1
|
Rajagopalan K, Selvan Christyraj JD, Chelladurai KS, Kalimuthu K, Das P, Chandrasekar M, Balamurugan N, Murugan K. Understanding the molecular mechanism of regeneration through apoptosis-induced compensatory proliferation studies - updates and future aspects. Apoptosis 2024:10.1007/s10495-024-01958-1. [PMID: 38581530 DOI: 10.1007/s10495-024-01958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
AICP is a crucial process that maintaining tissue homeostasis and regeneration. In the past, cell death was perceived merely as a means to discard cells without functional consequences. However, during regeneration, effector caspases orchestrate apoptosis, releasing signals that activate stem cells, thereby compensating for tissue loss across various animal models. Despite significant progress, the activation of Wnt3a by caspase-3 remains a focal point of research gaps in AICP mechanisms, spanning from lower to higher regenerative animals. This inquiry into the molecular intricacies of caspase-3-induced Wnt3a activation contributes to a deeper understanding of the links between regeneration and cancer mechanisms. Our report provides current updates on AICP pathways, delineating research gaps and highlighting the potential for future investigations aimed at enhancing our comprehension of this intricate process.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India.
| | - Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | | | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Karthikeyan Murugan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, India
| |
Collapse
|
2
|
Galasso A, Xu DC, Hill C, Iakovleva D, Stefana MI, Baena‐Lopez LA. Non-apoptotic caspase activation ensures the homeostasis of ovarian somatic stem cells. EMBO Rep 2023; 24:e51716. [PMID: 37039000 PMCID: PMC10240206 DOI: 10.15252/embr.202051716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Current evidence has associated caspase activation with the regulation of basic cellular functions without causing apoptosis. Malfunction of non-apoptotic caspase activities may contribute to specific neurological disorders, metabolic diseases, autoimmune conditions and cancers. However, our understanding of non-apoptotic caspase functions remains limited. Here, we show that non-apoptotic caspase activation prevents the intracellular accumulation of the Patched receptor in autophagosomes and the subsequent Patched-dependent induction of autophagy in Drosophila follicular stem cells. These events ultimately sustain Hedgehog signalling and the physiological properties of ovarian somatic stem cells and their progeny under moderate thermal stress. Importantly, our key findings are partially conserved in ovarian somatic cells of human origin. These observations attribute to caspases a pro-survival role under certain cellular conditions.
Collapse
Affiliation(s)
- Alessia Galasso
- Faculty of Medicine CentreImperial College London, South Kensington CampusLondonUK
| | - Derek Cui Xu
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Claire Hill
- School of Medicine, Dentistry and Biomedical SciencesQueen's University Belfast MedicineBelfastUK
| | - Daria Iakovleva
- Center for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | | | | |
Collapse
|
3
|
Liu Z, Pan X, Guo J, Li L, Tang Y, Wu G, Li M, Wang H. Long-term sevoflurane exposure resulted in temporary rather than lasting cognitive impairment in Drosophila. Behav Brain Res 2023; 442:114327. [PMID: 36738841 DOI: 10.1016/j.bbr.2023.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Sevoflurane is the primary inhaled anesthetic used in pediatric surgery. It has been the focus of research since animal models studies found that it was neurotoxic to the developing brain two decades ago. However, whether pediatric general anesthesia can lead to permanent cognitive deficits remained a subject of heated debate. Therefore, our study aims to determine the lifetime neurotoxicity of early long-time sevoflurane exposure using a short-life-cycle animal model, Drosophila melanogaster. To investigate this question, we measured the lifetime changes of two-day-old flies' learning and memory abilities after anesthesia with 3 % sevoflurane for 6 h by the T-maze memory assay. We evaluated the apoptosis, levels of ATP and ROS, and related genes in the fly head. Our results suggest that 6 h 3 % sevoflurane exposure at a young age can only induce transient neuroapoptosis and cognitive deficits around the first week after anesthesia. But this brain damage recedes with time and vanishes in late life. We also found that the mRNA level of caspases and Bcl-2, ROS level, and ATP level increased during this temporary neuroapoptosis process. And mRNA levels of antioxidants, such as SOD2 and CAT, increased and decreased simultaneously with the rise and fall of the ROS level, indicating a possible contribution to the recovery from the sevoflurane impairment. In conclusion, our results suggest that one early prolonged sevoflurane-based general anesthesia can induce neuroapoptosis and learning and memory deficit transiently but not permanently in Drosophila.
Collapse
Affiliation(s)
- Ziming Liu
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Xuanyi Pan
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Jiguang Guo
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China
| | - Liping Li
- Institute of Materia Medical, Hebei Centers for Disease Control and Prevention, Shijiazhuang 050021, Hebei, China
| | - Yuxin Tang
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China
| | - Guangyi Wu
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Ming Li
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China.
| | - Hongjie Wang
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China; Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China.
| |
Collapse
|
4
|
Ascoët S, Touchard A, Téné N, Lefranc B, Leprince J, Paquet F, Jouvensal L, Barassé V, Treilhou M, Billet A, Bonnafé E. The mechanism underlying toxicity of a venom peptide against insects reveals how ants are master at disrupting membranes. iScience 2023; 26:106157. [PMID: 36879819 PMCID: PMC9985030 DOI: 10.1016/j.isci.2023.106157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Hymenopterans represent one of the most abundant groups of venomous organisms but remain little explored due to the difficult access to their venom. The development of proteo-transcriptomic allowed us to explore diversity of their toxins offering interesting perspectives to identify new biological active peptides. This study focuses on U9 function, a linear, amphiphilic and polycationic peptide isolated from ant Tetramorium bicarinatum venom. It shares physicochemical properties with M-Tb1a, exhibiting cytotoxic effects through membrane permeabilization. In the present study, we conducted a comparative functional investigation of U9 and M-Tb1a and explored the mechanisms underlying their cytotoxicity against insect cells. After showing that both peptides induced the formation of pores in cell membrane, we demonstrated that U9 induced mitochondrial damage and, at high concentrations, localized into cells and induced caspase activation. This functional investigation highlighted an original mechanism of U9 questioning on potential valorization and endogen activity in T. bicarinatum venom.
Collapse
Affiliation(s)
- Steven Ascoët
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP316 97310 Kourou, France
| | - Nathan Téné
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Benjamin Lefranc
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Laurence Jouvensal
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Valentine Barassé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Michel Treilhou
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Arnaud Billet
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Elsa Bonnafé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| |
Collapse
|
5
|
Kietz C, Meinander A. Drosophila caspases as guardians of host-microbe interactions. Cell Death Differ 2023; 30:227-236. [PMID: 35810247 PMCID: PMC9950452 DOI: 10.1038/s41418-022-01038-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
An intact cell death machinery is not only crucial for successful embryonic development and tissue homeostasis, but participates also in the defence against pathogens and contributes to a balanced immune response. Centrally involved in the regulation of both cell death and inflammatory immune responses is the evolutionarily conserved family of cysteine proteases named caspases. The Drosophila melanogaster genome encodes for seven caspases, several of which display dual functions, participating in apoptotic signalling and beyond. Among the Drosophila caspases, the caspase-8 homologue Dredd has a well-characterised role in inflammatory signalling activated by bacterial infections, and functions as a driver of NF-κB-mediated immune responses. Regarding the other Drosophila caspases, studies focusing on tissue-specific immune signalling and host-microbe interactions have recently revealed immunoregulatory functions of the initiator caspase Dronc and the effector caspase Drice. The aim of this review is to give an overview of the signalling cascades involved in the Drosophila humoral innate immune response against pathogens and of their caspase-mediated regulation. Furthermore, the apoptotic role of caspases during antibacterial and antiviral immune activation will be discussed.
Collapse
Affiliation(s)
- Christa Kietz
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland.
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
6
|
Serizier SB, Peterson JS, McCall K. Non-autonomous cell death induced by the Draper phagocytosis receptor requires signaling through the JNK and SRC pathways. J Cell Sci 2022; 135:jcs250134. [PMID: 36177600 PMCID: PMC10658789 DOI: 10.1242/jcs.250134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
The last step of cell death is cell clearance, a process critical for tissue homeostasis. For efficient cell clearance to occur, phagocytes and dead cells need to reciprocally signal to each other. One important phenomenon that is under-investigated, however, is that phagocytes not only engulf corpses but contribute to cell death progression. The aims of this study were to determine how the phagocytic receptor Draper non-autonomously induces cell death, using the Drosophila ovary as a model system. We found that Draper, expressed in epithelial follicle cells, requires its intracellular signaling domain to kill the adjacent nurse cell population. Kinases Src42A, Shark and JNK (Bsk) were required for Draper-induced nurse cell death. Signs of nurse cell death occurred prior to apparent engulfment and required the caspase Dcp-1, indicating that it uses a similar apoptotic pathway to starvation-induced cell death. These findings indicate that active signaling by Draper is required to kill nurse cells via the caspase Dcp-1, providing novel insights into mechanisms of phagoptosis driven by non-professional phagocytes.
