1
|
Wang Y, Qiu L, Xu H, Luo S, Yang L, Huang N, Guo Y, Wu J. Inhibition of JNK transcription via the Nrf2/Keap1a pathway to resist microcystin-induced oxidative stress and apoptosis in freshwater mussels Cristaria plicata. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109982. [PMID: 39033794 DOI: 10.1016/j.cbpc.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
With global warming and increasing eutrophication of water bodies, a variety of algal toxins, including microcystin (MC), released into water by cyanobacterial blooms pose a serious threat to the survival of aquatic organisms. To investigate the mechanism of the Nrf2/Keap1a pathway on resisting MC-induced oxidative stress and apoptosis in Cristata plicata, we cloned the full-length cDNA of CpBcl-2. The cDNA full-length of CpBcl-2 was 760 bp, encoded a 177 amino acid peptide, and contained a highly conserved Bcl-2-like superfamily domain. MC stimulation increased the expression and activity levels of related antioxidant enzymes. After CpNrf2 knockdown, the transcription levels of NAD(P)H quinone redox Enzyme-1 (NQO1) and related antioxidant enzymes activity in the gills and kidney of C. plicata were significantly down-regulated upon MC stress, but that was significantly upregulated after knockdown of CpKeap1a. Additionally, Upon MC stress, the mRNA levels of CpBcl-2 were increased in the gills and kidney after knockdown of CpNrf2 at 24 h, and that of CpBcl-2 were decreased at 72 and 96 h in the CpKeap1a-siRNA+MC group. Moreover, MC stimulation significantly inhibited CpJNK expression in the gills and kidney, but which regulated the Nrf2/Keap1a pathway in C. plicata. However, the JNK inhibitor SP600125 promoted the expression of CpNrf2 and related enzymes with antioxidant response element (ARE-driven enzyme) in the gills and kidney. Then, we speculated that CpKeap1a was a negative regulator of CpNrf2, and C. plicata resisted MC-induced oxidative damage and apoptosis by inhibiting JNK transcription via the Nrf2/Keap1a pathway.
Collapse
Affiliation(s)
- Yanrui Wang
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Linhan Qiu
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Hui Xu
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Shanshan Luo
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Lang Yang
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Nana Huang
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yuping Guo
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jielian Wu
- Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
2
|
Lin Z, Cai Z, Li L, Wei Y, Ling Q. c-Jun N-terminal kinase 1/P53 signaling mediates intrinsic apoptosis of largemouth bass (Micropterus salmoides) hepatocytes under heat stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174664. [PMID: 38997017 DOI: 10.1016/j.scitotenv.2024.174664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The increasing frequency of high-temperature extremes threatens largemouth bass Micropterus salmoides, a significant fish for freshwater ecosystems and aquaculture. Our previous studies at the transcript level suggested that heat stress induces hepatic apoptosis in largemouth bass. In the current study, we sought to validate these findings and further investigate the role of the c-Jun N-terminal kinase (JNK)/P53 signaling in hepatic apoptosis under heat stress. First, heat treatments were conducted in vivo and in vitro under different temperatures: 28 °C, 32 °C, and 37 °C. In primary hepatocytes subjected to heat treatment, cell viability was evaluated via the Cell Counting Kit-8, while mitochondrial membrane potential and nuclear morphology were assessed through JC-1 and Hoechst 33258 staining, respectively. We observed reductions in both cell viability and mitochondrial membrane potential (ΔΨm), along with alterations in nuclear morphology, in primary hepatocytes exposed to heat stress at temperatures of 32 °C and 37 °C. Quantitative real-time PCR revealed significant alterations in the expression profiles of intrinsic apoptosis-related genes within liver tissues under heat stress. Immunohistochemistry analysis revealed that JNK1 signaling increased as the temperature increased, JNK2 expression increased only at 37 °C, and JNK3 expression did not change with temperature. We speculate that JNK1 and JNK2 have pro- and anti-apoptotic effects, respectively. Western blot analysis conducted on cultured hepatocytes further validated these findings. JNK inhibition reduced hepatocyte apoptosis, improved nuclear morphology, and maintained ΔΨm even after 37 °C treatment. These results not only confirm that heat stress led to intrinsic apoptosis of hepatocytes but also indicated that JNK1 could mediate P53 expression and activate caspase-dependent intrinsic apoptosis in largemouth bass hepatocytes under such conditions. This study illuminates the physiological responses of largemouth bass to acute heat stress, offering valuable insights into the potential impacts of climate change on freshwater fishes and the sustainability of aquaculture.
