1
|
Yang CY, Tseng YC, Tu YF, Kuo BJ, Hsu LC, Lien CI, Lin YS, Wang YT, Lu YC, Su TW, Lo YC, Lin SC. Reverse hierarchical DED assembly in the cFLIP-procaspase-8 and cFLIP-procaspase-8-FADD complexes. Nat Commun 2024; 15:8974. [PMID: 39419969 PMCID: PMC11487272 DOI: 10.1038/s41467-024-53306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
cFLIP, a master anti-apoptotic regulator, targets the FADD-induced DED complexes of procaspase-8 in death receptor and ripoptosome signaling pathways. Several tumor cells maintain relatively high levels of cFLIP in achieving their immortality. However, understanding the three-dimensional regulatory mechanism initiated or mediated by elevated levels of cFLIP has been limited by the absence of the atomic coordinates for cFLIP-induced DED complexes. Here we report the crystal plus cryo-EM structures to uncover an unconventional mechanism where cFLIP and procaspase-8 autonomously form a binary tandem DED complex, independent of FADD. This complex gains the ability to recruit FADD, thereby allosterically modulating cFLIP assembly and partially activating caspase-8 for RIPK1 cleavage. Our structure-guided mutagenesis experiments provide critical insights into these regulatory mechanisms, elucidating the resistance to apoptosis and necroptosis in achieving immortality. Finally, this research offers a unified model for the intricate bidirectional hierarchy-based processes using multiprotein helical assembly to govern cell fate decisions.
Collapse
Affiliation(s)
- Chao-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chun Tseng
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Chia-I Lien
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - You-Sheng Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Yin-Ting Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yen-Chen Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Wei Su
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
2
|
Yang CY, Lien CI, Tseng YC, Tu YF, Kulczyk AW, Lu YC, Wang YT, Su TW, Hsu LC, Lo YC, Lin SC. Deciphering DED assembly mechanisms in FADD-procaspase-8-cFLIP complexes regulating apoptosis. Nat Commun 2024; 15:3791. [PMID: 38710704 PMCID: PMC11074299 DOI: 10.1038/s41467-024-47990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.
Collapse
Grants
- AS-TP-107-L16, AS-TP-107-L16-1, AS-102-TP-B14 and AS-102-TP-B14-2 Academia Sinica
- AS-TP-107-L16-2 and AS-102-TP-B14-1 Academia Sinica
- AS-TP-107-L16-3 Academia Sinica
- MoST 107-2320-B-001-018-, 108-2311-B-001-018-, 109-2311-B-001-016-, and 110-2311-B-001-015- Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MoST 107-2320-B-006-062-MY3, and 111-2311-B-006-005-MY3 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- MoST 108-2320-B-002-020-MY3, 111-2320-B-002-048-MY3, and 112-2326-B-002-007- Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
Collapse
Affiliation(s)
- Chao-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-I Lien
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Yi-Chun Tseng
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Arkadiusz W Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, Department of Biochemistry and Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yen-Chen Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yin-Ting Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsung-Wei Su
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
3
|
Yaacoub K, Pedeux R, Lafite P, Jarry U, Aci-Sèche S, Bonnet P, Daniellou R, Guillaudeux T. The Identification of New c-FLIP Inhibitors for Restoring Apoptosis in TRAIL-Resistant Cancer Cells. Curr Issues Mol Biol 2024; 46:710-728. [PMID: 38248348 PMCID: PMC10814526 DOI: 10.3390/cimb46010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The catalytically inactive caspase-8-homologous protein, c-FLIP, is a potent antiapoptotic protein highly expressed in various types of cancers. c-FLIP competes with caspase-8 for binding to the adaptor protein FADD (Fas-Associated Death Domain) following death receptors' (DRs) activation via the ligands of the TNF-R family. As a consequence, the extrinsic apoptotic signaling pathway involving DRs is inhibited. The inhibition of c-FLIP activity in tumor cells might enhance DR-mediated apoptosis and overcome immune and anticancer drug resistance. Based on an in silico approach, the aim of this work was to identify new small inhibitory molecules able to bind selectively to c-FLIP and block its anti-apoptotic activity. Using a homology 3D model of c-FLIP, an in silico screening of 1880 compounds from the NCI database (National Cancer Institute) was performed. Nine molecules were selected for in vitro assays, based on their binding affinity to c-FLIP and their high selectivity compared to caspase-8. These molecules selectively bind to the Death Effector Domain 2 (DED2) of c-FLIP. We have tested in vitro the inhibitory effect of these nine molecules using the human lung cancer cell line H1703, overexpressing c-FLIP. Our results showed that six of these newly identified compounds efficiently prevent FADD/c-FLIP interactions in a molecular pull-down assay, as well as in a DISC immunoprecipitation assay. The overexpression of c-FLIP in H1703 prevents TRAIL-mediated apoptosis; however, a combination of TRAIL with these selected molecules significantly restored TRAIL-induced cell death by rescuing caspase cleavage and activation. Altogether, our findings indicate that new inhibitory chemical molecules efficiently prevent c-FLIP recruitment into the DISC complex, thus restoring the caspase-8-dependent apoptotic cascade. These results pave the way to design new c-FLIP inhibitory molecules that may serve as anticancer agents in tumors overexpressing c-FLIP.
Collapse
Affiliation(s)
- Katherine Yaacoub
- CNRS, INSERM, BIOSIT UAR 3480, US-S018, Rennes University, F-35000 Rennes, France; (K.Y.); (U.J.)
- INSERM, OSS (Oncogenesis Stress Signaling), UMR-S1242, CLCC Eugène Marquis, Rennes University, F-35000 Rennes, France;
| | - Rémy Pedeux
- INSERM, OSS (Oncogenesis Stress Signaling), UMR-S1242, CLCC Eugène Marquis, Rennes University, F-35000 Rennes, France;
| | - Pierre Lafite
- CNRS, ICOA, UMR 7311, Orléans University, F-45067 Orléans, France; (P.L.); (S.A.-S.); (P.B.); (R.D.)
| | - Ulrich Jarry
- CNRS, INSERM, BIOSIT UAR 3480, US-S018, Rennes University, F-35000 Rennes, France; (K.Y.); (U.J.)
| | - Samia Aci-Sèche
- CNRS, ICOA, UMR 7311, Orléans University, F-45067 Orléans, France; (P.L.); (S.A.-S.); (P.B.); (R.D.)
| | - Pascal Bonnet
- CNRS, ICOA, UMR 7311, Orléans University, F-45067 Orléans, France; (P.L.); (S.A.-S.); (P.B.); (R.D.)
| | - Richard Daniellou
- CNRS, ICOA, UMR 7311, Orléans University, F-45067 Orléans, France; (P.L.); (S.A.-S.); (P.B.); (R.D.)
| | - Thierry Guillaudeux
- CNRS, INSERM, BIOSIT UAR 3480, US-S018, Rennes University, F-35000 Rennes, France; (K.Y.); (U.J.)
- INSERM, OSS (Oncogenesis Stress Signaling), UMR-S1242, CLCC Eugène Marquis, Rennes University, F-35000 Rennes, France;
| |
Collapse
|
4
|
cFLIP L Alleviates Myocardial Ischemia-Reperfusion Injury by Inhibiting Endoplasmic Reticulum Stress. Cardiovasc Drugs Ther 2023; 37:225-238. [PMID: 34767133 DOI: 10.1007/s10557-021-07280-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Endoplasmic reticulum stress (ERS) plays a crucial role in myocardial ischemia-reperfusion injury (MIRI). Cellular FLICE-inhibitory protein (cFLIP) is an essential regulator of apoptosis and plays a major role in regulating ERS. The present study aimed to investigate the effects of long isoform cFLIP (cFLIPL) on endogenous apoptosis and the mechanism of ERS in MIRI. METHODS The cFLIPL recombinant adenovirus vector was used to infect H9c2 cells and Sprague-Dawley (SD) rats. After infection for 72 h, ischemia was induced for 30 min, and reperfusion was then performed for 2 h to establish the MIRI model in SD rats. H9c2 cells were hypoxic for 4 h and then reoxygenated for 12 h to simulate ischemia/reperfusion (I/R) injury. Model parameters were evaluated by assessing cardiomyocyte viability, cell death (apoptosis), and ERS-related protein expression. In addition, tunicamycin (TM), an ERS agonist, was also added to the medium for pretreatment. Coimmunoprecipitation (Co-IP) of cFLIPL and p38 MAPK protein was performed. RESULTS cFLIPL expression was decreased in I/R injury and hypoxia/reoxygenation (H/R) injury, and cFLIPL overexpression reduced myocardial infarction in vivo and increased the viability of H9c2 cells in vitro. I/R and H/R upregulated the protein expression of GRP78, IRE-1, and PERK to induce ERS and apoptosis. Interestingly, overexpression of cFLIPL significantly inhibited ERS and subsequent apoptosis, which was reversed by an agonist of ERS. Moreover, Co-IP showed that cFLIPL attenuated ERS and was associated with inhibiting the activation of p38 protein. CONCLUSION The expression of cFLIPL is significantly downregulated in MIRI, and it is accompanied by excessive ERS and apoptosis. Upregulated cFLIPL suppresses ERS to reduce myocardial apoptosis, which is associated with inhibiting the activity of p38 MAPK. Therefore, cFLIPL may be a potential intervention target for MIRI.