Collapse
Affiliation(s)
- Sandy B. Serizier
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jeanne S. Peterson
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
7
|
Kietz C, Mohan AK, Pollari V, Tuominen IE, Ribeiro PS, Meier P, Meinander A. Drice restrains Diap2-mediated inflammatory signalling and intestinal inflammation. Cell Death Differ 2022; 29:28-39. [PMID: 34262145 PMCID: PMC8738736 DOI: 10.1038/s41418-021-00832-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
The Drosophila IAP protein, Diap2, is a key mediator of NF-κB signalling and innate immune responses. Diap2 is required for both local immune activation, taking place in the epithelial cells of the gut and trachea, and for mounting systemic immune responses in the cells of the fat body. We have found that transgenic expression of Diap2 leads to a spontaneous induction of NF-κB target genes, inducing chronic inflammation in the Drosophila midgut, but not in the fat body. Drice is a Drosophila effector caspase known to interact and form a stable complex with Diap2. We have found that this complex formation induces its subsequent degradation, thereby regulating the amount of Diap2 driving NF-κB signalling in the intestine. Concordantly, loss of Drice activity leads to accumulation of Diap2 and to chronic intestinal inflammation. Interestingly, Drice does not interfere with pathogen-induced signalling, suggesting that it protects from immune responses induced by resident microbes. Accordingly, no inflammation was detected in transgenic Diap2 flies and Drice-mutant flies reared in axenic conditions. Hence, we show that Drice, by restraining Diap2, halts unwanted inflammatory signalling in the intestine.
Collapse
Affiliation(s)
- Christa Kietz
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Aravind K Mohan
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Vilma Pollari
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Ida-Emma Tuominen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland.
| |
Collapse
|
8
|
Ojha S, Tapadia MG. Nonapoptotic role of caspase-3 in regulating Rho1GTPase-mediated morphogenesis of epithelial tubes of Drosophila renal system. Dev Dyn 2021; 251:777-794. [PMID: 34773432 DOI: 10.1002/dvdy.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cells trigger caspase-mediated apoptosis to eliminate themselves from the system when tissue needs to be sculptured, or they detect any abnormality within them, thus preventing irreparable damage to the host. However, nonapoptotic activities of caspases are also involved in many cellular functions. Interestingly, Drosophila Malpighian tubules (MTs) express apoptotic proteins, without succumbing to cell death. RESULTS We show apoptosis-independent role of executioner caspase-3, Drice, in MT morphogenesis. Drice is required for precise cytoskeleton organization and convergent extension, failing which morphology, size, cell number, and arrangement get affected. Furthermore, characteristic stellate cell shape transformation in MTs is also governed by Drice. Genetic interaction study shows that Drice mediates its action by regulating Rho1GTPase functionally, and localization of polarity protein Disc large. Subsequently, downregulation of Rho1GTPase in Drice mutants significantly rescues the cystic MTs phenotype. The study shows a mechanism by which Drice governs tubulogenesis via Rho1GTPase-mediated coordinated organization of actin cytoskeleton and membrane stabilization. CONCLUSION Collectively our findings suggest a nonapoptotic function of caspase-3 in fine-tuning of cellular rearrangement during tubule development, and these results will add to the growing understanding of diverse roles of caspases during its evolution in metazoans.
Collapse
Affiliation(s)
- Shainy Ojha
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Madhu G Tapadia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Kramer J, Neves J, Koniikusic M, Jasper H, Lamba DA. Dpp/TGFβ-superfamily play a dual conserved role in mediating the damage response in the retina. PLoS One 2021; 16:e0258872. [PMID: 34699550 PMCID: PMC8547621 DOI: 10.1371/journal.pone.0258872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal homeostasis relies on intricate coordination of cell death and survival in response to stress and damage. Signaling mechanisms that coordinate this process in the adult retina remain poorly understood. Here we identify Decapentaplegic (Dpp) signaling in Drosophila and its mammalian homologue Transforming Growth Factor-beta (TGFβ) superfamily, that includes TGFβ and Bone Morphogenetic Protein (BMP) signaling arms, as central mediators of retinal neuronal death and tissue survival following acute damage. Using a Drosophila model for UV-induced retinal damage, we show that Dpp released from immune cells promotes tissue loss after UV-induced retinal damage. Interestingly, we find a dynamic response of retinal cells to this signal: in an early phase, Dpp-mediated stimulation of Saxophone/Smox signaling promotes apoptosis, while at a later stage, stimulation of the Thickveins/Mad axis promotes tissue repair and survival. This dual role is conserved in the mammalian retina through the TGFβ/BMP signaling, as supplementation of BMP4 or inhibition of TGFβ using small molecules promotes retinal cell survival, while inhibition of BMP negatively affects cell survival after light-induced photoreceptor damage and NMDA induced inner retinal neuronal damage. Our data identify key evolutionarily conserved mechanisms by which retinal homeostasis is maintained.
Collapse
Affiliation(s)
- Joshua Kramer
- Department of Ophthalmology, University of California, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, United States of America
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Joana Neves
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Faculdade de Medicina, Instituto de Medicina Molecular (iMM), Universidade de Lisboa, Lisbon, Portugal
| | - Mia Koniikusic
- Buck Institute for Research on Aging, Novato, CA, United States of America
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, CA, United States of America
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States of America
| | - Deepak A. Lamba
- Department of Ophthalmology, University of California, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, United States of America
- Buck Institute for Research on Aging, Novato, CA, United States of America
| |
Collapse
|
10
|
Fraire-Zamora JJ, Tosi S, Solon J, Casanova J. Control of hormone-driven organ disassembly by ECM remodeling and Yorkie-dependent apoptosis. Curr Biol 2021; 31:5261-5273.e4. [PMID: 34666006 DOI: 10.1016/j.cub.2021.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023]
Abstract
Epithelia grow and shape into functional structures during organogenesis. Although most of the focus on organogenesis has been drawn to the building of biological structures, the disassembly of pre-existing structures is also an important event to reach a functional adult organ. Examples of disassembly processes include the regression of the Müllerian or Wolffian ducts during gonad development and mammary gland involution during the post-lactational period in adult females. To date, it is unclear how organ disassembly is controlled at the cellular level. Here, we follow the Drosophila larval trachea through metamorphosis and show that its disassembly is a hormone-driven and precisely orchestrated process. It occurs in two phases: first, remodeling of the apical extracellular matrix (aECM), mediated by matrix metalloproteases and independent of the actomyosin cytoskeleton, results in a progressive shortening of the entire trachea and a nuclear-to-cytoplasmic relocalization of the Hippo effector Yorkie (Yki). Second, a decreased transcription of the Yki target, Diap1, in the posterior metameres and the activation of caspases result in the apoptotic loss of the posterior half of the trachea while the anterior half escapes cell death. Thus, our work unravels a mechanism by which hormone-driven ECM remodeling controls sequential tissue shortening and apoptotic cell removal through the transcriptional activity of Yki, leading to organ disassembly during animal development.
Collapse
Affiliation(s)
- Juan J Fraire-Zamora
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain; Institut de Recerca Biomèdica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940 Leioa, Spain.
| | - Sébastien Tosi
- Institut de Recerca Biomèdica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jérôme Solon
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain; Institut de Recerca Biomèdica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Pizzo L, Lasser M, Yusuff T, Jensen M, Ingraham P, Huber E, Singh MD, Monahan C, Iyer J, Desai I, Karthikeyan S, Gould DJ, Yennawar S, Weiner AT, Pounraja VK, Krishnan A, Rolls MM, Lowery LA, Girirajan S. Functional assessment of the "two-hit" model for neurodevelopmental defects in Drosophila and X. laevis. PLoS Genet 2021; 17:e1009112. [PMID: 33819264 PMCID: PMC8049494 DOI: 10.1371/journal.pgen.1009112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/15/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
We previously identified a deletion on chromosome 16p12.1 that is mostly inherited and associated with multiple neurodevelopmental outcomes, where severely affected probands carried an excess of rare pathogenic variants compared to mildly affected carrier parents. We hypothesized that the 16p12.1 deletion sensitizes the genome for disease, while "second-hits" in the genetic background modulate the phenotypic trajectory. To test this model, we examined how neurodevelopmental defects conferred by knockdown of individual 16p12.1 homologs are modulated by simultaneous knockdown of homologs of "second-hit" genes in Drosophila melanogaster and Xenopus laevis. We observed that knockdown of 16p12.1 homologs affect multiple phenotypic domains, leading to delayed developmental timing, seizure susceptibility, brain alterations, abnormal dendrite and axonal morphology, and cellular proliferation defects. Compared to genes within the 16p11.2 deletion, which has higher de novo occurrence, 16p12.1 homologs were less likely to interact with each other in Drosophila models or a human brain-specific interaction network, suggesting that interactions with "second-hit" genes may confer higher impact towards neurodevelopmental phenotypes. Assessment of 212 pairwise interactions in Drosophila between 16p12.1 homologs and 76 homologs of patient-specific "second-hit" genes (such as ARID1B and CACNA1A), genes within neurodevelopmental pathways (such as PTEN and UBE3A), and transcriptomic targets (such as DSCAM and TRRAP) identified genetic interactions in 63% of the tested pairs. In 11 out of 15 families, patient-specific "second-hits" enhanced or suppressed the phenotypic effects of one or many 16p12.1 homologs in 32/96 pairwise combinations tested. In fact, homologs of SETD5 synergistically interacted with homologs of MOSMO in both Drosophila and X. laevis, leading to modified cellular and brain phenotypes, as well as axon outgrowth defects that were not observed with knockdown of either individual homolog. Our results suggest that several 16p12.1 genes sensitize the genome towards neurodevelopmental defects, and complex interactions with "second-hit" genes determine the ultimate phenotypic manifestation.
