisi A, Tarozzi A, Ligresti A, Rampa A. Discovery of novel benzofuran-based compounds with neuroprotective and immunomodulatory properties for Alzheimer's disease treatment. Eur J Med Chem 2019; 178:243-258. [DOI: 10.1016/j.ejmech.2019.05.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/25/2023]
|
33
|
Guley NM, Del Mar NA, Ragsdale T, Li C, Perry AM, Moore BM, Honig MG, Reiner A. Amelioration of visual deficits and visual system pathology after mild TBI with the cannabinoid type-2 receptor inverse agonist SMM-189. Exp Eye Res 2019; 182:109-124. [PMID: 30922891 DOI: 10.1016/j.exer.2019.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
Mild TBI is often accompanied by visual system dysfunction and injury, which is at least partly caused by microglial neuroinflammatory processes initiated by the injury. Using our focal cranial blast mouse model of closed-skull mild TBI, we evaluated the ability of the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189, which biases microglia from the harmful M1 state to the beneficial M2 state, to mitigate visual system dysfunction and injury after TBI. Male C57BL/6 or Thy1-EYFP reporter mice received a closed-head blast of either 0-psi (sham) or 50-psi to the left side of the cranium. Blast mice received vehicle or 6 mg/kg SMM-189 daily beginning 2 h after blast. Sham mice received vehicle. In some mice, retina and optic nerve/tract were assessed morphologically at 3-7 days after blast, while other mice were assessed functionally by Optomotry 30 days after blast and morphologically at ≥30 days after blast. Mice sacrificed at 3-7 days were treated daily until sacrificed, while those assessed ≥30 days after blast were treated daily for 2 weeks post blast. Axon damage was evident in the left optic nerve and its continuation as the right optic tract at 3 days post blast in vehicle-treated blast mice in the form of swollen axon bulbs, and was accompanied by a significant increase in the abundance of microglia. Testing at 30 days post blast revealed that the contrast sensitivity function was significantly reduced in both eyes in vehicle-treated blast mice compared to vehicle-treated sham blast mice, and axon counts at ≥30 days after blast revealed a ∼10% loss in left optic nerve in vehicle-treated blast mice. Left optic nerve axon loss was highly correlated with the left eye deficit in contrast sensitivity. Immunolabeling at 30 days post blast showed a significant increase in the abundance of microglia in the retinas of both eyes and in GFAP + Müller cell processes traversing the inner plexiform layer in the left eye of vehicle-treated blast mice. SMM-189 treatment reduced axon injury and microglial abundance at 3 days, and mitigated axon loss, contrast sensitivity deficits, microglial abundance, and Müller cell GFAP upregulation at ≥30 days after blast injury. Analysis of right optic tract microglia at 3 days post blast for M1 versus M2 markers revealed that SMM-189 biased microglia toward the M2 state, with this action of SMM-189 being linked to reduced axonal injury. Taken together, our results show that focal left side cranial blast resulted in impaired contrast sensitivity and retinal pathology bilaterally and optic nerve loss ipsilaterally. The novel cannabinoid drug SMM-189 significantly mitigated the functional deficit and the associated pathologies. Our findings suggest the value of combatting visual system injury after TBI by using CB2 inverse agonists such as SMM-189, which appear to target microglia and bias them away from the pro-inflammatory M1 state, toward the protective M2 state.
Collapse
Affiliation(s)
- Natalie M Guley
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Tyler Ragsdale
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Chunyan Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Aaron M Perry
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bob M Moore
- Dept. of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
34
|
Crystal Structure of the Human Cannabinoid Receptor CB2. Cell 2019; 176:459-467.e13. [PMID: 30639103 DOI: 10.1016/j.cell.2018.12.011] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 12/07/2018] [Indexed: 11/21/2022]
Abstract
The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases. Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257's unexpected opposing functional profile of CB2 antagonism versus CB1 agonism. Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.