Collapse
|
5
|
Montinaro A, Walczak H. Harnessing TRAIL-induced cell death for cancer therapy: a long walk with thrilling discoveries. Cell Death Differ 2023; 30:237-249. [PMID: 36195672 PMCID: PMC9950482 DOI: 10.1038/s41418-022-01059-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/10/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) can induce apoptosis in a wide variety of cancer cells, both in vitro and in vivo, importantly without killing any essential normal cells. These findings formed the basis for the development of TRAIL-receptor agonists (TRAs) for cancer therapy. However, clinical trials conducted with different types of TRAs have, thus far, afforded only limited therapeutic benefit, as either the respectively chosen agonist showed insufficient anticancer activity or signs of toxicity, or the right TRAIL-comprising combination therapy was not employed. Therefore, in this review we will discuss molecular determinants of TRAIL resistance, the most promising TRAIL-sensitizing agents discovered to date and, importantly, whether any of these could also prove therapeutically efficacious upon cancer relapse following conventional first-line therapies. We will also discuss the more recent progress made with regards to the clinical development of highly active non-immunogenic next generation TRAs. Based thereupon, we next propose how TRAIL resistance might be successfully overcome, leading to the possible future development of highly potent, cancer-selective combination therapies that are based on our current understanding of biology TRAIL-induced cell death. It is possible that such therapies may offer the opportunity to tackle one of the major current obstacles to effective cancer therapy, namely overcoming chemo- and/or targeted-therapy resistance. Even if this were achievable only for certain types of therapy resistance and only for particular types of cancer, this would be a significant and meaningful achievement.
Collapse
Affiliation(s)
- Antonella Montinaro
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
- CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany.
- Center for Biochemistry, Medical Faculty, Joseph-Stelzmann-Str. 52, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
6
|
Mechanisms of TNF-independent RIPK3-mediated cell death. Biochem J 2022; 479:2049-2062. [PMID: 36240069 DOI: 10.1042/bcj20210724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Apoptosis and necroptosis regulate many aspects of organismal biology and are involved in various human diseases. TNF is well known to induce both of these forms of cell death and the underlying mechanisms have been elaborately described. However, cells can also engage apoptosis and necroptosis through TNF-independent mechanisms, involving, for example, activation of the pattern recognition receptors Toll-like receptor (TLR)-3 and -4, or zDNA-binding protein 1 (ZBP1). In this context, cell death signaling depends on the presence of receptor-interacting serine/threonine protein kinase 3 (RIPK3). Whereas RIPK3 is required for TNF-induced necroptosis, it mediates both apoptosis and necroptosis upon TLR3/4 and ZBP1 engagement. Here, we review the intricate mechanisms by which TNF-independent cell death is regulated by RIPK3.
Collapse
|
7
|
Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H, Ding J. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis 2022; 13:637. [PMID: 35869043 PMCID: PMC9307826 DOI: 10.1038/s41419-022-05066-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
Since the discovery of cell apoptosis, other gene-regulated cell deaths are gradually appreciated, including pyroptosis, ferroptosis, and necroptosis. Necroptosis is, so far, one of the best-characterized regulated necrosis. In response to diverse stimuli (death receptor or toll-like receptor stimulation, pathogenic infection, or other factors), necroptosis is initiated and precisely regulated by the receptor-interacting protein kinase 3 (RIPK3) with the involvement of its partners (RIPK1, TRIF, DAI, or others), ultimately leading to the activation of its downstream substrate, mixed lineage kinase domain-like (MLKL). Necroptosis plays a significant role in the host's defense against pathogenic infections. Although much has been recognized regarding modulatory mechanisms of necroptosis during pathogenic infection, the exact role of necroptosis at different stages of infectious diseases is still being unveiled, e.g., how and when pathogens utilize or evade necroptosis to facilitate their invasion and how hosts manipulate necroptosis to counteract these detrimental effects brought by pathogenic infections and further eliminate the encroaching pathogens. In this review, we summarize and discuss the recent progress in the role of necroptosis during a series of viral, bacterial, and parasitic infections with zoonotic potentials, aiming to provide references and directions for the prevention and control of infectious diseases of both human and animals.
Collapse
Affiliation(s)
- Guangzhi Zhang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jinyong Wang
- grid.508381.70000 0004 0647 272XShenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen, 518000 China ,grid.258164.c0000 0004 1790 3548Institute of Respiratory Diseases, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020 Guangdong China
| | - Zhanran Zhao
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA
| | - Ting Xin
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuezheng Fan
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qingchun Shen
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Abdul Raheem
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China ,grid.35155.370000 0004 1790 4137Present Address: Huazhong Agricultural University, Wuhan, China
| | - Chae Rhim Lee
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA ,grid.266093.80000 0001 0668 7243Present Address: University of California, Irvine, CA USA
| | - Hui Jiang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jiabo Ding
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
8
|
Heib M, Weiß J, Saggau C, Hoyer J, Fuchslocher Chico J, Voigt S, Adam D. Ars moriendi: Proteases as sculptors of cellular suicide. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119191. [PMID: 34973300 DOI: 10.1016/j.bbamcr.2021.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| |
Collapse
|
9
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
10
|
Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J 2021; 40:e106700. [PMID: 33439509 PMCID: PMC7917554 DOI: 10.15252/embj.2020106700] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.
Collapse
Affiliation(s)
- Matthias Kist
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| | - Domagoj Vucic
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| |
Collapse
|
11
|
Maiese A, De Matteis A, Bolino G, Turillazzi E, Frati P, Fineschi V. Hypo-Expression of Flice-Inhibitory Protein and Activation of the Caspase-8 Apoptotic Pathways in the Death-Inducing Signaling Complex Due to Ischemia Induced by the Compression of the Asphyxiogenic Tool on the Skin in Hanging Cases. Diagnostics (Basel) 2020; 10:diagnostics10110938. [PMID: 33198065 PMCID: PMC7696535 DOI: 10.3390/diagnostics10110938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
The FLICE-inhibitory protein (c-FLIPL) (55 kDa) is expressed in numerous tissues and most abundantly in the kidney, skeletal muscles and heart. The c-FLIPL has a region of homology with caspase-8 at the carboxy-terminal end which allows the molecule to assume a tertiary structure similar to that of caspases-8 and -10. Consequently, c-FLIPL acts as a negative inhibitor of caspase-8, preventing the processing and subsequent release of the pro-apoptotic molecule active form. The c-FLIP plays as an inhibitor of apoptosis induced by a variety of agents, such as tumor necrosis factor (TNF), T cell receptor (TCR), TNF-related apoptosis inducing ligand (TRAIL), Fas and death receptor (DR). Increased expression of c-FLIP has been found in many human malignancies and shown to be involved in resistance to CD95/Fas and TRAIL receptor-induced apoptosis. We wanted to verify an investigative protocol using FLIP to make a differential diagnosis between skin sulcus with vitality or non-vital skin sulcus in hanged subjects and those undergoing simulated hanging (suspension of the victim after murder). The study group consisted of 21 cases who died from suicidal hanging. The control group consisted of traumatic or natural deaths, while a third group consisted of simulated hanging cases. The reactions to the Anti-FLIP Antibody (Abcam clone-8421) was scored for each section with a semi-quantitative method by means of microscopic observation carried out with confocal microscopy and three-dimensional reconstruction. The results obtained allow us to state that the skin reaction to the FLIP is extremely clear and precise, allowing a diagnosis of unequivocal vitality and a very objective differentiation with the post-mortal skin sulcus.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa PI, Italy; (A.M.); (E.T.)
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Giorgio Bolino
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa PI, Italy; (A.M.); (E.T.)
| | - Paola Frati
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
| | - Vittorio Fineschi
- IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli IS, Italy;
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome RM, Italy; (A.D.M.); (G.B.)