Collapse
Affiliation(s)
- Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | - Tanzeen Yusuff
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Phoebe Ingraham
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Mayanglambam Dhruba Singh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Connor Monahan
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | - Janani Iyer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Inshya Desai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Siddharth Karthikeyan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Dagny J. Gould
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Sneha Yennawar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Alexis T. Weiner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Vijay Kumar Pounraja
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Arjun Krishnan
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America
| | - Melissa M. Rolls
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Laura Anne Lowery
- Department of Medicine, Boston University Medical Center, Boston, MA, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
12
|
Fang Y, Zong Q, He Z, Liu C, Wang YF. Knockdown of RpL36 in testes impairs spermatogenesis in Drosophila melanogaster. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:417-430. [PMID: 33734578 DOI: 10.1002/jez.b.23040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 01/03/2023]
Abstract
Many ribosomal proteins (RPs) not only play essential roles in ribosome biogenesis, but also have "extraribosomal" functions in various cellular processes. RpL36 encodes ribosomal protein L36, a component of the 60S subunit of ribosomes in Drosophila melanogaster. We report here that RpL36 is required for spermatogenesis in D. melanogaster. After showing the evolutionary conservation of RpL36 sequences in animals, we revealed that the RpL36 expression level in fly testes was significantly higher than in ovaries. Knockdown RpL36 in fly testes resulted in a significantly decreased egg hatch rate when these males mated with wild-type females. Furthermore, 76.67% of the RpL36 knockdown fly testes were much smaller in comparison to controls. Immunofluorescence staining exhibited that in the RpL36 knockdown testis hub cell cluster was enlarged, while the number of germ cells, including germ stem cells, was reduced. Knockdown of RpL36 in fly testis caused much fewer or no mature sperms in seminal vesicles. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) signal was stronger in RpL36 knockdown fly testes than in the control testes, but the TUNEL-positive cells could not be stained by Vasa antibody, indicating that apoptotic cells are not germ cells. The percentage of pH3-positive cells among the Vasa-positive cells was significantly reduced. The expression of genes involved in cell death, cell cycle progression, and JAK/STAT signaling pathway was significantly changed by RpL36 knockdown in fly testes. These results suggest that RpL36 plays an important role in spermatogenesis, likely through JAK/STAT pathway, thus resulting in defects in cell-cycle progression and cell death in D. melanogaster testes.
Collapse
Affiliation(s)
- Yang Fang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Qiong Zong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Zhen He
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Chen Liu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
13
|
Lindblad JL, Tare M, Amcheslavsky A, Shields A, Bergmann A. Non-apoptotic enteroblast-specific role of the initiator caspase Dronc for development and homeostasis of the Drosophila intestine. Sci Rep 2021; 11:2645. [PMID: 33514791 PMCID: PMC7846589 DOI: 10.1038/s41598-021-81261-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
The initiator caspase Dronc is the only CARD-domain containing caspase in Drosophila and is essential for apoptosis. Here, we report that homozygous dronc mutant adult animals are short-lived due to the presence of a poorly developed, defective and leaky intestine. Interestingly, this mutant phenotype can be significantly rescued by enteroblast-specific expression of dronc+ in dronc mutant animals, suggesting that proper Dronc function specifically in enteroblasts, one of four cell types in the intestine, is critical for normal development of the intestine. Furthermore, enteroblast-specific knockdown of dronc in adult intestines triggers hyperplasia and differentiation defects. These enteroblast-specific functions of Dronc do not require the apoptotic pathway and thus occur in a non-apoptotic manner. In summary, we demonstrate that an apoptotic initiator caspase has a very critical non-apoptotic function for normal development and for the control of the cell lineage in the adult midgut and therefore for proper physiology and homeostasis.
Collapse
Affiliation(s)
- Jillian L Lindblad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani, Rajasthan, 333031, India
| | - Alla Amcheslavsky
- University of Massachusetts Medical School, MassBiologics, 460 Walk Hill Road, Boston, MA, USA
| | - Alicia Shields
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
14
|
Abstract
Cell death is an important facet of animal development. In some developing tissues, death is the ultimate fate of over 80% of generated cells. Although recent studies have delineated a bewildering number of cell death mechanisms, most have only been observed in pathological contexts, and only a small number drive normal development. This Primer outlines the important roles, different types and molecular players regulating developmental cell death, and discusses recent findings with which the field currently grapples. We also clarify terminology, to distinguish between developmental cell death mechanisms, for which there is evidence for evolutionary selection, and cell death that follows genetic, chemical or physical injury. Finally, we suggest how advances in understanding developmental cell death may provide insights into the molecular basis of developmental abnormalities and pathological cell death in disease.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, The University of Texas at Arlington, 655 Mitchell St., Arlington, TX 76019, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
15
|
Bolobolova EU, Dorogova NV, Fedorova SA. Major Scenarios of Genetically Regulated Cell Death during Oogenesis in Drosophilamelanogaster. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Xu T, Jiang X, Denton D, Kumar S. Ecdysone controlled cell and tissue deletion. Cell Death Differ 2020; 27:1-14. [PMID: 31745213 PMCID: PMC7205961 DOI: 10.1038/s41418-019-0456-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The removal of superfluous and unwanted cells is a critical part of animal development. In insects the steroid hormone ecdysone, the focus of this review, is an essential regulator of developmental transitions, including molting and metamorphosis. Like other steroid hormones, ecdysone works via nuclear hormone receptors to direct spatial and temporal regulation of gene transcription including genes required for cell death. During insect metamorphosis, pulses of ecdysone orchestrate the deletion of obsolete larval tissues, including the larval salivary glands and the midgut. In this review we discuss the molecular machinery and mechanisms of ecdysone-dependent cell and tissue removal, with a focus on studies in Drosophila and Lepidopteran insects.
Collapse
Affiliation(s)
- Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
17
|
No Evidence of Apoptotic Response of the Potato Psyllid Bactericera cockerelli to " Candidatus Liberibacter solanacearum" at the Gut Interface. Infect Immun 2019; 88:IAI.00242-19. [PMID: 31611278 DOI: 10.1128/iai.00242-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
"Candidatus Liberibacter solanacearum" is a pathogen transmitted by the potato psyllid Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) in a persistent manner. In this study, we investigated the molecular interaction between "Ca. Liberibacter solanacearum" and the potato psyllid at the gut interface. Specifically, we focused on the apoptotic response of potato psyllids to the infection by two "Ca. Liberibacter solanacearum" haplotypes, LsoA and LsoB. To this end, we first quantified and localized "Ca. Liberibacter solanacearum" in the gut of adult psyllids. We then evaluated the existence of an apoptotic response in the insect gut using microscopy analyses to visualize the nuclei and the actin cytoskeleton of the gut cells and DNA fragmentation analyses by agarose gel electrophoresis. We also performed annexin V cell death assays to detect apoptosis. Finally, we annotated apoptosis-related genes from the potato psyllid transcriptome and evaluated their expression in response to "Ca. Liberibacter solanacearum" infection. The results showed no cellular markers of apoptosis despite the large amount of "Ca. Liberibacter solanacearum" present in the psyllid gut. In addition, only three genes potentially involved in apoptosis were regulated in the psyllid gut in response to "Ca. Liberibacter solanacearum": the apoptosis-inducing factor AIF3 was downregulated in LsoA-infected psyllids, while the inhibitor of apoptosis IAPP5 was downregulated and IAP6 was upregulated in LsoB-infected psyllids. Overall, no evidence of apoptosis was observed in the gut of potato psyllid adults in response to either "Ca. Liberibacter solanacearum" haplotype. This study represents a first step toward understanding the interactions between "Ca. Liberibacter solanacearum" and the potato psyllid, which is crucial to developing approaches to disrupt their transmission.