Collapse
|
35
|
Franks LN, Ford BM, Fujiwara T, Zhao H, Prather PL. The tamoxifen derivative ridaifen-B is a high affinity selective CB 2 receptor inverse agonist exhibiting anti-inflammatory and anti-osteoclastogenic effects. Toxicol Appl Pharmacol 2018; 353:31-42. [PMID: 29906493 PMCID: PMC6487498 DOI: 10.1016/j.taap.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Selective estrogen receptor modulators (SERMs) target estrogen receptors (ERs) to treat breast cancer and osteoporosis. Several SERMs exhibit anti-cancer activity not related to ERs. To discover novel anti-cancer drugs acting via ER-independent mechanisms, derivatives of the SERM tamoxifen, known as the "ridaifen" compounds, have been developed that exhibit reduced or no ER affinity, while maintaining cytotoxicity. Tamoxifen and other SERMs bind to cannabinoid receptors with moderate affinity. Therefore, ER-independent effects of SERMs might be mediated via cannabinoid receptors. This study determined whether RID-B, a first generation ridaifen compound, exhibits affinity and/or activity at CB1 and/or CB2 cannabinoid receptors. RID-B binds with high affinity (Ki = 43.7 nM) and 17-fold selectivity to CB2 over CB1 receptors. RID-B acts as an inverse agonist at CB2 receptors, modulating G-protein and adenylyl cyclase activity with potency values predicted by CB2 affinity. Characteristic of an antagonist, RID-B co-incubation produces a parallel-rightward shift in the concentration-effect curve of CB2 agonist WIN-55,212-2 to inhibit adenylyl cyclase activity. CB2 inverse agonists are reported to exhibit anti-inflammatory and anti-ostoeclastogenic effects. In LPS-activated macrophages, RID-B exhibits anti-inflammatory effects by reducing levels of nitric oxide (NO), IL-6 and IL-1α, but not TNFα. Only reduction of NO concentration by RID-B is mediated by cannabinoid receptors. RID-B also exhibits pronounced anti-osteoclastogenic effects, reducing the number of osteoclasts differentiating from primary bone marrow macrophages in a cannabinoid receptor-dependent manner. In summary, the tamoxifen derivative RID-B, developed with reduced affinity for ERs, is a high affinity selective CB2 inverse agonist with anti-inflammatory and anti-osteoclastogenic properties.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Benzoxazines/pharmacology
- Binding, Competitive/drug effects
- Bone Marrow Cells/drug effects
- CHO Cells
- Cell Differentiation/drug effects
- Cricetinae
- Cricetulus
- Drug Inverse Agonism
- Mice
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Osteoclasts/drug effects
- Pyrrolidines/metabolism
- Pyrrolidines/pharmacology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Selective Estrogen Receptor Modulators/metabolism
- Selective Estrogen Receptor Modulators/pharmacology
- Tamoxifen/analogs & derivatives
- Tamoxifen/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Toshifumi Fujiwara
- Department of Internal Medicine, Endocrinology Division, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Haibo Zhao
- Department of Internal Medicine, Endocrinology Division, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
36
|
Chicca A, Arena C, Bertini S, Gado F, Ciaglia E, Abate M, Digiacomo M, Lapillo M, Poli G, Bifulco M, Macchia M, Tuccinardi T, Gertsch J, Manera C. Polypharmacological profile of 1,2-dihydro-2-oxo-pyridine-3-carboxamides in the endocannabinoid system. Eur J Med Chem 2018; 154:155-171. [PMID: 29793210 DOI: 10.1016/j.ejmech.2018.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023]
Abstract
The endocannabinoid system (ECS) represents one of the major neuromodulatory systems involved in different physiological and pathological processes. Multi-target compounds exert their activities by acting via multiple mechanisms of action and represent a promising pharmacological modulation of the ECS. In this work we report 4-substituted and 4,5-disubstituted 1,2-dihydro-2-oxo-pyridine-3-carboxamide derivatives with a broad spectrum of affinity and functional activity towards both cannabinoid receptors and additional effects on the main components of the ECS. In particular compound B3 showed high affinity for CB1R (Ki = 23.1 nM, partial agonist) and CB2R (Ki = 6.9 nM, inverse agonist) and also significant inhibitory activity (IC50 = 70 nM) on FAAH with moderate inhibition of ABHD12 (IC50 = 2.5 μΜ). Compounds B4, B5 and B6 that act as full agonists at CB1R and as partial agonists (B5 and B6) or antagonist (B4) at CB2R, exhibited an additional multi-target property by inhibiting anandamide uptake with sub-micromolar IC50 values (0.28-0.62 μΜ). The best derivatives showed cytotoxic activity on U937 lymphoblastoid cells. Finally, molecular docking analysis carried out on the three-dimensional structures of CB1R and CB2R and of FAAH allowed to rationalize the structure-activity relationships of this series of compounds.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012, Bern, Switzerland
| | - Chiara Arena
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Francesca Gado
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Giulio Poli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53019, Siena, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012, Bern, Switzerland
| | | |
Collapse
|
37
|
Synthesis and biological evaluation of ferrocene-based cannabinoid receptor 2 ligands. Future Med Chem 2018; 10:631-638. [DOI: 10.4155/fmc-2017-0200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ferrocene analogs of known fatty acid amide hydrolase inhibitors and CB2 ligands have been synthesized and characterized spectroscopically and crystallographically. The resulting bio-organometallic isoxazoles were assayed for their effects on CB1 and CB2 receptors as well as on fatty acid amide hydrolase. None had any fatty acid amide hydrolase activity but compound 3, 5-(2-(pentyloxy)phenyl)-N-ferrocenylisoxazole-3-carboxamide, was found to be a potent CB2 ligand (Ki = 32.5 nM).
Collapse
|
38
|
Tuo W, Bollier M, Leleu-Chavain N, Lemaire L, Barczyk A, Dezitter X, Klupsch F, Szczepanski F, Spencer J, Chavatte P, Millet R. Development of novel oxazolo[5,4-d]pyrimidines as competitive CB2 neutral antagonists based on scaffold hopping. Eur J Med Chem 2018; 146:68-78. [DOI: 10.1016/j.ejmech.2018.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|
39
|
Abidi AH, Presley CS, Dabbous M, Tipton DA, Mustafa SM, Moore BM. Anti-inflammatory activity of cannabinoid receptor 2 ligands in primary hPDL fibroblasts. Arch Oral Biol 2017; 87:79-85. [PMID: 29274621 DOI: 10.1016/j.archoralbio.2017.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Approximately 65 million adults in the US have periodontitis, causing tooth loss and decreased quality of life. Cannabinoids modulate immune responses, and endocannabinoids are prevalent during oral cavity inflammation. Targets for intervention in periodontal inflammation are cannabinoid type 1 and 2 receptors (CB1R, CB2R), particularly CB2R because its levels increase during inflammation. We previously demonstrated that SMM-189 (CB2R inverse agonist) decreased pro-inflammatory cytokine production in primary microglial cells. The hypothesis of this study was that cannabinoids anandamide (AEA), HU-308 (CB2R selective agonist), and SMM-189 decrease pro-inflammatory IL-6 and MCP-1 production by primary human periodontal ligament fibroblasts (hPDLFs) stimulated with P. gingivalis LPS, TNF-α, or IL-1β. DESIGN Cytotoxic effects of cannabinoid compounds (10-4-10-6.5 M), LPS (1-1000 ng/ml), TNFα (10 ng/ml) and IL-1β (1 ng/ml) were assessed by measuring effects on cellular dehydrogenase activity. IL-6 and MCP-1 production were measured using Mesoscale Discovery (MSD) Human Pro-Inflammatory IL-6 and MSD Human Chemokine MCP-1 kits and analyzed using MSD Sector 2400 machine. RESULTS EC50 values for AEA, SMM-189, and HU-308 were 16 μM, 13 μM, and 7.3 μM respectively. LPS (1 μg/ml), TNF-α (10 ng/ml), and IL-1β (1 ng/ml) increased IL-6 and MCP-1 production, which were inhibited by AEA, SMM-189, and HU-308. AEA alone significantly increased IL-6, but not MCP-1 levels, but the other cannabinoids alone had no effect. CONCLUSION The effective inhibition of LPS, TNF-α, IL-1β stimulated IL-6 and MCP-1 production by CB2R ligands in hPDLFs suggests that targeting the endocannabinoid system may lead to development of novel drugs for periodontal therapy, aiding strategies to improve oral health.