- Correspondence:
| |
Collapse
|
12
|
Smyth P, Sessler T, Scott CJ, Longley DB. FLIP(L): the pseudo-caspase. FEBS J 2020; 287:4246-4260. [PMID: 32096279 PMCID: PMC7586951 DOI: 10.1111/febs.15260] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Possessing structural homology with their active enzyme counterparts but lacking catalytic activity, pseudoenzymes have been identified for all major enzyme groups. Caspases are a family of cysteine‐dependent aspartate‐directed proteases that play essential roles in regulating cell death and inflammation. Here, we discuss the only human pseudo‐caspase, FLIP(L), a paralog of the apoptosis‐initiating caspases, caspase‐8 and caspase‐10. FLIP(L) has been shown to play a key role in regulating the processing and activity of caspase‐8, thereby modulating apoptotic signaling mediated by death receptors (such as TRAIL‐R1/R2), TNF receptor‐1 (TNFR1), and Toll‐like receptors. In this review, these canonical roles of FLIP(L) are discussed. Additionally, a range of nonclassical pseudoenzyme roles are described, in which FLIP(L) functions independently of caspase‐8. These nonclassical pseudoenzyme functions enable FLIP(L) to play key roles in the regulation of a wide range of biological processes beyond its canonical roles as a modulator of cell death.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Tamas Sessler
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
13
|
Kretz AL, Trauzold A, Hillenbrand A, Knippschild U, Henne-Bruns D, von Karstedt S, Lemke J. TRAILblazing Strategies for Cancer Treatment. Cancers (Basel) 2019; 11:cancers11040456. [PMID: 30935038 PMCID: PMC6521007 DOI: 10.3390/cancers11040456] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023] Open
Abstract
In the late 1990s, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-family, started receiving much attention for its potential in cancer therapy, due to its capacity to induce apoptosis selectively in tumour cells in vivo. TRAIL binds to its membrane-bound death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5) inducing the formation of a death-inducing signalling complex (DISC) thereby activating the apoptotic cascade. The ability of TRAIL to also induce apoptosis independently of p53 makes TRAIL a promising anticancer agent, especially in p53-mutated tumour entities. Thus, several so-called TRAIL receptor agonists (TRAs) were developed. Unfortunately, clinical testing of these TRAs did not reveal any significant anticancer activity, presumably due to inherent or acquired TRAIL resistance of most primary tumour cells. Since the potential power of TRAIL-based therapies still lies in TRAIL's explicit cancer cell-selectivity, a desirable approach going forward for TRAIL-based cancer therapy is the identification of substances that sensitise tumour cells for TRAIL-induced apoptosis while sparing normal cells. Numerous of such TRAIL-sensitising strategies have been identified within the last decades. However, many of these approaches have not been verified in animal models, and therefore potential toxicity of these approaches has not been taken into consideration. Here, we critically summarise and discuss the status quo of TRAIL signalling in cancer cells and strategies to force tumour cells into undergoing apoptosis triggered by TRAIL as a cancer therapeutic approach. Moreover, we provide an overview and outlook on innovative and promising future TRAIL-based therapeutic strategies.
Collapse
Affiliation(s)
- Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna Trauzold
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany.
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann Straße 26, 50931 Cologne, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
14
|
The arginine methyltransferase PRMT5 and PRMT1 distinctly regulate the degradation of anti-apoptotic protein CFLAR L in human lung cancer cells. J Exp Clin Cancer Res 2019; 38:64. [PMID: 30736843 PMCID: PMC6368745 DOI: 10.1186/s13046-019-1064-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/27/2019] [Indexed: 02/05/2023] Open
Abstract
Background CFLARL, also known as c-FLIPL, is a critical anti-apoptotic protein that inhibits activation of caspase 8 in mammalian cells. Previous studies have shown that arginine 122 of CFLARL can be mono-methylated. However, the precise role of arginine methyltransferase of CFLARL remains unknown. PRMT5 and PRMT1, which are important members of the PRMT family, catalyze the transfer of methyl groups to the arginine of substrate proteins. PRMT5 can monomethylate or symmetrically dimethylate arginine residues, while PRMT1 can monomethylate or asymmetrically dimethylate arginine residues. Methods Lung cancer cells were cultured following the standard protocol and the cell lysates were prepared to detect the given proteins by Western Blot analysis, and the protein interaction was assayed by co-immunoprecipitation (Co-IP) or GST pull-down assay. CFLARL ubiquitination level was evaluated by proteasomal inhibitor treatment combined with HA-Ub transfection and WB assay. PRMT1 and PRMT5 genes were knocked down by siRNA technique. Results We show that PRMT5 up-regulated the protein levels of CFLARL by decreasing the ubiquitination and increasing its protein level. Additionally, PRMT1 down-regulated the protein level of CFLARL by increasing the ubiquitination and degradation. The overexpression of PRMT5 can inhibit the interaction between CFLARL and ITCH, which has been identified as an E3 ubiquitin ligase of CFLARL, while overexpressed PRMT1 enhances the interaction between CFLARL and ITCH. Furthermore, we verified that dead mutations of PRMT5 or PRMT1 have the same effects on CFLARL as the wild-type ones have, suggesting it is the physical interaction between CFLAR and PRMT1/5 that regulates CFLARL degradation other than its enzymatic activity. Finally, we showed that PRMT5 and PRMT1 could suppress or facilitate apoptosis induced by doxorubicin or pemetrexed by affecting CFLARL in NSCLC cells. Conclusions PRMT5 and PRMT1 mediate the distinct effects on CFLARL degradation by regulating the binding of E3 ligase ITCH in NSCLC cells. This study identifies a cell death mechanism that is fine-tuned by PRMT1/5 that modulate CFLARL degradation in human NSCLC cells. Electronic supplementary material The online version of this article (10.1186/s13046-019-1064-8) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Abstract
Roles for cell death in development, homeostasis, and the control of infections and cancer have long been recognized. Although excessive cell damage results in passive necrosis, cells can be triggered to engage molecular programs that result in cell death. Such triggers include cellular stress, oncogenic signals that engage tumor suppressor mechanisms, pathogen insults, and immune mechanisms. The best-known forms of programmed cell death are apoptosis and a recently recognized regulated necrosis termed necroptosis. Of the two best understood pathways of apoptosis, the extrinsic and intrinsic (mitochondrial) pathways, the former is induced by the ligation of death receptors, a subset of the TNF receptor (TNFR) superfamily. Ligation of these death receptors can also induce necroptosis. The extrinsic apoptosis and necroptosis pathways regulate each other and their balance determines whether cells live. Integral in the regulation and initiation of death receptor-mediated activation of programmed cell death is the aspartate-specific cysteine protease (caspase)-8. This review describes the role of caspase-8 in the initiation of extrinsic apoptosis execution and the mechanism by which caspase-8 inhibits necroptosis. The importance of caspase-8 in the development and homeostasis and the way that dysfunctional caspase-8 may contribute to the development of malignancies in mice and humans are also explored.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
16
|
Kędzierska H, Popławski P, Hoser G, Rybicka B, Rodzik K, Sokół E, Bogusławska J, Tański Z, Fogtman A, Koblowska M, Piekiełko-Witkowska A. Decreased Expression of SRSF2 Splicing Factor Inhibits Apoptotic Pathways in Renal Cancer. Int J Mol Sci 2016; 17:ijms17101598. [PMID: 27690003 PMCID: PMC5085631 DOI: 10.3390/ijms17101598] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Serine and arginine rich splicing factor 2(SRSF2) belongs to the serine/arginine (SR)-rich family of proteins that regulate alternative splicing. Previous studies suggested that SRSF2 can contribute to carcinogenic processes. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, highly aggressive and difficult to treat, mainly due to resistance to apoptosis. In this study we hypothesized that SRSF2 contributes to the regulation of apoptosis in ccRCC. Using tissue samples obtained from ccRCC patients, as well as independent validation on The Cancer Genome Atlas (TCGA) data, we demonstrate for the first time that expression of SRSF2 is decreased in ccRCC tumours when compared to non-tumorous control tissues. Furthermore, by employing a panel of ccRCC-derived cell lines with silenced SRSF2 expression and qPCR arrays we show that SRSF2 contributes not only to splicing patterns but also to expression of multiple apoptotic genes, including new SRSF2 targets: DIABLO, BIRC5/survivin, TRAIL, BIM, MCL1, TNFRSF9, TNFRSF1B, CRADD, BCL2L2, BCL2A1, and TP53. We also identified a new splice variant of CFLAR, an inhibitor of caspase activity. These changes culminate in diminished caspase-9 activity and inhibition of apoptosis. In summary, we show for the first time that decreased expression of SRSF2 in ccRCC contributes to protection of cancer cells viability.