Collapse
|
18
|
Li M, Sun S, Priest J, Bi X, Fan Y. Characterization of TNF-induced cell death in Drosophila reveals caspase- and JNK-dependent necrosis and its role in tumor suppression. Cell Death Dis 2019; 10:613. [PMID: 31409797 PMCID: PMC6692325 DOI: 10.1038/s41419-019-1862-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022]
Abstract
Tumor-necrosis factor (TNF) and its superfamily members are pleiotropic cytokines. Activation of TNF can lead to distinct cellular outcomes including inflammation, cell survival, and different forms of cell death, such as apoptosis and necrosis in a context-dependent manner. However, our understanding of what determines the versatile functions of TNF is far from complete. Here, we examined the molecular mechanisms that distinguish the forms of cell death induced by Eiger (Egr), the sole homolog of TNF in Drosophila. We show that expression of Egr in the developing Drosophila eye simultaneously induces apoptosis and apoptosis-independent developmental defects indicated by cellular disorganization, both of which rely on the c-Jun N-terminal kinase (JNK) signaling activity. Intriguingly, when effector caspases DrICE and Dcp-1 are defective or inhibited, expression of Egr triggers necrosis which is characterized by loss of cell membrane integrity, translucent cytoplasm, and aggregation of cellular organelles. Moreover, such Egr-induced necrosis depends on the catalytic activity of the initiator caspase Dronc and the input from JNK signaling but is independent of their roles in apoptosis. Further mosaic analysis with mutants of scribble (scrib), an evolutionarily conserved tumor suppressor gene regulating cell polarity, suggests that Egr/JNK-mediated apoptosis and necrosis establish a two-layered defense system to inhibit the oncogenic growth of scrib mutant cells. Together, we have identified caspase- and JNK-dependent mechanisms underlying Egr-induced apoptosis versus necrosis and their fail-safe roles in tumor suppression in an intact organism in vivo.
Collapse
Affiliation(s)
- Mingli Li
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Shiyao Sun
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Jessica Priest
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Xiaolin Bi
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
19
|
The Caspase-3 homolog DrICE regulates endocytic trafficking during Drosophila tracheal morphogenesis. Nat Commun 2019; 10:1031. [PMID: 30833576 PMCID: PMC6399233 DOI: 10.1038/s41467-019-09009-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
Although well known for its role in apoptosis, the executioner caspase DrICE has a non-apoptotic function that is required for elongation of the epithelial tubes of the Drosophila tracheal system. Here, we show that DrICE acts downstream of the Hippo Network to regulate endocytic trafficking of at least four cell polarity, cell junction and apical extracellular matrix proteins involved in tracheal tube size control: Crumbs, Uninflatable, Kune-Kune and Serpentine. We further show that tracheal cells are competent to undergo apoptosis, even though developmentally-regulated DrICE function rarely kills tracheal cells. Our results reveal a developmental role for caspases, a pool of DrICE that co-localizes with Clathrin, and a mechanism by which the Hippo Network controls endocytic trafficking. Given reports of in vitro regulation of endocytosis by mammalian caspases during apoptosis, we propose that caspase-mediated regulation of endocytic trafficking is an evolutionarily conserved function of caspases that can be deployed during morphogenesis. Caspases are well-known drivers of apoptosis, although recent studies suggest potential non-apoptotic functions. Here, McSharry and Beitel show that the Drosophila executioner caspase DrICE regulates endocytic trafficking of key proteins downstream of Hippo during tracheal morphogenesis.
Collapse
|
20
|
Wang XR, Wang C, Wang XW, Qian LX, Chi Y, Liu SS, Liu YQ, Wang XW. The functions of caspase in whitefly Bemisia tabaci apoptosis in response to ultraviolet irradiation. INSECT MOLECULAR BIOLOGY 2018; 27:739-751. [PMID: 29892978 DOI: 10.1111/imb.12515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Whiteflies (Bemisia tabaci) are phloem feeders, and some invasive species are composed of cryptic species complexes that cause extensive crop damage, particularly via the direct transmission of plant viruses. Apoptosis is a type of programmed cell death essential for organismal development and tissue homeostasis. The caspases belong to a family of cysteine proteases that play a central role in the initiation of apoptosis in many organisms. Here, we employed a comprehensive genomics approach to identity caspases in B. tabaci Middle East Asia Minor 1 (MEAM1), an invasive whitefly that carries a cryptic species complex that is devastating to crops. Four caspase genes were identified, and their motif compositions were predicted. Structures were relatively conserved in both putative effector and initiator caspases. Expression patterns of caspase genes differed across insect developmental stages. Three caspase genes were induced immediately after ultraviolet (UV) treatment. Expression levels of Bt-caspase-1 and Bt-caspase-3b increased in the midgut and salivary glands during apoptosis induced by UV treatments, whereas silencing of both genes reduced UV-triggered apoptosis. Our study demonstrates that Bt-caspase-1 and Bt-caspase-3b, respectively, act as putative initiator and effector apoptotic caspases in the MEAM1 whitefly.
Collapse
Affiliation(s)
- X-R Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - C Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - X-W Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - L-X Qian
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - S-S Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y-Q Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - X-W Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Proapoptotic function of deubiquitinase DUSP31 in Drosophila. Oncotarget 2017; 8:70452-70462. [PMID: 29050293 PMCID: PMC5642568 DOI: 10.18632/oncotarget.19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Drosophila have been used to identify new components in apoptosis regulation. The Drosophila protein Dark forms an octameric apoptosome complex that induces the initiator caspase Dronc to trigger the caspase cell death pathway and, therefore, plays an important role in controlling apoptosis. Caspases and Dark are constantly expressed in cells, but their activity is blocked by DIAP1 E3 ligase-mediated ubiquitination and subsequent inactivation or proteasomal degradation. One of the regulatory mechanisms that stabilize proapoptotic factors is the removal of ubiquitin chains by deubiquitinases. In this study performed a modified genetic screen for deubiquitinases (dsRNA lines) to identify those involved in stabilizing proapoptotic components. Loss-of-function alleles of deubiquitinase DUSP31 were identified as suppressors of the Dronc overexpression phenotype. DUSP31 deficiency also suppresses apoptosis induced by the RHG protein, Grim. Genetic analysis revealed for the first time that DUSP31 deficiency sufficiently suppresses the Dark phenotype, indicating its involvement in the control of Dark/Dronc apoptosome function in invertebrate apoptosis.
Collapse
|
22
|
Kawamoto Y, Nakajima YI, Kuranaga E. Apoptosis in Cellular Society: Communication between Apoptotic Cells and Their Neighbors. Int J Mol Sci 2016; 17:ijms17122144. [PMID: 27999411 PMCID: PMC5187944 DOI: 10.3390/ijms17122144] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
Apoptosis is one of the cell-intrinsic suicide programs and is an essential cellular behavior for animal development and homeostasis. Traditionally, apoptosis has been regarded as a cell-autonomous phenomenon. However, recent in vivo genetic studies have revealed that apoptotic cells actively influence the behaviors of surrounding cells, including engulfment, proliferation, and production of mechanical forces. Such interactions can be bidirectional, and apoptosis is non-autonomously induced in a cellular community. Of note, it is becoming evident that active communication between apoptotic cells and living cells contributes to physiological processes during tissue remodeling, regeneration, and morphogenesis. In this review, we focus on the mutual interactions between apoptotic cells and their neighbors in cellular society and discuss issues relevant to future studies of apoptosis.
Collapse
Affiliation(s)
- Yuhei Kawamoto
- Laboratory for Histogenetic Dynamics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| | - Yu-Ichiro Nakajima
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
23
|
Chen L, Nye DM, Stone MC, Weiner AT, Gheres KW, Xiong X, Collins CA, Rolls MM. Mitochondria and Caspases Tune Nmnat-Mediated Stabilization to Promote Axon Regeneration. PLoS Genet 2016; 12:e1006503. [PMID: 27923046 PMCID: PMC5173288 DOI: 10.1371/journal.pgen.1006503] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 12/20/2016] [Accepted: 11/22/2016] [Indexed: 11/24/2022] Open
Abstract
Axon injury can lead to several cell survival responses including increased stability and axon regeneration. Using an accessible Drosophila model system, we investigated the regulation of injury responses and their relationship. Axon injury stabilizes the rest of the cell, including the entire dendrite arbor. After axon injury we found mitochondrial fission in dendrites was upregulated, and that reducing fission increased stabilization or neuroprotection (NP). Thus axon injury seems to both turn on NP, but also dampen it by activating mitochondrial fission. We also identified caspases as negative regulators of axon injury-mediated NP, so mitochondrial fission could control NP through caspase activation. In addition to negative regulators of NP, we found that nicotinamide mononucleotide adenylyltransferase (Nmnat) is absolutely required for this type of NP. Increased microtubule dynamics, which has previously been associated with NP, required Nmnat. Indeed Nmnat overexpression was sufficient to induce NP and increase microtubule dynamics in the absence of axon injury. DLK, JNK and fos were also required for NP. Because NP occurs before axon regeneration, and NP seems to be actively downregulated, we tested whether excessive NP might inhibit regeneration. Indeed both Nmnat overexpression and caspase reduction reduced regeneration. In addition, overexpression of fos or JNK extended the timecourse of NP and dampened regeneration in a Nmnat-dependent manner. These data suggest that NP and regeneration are conflicting responses to axon injury, and that therapeutic strategies that boost NP may reduce regeneration. Unlike many other cell types, most neurons last a lifetime. When injured, these cells often activate survival and repair strategies rather than dying. One such response is regeneration of the axon after it is injured. Axon regeneration is a conserved process activated by the same signaling cascade in worms, flies and mammals. Surprisingly we find that this signaling cascade first initiates a different response. This first response stabilizes the cell, and its downregulation by mitochondrial fission and caspases allows for maximum regeneration at later times. We propose that neurons respond to axon injury in a multi-step process with an early lock-down phase in which the cell is stabilized, followed by a more plastic state in which regeneration is maximized.