Collapse
Affiliation(s)
- Ammaar H Abidi
- Department of General Practice Dentistry, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, United States; Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chaela S Presley
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mustafa Dabbous
- Department of Bioscience Research, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, United States; Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - David A Tipton
- Department of Bioscience Research, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Bob M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
40
|
Pepcan-12 (RVD-hemopressin) is a CB2 receptor positive allosteric modulator constitutively secreted by adrenals and in liver upon tissue damage. Sci Rep 2017; 7:9560. [PMID: 28842619 PMCID: PMC5573408 DOI: 10.1038/s41598-017-09808-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
Pepcan-12 (RVD-hemopressin; RVDPVNFKLLSH) is the major peptide of a family of endogenous peptide endocannabinoids (pepcans) shown to act as negative allosteric modulators (NAM) of cannabinoid CB1 receptors. Noradrenergic neurons have been identified to be a specific site of pepcan production. However, it remains unknown whether pepcans occur in the periphery and interact with peripheral CB2 cannabinoid receptors. Here, it is shown that pepcan-12 acts as a potent (Ki value ~50 nM) hCB2 receptor positive allosteric modulator (PAM). It significantly potentiated the effects of CB2 receptor agonists, including the endocannabinoid 2-arachidonoyl glycerol (2-AG), for [35S]GTPγS binding and cAMP inhibition (5–10 fold). In mice, the putative precursor pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH) was identified with pepcan-12 in brain, liver and kidney. Pepcan-12 was increased upon endotoxemia and ischemia reperfusion damage where CB2 receptors play a protective role. The adrenals are a major endocrine site of production/secretion of constitutive pepcan-12, as shown by its marked loss after adrenalectomy. However, upon I/R damage pepcan-12 was strongly increased in the liver (from ~100 pmol/g to ~500 pmol/g) independent of adrenals. The wide occurrence of this endogenous hormone-like CB2 receptor PAM, with unforeseen opposite allosteric effects on cannabinoid receptors, suggests its potential role in peripheral pathophysiological processes.
Collapse
|
41
|
Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189. eNeuro 2017; 4:eN-NWR-0387-16. [PMID: 28828401 PMCID: PMC5562300 DOI: 10.1523/eneuro.0387-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189.
Collapse
|
42
|
Mallipeddi S, Kreimer S, Zvonok N, Vemuri K, Karger BL, Ivanov AR, Makriyannis A. Binding Site Characterization of AM1336, a Novel Covalent Inverse Agonist at Human Cannabinoid 2 Receptor, Using Mass Spectrometric Analysis. J Proteome Res 2017; 16:2419-2428. [PMID: 28374590 PMCID: PMC11208095 DOI: 10.1021/acs.jproteome.7b00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cannabinoid 2 receptor (CB2R), a Class-A G-protein coupled receptor (GPCR), is a promising drug target under a wide array of pathological conditions. Rational drug design has been hindered due to our poor understanding of the structural features involved in ligand binding. Binding of a high-affinity biarylpyrazole inverse agonist AM1336 to a library of the human CB2 receptor (hCB2R) cysteine-substituted mutants provided indirect evidence that two cysteines in transmembrane helix-7 (H7) were critical for the covalent attachment. We used proteomics analysis of the hCB2R with bound AM1336 to directly identify peptides with covalently attached ligand and applied in silico modeling for visualization of the ligand-receptor interactions. The hCB2R, with affinity tags (FlaghCB2His6), was produced in a baculovirus-insect cell expression system and purified as a functional receptor using immunoaffinity chromatography. Using mass spectrometry-based bottom-up proteomic analysis of the hCB2R-AM1336, we identified a peptide with AM1336 attached to the cysteine C284(7.38) in H7. The hCB2R homology model in lipid bilayer accommodated covalent attachment of AM1336 to C284(7.38), supporting both biochemical and mass spectrometric data. This work consolidates proteomics data and in silico modeling and integrates with our ligand-assisted protein structure (LAPS) experimental paradigm to assist in structure-based design of cannabinoid antagonist/inverse agonists.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Baculoviridae/genetics
- Baculoviridae/metabolism
- Binding Sites
- Cannabinoid Receptor Agonists/chemistry
- Cannabinoid Receptor Agonists/metabolism
- Cloning, Molecular
- Cysteine/chemistry
- Cysteine/metabolism
- Gene Expression
- Humans
- Ligands
- Mass Spectrometry
- Models, Molecular
- Mutation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Pyrazoles/chemistry
- Pyrazoles/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Spodoptera
Collapse
Affiliation(s)
- Srikrishnan Mallipeddi
- Center for Drug Discovery, Northeastern University, Boston and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Simion Kreimer
- Barnett Institute, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Zvonok
- Center for Drug Discovery, Northeastern University, Boston and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Barry L. Karger
- Barnett Institute, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexander R. Ivanov
- Barnett Institute, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
43
|
Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations. Int J Mol Sci 2017; 18:ijms18071425. [PMID: 28671614 PMCID: PMC5535916 DOI: 10.3390/ijms18071425] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia). This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain's EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy.