Collapse
Affiliation(s)
- Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Grażyna Hoser
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Katarzyna Rodzik
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Elżbieta Sokół
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Zbigniew Tański
- Department of Urology, Regional Hospital, 07-410 Ostrołęka, Poland.
| | - Anna Fogtman
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Marta Koblowska
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland.
| | | |
Collapse
|
17
|
Hughes MA, Powley IR, Jukes-Jones R, Horn S, Feoktistova M, Fairall L, Schwabe JWR, Leverkus M, Cain K, MacFarlane M. Co-operative and Hierarchical Binding of c-FLIP and Caspase-8: A Unified Model Defines How c-FLIP Isoforms Differentially Control Cell Fate. Mol Cell 2016; 61:834-49. [PMID: 26990987 PMCID: PMC4819448 DOI: 10.1016/j.molcel.2016.02.023] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
The death-inducing signaling complex (DISC) initiates death receptor-induced apoptosis. DISC assembly and activation are controlled by c-FLIP isoforms, which function as pro-apoptotic (c-FLIPL only) or anti-apoptotic (c-FLIPL/c-FLIPS) regulators of procaspase-8 activation. Current models assume that c-FLIP directly competes with procaspase-8 for recruitment to FADD. Using a functional reconstituted DISC, structure-guided mutagenesis, and quantitative LC-MS/MS, we show that c-FLIPL/S binding to the DISC is instead a co-operative procaspase-8-dependent process. FADD initially recruits procaspase-8, which in turn recruits and heterodimerizes with c-FLIPL/S via a hierarchical binding mechanism. Procaspase-8 activation is regulated by the ratio of unbound c-FLIPL/S to procaspase-8, which determines composition of the procaspase-8:c-FLIPL/S heterodimer. Thus, procaspase-8:c-FLIPL exhibits localized enzymatic activity and is preferentially an activator, promoting DED-mediated procaspase-8 oligomer assembly, whereas procaspase-8:c-FLIPS lacks activity and potently blocks procaspase-8 activation. This co-operative hierarchical binding model explains the dual role of c-FLIPL and crucially defines how c-FLIP isoforms differentially control cell fate.
Collapse
Affiliation(s)
- Michelle A Hughes
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | - Ian R Powley
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | - Rebekah Jukes-Jones
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | - Sebastian Horn
- Department of Dermatology, Venereology and Allergology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Maria Feoktistova
- Department of Dermatology and Allergology, Medical Faculty of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - John W R Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Martin Leverkus
- Department of Dermatology and Allergology, Medical Faculty of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Kelvin Cain
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK.
| | - Marion MacFarlane
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
18
|
Tsuchiya Y, Nakabayashi O, Nakano H. FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP. Int J Mol Sci 2015; 16:30321-41. [PMID: 26694384 PMCID: PMC4691174 DOI: 10.3390/ijms161226232] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022] Open
Abstract
cFLIP (cellular FLICE-like inhibitory protein) is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR). cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| | - Osamu Nakabayashi
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| |
Collapse
|
19
|
Cho Y, Yoon JH, Yoo JJ, Lee M, Lee DH, Cho EJ, Lee JH, Yu SJ, Kim YJ, Kim CY. Fucoidan protects hepatocytes from apoptosis and inhibits invasion of hepatocellular carcinoma by up-regulating p42/44 MAPK-dependent NDRG-1/CAP43. Acta Pharm Sin B 2015; 5:544-53. [PMID: 26713269 PMCID: PMC4675821 DOI: 10.1016/j.apsb.2015.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 02/07/2023] Open
Abstract
Fucoidan is a traditional Chinese medicine suggested to possess anti-tumor effects. In this study the anti-metastatic effects of fucoidan were investigated in vitro in human hepatocellular carcinoma (HCC) cells (Huh-7 and SNU-761) under normoxic and hypoxic conditions and in vivo using a distant liver metastasis model involving injection of MH134 cells into spleen via the portal vein. Its ability to protect hepatocytes against bile acid (BA)-induced apoptosis was investigated in primary hepatocytes. Fucoidan was found to suppress the invasion of HCC cells through up-regulation of p42/44 MAPK-dependent NDRG-1/CAP43 and partly, under normoxic conditions, through up-regulation of p42/44 MAPK-dependent VMP-1 expression. It also significantly decreased liver metastasis in vivo. As regards its hepatoprotective effect, fucoidan decreased BA-induced hepatocyte apoptosis as shown by the attenuation of caspase-8, and -7 cleavages and suppression of the mobilization of caspase-8 and Fas associated death domain (FADD) into the death-inducing signaling complex. In summary, fucoidan displays inhibitory effects on proliferation of HCC cells and protective effects on hepatocytes. The results suggest fucoidan is a potent suppressor of tumor invasion with hepatoprotective effects.
Collapse
Key Words
- BA, bile acid
- CXCL, chemokine ligand
- Cultured hepatocyte
- DISC, death-inducing signaling complex
- DMEM, Dulbecco׳s modified Eagle׳s medium
- DNA, deoxyribonucleic acid
- ELISA, enzyme-linked immunosorbent assay
- FADD, Fas associated death domain
- FBS, fetal bovine serum
- FCS, fetal calf serum
- Fucoidan
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GP, glypican
- HCC, hepatocellular carcinoma
- Hepatocellular carcinoma
- Hepatoprotective
- Hypoxia
- IHC, immunohistochemistry
- Invasion
- JNK, c-Jun NH2-terminal kinase
- MAPK, mitogen-activated protein kinase
- MTS, 3,4-(5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt
- NDRG, N-myc downstream-regulated gene
- NDRG-1/CAP43
- PCR, polymerase chain reaction
- RNA, ribonucleic acid
- SD, standard deviation
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- VMP, vacuole membrane protein
- VMP-1
- WME, William's medium E
- cDNA, complementary DNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
| | - Jung-Hwan Yoon
- Corresponding author. Tel.: +82 2 2072 2228; fax: +82 2 743 6701.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vajjhala PR, Lu A, Brown DL, Pang SW, Sagulenko V, Sester DP, Cridland SO, Hill JM, Schroder K, Stow JL, Wu H, Stacey KJ. The Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments. J Biol Chem 2015; 290:29217-30. [PMID: 26468282 DOI: 10.1074/jbc.m115.687731] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 01/19/2023] Open
Abstract
Inflammasomes mediate inflammatory and cell death responses to pathogens and cellular stress signals via activation of procaspases-1 and -8. During inflammasome assembly, activated receptors of the NLR or PYHIN family recruit the adaptor protein ASC and initiate polymerization of its pyrin domain (PYD) into filaments. We show that ASC filaments in turn nucleate procaspase-8 death effector domain (DED) filaments in vitro and in vivo. Interaction between ASC PYD and procaspase-8 tandem DEDs optimally required both DEDs and represents an unusual heterotypic interaction between domains of the death fold superfamily. Analysis of ASC PYD mutants showed that interaction surfaces that mediate procaspase-8 interaction overlap with those required for ASC self-association and interaction with the PYDs of inflammasome initiators. Our data indicate that multiple types of death fold domain filaments form at inflammasomes and that PYD/DED and homotypic PYD interaction modes are similar. Interestingly, we observed condensation of procaspase-8 filaments containing the catalytic domain, suggesting that procaspase-8 interactions within and/or between filaments may be involved in caspase-8 activation. Procaspase-8 filaments may also be relevant to apoptosis induced by death receptors.
Collapse
Affiliation(s)
| | - Alvin Lu
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, and the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Darren L Brown
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siew Wai Pang
- From the School of Chemistry and Molecular Biosciences and
| | | | - David P Sester
- From the School of Chemistry and Molecular Biosciences and
| | | | - Justine M Hill
- From the School of Chemistry and Molecular Biosciences and
| | - Kate Schroder
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer L Stow
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hao Wu
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, and the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Katryn J Stacey
- From the School of Chemistry and Molecular Biosciences and the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia,
| |
Collapse
|
21
|
Sakamaki K, Iwabe N, Iwata H, Imai K, Takagi C, Chiba K, Shukunami C, Tomii K, Ueno N. Conservation of structure and function in vertebrate c-FLIP proteins despite rapid evolutionary change. Biochem Biophys Rep 2015; 3:175-189. [PMID: 29124180 PMCID: PMC5668880 DOI: 10.1016/j.bbrep.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 12/26/2022] Open
Abstract
Cellular FLICE-like inhibitory protein (c-FLIP, gene symbol CFLAR) was first identified as a negative regulator of death receptor-mediated apoptosis in mammals. To understand the ubiquity and diversity of the c-FLIP protein subfamily during evolution, c-FLIP orthologs were identified from a comprehensive range of vertebrates, including birds, amphibians, and fish, and were characterized by combining experimental and computational analysis. Predictions of three-dimensional protein structures and molecular phylogenetic analysis indicated that the conserved structural features of c-FLIP proteins are all derived from an ancestral caspase-8, although they rapidly diverged from the subfamily consisting of caspases-8, -10, and -18. The functional role of the c-FLIP subfamily members is nearly ubiquitous throughout vertebrates. Exogenous expression of non-mammalian c-FLIP proteins in cultured mammalian cells suppressed death receptor-mediated apoptosis, implying that all of these proteins possess anti-apoptotic activity. Furthermore, non-mammalian c-FLIP proteins induced NF-κB activation much like their mammalian counterparts. The CFLAR mRNAs were synthesized during frog and fish embryogenesis. Overexpression of a truncated mutant of c-FLIP in the Xenopus laevis embryos by mRNA microinjection caused thorax edema and abnormal constriction of the abdomen. Depletion of cflar transcripts in zebrafish resulted in developmental abnormalities accompanied by edema and irregular red blood cell flow. Thus, our results demonstrate that c-FLIP/CFLAR is conserved in both protein structure and function in several vertebrate species, and suggest a significant role of c-FLIP in embryonic development.