Collapse
Affiliation(s)
- Li Chen
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Derek M. Nye
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michelle C. Stone
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alexis T. Weiner
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyle W. Gheres
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Xin Xiong
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Catherine A. Collins
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa M. Rolls
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Romanelli D, Casartelli M, Cappellozza S, de Eguileor M, Tettamanti G. Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis. Sci Rep 2016; 6:32939. [PMID: 27609527 PMCID: PMC5016986 DOI: 10.1038/srep32939] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
We previously showed that autophagy and apoptosis occur in the removal of the lepidopteran larval midgut during metamorphosis. However, their roles in this context and the molecular pathways underlying their activation and regulation were only hypothesized. The results of the present study better clarify the timing of the activation of these two processes: autophagic and apoptotic genes are transcribed at the beginning of metamorphosis, but apoptosis intervenes after autophagy. To investigate the mechanisms that promote the activation of autophagy and apoptosis, we designed a set of experiments based on injections of 20-hydroxyecdysone (20E). Our data demonstrate that autophagy is induced at the end of the last larval stage by the 20E commitment peak, while the onset of apoptosis occurs concomitantly with the 20E metamorphic peak. By impairing autophagic flux, the midgut epithelium degenerated faster, and higher caspase activity was observed compared to controls, whereas inhibiting caspase activation caused a severe delay in epithelial degeneration. Our data demonstrate that autophagy plays a pro-survival function in the silkworm midgut during metamorphosis, while apoptosis is the major process that drives the demise of the epithelium. The evidence collected in this study seems to exclude the occurrence of autophagic cell death in this setting.
Collapse
Affiliation(s)
- Davide Romanelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Morena Casartelli
- Department of Biosciences, University of Milano, 20133 Milano, Italy
| | - Silvia Cappellozza
- CREA - Honey Bee and Silkworm Research Unit, Padua seat, 35143 Padova, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
25
|
Feng L, Liu H, Li X, Qiao J, Wang S, Guo D, Liu Q. Identification of AaCASPS7, an effector caspase in Aedes albopictus. Gene 2016; 593:117-125. [PMID: 27502418 DOI: 10.1016/j.gene.2016.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 11/28/2022]
Abstract
Aedes albopictus mosquito is a vector of various arboviruses and is becoming a significant threat to public health due to its rapid global expansion. Several reports suggest that apoptosis could be a factor limiting arbovirus infection in mosquitoes. Thus, it is significant to identify apoptosis pathway and study the correlation between apoptosis and virus infection in mosquitoes. Apoptosis is a type of programmed cell death that plays a vital role in immunity, development, and tissue homeostasis. Caspases are a family of conserved proteases playing important roles in apoptosis. In this study, we identified Aedes albopictus AaCASPS7, a caspase shared high identity with dipteran insect drICE orthologs. Phylogenetic analysis showed the closest relative of AaCASPS7 was Aedes aegypti AeCASPS7. AaCASPS7 displayed several features that were typical of an effector caspase and showed significant activity to effector caspase substrates. Aacasps7 transcripts were expressed ubiquitously in developmental and adult stages in Aedes albopictus mosquitoes. Transient expression of AaCASPS7 induced caspase-dependent apoptosis in C6/36 cells. Taken together the above data, this study identified a novel caspase, AaCASPS7, which might function as an apoptotic caspase. Further study the function of AaCASPS7 would facilitate better understanding the apoptotic mechanism in Aedes albopictus mosquito.
Collapse
Affiliation(s)
- Lingyan Feng
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xiaomei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jialu Qiao
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Shengya Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Deyin Guo
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Qingzhen Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
26
|
Melzer J, Broemer M. Nerve-racking - apoptotic and non-apoptotic roles of caspases in the nervous system of Drosophila. Eur J Neurosci 2016; 44:1683-90. [PMID: 26900934 DOI: 10.1111/ejn.13213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 12/28/2022]
Abstract
Studies using Drosophila as a model system have contributed enormously to our knowledge of caspase function and regulation. Caspases are best known as central executioners of apoptosis but also control essential physiological processes in a non-apoptotic manner. The Drosophila genome codes for seven caspases and in this review we provide an overview of current knowledge about caspase function in the nervous system. Caspases regulate neuronal death at all developmental stages and in various neuronal populations. In contrast, non-apoptotic roles are less well understood. The development of new genetically encoded sensors for caspase activity provides unprecedented opportunities to study caspase function in the nervous system in more detail. In light of these new tools we discuss the potential of Drosophila as a model to discover new apoptotic and non-apoptotic neuronal roles of caspases.
Collapse
Affiliation(s)
- Juliane Melzer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
27
|
Wu Y, Lindblad JL, Garnett J, Kamber Kaya HE, Xu D, Zhao Y, Flores ER, Hardy J, Bergmann A. Genetic characterization of two gain-of-function alleles of the effector caspase DrICE in Drosophila. Cell Death Differ 2015; 23:723-32. [PMID: 26542461 DOI: 10.1038/cdd.2015.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 09/14/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022] Open
Abstract
Caspases are the executioners of apoptosis. Although much is known about their physiological roles and structures, detailed analyses of missense mutations of caspases are lacking. As mutations within caspases are identified in various human diseases, the study of caspase mutants will help to elucidate how caspases interact with other components of the apoptosis pathway and how they may contribute to disease. DrICE is the major effector caspase in Drosophila required for developmental and stress-induced cell death. Here, we report the isolation and characterization of six de novo drICE mutants, all of which carry point mutations affecting amino acids conserved among caspases in various species. These six mutants behave as recessive loss-of-function mutants in a homozygous condition. Surprisingly, however, two of the newly isolated drICE alleles are gain-of-function mutants in a heterozygous condition, although they are loss-of-function mutants homozygously. Interestingly, they only behave as gain-of-function mutants in the presence of an apoptotic signal. These two alleles carry missense mutations affecting conserved amino acids in close proximity to the catalytic cysteine residue. This is the first time that viable gain-of-function alleles of caspases are described in any intact organism and provides a significant exception to the expectation that mutations of conserved amino acids always abolish the pro-apoptotic activity of caspases. We discuss models about how these mutations cause the gain-of-function character of these alleles.
Collapse
Affiliation(s)
- Y Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J L Lindblad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - J Garnett
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H E Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - D Xu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Zhao
- University of Massachusetts Amherst, Amherst, MA, USA
| | - E R Flores
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Hardy
- University of Massachusetts Amherst, Amherst, MA, USA
| | - A Bergmann
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
28
|
Abstract
The apoptotic machinery is highly conserved throughout evolution, and central to the regulation of apoptosis is the caspase family of cysteine proteases. Insights into the regulation and function of apoptosis in mammals have come from studies using model organisms. Drosophila provides an exceptional model system for identifying the function of conserved mechanisms regulating apoptosis, especially during development. The characteristic patterns of apoptosis during Drosophila development have been well described, as has the apoptotic response following DNA damage. The focus of this discussion is to introduce methodologies for monitoring apoptosis during Drosophila development and also in Drosophila cell lines.
Collapse
Affiliation(s)
- Donna Denton
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
29
|
Akagawa H, Hara Y, Togane Y, Iwabuchi K, Hiraoka T, Tsujimura H. The role of the effector caspases drICE and dcp-1 for cell death and corpse clearance in the developing optic lobe in Drosophila. Dev Biol 2015; 404:61-75. [PMID: 26022392 DOI: 10.1016/j.ydbio.2015.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 02/02/2023]
Abstract
In the developing Drosophila optic lobe, cell death occurs via apoptosis and in a distinctive spatio-temporal pattern of dying cell clusters. We analyzed the role of effector caspases drICE and dcp-1 in optic lobe cell death and subsequent corpse clearance using mutants. Neurons in many clusters required either drICE or dcp-1 and each one is sufficient. This suggests that drICE and dcp-1 function in cell death redundantly. However, dying neurons in a few clusters strictly required drICE but not dcp-1, but required drICE and dcp-1 when drICE activity was reduced via hypomorphic mutation. In addition, analysis of the mutants suggests an important role of effecter caspases in corpse clearance. In both null and hypomorphic drICE mutants, greater number of TUNEL-positive cells were observed than in wild type, and many TUNEL-positive cells remained until later stages. Lysotracker staining showed that there was a defect in corpse clearance in these mutants. All the results suggested that drICE plays an important role in activating corpse clearance in dying cells, and that an additional function of effector caspases is required for the activation of corpse clearance as well as that for carrying out cell death.