Collapse
|
44
|
Salort G, Álvaro-Bartolomé M, García-Sevilla JA. Regulation of cannabinoid CB 2 receptor constitutive activity in vivo: repeated treatments with inverse agonists reverse the acute activation of JNK and associated apoptotic signaling in mouse brain. Psychopharmacology (Berl) 2017; 234:925-941. [PMID: 28127623 DOI: 10.1007/s00213-017-4537-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/07/2017] [Indexed: 01/29/2023]
Abstract
RATIONALE CB2 receptors express constitutive activity and inverse agonists regulate receptor basal activity, which might be involved in death mechanisms. This study assessed the effects of a selective CB2 agonist (JWH133) and different CB2 inverse agonists (AM630, JTE907, raloxifene) on death pathways in brain. OBJECTIVES The acute (JWH13) and the acute/chronic effects (AM630, JTE907, raloxifene) of CB2 ligands regulating pro-apoptotic c-Jun NH2-terminal kinase (p-JNK/JNK ratio) and associated signaling of extrinsic (Fas receptor, Fas-Associated death domain protein, FADD) and intrinsic (Bax, cytochrome c) death pathways (nuclear poly (ADP-ribose) polymerase PARP) were investigated in mouse brain. METHODS Mice were treated with CB2 drugs and target protein contents were assessed by western blot analysis. RESULTS JWH133 reduced cortical JNK (-27-45%) whereas AM630 acutely increased JNK in cortex (+61-148%), cerebellum (+34-40%), and striatum (+33-42%). JTE907 and raloxifene also increased cortical JNK (+31%-57%). Acute AM630, but not JWH133, increased cortical FADD, Bax, cytochrome c, and PARP cleavage. Repeated treatments with the three CB2 inverse agonists were associated with a reversal of the acute effects resulting in decreases in cortical JNK (AM630: -36%; JTE907: -25%; raloxifene: -11%). Chronic treatments also induced a reversal with down-regulation (AM630) or only tolerance (JTE907 and raloxifene) on other apoptotic markers (FADD, Bax, cytochrome c, PARP). CONCLUSIONS AM630 and JTE907 are CB2 protean ligands. Thus, chronic inverse agonists abolished CB2 constitutive activity and then the ligands behaved as agonists reducing (like JWH133) JNK activity. Acute and chronic treatments with CB2 inverse agonists regulate in opposite directions brain death markers.