Collapse
Affiliation(s)
- Zijie Lin
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Zhiying Cai
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Lingling Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Yekai Wei
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Qufei Ling
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China.
| |
Collapse
|
3
|
Shaalan MM, Osman EEA, Attia YM, Hammam OA, George RF, Naguib BH. Novel 3,6-Disubstituted Pyridazine Derivatives Targeting JNK1 Pathway: Scaffold Hopping and Hybridization-Based Design, Synthesis, Molecular Modeling, and In Vitro and In Vivo Anticancer Evaluation. ACS OMEGA 2024; 9:37310-37329. [PMID: 39246493 PMCID: PMC11375727 DOI: 10.1021/acsomega.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
A series of novel 3,6-disubstituted pyridazine derivatives were designed, synthesized, and biologically evaluated as preclinical anticancer candidates. Compound 9e exhibited the highest growth inhibition against most of the NCI-60 cancer cell lines. The in vivo anticancer activity of 9e was subsequently investigated at two dose levels using the Ehrlich ascites carcinoma solid tumor animal model, where a reduction in the mean tumor volume allied with necrosis induction was reported without any signs of toxicity in the treated groups. Interestingly, compound 9e was capable of downregulating c-jun N-terminal kinase-1 (JNK1) gene expression and curbing the protein levels of its phosphorylated form, in parallel with a reduction in its downstream targets, namely, c-Jun and c-Fos in tumors, along with restoring p53 activity. Furthermore, molecular docking and dynamics simulations were carried out to predict the binding mode of 9e and prove its stability in the JNK1 binding pocket.
Collapse
Affiliation(s)
- Mai M Shaalan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, Cairo 11837, Egypt
| | - Essam Eldin A Osman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Yasmeen M Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, Cairo 11837, Egypt
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Imbaba, Giza 12411, Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Bassem H Naguib
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, Cairo 11837, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
4
|
He C, Gai H, Zhao W, Zhang H, Lai L, Ding C, Chen L, Ding J. Advances in the Study of Etiology and Molecular Mechanisms of Sensorineural Hearing Loss. Cell Biochem Biophys 2024; 82:1721-1734. [PMID: 38849694 DOI: 10.1007/s12013-024-01344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Sensorineural hearing loss (SNHL), a multifactorial progressive disorder, results from a complex interplay of genetic and environmental factors, with its underlying mechanisms remaining unclear. Several pathological factors are believed to contribute to SNHL, including genetic factors, ion homeostasis, cell apoptosis, immune inflammatory responses, oxidative stress, hormones, metabolic syndrome, human cytomegalovirus infection, mitochondrial damage, and impaired autophagy. These factors collectively interact and play significant roles in the onset and progression of SNHL. The present review offers a comprehensive overview of the various factors that contribute to SNHL, emphasizes recent developments in understanding its etiology, and explores relevant preventive and intervention measures.
Collapse
Affiliation(s)
- Cairong He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hongcun Gai
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wen Zhao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Haiqin Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Lai
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chenyu Ding
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jie Ding
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
5
|
Samutrtai P, Yingchutrakul Y, Faikhruea K, Vilaivan T, Chaikeeratisak V, Chatwichien J, Krobthong S, Aonbangkhen C. Vernonia amygdalina Leaf Extract Induces Apoptosis in HeLa Cells: A Metabolomics and Proteomics Study. Pharmaceuticals (Basel) 2024; 17:1079. [PMID: 39204184 PMCID: PMC11360076 DOI: 10.3390/ph17081079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Medicinal plants produce various bioactive molecules with potential anti-cancer properties with favorable safety profiles. We aimed to investigate the comprehensive composition of Vernonia amygdalina leaf extract and its cytotoxic effects via apoptosis in HeLa cells. The metabolomics approach using LC-MS/MS was conducted to gather the metabolite profile of the extract. Proteomics was performed to understand the comprehensive mechanistic pathways of action. The apoptosis was visualized by cellular staining and the apoptotic proteins were evaluated. V. amygdalina leaf extract exhibited dose-dependent cytotoxic effects on both HeLa and Vero cells after 24 h of exposure in the MTT assay with the IC50 values of 0.767 ± 0.0334 and 4.043 ± 0.469 µg mL-1, respectively, which demonstrated a higher concentration required for Vero cell cytotoxicity. The metabolomic profile of 112 known metabolites specified that the majority of them were alkaloids, phenolic compounds, and steroids. Among these metabolites, deacetylvindoline and licochalcone B were suggested to implicate cytotoxicity. The cytotoxic pathways involved the response to stress and cell death which was similar to doxorubicin. The upstream regulatory proteins, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and X-box binding protein 1 (XBP1), were significantly altered, supporting the regulation of apoptosis and cell death. The levels of apoptotic proteins, c-Jun N-terminal kinases (JNK), p53, and caspase-9 were significantly increased. The novel insights gained from the metabolomic profiling and proteomic pathway analysis of V. amygdalina leaf extract have identified crucial components related to apoptosis induction, highlighting its potential to develop future chemotherapy.