Collapse
Key Words
- Apoptosis
- CARD, caspase-recruitment domain
- CASc, Caspase, interleukin-1 β converting enzyme homologs
- CHX, cycloheximide
- Caspase-8
- DED, death effector domain
- EGFP, enhanced green fluorescent protein
- Embryogenesis
- Evolution
- FADD, Fas-associated death domain protein
- MO, morpholino oligonucleotide
- NF-κB
- NF-κB, Nuclear factor-kappa B
- ODC, ornithine decarboxylase
- PCR, polymerase chain reaction
- Pseudocatalytic triad
- RT-PCR, reverse transcription-polymerase chain reaction
- TRAF2, tumor necrosis factor receptor-associated factor 2
- c-FLIP, cellular FLICE-like inhibitory protein
- tubα6, tubulin α6
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Naoyuki Iwabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroaki Iwata
- Multi-scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenichiro Imai
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Chiyo Takagi
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Kumiko Chiba
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Chisa Shukunami
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| |
Collapse
|
22
|
Abstract
Tumour necrosis factor (TNF) is a pro-inflammatory cytokine that has important roles in mammalian immunity and cellular homeostasis. Deregulation of TNF receptor (TNFR) signalling is associated with many inflammatory disorders, including various types of arthritis and inflammatory bowel disease, and targeting TNF has been an effective therapeutic strategy in these diseases. This Review focuses on the recent advances that have been made in understanding TNFR signalling and the consequences of its deregulation for cellular survival, apoptosis and regulated necrosis. We discuss how TNF-induced survival signals are distinguished from those that lead to cell death. Finally, we provide a brief overview of the role of TNF in inflammatory and autoimmune diseases, and we discuss up-to-date and future treatment strategies for these disorders.
Collapse
|
23
|
Sakamaki K, Imai K, Tomii K, Miller DJ. Evolutionary analyses of caspase-8 and its paralogs: Deep origins of the apoptotic signaling pathways. Bioessays 2015; 37:767-76. [DOI: 10.1002/bies.201500010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology; Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Kenichiro Imai
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - David J. Miller
- Department of Molecular and Cell Biology; ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Queensland Australia
| |
Collapse
|
24
|
NF-κB Regulation of c-FLIP Promotes TNFα-Mediated RAF Inhibitor Resistance in Melanoma. J Invest Dermatol 2015; 135:1839-1848. [PMID: 25751672 PMCID: PMC4466037 DOI: 10.1038/jid.2015.91] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/22/2015] [Accepted: 02/21/2015] [Indexed: 01/05/2023]
Abstract
Targeted inhibitors elicit heterogeneous clinical responses in genetically stratified groups of patients. Although most studies focus on tumor intrinsic properties, factors in the tumor microenvironment were recently found to modulate the response to inhibitors. Here, we show that in cutaneous BRAF V600E melanoma, the cytokine tumor necrosis factor-α (TNFα) blocks RAF inhibitor-induced apoptosis via activation of NF-κB. Several NF-κB-dependent factors are upregulated following TNFα and RAF inhibitor treatment. Of these factors, we show that death receptor inhibitor cellular caspase 8 (FLICE)-like inhibitory protein (c-FLIP) is required for TNFα-induced protection against RAF inhibitor. Overexpression of c-FLIP_S or c-FLIP_L isoform decreased RAF inhibitor-induced apoptosis in the absence of TNFα. Importantly, targeting NF-κB enhances response to RAF inhibitor in vitro and in vivo. Together, our results show mechanistic evidence for cytokine-mediated resistance to RAF inhibitor and provide a preclinical rationale for the strategy of cotargeting the RAF/MEK/ERK1/2 pathway and the TNFα/NF-κB axis to treat mutant BRAF melanomas.
Collapse
|
25
|
Yin Y, Zhang S, Luo H, Zhang X, Geng G, Li J, Guo X, Cai W, Li L, Liu C, Zhang H. Interleukin 7 up-regulates CD95 protein on CD4+ T cells by affecting mRNA alternative splicing: priming for a synergistic effect on HIV-1 reservoir maintenance. J Biol Chem 2014; 290:35-45. [PMID: 25411246 DOI: 10.1074/jbc.m114.598631] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-7 (IL-7) has been used as an immunoregulatory and latency-reversing agent in human immunodeficiency virus type 1 (HIV-1) infection. Although IL-7 can restore circulating CD4(+) T cell counts in HIV-1-infected patients, the anti-apoptotic and proliferative effects of IL-7 appear to benefit survival and expansion of HIV-1-latently infected memory CD4(+) T lymphocytes. IL-7 has been shown to elevate CD95 on CD4(+) T cells in HIV-1-infected individuals and prime CD4(+) T lymphocytes to CD95-mediated proliferative or apoptotic signals. Here we observed that through increasing microRNA-124, IL-7 down-regulates the splicing regulator polypyrimidine tract binding protein (PTB), leading to inclusion of the transmembrane domain-encoding exon 6 of CD95 mRNA and, subsequently, elevation of CD95 on memory CD4(+) T cells. Moreover, IL-7 up-regulates cellular FLICE-like inhibitory protein (c-FLIP) and stimulates c-Jun N-terminal kinase (JNK) phosphorylation, which switches CD95 signaling to survival mode in memory CD4(+) T lymphocytes. As a result, co-stimulation through IL-7/IL-7R and FasL/CD95 signal pathways augments IL-7-mediated survival and expansion of HIV-1-latently infected memory CD4(+) T lymphocytes. Collectively, we have demonstrated a novel mechanism for IL-7-mediated maintenance of HIV-1 reservoir.
Collapse
Affiliation(s)
- Yue Yin
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Shaoying Zhang
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Haihua Luo
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Xu Zhang
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Guannan Geng
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Jun Li
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Xuemin Guo
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Chao Liu
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| | - Hui Zhang
- From the Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China and
| |
Collapse
|
26
|
Lo YC, Lin SC, Yang CY, Tung JY. Tandem DEDs and CARDs suggest novel mechanisms of signaling complex assembly. Apoptosis 2014; 20:124-35. [DOI: 10.1007/s10495-014-1054-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Feoktistova M, Leverkus M. Programmed necrosis and necroptosis signalling. FEBS J 2014; 282:19-31. [PMID: 25327580 DOI: 10.1111/febs.13120] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/25/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022]
Abstract
In recent years, the paradigm of cell death regulation has changed. Nowadays, not only apoptosis but also several forms of necrosis (e.g. necroptosis) are considered to be regulated. The central roles of receptor-interacting serine/threonine protein kinase1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like protein, and the molecular signalling platforms in which these molecules participate, are being intensively studied. In particular, the role of RIPK1, being both a kinase and a scaffold molecule, in different cell death regulatory complexes is of great relevance for the field. This minireview aims to introduce the emerging and dynamic field of necroptosis to the reader, with a specific focus on intracellular signalling pathways involved in this process.
Collapse
Affiliation(s)
- Maria Feoktistova
- Section of Molecular Dermatology, Department of Dermatology, Venereology and Allergology, Medical Faculty Mannheim, University Heidelberg, Germany
| | | |
Collapse
|
28
|
Abstract
Cell turnover is a fundamental feature in metazoans. Cells can die passively, as a consequence of severe damage to their structural integrity, or actively, owing to a more confined biological disruption such as DNA damage. Passive cell death is uncontrolled and often harmful to the organism. In contrast, active cell death is tightly regulated and serves to support the organism's life. Apoptosis-the primary form of regulated cell death-is relatively well defined. Necroptosis-an alternative, distinct kind of regulated cell death discovered more recently-is less well understood. Apoptosis and necroptosis can be triggered either from within the cell or by extracellular stimuli. Certain signaling components, including several death ligands and receptors, can regulate both processes. Whereas apoptosis is triggered and executed via intracellular proteases called caspases, necroptosis is suppressed by caspase activity. Here we highlight current understanding of the key signaling mechanisms that control regulated cell death.
Collapse
Affiliation(s)
- Avi Ashkenazi
- Genentech Inc., South San Francisco, California 94080;
| | | |
Collapse
|
29
|
Salvesen GS, Walsh CM. Functions of caspase 8: the identified and the mysterious. Semin Immunol 2014; 26:246-52. [PMID: 24856110 DOI: 10.1016/j.smim.2014.03.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/07/2023]
Abstract
Initially discovered as an initiator protease in apoptosis mediated by death receptors, caspase-8 is now known to have an apparently confounding opposing effect in securing cell survival. It is required to allow mouse embryo survival, and the survival of hematopoietic cells during their development and activation. Classic models in which caspase-8 is depleted or inhibited frequently result in inhibition of apoptosis, and conversion to death through a necrotic pathway. This bewildering switch is now known to be driven by activation of a pathway dependent on protein kinases of the RIP family, which engage a pathway known as necroptosis. If caspase-8 does not control this pathway, necrotic death results. The pro-apoptotic and pro-survival functions of caspase-8 are regulated by a specific interaction with the pseudo-caspase cFLIP, and it is thought that the heterocomplex between these two partners alters the substrate specificity of caspase-8 in favor of inactivating components of the RIP kinase pathway. The description of how caspase-8 and cFLIP coordinate the switch between apoptosis and survival is just beginning. The mechanism is not known, the differential targets are not known, and the reason of why an apoptotic initiator has been co-opted as a critical survival factor is only guessed at. Elucidating these unknowns will be important in understanding mechanisms and possible therapeutic targets in autoimmune, inflammatory, and metastatic diseases.