Collapse
Affiliation(s)
- Glòria Salort
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS/IdisPa), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - María Álvaro-Bartolomé
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS/IdisPa), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Jesús A García-Sevilla
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS/IdisPa), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain. .,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| |
Collapse
|
45
|
Romero-Parra J, Chung H, Tapia RA, Faúndez M, Morales-Verdejo C, Lorca M, Lagos CF, Di Marzo V, David Pessoa-Mahana C, Mella J. Combined CoMFA and CoMSIA 3D-QSAR study of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor. Eur J Pharm Sci 2017; 101:1-10. [PMID: 28137469 DOI: 10.1016/j.ejps.2017.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
The preceding years have brought an exponential increase in our understanding of the endocannabinoid system (ECS), including the knowledge of CB1 and CB2 cannabinoid receptors, endocannabinoids, and the enzymes that synthesize and degrade endocannabinoids. Among these ECS components CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential to treat numerous pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. Recently, our research group has reported a new series of non-cytotoxic benzo[d]imidazoles and benzo[b]thiophenes displaying high CB2/CB1 selectivity index. In order to investigate the structural requirements for CB2 ligands and to derive a predictive model that can be used for the design of novel selective CB2 ligands, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on the above mentioned chemical series employing comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques. The CoMFA and CoMSIA models displayed high external predictability (rpred2 0.919 and 0.908) and good statistical robustness. Valuable information regarding the steric, electrostatic and hydrophobic properties of the molecules was obtained, and several modifications around both heterocycles were evaluated with the aim to generate new promising series of benzo[d]imidazoles and benzo[b]thiophenes derivatives displaying high CB2 selectivity and low toxicity.
Collapse
Affiliation(s)
- Javier Romero-Parra
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Hery Chung
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Ricardo A Tapia
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, 702843, Santiago, Chile
| | - Mario Faúndez
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Cesar Morales-Verdejo
- Universidad Bernardo OHiggins, Laboratorio de Bionanotecnología, General Gana 1702, Santiago, Chile
| | - Marcos Lorca
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Casilla 5030, Chile
| | - Carlos F Lagos
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Lira 85, 5th Floor, Santiago Centro 8330074, Santiago, Chile; Facultad de Ciencia, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia 7510157, Santiago, Chile
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Napoli, Italy
| | - C David Pessoa-Mahana
- Pharmacy Department, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Casilla 5030, Chile.
| |
Collapse
|
46
|
Ford BM, Franks LN, Radominska-Pandya A, Prather PL. Tamoxifen Isomers and Metabolites Exhibit Distinct Affinity and Activity at Cannabinoid Receptors: Potential Scaffold for Drug Development. PLoS One 2016; 11:e0167240. [PMID: 27936172 PMCID: PMC5147891 DOI: 10.1371/journal.pone.0167240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/10/2016] [Indexed: 01/29/2023] Open
Abstract
Tamoxifen (Tam) is a selective estrogen receptor (ER) modulator (SERM) that is an essential drug to treat ER-positive breast cancer. Aside from known actions at ERs, recent studies have suggested that some SERMs like Tam also exhibit novel activity at cannabinoid subtype 1 and 2 receptors (CB1R and CB2Rs). Interestingly, cis- (E-Tam) and trans- (Z-Tam) isomers of Tam exhibit over a 100-fold difference in affinity for ERs. Therefore, the current study assessed individual isomers of Tam and subsequent cytochrome P450 metabolic products, 4-hydroxytamoxifen (4OHT) and 4-hydroxy-N-desmethyl tamoxifen (End) for affinity and activity at CBRs. Results showed that Z-4OHT, but not Z-Tam or Z-End, exhibits higher affinity for both CB1 and CB2Rs relative to the E-isomer. Furthermore, Z- and E-isomers of Tam and 4OHT show slightly higher affinity for CB2Rs, while both End isomers are relatively CB1R-selective. When functional activity was assessed by G-protein activation and regulation of the downstream effector adenylyl cyclase, all isomers examined act as full CB1 and CB2R inverse agonists. Interestingly, Z-Tam appears to be more efficacious than the full inverse agonist AM630 at CB2Rs, while both Z-Tam and Z-End exhibit characteristics of insurmountable antagonism at CB1 and CB2Rs, respectively. Collectively, these results suggest that the SERMs Tam, 4OHT and End elicit ER-independent actions via CBRs in an isomer-specific manner. As such, this novel structural scaffold might be used to develop therapeutically useful drugs for treatment of a variety of diseases mediated via CBRs.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Binding, Competitive