Collapse
Affiliation(s)
- Hiromi Akagawa
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Biological Production Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yusuke Hara
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yu Togane
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kikuo Iwabuchi
- Department of Biological Production Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Tsuyoshi Hiraoka
- Department of Biological Production Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hidenobu Tsujimura
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
30
|
Santos DE, Azevedo DO, Campos LAO, Zanuncio JC, Serrão JE. Melipona quadrifasciata (Hymenoptera: Apidae) fat body persists through metamorphosis with a few apoptotic cells and an increased autophagy. PROTOPLASMA 2015; 252:619-627. [PMID: 25269629 DOI: 10.1007/s00709-014-0707-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/22/2014] [Indexed: 06/03/2023]
Abstract
Fat body, typically comprising trophocytes, provides energy during metamorphosis. The fat body can be renewed once the larval phase is complete or recycled and relocated to form the fat body of the adult insect. This study aims to identify the class of programmed cell death that occurs within the fat body cells during the metamorphosis of the stingless bee Melipona quadrifasciata. Using immunodetection techniques, the fat body of the post-defecating larvae and the white-, pink-, brown-, and black-eyed pupae were tested for cleaved caspase-3 and DNA integrity, followed by ultrastructural analysis and identification of autophagy using RT-PCR for the Atg1 gene. The fat body of M. quadrifasciata showed some apoptotic cells positive for cleaved caspase-3, although without DNA fragmentation. During development, the fat body cells revealed an increased number of mitochondria and free ribosomes, in addition to higher amounts of autophagy Atg1 mRNA, than that of the pupae. The fat body of M. quadrifasciata showed few cells which underwent apoptosis, but there was evidence of increased autophagy at the completion of the larval stage. All together, these data show that some fat body cells persist during metamorphosis in the stingless bee M. quadrifasciata.
Collapse
Affiliation(s)
- Douglas Elias Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | | | | | |
Collapse
|
31
|
Haltom AR, Lee TV, Harvey BM, Leonardi J, Chen YJ, Hong Y, Haltiwanger RS, Jafar-Nejad H. The protein O-glucosyltransferase Rumi modifies eyes shut to promote rhabdomere separation in Drosophila. PLoS Genet 2014; 10:e1004795. [PMID: 25412384 PMCID: PMC4238978 DOI: 10.1371/journal.pgen.1004795] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022] Open
Abstract
The protein O-glucosyltransferase Rumi/POGLUT1 regulates Drosophila Notch signaling by adding O-glucose residues to the Notch extracellular domain. Rumi has other predicted targets including Crumbs (Crb) and Eyes shut (Eys), both of which are involved in photoreceptor development. However, whether Rumi is required for the function of Crb and Eys remains unknown. Here we report that in the absence of Rumi or its enzymatic activity, several rhabdomeres in each ommatidium fail to separate from one another in a Notch-independent manner. Mass spectral analysis indicates the presence of O-glucose on Crb and Eys. However, mutating all O-glucosylation sites in a crb knock-in allele does not cause rhabdomere attachment, ruling out Crb as a biologically-relevant Rumi target in this process. In contrast, eys and rumi exhibit a dosage-sensitive genetic interaction. In addition, although in wild-type ommatidia most of the Eys protein is found in the inter-rhabdomeral space (IRS), in rumi mutants a significant fraction of Eys remains in the photoreceptor cells. The intracellular accumulation of Eys and the IRS defect worsen in rumi mutants raised at a higher temperature, and are accompanied by a ∼50% decrease in the total level of Eys. Moreover, removing one copy of an endoplasmic reticulum chaperone enhances the rhabdomere attachment in rumi mutant animals. Altogether, our data suggest that O-glucosylation of Eys by Rumi ensures rhabdomere separation by promoting proper Eys folding and stability in a critical time window during the mid-pupal stage. Human EYS, which is mutated in patients with autosomal recessive retinitis pigmentosa, also harbors multiple Rumi target sites. Therefore, the role of O-glucose in regulating Eys may be conserved.
Collapse
Affiliation(s)
- Amanda R. Haltom
- Program in Genes & Development, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tom V. Lee
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Beth M. Harvey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jessica Leonardi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yi-Jiun Chen
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robert S. Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Hamed Jafar-Nejad
- Program in Genes & Development, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Yakulov T, Günesdogan U, Jäckle H, Herzig A. Bällchen participates in proliferation control and prevents the differentiation of Drosophila melanogaster neuronal stem cells. Biol Open 2014; 3:881-6. [PMID: 25190057 PMCID: PMC4197436 DOI: 10.1242/bio.20148631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Stem cells continuously generate differentiating daughter cells and are essential for tissue homeostasis and development. Their capacity to self-renew as undifferentiated and actively dividing cells is controlled by either external signals from a cellular environment, the stem cell niche, or asymmetric distribution of cell fate determinants during cell division. Here we report that the protein kinase Bällchen (BALL) is required to prevent differentiation as well as to maintain normal proliferation of neuronal stem cells of Drosophila melanogaster, called neuroblasts. Our results show that the brains of ball mutant larvae are severely reduced in size, which is caused by a reduced proliferation rate of the neuroblasts. Moreover, ball mutant neuroblasts gradually lose the expression of the neuroblast determinants Miranda and aPKC, suggesting their premature differentiation. Our results indicate that BALL represents a novel cell intrinsic factor with a dual function regulating the proliferative capacity and the differentiation status of neuronal stem cells during development.
Collapse
Affiliation(s)
- Toma Yakulov
- Present address: Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Ufuk Günesdogan
- Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Herbert Jäckle
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fassberg 11, 37077 Göttingen, Germany Present address: Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany. Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. Present address: Max-Planck-Institut für Infektionsbiologie, Department Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Alf Herzig
- Present address: Max-Planck-Institut für Infektionsbiologie, Department Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
33
|
Herzig B, Yakulov TA, Klinge K, Günesdogan U, Jäckle H, Herzig A. Bällchen is required for self-renewal of germline stem cells in Drosophila melanogaster. Biol Open 2014; 3:510-21. [PMID: 24876388 PMCID: PMC4058086 DOI: 10.1242/bio.20147690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Self-renewing stem cells are pools of undifferentiated cells, which are maintained in cellular niche environments by distinct tissue-specific signalling pathways. In Drosophila melanogaster, female germline stem cells (GSCs) are maintained in a somatic niche of the gonads by BMP signalling. Here we report a novel function of the Drosophila kinase Bällchen (BALL), showing that its cell autonomous role is to maintain the self-renewing capacity of female GSCs independent of BMP signalling. ball mutant GSCs are eliminated from the niche and subsequently differentiate into mature eggs, indicating that BALL is largely dispensable for differentiation. Similar to female GSCs, BALL is required to maintain self-renewal of male GSCs, suggesting a tissue independent requirement of BALL for self-renewal of germline stem cells.
Collapse
Affiliation(s)
- Bettina Herzig
- Department of Molecular Developmental Biology, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany Present address: Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany. Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. Present address: Department of Cellular Microbiology, Max-Planck-Institut für Infektionsbiologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Toma A Yakulov
- Present address: Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Kathrin Klinge
- Department of Molecular Developmental Biology, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany Present address: Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany. Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. Present address: Department of Cellular Microbiology, Max-Planck-Institut für Infektionsbiologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Ufuk Günesdogan
- Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Herbert Jäckle
- Department of Molecular Developmental Biology, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany Present address: Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany. Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. Present address: Department of Cellular Microbiology, Max-Planck-Institut für Infektionsbiologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Alf Herzig
- Present address: Department of Cellular Microbiology, Max-Planck-Institut für Infektionsbiologie, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
34
|
Fan Y, Wang S, Hernandez J, Yenigun VB, Hertlein G, Fogarty CE, Lindblad JL, Bergmann A. Genetic models of apoptosis-induced proliferation decipher activation of JNK and identify a requirement of EGFR signaling for tissue regenerative responses in Drosophila. PLoS Genet 2014; 10:e1004131. [PMID: 24497843 PMCID: PMC3907308 DOI: 10.1371/journal.pgen.1004131] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
Recent work in several model organisms has revealed that apoptotic cells are able to stimulate neighboring surviving cells to undergo additional proliferation, a phenomenon termed apoptosis-induced proliferation. This process depends critically on apoptotic caspases such as Dronc, the Caspase-9 ortholog in Drosophila, and may have important implications for tumorigenesis. While it is known that Dronc can induce the activity of Jun N-terminal kinase (JNK) for apoptosis-induced proliferation, the mechanistic details of this activation are largely unknown. It is also controversial if JNK activity occurs in dying or in surviving cells. Signaling molecules of the Wnt and BMP families have been implicated in apoptosis-induced proliferation, but it is unclear if they are the only ones. To address these questions, we have developed an efficient assay for screening and identification of genes that regulate or mediate apoptosis-induced proliferation. We have identified a subset of genes acting upstream of JNK activity including Rho1. We also demonstrate that JNK activation occurs both in apoptotic cells as well as in neighboring surviving cells. In a genetic screen, we identified signaling by the EGFR pathway as important for apoptosis-induced proliferation acting downstream of JNK signaling. These data underscore the importance of genetic screening and promise an improved understanding of the mechanisms of apoptosis-induced proliferation. Work in recent years has revealed that apoptotic caspases not only induce apoptosis, but also have non-apoptotic functions. One of these functions is apoptosis-induced proliferation, a relatively recently discovered phenomenon by which apoptotic cells induce proliferation of surviving neighboring cells. This phenomenon may have important implications for stem cell activity, tissue regeneration and tumorigenesis. Here, we describe the development of a genetic model of apoptosis-induced proliferation and the use of this model for convenient and unbiased genetic screening to identify genes involved in the process. We tested mutants of our RNAi transgenic lines targeting the core components of the apoptotic pathway and of JNK signaling, a known mediator of apoptosis-induced proliferation. These assays demonstrate the feasibility of the system for systematic genetic screening and identified several new genes upstream of JNK that are involved in apoptosis-induced proliferation. Finally, we tested the model in a pilot screen for chromosome arm 2L and identified spi, the EGF ligand in flies, as important for apoptosis-induced proliferation. We confirmed the involvement of EGF in a genuine apoptosis-induced regeneration system. These data underscore the importance of genetic screening and promise an improved understanding of the mechanisms of apoptosis-induced proliferation and regeneration.