Collapse
Affiliation(s)
- Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Craig M Walsh
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
30
|
Zhang H, Li X, Zhang Y, Luan X. Luteolin induces apoptosis by activating Fas signaling pathway at the receptor level in laryngeal squamous cell line Hep-2 cells. Eur Arch Otorhinolaryngol 2014; 271:1653-9. [DOI: 10.1007/s00405-014-2903-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 11/30/2022]
|
31
|
Expression of type I interferon-induced antiviral state and pro-apoptosis markers during experimental infection with low or high virulence bovine viral diarrhea virus in beef calves. Virus Res 2013; 173:260-9. [PMID: 23458997 DOI: 10.1016/j.virusres.2013.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/01/2013] [Accepted: 02/20/2013] [Indexed: 12/23/2022]
Abstract
The objective of this study was to compare the mRNA expression of host genes involved in type-I interferon-induced antiviral state (IFN-α, IFN-β, Mx-1, PKR, OAS-1 and ISG-15), and apoptosis (caspase-3, -8, and -9), after experimental infection of beef calves with low or high virulence noncytopathic (ncp) bovine viral diarrhea virus (BVDV) strains. Thirty BVDV-naïve, clinically normal calves were randomly assigned to three groups. Calves were intranasally inoculated with low (LV; n=10, strain SD-1) or high (HV; n=10, strain 1373) virulence ncp BVDV or BVDV-free cell culture medium (Control, n=10). Quantitative RT-PCR was used to determine the target gene expression in tracheo-bronchial lymph nodes and spleen 5 days after infection. Interferon-α and -β mRNA levels were up-regulated in tracheo-bronchial lymph nodes (P<0.05) in the HV group, but not in the LV group, compared with the control group. There was an up-regulation of type I interferon-induced genes in spleen and tracheo-bronchial lymph nodes of HV and LV groups, compared with the control group (P<0.01). mRNA levels of OAS-1 and ISG-15 were significantly higher in LV than HV calves (P<0.05). A significant up-regulation of caspase-8 and -9 was observed in tracheo-bronchial lymph nodes in the LV group (P=0.01), but not in the HV group. In conclusion, experimental infection with either high or low virulence BVDV strains induced a significant expression of the type I interferon-induced genes in beef calves. There was a differential expression of some interferon-induced genes (OAS-1 and ISG-15) and pro-apoptosis markers based on BVDV virulence and genotype.
Collapse
|
32
|
Maksimovic-Ivanic D, Stosic-Grujicic S, Nicoletti F, Mijatovic S. Resistance to TRAIL and how to surmount it. Immunol Res 2012; 52:157-68. [DOI: 10.1007/s12026-012-8284-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Alves MG, Machado NG, Sardão VA, Carvalho RA, Oliveira PJ. Anti-apoptotic protection afforded by cardioplegic celsior and histidine buffer solutions to hearts subjected to ischemia and ischemia/reperfusion. J Cell Biochem 2011; 112:3872-81. [DOI: 10.1002/jcb.23320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Abstract
During the development and normal function of T lymphocytes, the cells are subject to several checkpoints at which they must "decide" to live or die. At these critical times and during homeostasis, the molecules that regulate the classical apoptotic pathways and survival pathways such as autophagy have critical roles in controlling this decision. Our laboratory has focused on the roles of apoptotic and autophagic proteins in T lymphocyte development and function. Using genetic models in mice and in vitro analyses of T cell functions, we have outlined critical roles for the Bcl-2 family (regulators of the intrinsic pathway of apoptosis), c-FLIP (an anti-apoptotic protein in the extrinsic pathway of apoptosis), and autophagy in T lymphocytes.
Collapse
|
35
|
Sung WW, Wang YC, Cheng YW, Lee MC, Yeh KT, Wang L, Wang J, Chen CY, Lee H. A Polymorphic −844T/C in FasL Promoter Predicts Survival and Relapse in Non–Small Cell Lung Cancer. Clin Cancer Res 2011; 17:5991-9. [DOI: 10.1158/1078-0432.ccr-11-0227] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
van Raam BJ, Salvesen GS. Proliferative versus apoptotic functions of caspase-8 Hetero or homo: the caspase-8 dimer controls cell fate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:113-22. [PMID: 21704196 DOI: 10.1016/j.bbapap.2011.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 12/12/2022]
Abstract
Caspase-8, the initiator of extrinsically-triggered apoptosis, also has important functions in cellular activation and differentiation downstream of a variety of cell surface receptors. It has become increasingly clear that the heterodimer of caspase-8 with the long isoform of cellular FLIP (FLIP(L)) fulfills these pro-survival functions of caspase-8. FLIP(L), a catalytically defective caspase-8 paralog, can interact with caspase-8 to activate its catalytic function. The caspase-8/FLIP(L) heterodimer has a restricted substrate repertoire and does not induce apoptosis. In essence, caspase-8 heterodimerized with FLIP(L) prevents the receptor interacting kinases RIPK1 and -3 from executing the form of cell death known as necroptosis. This review discusses the latest insights in caspase-8 homo- versus heterodimerization and the implication this has for cellular death or survival. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Bram J van Raam
- Program of Apoptosis and Cell Death Research, Sanford-Burnham Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
37
|
Pedrera M, Gómez-Villamandos JC, Risalde MA, Molina V, Sánchez-Cordón PJ. Characterization of apoptosis pathways (intrinsic and extrinsic) in lymphoid tissues of calves inoculated with non-cytopathic bovine viral diarrhoea virus genotype-1. J Comp Pathol 2011; 146:30-9. [PMID: 21612789 DOI: 10.1016/j.jcpa.2011.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that activation of effector caspase-3 is associated with the apoptosis of lymphocytes occurring during infection with bovine viral diarrhoea virus (BVDV); however, the regulation of the apoptosis pathways that induce cell death via activation of effector caspase-3 has not yet been clarified. The aim of this study was to examine immunohistochemically the expression of cleaved caspase (CCasp)-8 (initiator caspase of the extrinsic pathway), CCasp9 (initiator caspase of the intrinsic pathway) and Bcl-2 (an anti-apoptotic marker) in gut-associated lymphoid tissue (GALT) of the ileum from calves inoculated with a non-cytopathic strain of BVDV genotype-1. CCasp8 had similar expression to that of CCasp3. In interfollicular T-cell areas there was moderate apoptosis and evidence of moderate activation of initiator caspase-8. In B-cell follicles there was marked lymphocyte apoptosis and evidence of intense caspase-8 activation, highlighting the potentially major role of the extrinsic pathway in lymphocyte apoptosis in the GALT during BVDV infection. Additionally, there was a significant decrease in the number of CCasp9(+) cells from the start of the experiment and this was linked to inactivation of caspase-9. Therefore, the intrinsic pathway may play only a minor role in the induction of lymphocyte apoptosis. Finally, the observed overexpression of Bcl-2 protein could play a major role in protecting lymphocytes in the T-cell areas against apoptosis, while low levels of Bcl-2 expression could be associated with the follicular lymphocyte apoptosis occurring during BVDV infection.
Collapse
Affiliation(s)
- M Pedrera
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Edificio Sanidad Animal, Campus de Rabanales, 14014 Córdoba, Spain
| | | | | | | | | |
Collapse
|
38
|
Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system. Cell Death Differ 2011; 18:1247-56. [PMID: 21475301 DOI: 10.1038/cdd.2011.37] [Citation(s) in RCA: 573] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.
Collapse
Affiliation(s)
- N S Coll
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
39
|
Abstract
FLIP is a well-established suppressor of death receptor-mediated apoptosis. To define its essential in vivo role in myeloid cells, we generated and characterized mice with Flip conditionally deleted in the myeloid lineage. Myeloid specific Flip-deficient mice exhibited growth retardation, premature death, and splenomegaly with altered architecture and extramedullary hematopoiesis. They also displayed a dramatic increase of circulating neutrophils and multiorgan neutrophil infiltration. In contrast, although circulating inflammatory monocytes were also significantly increased, macrophages in the spleen, lymph nodes, and the peritoneal cavity were reduced. In ex vivo cultures, bone marrow progenitor cells failed to differentiate into macrophages when Flip was deleted. Mixed bone marrow chimera experiments using cells from Flip-deficient and wild-type mice did not demonstrate an inflammatory phenotype. These observations demonstrate that FLIP is necessary for macrophage differentiation and the homeostatic regulation of granulopoiesis.