Collapse
Affiliation(s)
- Pawitrabhorn Samutrtai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.F.); (T.V.)
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.F.); (T.V.)
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute (CGI), Bangkok 10210, Thailand;
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (C.A.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Liu K, Li Z, Li L, Heyward S, Wang SR, He L, Wang H. Mechanistic Understanding of Dexamethasone-Mediated Protection against Remdesivir-Induced Hepatotoxicity. Mol Pharmacol 2024; 106:71-82. [PMID: 38769019 DOI: 10.1124/molpharm.124.000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Remdesivir (RDV), a broad-spectrum antiviral agent, is often used together with dexamethasone (DEX) for hospitalized COVID-19 patients requiring respiratory support. Potential hepatic adverse drug reaction is a safety concern associated with the use of RDV. We previously reported that DEX cotreatment effectively mitigates RDV-induced hepatotoxicity and reduces elevated serum alanine aminotransferase and aspartate aminotransferase levels in cultured human primary hepatocytes (HPH) and hospitalized COVID-19 patients, respectively. Yet, the precise mechanism behind this protective drug-drug interaction remains largely unknown. Here, we show that through the activation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, RDV induces apoptosis (cleavage of caspases 8, 9, and 3), autophagy (increased autophagosome and LC3-II), and mitochondrial damages (decreased membrane potential, respiration, ATP levels, and increased expression of Bax and the released cytosolic cytochrome C) in HPH. Importantly, cotreatment with DEX partially reversed RDV-induced apoptosis, autophagy, and cell death. Mechanistically, DEX deactivates/dephosphorylates p38, JNK, and ERK1/2 signaling by enhancing the expression of dual specificity protein phosphatase 1 (DUSP1), a mitogen-activated protein kinase (MAPK) phosphatase, in a glucocorticoid receptor (GR)-dependent manner. Knockdown of GR in HPH attenuates DEX-mediated DUSP1 induction, MAPK dephosphorylation, as well as protection against RDV-induced hepatotoxicity. Collectively, our findings suggest a molecular mechanism by which DEX modulates the GR-DUSP1-MAPK regulatory axis to alleviate the adverse actions of RDV in the liver. SIGNIFICANCE STATEMENT: The research uncovers the molecular mechanisms by which dexamethasone safeguards against remdesivir-associated liver damage in the context of COVID-19 treatment.
Collapse
Affiliation(s)
- Kaiyan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Shelley R Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Ling He
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (K.L., Z.L., L.L., S.R.W., H.W.); BioIVT, Halethorpe, Maryland (S.H.); and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (L.H.)
| |
Collapse
|
7
|
Kesarwani M, Kincaid Z, Azhar M, Azam M. Enhanced MAPK signaling induced by CSF3R mutants confers dependence to DUSP1 for leukemic transformation. Blood Adv 2024; 8:2765-2776. [PMID: 38531054 PMCID: PMC11176961 DOI: 10.1182/bloodadvances.2023010830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
ABSTRACT Elevated MAPK and the JAK-STAT signaling play pivotal roles in the pathogenesis of chronic neutrophilic leukemia and atypical chronic myeloid leukemia. Although inhibitors targeting these pathways effectively suppress the diseases, they fall short in providing enduring remission, largely attributed to the cytostatic nature of these drugs. Even combinations of these drugs are ineffective in achieving sustained remission. Enhanced MAPK signaling besides promoting proliferation and survival triggers a proapoptotic response. Consequently, malignancies reliant on elevated MAPK signaling use MAPK feedback regulators to intricately modulate the