Collapse
Affiliation(s)
- Yun Fan
- University of Massachusetts Medical School, Department of Cancer Biology, Worcester, Massachusetts, United States of America
- * E-mail: (YF); (AB)
| | - Shiuan Wang
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jacob Hernandez
- MD Anderson Cancer Center, Department of Biochemistry & Molecular Biology, Houston, Texas, United States of America
| | - Vildan Betul Yenigun
- MD Anderson Cancer Center, Department of Biochemistry & Molecular Biology, Houston, Texas, United States of America
| | - Gillian Hertlein
- Länderinstitut für Bienenkunde, Humboldt Universität zu Berlin, Hohen Neuendorf, Germany
| | - Caitlin E. Fogarty
- University of Massachusetts Medical School, Department of Cancer Biology, Worcester, Massachusetts, United States of America
| | - Jillian L. Lindblad
- University of Massachusetts Medical School, Department of Cancer Biology, Worcester, Massachusetts, United States of America
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Cancer Biology, Worcester, Massachusetts, United States of America
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- MD Anderson Cancer Center, Department of Biochemistry & Molecular Biology, Houston, Texas, United States of America
- * E-mail: (YF); (AB)
| |
Collapse
|
35
|
|
36
|
Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3499-3506. [DOI: 10.1016/j.bbamcr.2013.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 12/24/2022]
|
37
|
Ji MM, Liu AQ, Gan LP, Xing R, Wang H, Sima YH, Xu SQ. Functional analysis of 30K proteins during silk gland degeneration by a caspase-dependent pathway in Bombyx. INSECT MOLECULAR BIOLOGY 2013; 22:273-283. [PMID: 23496335 DOI: 10.1111/imb.12019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The 30K proteins are involved with important functions in the growth and development of Bombyx mori. In this study, the synthesis and regulation of 30K proteins were examined during the degeneration of Bombyx silk glands. On day 3 of the fifth instar, the protein level of 30Kc19 was low, whereas the silk proteins were rapidly synthesized. However, synthesis and accumulation of the 30Kc19 protein significantly increased at the prepupal stage and on day 1 of the pupal stage. At this stage, the silk gland cells were filled with 30Kc19 and genomic DNA. Moreover, the transcript levels of the 30K-encoding genes, including 30Kc6, 30Kc12, 30Kc19 and 30Kc23 were up-regulated during the degeneration of the Bombyx silk glands. During the time that the levels of the 30Kc19 protein were significantly up-regulated, it is notable that the transcript levels of the BmAtg8, BmAtg6 and BmDronc genes dramatically increased to regulate the programmed cell death of this gland. On day 1 of the pupal stage, intense fragmentation of genomic DNA occurred in the silk gland cells, and the putative active form of caspase was detected in the cytoplasm, showing the complete degradation of the silk glands in one day. In conclusion, the 30K proteins are synthesized in high concentrations, while proteolysis mediates silk gland degeneration in Bombyx by a caspase-dependent pathway. We propose that the 30K proteins may be nutrients and energy vectors to be absorbed by the developing tissues of pupae or moths.
Collapse
Affiliation(s)
- M-M Ji
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Homeostatic epithelial renewal in the gut is required for dampening a fatal systemic wound response in Drosophila. Cell Rep 2013; 3:919-30. [PMID: 23523355 DOI: 10.1016/j.celrep.2013.02.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/08/2012] [Accepted: 02/19/2013] [Indexed: 11/21/2022] Open
Abstract
Effective defense responses involve the entire organism. To maintain body homeostasis after tissue damage, a systemic wound response is induced in which the response of each tissue is tightly orchestrated to avoid incomplete recovery or an excessive, damaging response. Here, we provide evidence that in the systemic response to wounding, an apoptotic caspase pathway is activated downstream of reactive oxygen species in the midgut enterocytes (ECs), cells distant from the wound site, in Drosophila. We show that a caspase-pathway mutant has defects in homeostatic gut cell renewal and that inhibiting caspase activity in fly ECs results in the production of systemic lethal factors after wounding. Our results indicate that wounding remotely controls caspase activity in ECs, which activates the tissue stem cell regeneration pathway in the gut to dampen the dangerous systemic wound reaction.
Collapse
|
39
|
Berthelet J, Dubrez L. Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs). Cells 2013; 2:163-87. [PMID: 24709650 PMCID: PMC3972657 DOI: 10.3390/cells2010163] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/05/2023] Open
Abstract
Abstract Inhibitors of Apoptosis (IAPs) are a family of proteins with various biological functions including regulation of innate immunity and inflammation, cell proliferation, cell migration and apoptosis. They are characterized by the presence of at least one N-terminal baculoviral IAP repeat (BIR) domain involved in protein-protein interaction. Most of them also contain a C-terminal RING domain conferring an E3-ubiquitin ligase activity. In drosophila, IAPs are essential to ensure cell survival, preventing the uncontrolled activation of the apoptotic protease caspases. In mammals, IAPs can also regulate apoptosis through controlling caspase activity and caspase-activating platform formation. Mammalian IAPs, mainly X-linked IAP (XIAP) and cellular IAPs (cIAPs) appeared to be important determinants of the response of cells to endogenous or exogenous cellular injuries, able to convert the survival signal into a cell death-inducing signal. This review highlights the role of IAP in regulating apoptosis in Drosophila and Mammals.
Collapse
Affiliation(s)
- Jean Berthelet
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| | - Laurence Dubrez
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR866, Dijon F-21079, France.
| |
Collapse
|
40
|
Abstract
The caspases, a family of cysteine proteases, function as central regulators of cell death. Recently, caspase activity and caspase substrates identified in the absence of cell death have sparked strong interest in caspase functions in nonapoptotic cellular responses; these functions suggest that caspases may be activated without inducing or before apoptosis, thus leading to the cleavage of a specific subset of substrates. This review focuses primarily on the caspase enzymatic activity. Detailed genetic analyses of caspase-deficient Caenorhabditis elegans, Drosophila, and mice have shown that caspases are essential, not only for controlling the number of cells involved in sculpting or deleting structures in developing animals, but also for dynamic, nonapoptotic cell processes, such as innate immune response, tissue regeneration, cell-fate determination, stem-cell differentiation and neural activation. Our understanding of the spatio-temporal caspase activation mechanisms has advanced, primarily through the study of Drosophila developmental processes. This review will discuss current findings regarding caspase functions in cytoskeletal modification, morphogenetic regulation of cell shape, cell migration and the production of mechanical force during embryogenesis.
Collapse
Affiliation(s)
- Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
41
|
Miura M. Apoptotic and nonapoptotic caspase functions in animal development. Cold Spring Harb Perspect Biol 2012; 4:4/10/a008664. [PMID: 23028118 DOI: 10.1101/cshperspect.a008664] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A developing animal is exposed to both intrinsic and extrinsic stresses. One stress response is caspase activation. Caspase activation not only controls apoptosis but also proliferation, differentiation, cell shape, and cell migration. Caspase activation drives development by executing cell death or nonapoptotic functions in a cell-autonomous manner, and by secreting signaling molecules or generating mechanical forces, in a noncell autonomous manner.
Collapse
Affiliation(s)
- Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
42
|
Ryoo HD, Bergmann A. The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 2012; 4:a008797. [PMID: 22855725 DOI: 10.1101/cshperspect.a008797] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genes dedicated to killing cells must have evolved because of their positive effects on organismal survival. Positive functions of apoptotic genes have been well established in a large number of biological contexts, including their role in eliminating damaged and potentially cancerous cells. More recently, evidence has suggested that proapoptotic proteins-mostly caspases-can induce proliferation of neighboring surviving cells to replace dying cells. This process, that we will refer to as "apoptosis-induced proliferation," may be critical for stem cell activity and tissue regeneration. Depending on the caspases involved, at least two distinct types of apoptosis-induced proliferation can be distinguished. One of these types have been studied using a model in which cells have initiated cell death, but are prevented from executing it because of effector caspase inhibition, thereby generating "undead" cells that emit persistent mitogen signaling and overgrowth. Such conditions are likely to contribute to certain forms of cancer. In this review, we summarize the current knowledge of apoptosis-induced proliferation and discuss its relevance for tissue regeneration and cancer.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
43
|
Florentin A, Arama E. Caspase levels and execution efficiencies determine the apoptotic potential of the cell. ACTA ACUST UNITED AC 2012; 196:513-27. [PMID: 22351928 PMCID: PMC3283987 DOI: 10.1083/jcb.201107133] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Differences in expression level of the effector caspases Drice and Dcp-1 and in their intrinsic abilities to induce apoptosis and to control the rate of cell death underlie the differential sensitivities of cells to apoptosis. Essentially, all metazoan cells can undergo apoptosis, but some cells are more sensitive than others to apoptotic stimuli. To date, it is unclear what determines the apoptotic potential of the cell. We set up an in vivo system for monitoring and comparing the activity levels of the two main effector caspases in Drosophila melanogaster, Drice and Dcp-1. Both caspases were activated by the apoptosome after irradiation. However, whereas each caspase alone could induce apoptosis, Drice was a more effective inducer of apoptosis than Dcp-1, which instead had a role in establishing the rate of cell death. These functional differences are attributed to their intrinsic properties rather than merely their tissue specificities. Significantly, the levels of the procaspases are directly proportional to their activity levels and play a key role in determining the cell’s sensitivity to apoptosis. Finally, we provide evidence for the existence of a cellular execution threshold of caspase activity, which must be reached to induce apoptosis.