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- CHO Cells
- Cannabinoid Receptor Agonists/metabolism
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Antagonists/metabolism
- Cannabinoid Receptor Antagonists/pharmacology
- Colforsin/metabolism
- Colforsin/pharmacology
- Cricetinae
- Cricetulus
- Cyclic AMP/metabolism
- Cyclohexanols/metabolism
- Cyclohexanols/pharmacology
- Female
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Indoles/metabolism
- Indoles/pharmacology
- Isomerism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Selective Estrogen Receptor Modulators/chemistry
- Selective Estrogen Receptor Modulators/metabolism
- Selective Estrogen Receptor Modulators/pharmacology
- Tamoxifen/analogs & derivatives
- Tamoxifen/chemistry
- Tamoxifen/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Benjamin M. Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lirit N. Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Paul L. Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- * E-mail:
| |
Collapse
|
47
|
Bu W, Ren H, Deng Y, Del Mar N, Guley NM, Moore BM, Honig MG, Reiner A. Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist. Front Neurosci 2016; 10:449. [PMID: 27766068 PMCID: PMC5052277 DOI: 10.3389/fnins.2016.00449] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state. In the present study, we showed that SMM-189 boosts nuclear pCREB levels in microglia in several brain regions by 3 days after TBI, by using pCREB/CD68 double immunofluorescent labeling. Next, to better understand the basis of motor deficits and increased fearfulness after TBI, we used unbiased stereological methods to characterize neuronal loss in cortex, striatum, and basolateral amygdala (BLA) and assessed how neuronal loss was affected by SMM-189 treatment. Our stereological neuron counts revealed a 20% reduction in cortical and 30% reduction in striatal neurons bilaterally at 2-3 months post blast, with SMM-189 yielding about 50% rescue. Loss of BLA neurons was restricted to the blast side, with 33% of Thy1+ fear-suppressing pyramidal neurons and 47% of fear-suppressing parvalbuminergic (PARV) interneurons lost, and Thy1-negative fear-promoting pyramidal neurons not significantly affected. SMM-189 yielded 50-60% rescue of Thy1+ and PARV neuron loss in BLA. Thus, fearfulness after mild TBI may result from the loss of fear-suppressing neuron types in BLA, and SMM-189 may reduce fearfulness by their rescue. Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia to the beneficial M2 state. CB2 inverse agonists thus represent a promising therapeutic approach for mitigating neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Wei Bu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Huiling Ren
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Yunping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Natalie M. Guley
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Bob M. Moore
- Department of Pharmaceutical Sciences, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
- Department of Ophthalmology, University of Tennessee Health Science CenterMemphis, TN, USA
| |
Collapse
|
48
|
Sansook S, Tuo W, Lemaire L, Tourteau A, Barczyk A, Dezitter X, Klupsch F, Leleu-Chavain N, Tizzard GJ, Coles SJ, Millet R, Spencer J. Synthesis of Bioorganometallic Nanomolar-Potent CB2 Agonists Containing a Ferrocene Unit. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Supojjanee Sansook
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, U.K
| | - Wei Tuo
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Lucas Lemaire
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Aurélien Tourteau
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Amélie Barczyk
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Xavier Dezitter
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Frédérique Klupsch
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Natascha Leleu-Chavain
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - Graham J. Tizzard
- UK
National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Simon J. Coles
- UK
National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Régis Millet
- ICPAL, Univ. Lille, Inserm, U995-LIRIC-Lille Inflammation Research International Center, 3 Rue du Professeur
Laguesse, BP83, F-59006 Lille, France
| | - John Spencer
- Department
of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, U.K
| |
Collapse
|
49
|