signaling output, prioritizing proliferation and survival while dampening the apoptotic stimuli. Herein, we demonstrate that enhanced MAPK signaling in granulocyte colony-stimulating factor 3 receptor (CSF3R)-driven leukemia upregulates the expression of dual specificity phosphatase 1 (DUSP1) to suppress the apoptotic stimuli crucial for leukemogenesis. Consequently, genetic deletion of Dusp1 in mice conferred synthetic lethality to CSF3R-induced leukemia. Mechanistically, DUSP1 depletion in leukemic context causes activation of JNK1/2 that results in induced expression of BIM and P53 while suppressing the expression of BCL2 that selectively triggers apoptotic response in leukemic cells. Pharmacological inhibition of DUSP1 by BCI (a DUSP1 inhibitor) alone lacked antileukemic activity due to ERK1/2 rebound caused by off-target inhibition of DUSP6. Consequently, a combination of BCI with a MEK inhibitor successfully cured CSF3R-induced leukemia in a preclinical mouse model. Our findings underscore the pivotal role of DUSP1 in leukemic transformation driven by enhanced MAPK signaling and advocate for the development of a selective DUSP1 inhibitor for curative treatment outcomes.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Division of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Zachary Kincaid
- Division of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Mohammad Azhar
- Division of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Mohammad Azam
- Division of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
8
|
Gao J, Li Y, Chen J, Feng W, Bu J, Lu Z, Wang J. Emodin ameliorates acute radiation proctitis in mice by regulating AKT/MAPK/NF-κB/VEGF pathways. Int Immunopharmacol 2024; 132:111945. [PMID: 38555816 DOI: 10.1016/j.intimp.2024.111945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Emodin, a natural anthraquinone derivative isolated from the roots of Rheum officinale Baill, has many pharmacological effects including anti-inflammatory, antioxidant, antiviral, antibacterial and anti-cancer. However, little is known about the effect of emodin on acute radiation proctitis (ARP). The present study was conducted to determine its effects and elucidate its mechanisms involving AKT/MAPK/NF-κB/VEGF pathways in ARP mice. METHODS Total 60 C57BL/6 mice were divided randomly into control group, ARP group, AKT inhibitor MK-2206 group, and different doses of emodin groups. ARP mice were induced by 27 Gy of 6 MV X-ray pelvic local irradiation. MK-2206 was given orally for 2 weeks on alternate days. Emodin was administered daily by oral gavage for 2 weeks. Subsequently, all mice were sacrificed on day 15. The rectal tissues were obtained for further tests. The general signs score and the pathological grade were used to evaluate the severity of ARP. The expression of NF-κB, VEGF and AQP1 were determined by immunohistochemistry and western blot. The expression of p-AKT, p-ERK, p-JNK, p-p38, Bcl-2 and Bax were assessed using western blot. RESULTS The worse general signs and damaged tissue structure of ARP mice were profoundly ameliorated by emodin. The expression of p-AKT, p-ERK, NF-κB, VEGF and AQP1 were significantly increased, resulting in the inflammation-induced angiogenesis in ARP mice. However, the expression of p-JNK and p-p38 were decreased, leading to the reduction of apoptosis in ARP mice. Excitedly, emodin reversed these changes, not only inhibited inflammation-induced angiogenesis, but also promoted apoptosis. Notably, the effects of emodin were similar to that of AKT inhibitor MK-2206, suggesting the involvement of AKT signaling in the effect of emodin. CONCLUSION These results suggest that emodin attenuates ARP in mice, and the underlying mechanism might involve inhibition of the AKT/ERK/NF-κB/VEGF pathways and the induction of apoptosis mediated by JNK and p38.