Collapse
|
40
|
Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL. Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol 2010; 7:239-54. [PMID: 20586583 DOI: 10.3109/1547691x.2010.492254] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oxygen therapy using mechanical ventilation with hyperoxia is necessary to treat patients with respiratory failure and distress. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), causing cellular damage and multiple organ dysfunctions. As the lungs are directly exposed, hyperoxia can cause both acute and chronic inflammatory lung injury and compromise innate immunity. ROS may contribute to pulmonary oxygen toxicity by overwhelming redox homeostasis, altering signaling cascades that affect cell fate, ultimately leading to hyperoxia-induced acute lung injury (HALI). HALI is characterized by pronounced inflammatory responses with leukocyte infiltration, injury, and death of pulmonary cells, including epithelia, endothelia, and macrophages. Under hyperoxic conditions, ROS mediate both direct and indirect modulation of signaling molecules such as protein kinases, transcription factors, receptors, and pro- and anti-apoptotic factors. The focus of this review is to elaborate on hyperoxia-activated key sensing molecules and current understanding of their signaling mechanisms in HALI. A better understanding of the signaling pathways leading to HALI may provide valuable insights on its pathogenesis and may help in designing more effective therapeutic approaches.
Collapse
Affiliation(s)
- Ashwini Gore
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Allied Health Professions, Queens, NY, USA
| | | | | | | | | |
Collapse
|
41
|
Melki MT, Saïdi H, Dufour A, Olivo-Marin JC, Gougeon ML. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1. PLoS Pathog 2010; 6:e1000862. [PMID: 20419158 PMCID: PMC2855334 DOI: 10.1371/journal.ppat.1000862] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 03/17/2010] [Indexed: 11/18/2022] Open
Abstract
Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them (“editing process”) at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DCHIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DCHIV. The escape of DCHIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DCHIV cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DCHIV. Finally, we demonstrate that restoration of DCHIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DCHIV survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs. Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Human Immunodeficiency Virus-1 (HIV-1) has evolved ways to exploit DCs, thereby facilitating viral dissemination and allowing evasion of antiviral immunity. In particular, infected DCs may function as cellular reservoirs for HIV-1, thus contributing to viral persistence in lymphoid tissues. The mechanisms involved in the constitution of HIV reservoirs in DCs are poorly understood. In this study, we reveal that DCs infected with HIV-1 (DCHIV) become resistant to killing by natural killer (NK) cells, early effectors of innate immunity involved in the destruction of virus infected cells or cancer cells. This protection of DCHIV from NK cytotoxicity is induced through a cross-talk between NK cells and DCHIV, which induces the upregulation in DCHIV of two inhibitors of cell death, i.e. cellular-Flice like inhibitory protein (c-FLIP) and cellular inhibitor of apoptosis 2 (c-IAP2). The molecule responsible for the induction of these inhibitors is High-mobility group box 1 (HMGB1), an alarmin involved in the functional maturation of DCs. Blocking HMGB1 restores DCHIV susceptibility to NK cell killing, arguing for a key role of HMGB1 in the persistence of DCHIV. These findings provide evidence of the crucial role of NK-DC cross-talk in promoting viral persistence, and they identify potential therapeutic targets to eliminate infected DCs.
Collapse
Affiliation(s)
- Marie-Thérèse Melki
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Paris, France
| | - Héla Saïdi
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Paris, France
| | - Alexandre Dufour
- Institut Pasteur, Quantitative Image Analysis Unit, CNRS URA 2582, Paris, France
| | | | - Marie-Lise Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Paris, France
- * E-mail:
| |
Collapse
|
42
|
Downregulation of Epidermal Growth Factor Receptor Expression Contributes to alpha-TEA's Proapoptotic Effects in Human Ovarian Cancer Cell Lines. JOURNAL OF ONCOLOGY 2010; 2010:824571. [PMID: 20224651 PMCID: PMC2833311 DOI: 10.1155/2010/824571] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 12/03/2009] [Indexed: 12/12/2022]
Abstract
RRR-α-tocopherol derivative α-TEA (RRR-α-tocopherol ether-linked acetic acid analog) has been shown to be a potent antitumor agent both in vivo and in vitro. In this study, we investigated the effects of α-TEA on the expression of epidermal growth factor receptor (EGFR) family members, ErbB1, 2 and 3, and the role of ErbB 2 and 3 in α-TEA-induced apoptosis and suppression of Akt, FLIP and survivin in the cisplatin-sensitive (A2780S) and -resistant (A2780/CP70R) human ovarian cancer cell lines. Data show that α-TEA's ability to induced apoptosis was associated with reduced expression of ErbB1 (cisplatin-resistant cells), 2 and 3 (both cell types) and reduced levels of the phosphorylated (active) form of Akt; as well as, reduced levels of FLIP and survivin proteins in both cell types. Ectopic overexpression and siRNA knockdown studies showed that ErbB2, ErbB3, Akt, FLIP and survivin are involved in α-TEA-induce apoptosis and that α-TEA downregulates FLIP and survivin via suppression of pAkt, which is mediated by ErbB2 and ErB3. Thus, α-TEA is a potent pro-apoptotic agent for both cisplatin-sensitive and -resistant ovarian cancer cell lines in cell culture and it produces cell death, at least in part, by downregulation of members of the EGFR family.
Collapse
|
43
|
OBARA H, HARASAWA R. Nitric Oxide Causes Anoikis through Attenuation of E-Cadherin and Activation of Caspase-3 in Human Gastric Carcinoma AZ-521 Cells Infected with Mycoplasma hyorhinis. J Vet Med Sci 2010; 72:869-74. [DOI: 10.1292/jvms.09-0573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hisato OBARA
- Department of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Agriculture, Iwate University
- Will Animal Hospital
- Department of Applied Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University
| | - Ryô HARASAWA
- Department of Veterinary Microbiology, School of Veterinary Medicine, Faculty of Agriculture, Iwate University
- Department of Applied Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University
| |
Collapse
|
44
|
Tao J, Dong J, Li Y, Liu YQ, Yang J, Wu Y, Li L, Shen GX, Tan ZJ, Tu YT. Up-regulation of cellular FLICE-inhibitory protein in peripheral blood B lymphocytes in patients with systemic lupus erythematosus is associated with clinical characteristics. J Eur Acad Dermatol Venereol 2009; 23:433-7. [PMID: 19335730 DOI: 10.1111/j.1468-3083.2009.03095.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease which is involved in T- and B-lymphocyte-mediated autoimmunity. Apoptosis contributes to the maintenance of lymphocytes homeostasis and the deletion of autoreactive cells in SLE. Although there is evidence that cellular FLICE-inhibitory protein (c-FLIP), an antiapoptosis protein, is increased in human lupus T cells to keep them from apoptosis, but the expression of apoptosis-regulatory protein c-FLIP in SLE B lymphocytes remains unknown. AIMS To study the expression of c-FLIP in peripheral blood B lymphocytes in SLE patients and to investigate the relationship among the expression of c-FLIP in peripheral blood B lymphocytes in SLE patients, clinical manifestation and the levels of interleukin-4 (IL-4) and IL-10. METHODS In this study, we detected the expression of c-FLIP in peripheral blood B lymphocytes in SLE patients by flow cytometry and the levels of IL-4 and IL-10 in SLE serum samples by enzyme-linked immunosorbent assay and analysed their relationship with clinical characteristics. RESULTS We observed a significantly higher percentage of c-FLIP in peripheral B cells in SLE patients with active disease when compared to inactive ones and healthy controls. And the expression of c-FLIP in lupus peripheral B cells showed positive correlations with SLEDAI, erythrocyte sedimentation rate, C-reactive protein, antinucleosome antibody titre, IL-4, and IL-10, and negative correlation with white blood cell count. Patients with lupus nephritis had higher levels of c-FLIP in peripheral B cells than patients without lupus nephritis. CONCLUSION Our data show that overexpression of c-FLIP is relevant to the activity and severity of SLE. Its overexpression might play a role in preventing B cell from apoptosis in SLE. The cause of c-FLIP overexpression may be due to the increase of IL-4 and IL-10 levels in SLE patients.
Collapse
Affiliation(s)
- J Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Activation-induced cell death (AICD) plays an essential role in the contraction of activated T cells after eradication of pathogen. Fas (APO-1/CD95) is one of the key cell surface proteins that mediate AICD in CD4(+) and CD8(+) T cells. Despite its prime importance in cell death, regulation of Fas expression in T cells is poorly understood. Here we show that Cyclon, a newly identified cytokine-inducible protein, is induced in T cells on T-cell receptor ligation and important for immune homeostasis. Transgenic expression of Cyclon ameliorated autoimmune phenotype in mice lacking subunits of IL-2R. Transgenic expression of Cyclon markedly enhanced AICD through increased expression of Fas whose expression is essential for Cyclon action. Finally, we demonstrated that activated but not resting CD4(+) T cells with targeted deletion of a Cyclon allele show reduced AICD and expression of Fas, indicating a critical role of Cyclon in Fas expression in activated T cells. We think that our data provide insight into expression regulation of Fas in T cells.