Dore A, Asproni B, Scampuddu A, Gessi S, Murineddu G, Cichero E, Fossa P, Merighi S, Bencivenni S, Pinna GA. Synthesis, molecular modeling and SAR study of novel pyrazolo[5,1-f][1,6]naphthyridines as CB 2 receptor antagonists/inverse agonists. Bioorg Med Chem 2016; 24:5291-5301. [PMID: 27624523 DOI: 10.1016/j.bmc.2016.08.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/05/2016] [Accepted: 08/27/2016] [Indexed: 01/03/2023]
Abstract
Pyrazolo[5,1-f][1,6]naphthyridine-carboxamide derivatives were synthesized and evaluated for the affinity at CB1 and CB2 receptors. Based on the AgOTf and proline-cocatalyzed multicomponent methodology, the ethyl 5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (12) and ethyl 5-(2,4-dichlorophenyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxylate (13) intermediates were synthesized from the appropriate o-alkynylaldehydes, p-toluenesulfonyl hydrazide and ethyl pyruvate. Most of the novel compounds feature a p-tolyl (8a-i) or a 2,4-dichlorophenyl (8j) motif at the C5-position of the tricyclic pyrazolo[5,1-f][1,6]naphthyridine scaffold. Structural variation on the carboxamide moiety at the C2-position includes basic monocyclic, terpenoid and adamantine-based amines. Among these derivatives, compound 8h (N-adamant-1-yl-5-(p-tolyl)pyrazolo[5,1-f][1,6]naphthyridine-2-carboxamide) exhibited the highest CB2 receptor affinity (Ki=33nM) and a high degree of selectivity (KiCB1/KiCB2=173:1), whereas a similar trend in the near nM range was seen for the bornyl analogue (compound 8f, Ki=53nM) and the myrtanyl derivative 8j (Ki=67nM). Effects of 8h, 8f and 8j on forskolin-stimulated cAMP levels were determined, showing antagonist/inverse agonist properties for such compounds. Docking studies conducted for these derivatives and the reference antagonist/inverse agonist compound 4 (SR144528) disclosed the specific pattern of interactions probably related to the pyrazolo[5,1-f][1,6]naphthyridine scaffold as CB2 inverse agonists.
Collapse
Affiliation(s)
- Antonio Dore
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| | - Battistina Asproni
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy.
| | - Alessia Scampuddu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| | - Stefania Gessi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.
| | - Gabriele Murineddu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV n. 3, 16132 Genova, Italy
| | - Paola Fossa
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV n. 3, 16132 Genova, Italy
| | - Stefania Merighi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Serena Bencivenni
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Gérard A Pinna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via F. Muroni 23/a, 07100 Sassari, Italy
| |
Collapse
|
50
|
Osman NA, Ligresti A, Klein CD, Allarà M, Rabbito A, Di Marzo V, Abouzid KA, Abadi AH. Discovery of novel Tetrahydrobenzo[b]thiophene and pyrrole based scaffolds as potent and selective CB2 receptor ligands: The structural elements controlling binding affinity, selectivity and functionality. Eur J Med Chem 2016; 122:619-634. [PMID: 27448919 DOI: 10.1016/j.ejmech.2016.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
CB2-based therapeutics show strong potential in the treatment of diverse diseases such as inflammation, multiple sclerosis, pain, immune-related disorders, osteoporosis and cancer, without eliciting the typical neurobehavioral side effects of CB1 ligands. For this reason, research activities are currently directed towards the development of CB2 selective ligands. Herein, the synthesis of novel heterocyclic-based CB2 selective compounds is reported. A set of 2,5-dialkyl-1-phenyl-1H-pyrrole-3-carboxamides, 5-subtituted-2-(acylamino)/(2-sulphonylamino)-thiophene-3-carboxylates and 2-(acylamino)/(2-sulphonylamino)-tetrahydrobenzo[b]thiophene-3-carboxylates were synthesized. Biological results revealed compounds with remarkably high CB2 binding affinity and CB2/CB1 subtype selectivity. Compound 19a and 19b from the pyrrole series exhibited the highest CB2 receptor affinity (Ki = 7.59 and 6.15 nM, respectively), as well as the highest CB2/CB1 subtype selectivity (∼70 and ∼200-fold, respectively). In addition, compound 6b from the tetrahydrobenzo[b]thiophene series presented the most potent and selective CB2 ligand in this series (Ki = 2.15 nM and CB2 subtype selectivity of almost 500-fold over CB1). Compound 6b showed a full agonism, while compounds 19a and 19b acted as inverse agonists when tested in an adenylate cyclase assay. The present findings thus pave the way to the design and optimization of heterocyclic-based scaffolds with lipophilic carboxamide and/or retroamide substituent that can be exploited as potential CB2 receptor activity modulators.
Collapse
Affiliation(s)
- Noha A Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Marco Allarà
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Alessandro Rabbito
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Khaled A Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|