Collapse
Affiliation(s)
- Jinsheng Gao
- Department of Preventive Treatment of Disease, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yousong Li
- Department of Traditional Chinese Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jiaohua Chen
- Department of Health Management, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Wen Feng
- Department of Preventive Treatment of Disease, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Jianchen Bu
- Department of Health Management, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Zixuan Lu
- Department of Emergency, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Jiandong Wang
- Department of General Surgery, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
9
|
El-Masry TA, El-Nagar MMF, El Mahdy NA, Alherz FA, Taher R, Osman EY. Potential Antitumor Activity of Combined Lycopene and Sorafenib against Solid Ehrlich Carcinoma via Targeting Autophagy and Apoptosis and Suppressing Proliferation. Pharmaceuticals (Basel) 2024; 17:527. [PMID: 38675487 PMCID: PMC11055160 DOI: 10.3390/ph17040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
An FDA-approved kinase inhibitor called sorafenib (SOR) is used to treat primary kidney and liver cancer as well as to stop the spread of advanced breast cancer. Side effects from SOR, such as palmar-plantar erythrodysesthesia syndrome, can negatively impact an individual's quality of life. There are a lot of data supporting the importance of lycopene (LYC) in preventing cancer. The antitumor properties of the combination of sorafenib and lycopene were examined in this study. A viability test against MDA-MB-231 was used to assess the anticancer efficacy of sorafenib, lycopene, and their combination in vitro. Moreover, a cell cycle analysis and Annexin-V/PI double staining were performed by using flow cytometry. In addition, the protein level of JNK-1, ERK-1, Beclin-1, P38, and P53 of the MDA-MB-231 cell line was estimated using ELISA kits. In addition, mice with SEC were divided into four equal groups at random (n = 10) to investigate the possible processes underlying the in vivo antitumor effect. Group IV (SEC-SOR-LYC) received SOR (30 mg/kg/day, p.o.) and LYC (20 mg/kg/day, p.o.); Group I received the SEC control; Group II received SEC-SOR (30 mg/kg/day, p.o.); and Group III received SEC-LYC (20 mg/kg/day, p.o.). The findings demonstrated that the combination of sorafenib and lycopene was superior to sorafenib and lycopene alone in causing early cell cycle arrest, suppressing the viability of cancer cells, and increasing cell apoptosis and autophagy. Likewise, the combination of sorafenib and lycopene demonstrated inhibition of the levels of Bcl-2, Ki-67, VEGF, IL-1β, and TNF-α protein. Otherwise, the quantities of the proteins BAX, P53, and caspase 3 were amplified. Furthermore, the combined treatment led to a substantial increase in TNF-α, caspase 3, and VEGF gene expression compared to the equivalent dosages of monotherapy. The combination of sorafenib and lycopene enhanced apoptosis and reduced inflammation, as seen by the tumor's decreased weight and volume, hence demonstrating its potential anticancer effect.
Collapse
Affiliation(s)
- Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Nageh A. El Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Fatemah A. Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Reham Taher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| | - Enass Y. Osman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (N.A.E.M.); (R.T.); (E.Y.O.)
| |
Collapse
|
10
|
Dua R, Bhardwaj T, Ahmad I, Somvanshi P. Investigating the potential of Juglans regia phytoconstituents for the treatment of cervical cancer utilizing network biology and molecular docking approach. PLoS One 2024; 19:e0287864. [PMID: 38626166 PMCID: PMC11020953 DOI: 10.1371/journal.pone.0287864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/22/2024] [Indexed: 04/18/2024] Open
Abstract
The fourth most frequent type of cancer in women and the leading cause of mortality for females worldwide is cervical cancer. Traditionally, medicinal plants have been utilized to treat various illnesses and ailments. The molecular docking method is used in the current study to look into the phytoconstituents of Juglans regia's possible anticancer effects on cervical cancer target proteins. This work uses the microarray dataset analysis of GSE63678 from the NCBI Gene Expression Omnibus database to find differentially expressed genes. Furthermore, protein-protein interactions of differentially expressed genes were constructed using network biology techniques. The top five hub genes (IGF1, FGF2, ESR1, MYL9, and MYH11) are then determined by computing topological parameters with Cytohubba. In addition, molecular docking research was performed on Juglans regia phytocompounds that were extracted from the IMPPAT database versus hub genes that had been identified. Utilizing molecular dynamics, simulation confirmed that prioritized docked complexes with low binding energies were stable.
Collapse
Affiliation(s)
- Riya Dua
- School of Computational & Integrative Sciences (SCIS), Jawaharlal Nehru University, JNU Campus, New Delhi, India
| | - Tulika Bhardwaj
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Irshad Ahmad
- College of Applied Medical Sciences, Department of Medical Rehabilitation Sciences, King Khalid University, Abha, Saudi Arabia
| | - Pallavi Somvanshi
- School of Computational & Integrative Sciences (SCIS), Jawaharlal Nehru University, JNU Campus, New Delhi, India
| |
Collapse
|
11
|