Collapse
Affiliation(s)
- Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
44
|
Khoa DB, Trang LTD, Takeda M. Expression analyses of caspase-1 and related activities in the midgut of Galleria mellonella during metamorphosis. INSECT MOLECULAR BIOLOGY 2012; 21:247-256. [PMID: 22229544 DOI: 10.1111/j.1365-2583.2011.01131.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The cDNA encoding caspase-1, a main protease involved in apoptosis, was cloned and sequenced from the midgut of the greater wax moth, Galleria mellonella. The open reading frame contains 879 nucleotides, encodes 293 amino acids, and was registered as Gmcaspase-1. The sequence comparison showed a high homology to lepidopteran caspase-1, human caspase-3, and ced-3 of Caenorhabditis elegans. Gmcaspase-1 is predicted to contain a short prodomain, large subunit, and small subunit domain. It also exhibits all characteristics of caspase, including three conserved cleavage sites after Asp-25, Asp-192, and Asp-181, three active site residues including a highly conserved QACQG pentapeptide active-site motif, and four substrate binding sites. The expression profiles during development showed that the transcript of Gmcaspase-1 and its protein products appeared in two or more waves in the midgut during metamorphosis. Immunohistochemistry, in situ hybridization, and TUNEL analyses revealed that apoptosis occurred first at the basal, then middle and then apical regions in the midgut epithelium and the yellow body is formed in the lumen. At least three waves of mitosis and differentiation follow the apoptosis waves from the basal and middle to apical parts to form the adult epithelium.
Collapse
Affiliation(s)
- D B Khoa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Japan
| | | | | |
Collapse
|
45
|
The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling. PLoS One 2012; 7:e34310. [PMID: 22479597 PMCID: PMC3315533 DOI: 10.1371/journal.pone.0034310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/26/2012] [Indexed: 01/19/2023] Open
Abstract
The genome of the human immunodeficiency virus type 1 (HIV-1) encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu), in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs) which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1). Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK) pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.
Collapse
|
46
|
Drosophila IAP1-mediated ubiquitylation controls activation of the initiator caspase DRONC independent of protein degradation. PLoS Genet 2011; 7:e1002261. [PMID: 21909282 PMCID: PMC3164697 DOI: 10.1371/journal.pgen.1002261] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/06/2011] [Indexed: 02/07/2023] Open
Abstract
Ubiquitylation targets proteins for proteasome-mediated degradation and plays important roles in many biological processes including apoptosis. However, non-proteolytic functions of ubiquitylation are also known. In Drosophila, the inhibitor of apoptosis protein 1 (DIAP1) is known to ubiquitylate the initiator caspase DRONC in vitro. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by caspase inhibition (“undead” cells), it is thought that DIAP1-mediated ubiquitylation causes proteasomal degradation of DRONC, protecting cells from apoptosis. However, contrary to this model, we show here that DIAP1-mediated ubiquitylation does not trigger proteasomal degradation of full-length DRONC, but serves a non-proteolytic function. Our data suggest that DIAP1-mediated ubiquitylation blocks processing and activation of DRONC. Interestingly, while full-length DRONC is not subject to DIAP1-induced degradation, once it is processed and activated it has reduced protein stability. Finally, we show that DRONC protein accumulates in “undead” cells due to increased transcription of dronc in these cells. These data refine current models of caspase regulation by IAPs. The Drosophila inhibitor of apoptosis 1 (DIAP1) readily promotes ubiquitylation of the CASPASE-9–like initiator caspase DRONC in vitro and in vivo. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by effector caspase inhibition—producing so-called “undead” cells—it has been proposed that DIAP1-mediated ubiquitylation would target full-length DRONC for proteasomal degradation, ensuring survival of normal cells. However, this has never been tested rigorously in vivo. By examining loss and gain of diap1 function, we show that DIAP1-mediated ubiquitylation does not trigger degradation of full-length DRONC. Our analysis demonstrates that DIAP1-mediated ubiquitylation controls DRONC processing and activation in a non-proteolytic manner. Interestingly, once DRONC is processed and activated, it has reduced protein stability. We also demonstrate that “undead” cells induce transcription of dronc, explaining increased protein levels of DRONC in these cells. This study re-defines the mechanism by which IAP-mediated ubiquitylation regulates caspase activity.
Collapse
|
47
|
Liu Q, Clem RJ. Defining the core apoptosis pathway in the mosquito disease vector Aedes aegypti: the roles of iap1, ark, dronc, and effector caspases. Apoptosis 2011; 16:105-13. [PMID: 21107703 DOI: 10.1007/s10495-010-0558-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To date, our knowledge of apoptosis regulation in insects comes almost exclusively from the model organism Drosophila melanogaster. In contrast, despite the identification of numerous genes that are presumed to regulate apoptosis in other insects based on sequence homology, little has been done to examine the molecular pathways that regulate apoptosis in other insects, including medically important disease vectors. In D. melanogaster, the core apoptosis pathway consists of the caspase negative regulator DIAP1, IAP antagonists, the initiator caspase Dronc and its activating protein Ark, and the effector caspase DrICE. Here we have studied the functions of several genes from the mosquito disease vector Aedes aegypti that share homology with the core apoptosis genes in D. melanogaster. Silencing of the iap1 gene in the A. aegypti cell line Aag2 caused spontaneous apoptosis, indicating that IAP1 plays a role in cell survival similar to that of DIAP1. Silencing A. aegypti ark or dronc completely inhibited apoptosis triggered by several different apoptotic stimuli. However, individual silencing of the effector caspases CASPS7 or CASPS8, which are the closest relatives to DrICE, only partially inhibited apoptosis, and silencing both CASPS7 and CASPS8 together did not have a significant additional effect. Our results suggest that the core pathway that regulates apoptosis in A. aegypti is similar to that of D. melanogaster, but that more than one effector caspase is involved in apoptosis in A. aegypti. This is interesting in light of the fact that the caspase family has expanded in mosquitoes compared to D. melanogaster.
Collapse
Affiliation(s)
- Qingzhen Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | |
Collapse
|
48
|
Li X, Wang J, Shi Y. Structural mechanisms of DIAP1 auto-inhibition and DIAP1-mediated inhibition of drICE. Nat Commun 2011; 2:408. [DOI: 10.1038/ncomms1418] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/30/2011] [Indexed: 01/24/2023] Open
|
49
|
Abstract
The caspases are a family of cysteine proteases that function as central regulators of cell death. Recent investigations in Caenorhabditis elegans, Drosophila, and mice indicate that caspases are essential not only in controlling the number of cells involved in sculpting or deleting structures in developing animals, but also in dynamic cell processes such as cell-fate determination, compensatory proliferation of neighboring cells, and actin cytoskeleton reorganization, in a non-apoptotic context during development. This review focuses primarily on caspase functions involving their enzymatic activity.
Collapse
Affiliation(s)
- Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
| |
Collapse
|
50
|
Wang H, Clem RJ. The role of IAP antagonist proteins in the core apoptosis pathway of the mosquito disease vector Aedes aegypti. Apoptosis 2011; 16:235-48. [PMID: 21274634 DOI: 10.1007/s10495-011-0575-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While apoptosis regulation has been studied extensively in Drosophila melanogaster, similar studies in other insects, including disease vectors, lag far behind. In D. melanogaster, the inhibitor of apoptosis (IAP) protein DIAP1 is the major negative regulator of caspases, while IAP antagonists induce apoptosis, in part, by binding to DIAP1 and inhibiting its ability to regulate caspases. In this study, we characterized the roles of two IAP antagonists, Michelob_x (Mx) and IMP, in apoptosis in the yellow fever mosquito Aedes aegypti. Overexpression of Mx or IMP caused apoptosis in A. aegypti Aag2 cells, while silencing expression of mx or imp attenuated apoptosis. Addition of recombinant Mx or IMP, but not cytochrome c, to Aag2 cytosolic extract caused caspase activation. Consistent with this finding, AeIAP1 bound and inhibited both initiator and effector caspases from A. aegypti, and Mx and IMP competed with caspases for binding to AeIAP1. However, a difference was observed in the BIR domains responsible for Dronc binding by AeIAP1 versus DIAP1. These findings demonstrate that the mechanisms by which IAP antagonists regulate apoptosis are largely conserved between A. aegypti and D. melanogaster, although subtle differences exist.
Collapse
Affiliation(s)
- Hua Wang
- Molecular, Cellular, and Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|