Collapse
|
46
|
A single nucleotide polymorphism determines protein isoform production of the human c-FLIP protein. Blood 2009; 114:572-9. [PMID: 19439735 DOI: 10.1182/blood-2009-02-204230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cellular FLICE-inhibitory protein (c-FLIP) is a modulator of death receptor-mediated apoptosis and plays a major role in T- and B-cell homeostasis. Three different isoforms have been described on the protein level, including the long form c-FLIP(L) as well as 2 short forms, c-FLIP(S) and the recently identified c-FLIP(R). The mechanisms controlling c-FLIP isoform production are largely unknown. Here, we identified by sequence comparison in several mammals that c-FLIP(R) and not the widely studied c-FLIP(S) is the evolutionary ancestral short c-FLIP protein. Unexpectedly, the decision for production of either c-FLIP(S) or c-FLIP(R) in humans is defined by a single nucleotide polymorphism in a 3' splice site of the c-FLIP gene (rs10190751A/G). Whereas an intact splice site directs production of c-FLIP(S), the splice-dead variant causes production of c-FLIP(R). Interestingly, due to differences in protein translation rates, higher amounts of c-FLIP(S) protein compared with c-FLIP(R) are produced. Investigation of diverse human cell lines points to an increased frequency of c-FLIP(R) in transformed B-cell lines. A comparison of 183 patients with follicular lymphoma and 233 population controls revealed an increased lymphoma risk associated with the rs10190751 A genotype causing c-FLIP(R) expression.
Collapse
|
47
|
Inhibition of methionine adenosyltransferase II induces FasL expression, Fas-DISC formation and caspase-8-dependent apoptotic death in T leukemic cells. Cell Res 2009; 19:358-69. [PMID: 19048023 DOI: 10.1038/cr.2008.314] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Methionine adenosyltransferase II (MAT II) is a key enzyme in cellular metabolism and catalyzes the formation of S-adenosylmethionine (SAMe) from L-methionine and ATP. Normal resting T lymphocytes have minimal MAT II activity, whereas activated proliferating T lymphocytes and transformed T leukemic cells show significantly enhanced MAT II activity. This work was carried out to examine the role of MAT II activity and SAMe biosynthesis in the survival of leukemic T cells. Inhibition of MAT II and the resultant decrease in SAMe levels enhanced expression of FasL mRNA and protein, and induced DISC (Death Inducing Signaling Complex) formation with FADD (Fas-associated Death Domain) and procaspase-8 recruitment, as well as concomitant increase in caspase-8 activation and decrease in c-FLIP(s) levels. Fas-initiated signaling induced by MAT II inhibition was observed to link to the mitochondrial pathway via Bid cleavage and to ultimately lead to increased caspase-3 activation and DNA fragmentation in these cells. Furthermore, blocking MAT 2A mRNA expression, which encodes the catalytic subunits of MAT II, using a small-interfering RNA approach enhanced FasL expression and cell death, validating the essential nature of MAT II activity in the survival of T leukemic cells.
Collapse
|
48
|
Cha SI, Groshong SD, Frankel SK, Edelman BL, Cosgrove GP, Terry-Powers JL, Remigio LK, Curran-Everett D, Brown KK, Cool CD, Riches DWH. Compartmentalized expression of c-FLIP in lung tissues of patients with idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2009; 42:140-8. [PMID: 19372246 DOI: 10.1165/rcmb.2008-0419oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Increased apoptosis of alveolar epithelial cells and impaired apoptosis of myofibroblasts have been linked to the pathogenesis of idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP). Fas, a death receptor of the TNF-receptor superfamily, has been implicated in apoptosis of both cell types, though the mechanisms are poorly understood. The goals of this study were: (1) to examine the localization of Fas-associated death-domain-like IL-1beta-converting enzyme inhibitory protein (c-FLIP), an NF-kappaB-dependent regulator of Fas-signaling, in lung tissues from IPF/UIP patients and control subjects; and (2) to compare c-FLIP expression with epithelial cell and myofibroblast apoptosis, proliferation, and NF-kappaB activation. c-FLIP expression was restricted to airway epithelial cells in control lung tissues. In contrast, in patients with IPF/UIP, c-FLIP was also expressed by alveolar epithelial cells in areas of injury and fibrosis, but was absent from myofibroblasts in fibroblastic foci and from alveolar epithelial cells in uninvolved areas of lung tissue. Quantification of apoptosis and proliferation revealed an absence of apoptotic or proliferating cells in fibroblastic foci and low levels of apoptosis and proliferation by alveolar epithelial cells. Quantification of NF-kappaB expression and nuclear translocation revealed strong staining and translocation in alveolar epithelial cells and weak staining and minimal nuclear translocation in myofibroblasts. These findings suggest that: (1) c-FLIP expression is induced in the abnormal alveolar epithelium of patients with IPF/UIP, (2) the resistance of myofibroblasts to apoptosis in patients with IPF/UIP occurs independently of c-FLIP expression, and (3) increased NF-kappaB activation and c-FLIP expression by the alveolar epithelium may be linked.
Collapse
Affiliation(s)
- Seung-Ick Cha
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang X, Zhao J, Tang S, Lee S, Glazer RI, Hewlett I. c-FLIPL regulates PKC via AP-2 to inhibit Bax-mediated apoptosis induced by HIV-1 gp120 in Jurkat cells. Mol Cell Biochem 2009; 330:23-9. [PMID: 19363595 DOI: 10.1007/s11010-009-0096-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 03/30/2009] [Indexed: 01/10/2023]
Abstract
c-FLIPL, an inhibitor of caspase 8, is known to inhibit the Fas/caspase 8 apoptotic pathway; however, its involvement of Bax/mitochondrial apoptosis is not well understood. Using human cells, Jurkat cell line, induced with HIV-1 gp120, we studied the effects of c-FLIPL on Bax/mitochondrial apoptosis. We found that the induction of apoptosis by HIV-1 envelope protein, gp120, involved the activation of both Bax-dependent and death receptor-mediated pathways, and HIV-1 infection deceased c-FLIPL expression. Interestingly, c-FLIPL expression downregulated protein kinase C (PKC) expression at the transcript level involving activated protein-2 (AP-2). c-FLIPL expression reduced AP-2 protein levels required to promote PKC protein expression and PKC-associated inactive form of Bax, and inhibited Bax activation, suggesting that c-FLIPL inhibits Bax activation via modulating PKC expression at the transcriptional level involving AP-2 during gp120 treatment. Collectively, these findings further corroborate the concept that gp120 plays an important role, via involvement of molecules such as c-FLIPL, in apoptotic cell death due to HIV-1 infection.
Collapse
Affiliation(s)
- Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 29B, Rm 4NN16, 8800 Rockville Pike, Bethesda, MD, 20892, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Shi B, Tran T, Sobkoviak R, Pope RM. Activation-induced degradation of FLIP(L) is mediated via the phosphatidylinositol 3-kinase/Akt signaling pathway in macrophages. J Biol Chem 2009; 284:14513-23. [PMID: 19339247 DOI: 10.1074/jbc.m807918200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cellular FLIP (Flice-like inhibitory protein) is critical for the protection against death receptor-mediated cell apoptosis. In macrophages, FLIP long (FLIP(L)) and FLIP short (FLIP(S)) mRNA was induced by tumor necrosis factor (TNF) alpha, mediated through NF-kappaB. However, we observed TNFalpha reduced the protein level of FLIP(L), but not FLIP(S), at 1 and 2 h. Similar results were observed with lipopolysaccharide. The reduction of FLIP(L) by TNFalpha was not mediated by caspase 8, or through JNK or Itch, but was suppressed by inhibition of the phosphatidylinositol 3-kinase/Akt pathway employing chemical inhibitors, a dominant negative Akt-1, or Akt-1 small interfering RNA. The reduction of FLIP(L) resulted in the short term induction of caspase 8-like activity, which augmented NF-kappaB activation. A co-immunoprecipitation assay demonstrated that Akt-1 physically interacts with FLIP(L). Moreover, TNFalpha enhanced FLIP(L) serine phosphorylation, which was increased by activated Akt-1. Serine 273, a putative Akt-1 phosphorylation site in FLIP(L), was critical for the activation-induced reduction of FLIP(L). Thus, these observations document a novel mechanism where by TNFalpha facilitates the reduction of FLIP(L) protein, which is dependent on the phosphatidylinositol 3-kinase/Akt signaling.
Collapse
Affiliation(s)
- Bo Shi
- Northwestern University Feinberg School of Medicine, Division of Rheumatology, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|