Zhang B, Zhang M, Tian J, Zhang X, Zhang D, Li J, Yang L. Advances in the regulation of radiation-induced apoptosis by polysaccharides: A review. Int J Biol Macromol 2024; 263:130173. [PMID: 38360238 DOI: 10.1016/j.ijbiomac.2024.130173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polysaccharides are biomolecules composed of monosaccharides that are widely found in animals, plants and microorganisms and are of interest for their various health benefits. Cumulative studies have shown that the modulation of radiation-induced apoptosis by polysaccharides can be effective in preventing and treating a wide range of radiation injuries with safety and few side effects. Therefore, this paper summarizes the monosaccharide compositions, molecular weights, and structure-activity relationships of natural polysaccharides that regulate radiation-induced apoptosis, and also reviews the molecular mechanisms by which these polysaccharides modulate radiation-induced apoptosis, primarily focusing on promoting cancer cell apoptosis to enhance radiotherapy efficacy, reducing radiation damage to normal tissues, and inhibiting apoptosis in normal cells. Additionally, the role of gut microbiota in mediating the interaction between polysaccharides and radiation is discussed, providing innovative ideas for various radiation injuries, including hematopoiesis, immunity, and organ damage. This review will contribute to a better understanding of the value of natural polysaccharides in the field of radiation and provide guidance for the development of natural radioprotective agents and radiosensitizers.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Mingyu Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xi Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Dan Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jiabao Li
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Lei Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
12
|
Turkowski K, Herzberg F, Günther S, Weigert A, Haselbauer T, Fink L, Brunn D, Grimminger F, Seeger W, Sültmann H, Stiewe T, Pullamsetti SS, Savai R. miR-147b mediated suppression of DUSP8 promotes lung cancer progression. Oncogene 2024; 43:1178-1189. [PMID: 38396293 PMCID: PMC11014796 DOI: 10.1038/s41388-024-02969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Dual-specificity phosphatase 8 (DUSP8) plays an important role as a selective c-Jun N-terminal kinase (JNK) phosphatase in mitogen-activated protein kinase (MAPK) signaling. In this study, we found that DUSP8 is silenced by miR-147b in patients with lung adenocarcinoma (LUAD), which correlates with poor overall survival. Overexpression of DUSP8 resulted in a tumor-suppressive phenotype in vitro and in vivo experimental models, whereas silencing DUSP8 with a siRNA approach abrogated the tumor-suppressive properties. We found that miR-147b is a posttranscriptional regulator of DUSP8 that is highly expressed in patients with LUAD and is associated with lower survival. NanoString analysis revealed that the MAPK signaling pathway is mainly affected by overexpression of miR-147b, leading to increased proliferation and migration and decreased apoptosis in vitro. Moreover, induction of miR-147b promotes tumor progression in vitro and in vivo experimental models. Knockdown of miR-147b restored DUSP8, decreased tumor progression in vitro, and increased apoptosis via JNK phosphorylation. These results suggest that miR-147b plays a key role in regulating MAPK signaling in LUAD. The link between DUSP8 and miR-147b may provide novel approaches for the treatment of lung cancer.
Collapse
Affiliation(s)
- Kati Turkowski
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany
| | - Frederik Herzberg
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Andreas Weigert
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Hesse, Germany
| | - Tamara Haselbauer
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, UEGP, Wetzlar, Germany
| | - David Brunn
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Friedrich Grimminger
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392, Giessen, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ), Germany Center for Lung Research (DZL), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thorsten Stiewe
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Soni S Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Hesse, Germany.
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
13
|
Win S, Than TA, Kaplowitz N. Mitochondrial P-JNK target, SAB (SH3BP5), in regulation of cell death. Front Cell Dev Biol 2024; 12:1359152. [PMID: 38559813 PMCID: PMC10978662 DOI: 10.3389/fcell.2024.1359152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cell death occurs in various circumstances, such as homeostasis, stress response, and defense, via specific pathways and mechanisms that are regulated by specific activator-induced signal transductions. Among them, Jun N-terminal kinases (JNKs) participate in various aspects, and the recent discovery of JNKs and mitochondrial protein SAB interaction in signal regulation of cell death completes our understanding of the mechanism of sustained activation of JNK (P-JNK), which leads to triggering of the machinery of cell death. This understanding will lead the investigators to discover the modulators facilitating or preventing cell death for therapeutic application in acute or chronic diseases and cancer. We discuss here the mechanism and modulators of the JNK-SAB-ROS activation loop, which is the core component of mitochondria-dependent cell death, specifically apoptosis and mitochondrial permeability transition (MPT)-driven necrosis, and which may also contribute to cell death mechanisms of ferroptosis and pyroptosis. The discussion here is based on the results and evidence discovered from liver disease models, but the JNK-SAB-ROS activation loop to sustain JNK activation is universally applicable to various disease models where mitochondria and reactive oxygen species contribute to the mechanism of disease.
Collapse
Affiliation(s)
- Sanda Win
- *Correspondence: Sanda Win, ; Neil Kaplowitz,
| | | | - Neil Kaplowitz
- Department of Medicine, Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Liu X, Ye Z, Rao D, Chen Q, Zhang Z. DUSP4 maintains the survival and LSD1 protein stability in esophageal squamous cell carcinoma cells by inhibiting JNK signaling-dependent autophagy. In Vitro Cell Dev Biol Anim 2024; 60:115-122. [PMID: 38286920 DOI: 10.1007/s11626-023-00845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/13/2023] [Indexed: 01/31/2024]
Abstract
DUSP4 is a biomarker of esophageal squamous cell carcinoma (ESCC), which is responsible for the prognosis in ESCC. However, the underlying mechanism of DUSP4-regulated ESCC carcinogenesis is unknown. As a negative regulator of JNK, DUSP4 can inhibit autophagy, which contributes to tumorigenesis. This study aimed to explore the role of autophagy in DUSP4-regulated ESCC carcinogenesis. Our results showed that DUSP4 overexpression inhibited autophagy and promoted LSD1 protein expression in ESCC cells, while DUSP4 silencing showed the opposite effects. However, DUSP4 overexpression and silencing did not affect LSD1 mRNA expression. But the regulatory ability of DUSP4 overexpression on autophagy, death level, and LSD1 protein was reversed by rapamycin. In addition, DUSP4 overexpression inhibited JNK and Bcl2 phosphorylation and the dissociation of Bcl2-Beclin1 complex, while DUSP4 silencing promoted JNK and Bcl2 phosphorylation. Moreover, the regulatory ability of DUSP4 overexpression on autophagy, death, and LSD1 protein was reversed by JNK activator anisomycin. The xenograft assays also showed that DUSP4 overexpression-promoted ESCC tumor growth in vivo and LC3II and LSD1 protein expression in tumor tissues were reversed by rapamycin or anisomycin. Overall, DUSP4 inhibits Bcl2-Beclin1-autophagy signal transduction through the negative regulation of JNK, thus suppressing autophagic death and the autophagic degradation of LSD1 in ESCC, by which DUSP4 promotes ESCC carcinogenesis.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Gannan Branch of National Clinical Research Center for Geriatrics Ganzhou 341000, Jiangxi, China
| | - Zhou Ye
- Department of Digestive, The 900Th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350001, Fujian, China
| | - Dingyu Rao
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, No. 3, Outangli, Xingannan Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Qianshun Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| | - Zuxiong Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Gannan Medical University, No. 3, Outangli, Xingannan Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
15
|
Ng GYQ, Loh ZWL, Fann DY, Mallilankaraman K, Arumugam TV, Hande MP. Role of Mitogen-Activated Protein (MAP) Kinase Pathways in Metabolic Diseases. Genome Integr 2024; 15:e20230003. [PMID: 38770527 PMCID: PMC11102075 DOI: 10.14293/genint.14.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Physiological processes that govern the normal functioning of mammalian cells are regulated by a myriad of signalling pathways. Mammalian mitogen-activated protein (MAP) kinases constitute one of the major signalling arms and have been broadly classified into four groups that include extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and ERK5. Each signalling cascade is governed by a wide array of external and cellular stimuli, which play a critical part in mammalian cells in the regulation of various key responses, such as mitogenic growth, differentiation, stress responses, as well as inflammation. This evolutionarily conserved MAP kinase signalling arm is also important for metabolic maintenance, which is tightly coordinated via complicated mechanisms that include the intricate interaction of scaffold proteins, recognition through cognate motifs, action of phosphatases, distinct subcellular localisation, and even post-translational modifications. Aberration in the signalling pathway itself or their regulation has been implicated in the disruption of metabolic homeostasis, which provides a pathophysiological foundation in the development of metabolic syndrome. Metabolic syndrome is an umbrella term that usually includes a group of closely associated metabolic diseases such as hyperglycaemia, hyperlipidaemia, and hypertension. These risk factors exacerbate the development of obesity, diabetes, atherosclerosis, cardiovascular diseases, and hepatic diseases, which have accounted for an increase in the worldwide morbidity and mortality rate. This review aims to summarise recent findings that have implicated MAP kinase signalling in the development of metabolic diseases, highlighting the potential therapeutic targets of this pathway to be investigated further for the attenuation of these diseases.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zachary Wai-Loon Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Yao J, Qiu Y, Xing J, Li Z, Zhang A, Tu K, Peng M, Wu X, Yang F, Wu A. Highly-Efficient Gallium-Interference Tumor Therapy Mediated by Gallium-Enriched Prussian Blue Nanomedicine. ACS NANO 2024. [PMID: 38197597 DOI: 10.1021/acsnano.3c10994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Prussian blue (PB)-based nanomedicines constructed from metal ion coordination remain restricted due to their limited therapeutic properties, and their manifold evaluation complexity still needs to be unraveled. Owing to the high similarities of its ionic form to iron (Fe) and the resulting cellular homeostasis disruption performance, physiologically unstable and low-toxicity gallium (Ga) has garnered considerable attention clinically as an anti-carcinogen. Herein, Ga-based nanoparticles (NPs) with diverse Ga contents are fabricated in one step using PB with abundant Fe sites as a substrate for Ga substitution, which aims to overcome the deficiencies of both and develop an effective nanomedicine. A systematic comparison of their physicochemical properties effectively reveals the saturated Ga introduction state during the synthesis process, further identifying the most Ga-enriched PB NPs with a substitution content of >50% as a nanomedicine for subsequent exploration. It is verified that the Ga interference mechanisms mediated by the most Ga-enriched PB NPs are implicated in metabolic disorders, ionic homeostasis disruption, cellular structure dysfunction, apoptosis, autophagy, and target activation of the mammalian target of the rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways. This study provides significant guidance on exploiting clinically approved agents for Ga interference and lays the foundation for the next generation of PB-based theranostic agents.
Collapse
Affiliation(s)
- Junlie Yao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Qiu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Xing
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zihou Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Aoran Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Kewei Tu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Minjie Peng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Xiaoxia Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo 315201, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo 315201, China
| |
Collapse
|
17
|
See WZC, Naidu R, Tang KS. Paraquat and Parkinson's Disease: The Molecular Crosstalk of Upstream Signal Transduction Pathways Leading to Apoptosis. Curr Neuropharmacol 2024; 22:140-151. [PMID: 36703582 PMCID: PMC10716878 DOI: 10.2174/1570159x21666230126161524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD) is a heterogeneous disease involving a complex interaction between genes and the environment that affects various cellular pathways and neural networks. Several studies have suggested that environmental factors such as exposure to herbicides, pesticides, heavy metals, and other organic pollutants are significant risk factors for the development of PD. Among the herbicides, paraquat has been commonly used, although it has been banned in many countries due to its acute toxicity. Although the direct causational relationship between paraquat exposure and PD has not been established, paraquat has been demonstrated to cause the degeneration of dopaminergic neurons in the substantia nigra pars compacta. The underlying mechanisms of the dopaminergic lesion are primarily driven by the generation of reactive oxygen species, decrease in antioxidant enzyme levels, neuroinflammation, mitochondrial dysfunction, and ER stress, leading to a cascade of molecular crosstalks that result in the initiation of apoptosis. This review critically analyses the crucial upstream molecular pathways of the apoptotic cascade involved in paraquat neurotoxicity, including mitogenactivated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR), and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Wesley Zhi Chung See
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
18
|
Muhammad YA, Omar AM, Ahmed F, Khayat MT, Malebari AM, Ibrahim SM, Mass SA, Elfaky MA, El-Araby ME. Exploring antiproliferative activities and kinase profile of ortho-substituted N-(4-(2-(benzylamino)-2-oxoethyl)phenyl)benzamides. Chem Biol Drug Des 2024; 103:e14379. [PMID: 37873688 DOI: 10.1111/cbdd.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Designing kinase inhibitors that bind to the substrate site of oncogenic kinases in a promising, albeit less explored, approach to kinase inhibition as it was sought to avoid the issue of untoward off-target modulations. Our previously identified compound KAC-12 with a meta-chlorophenyl substitution was an example of this approach. While it showed confirmed inhibitory activity against cancer cells, this substitution shifted the profile of affected targets away from Src/tubulin which were seen with the parent KX-01. In this paper, we synthesized compounds with ortho-substitutions, and we investigated the effect of such substitutions on their cellular and subcellular activities. The compound N-(4-(2-(benzylamino)-2-oxoethyl)phenyl)-2-(morpholine-4-carbonyl)benzamide (4) exhibited substantial activities against cell lines such HCT116 (IC50 of 0.97 μM) and IC50 HL60 (2.84 μM). Kinase profiling showed that compound 4 trended consistently with KAC-12 as it did not affect Src, but it had more impact on members of the Src family of kinases (SFK) such as Yes, Hck, Fyn, Lck, and Lyn. Both compounds exhibited profound downregulation effects on Erk1/2 but differed on others such as GSK3α/β and C-Jun. Collectively, this study further support to the hypothesis that small structural changes might bring higher changes in their kinome profile.
Collapse
Affiliation(s)
- Yosra A Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azizah M Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara M Ibrahim
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaza A Mass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Johnson L, Sarosiek KA. Role of intrinsic apoptosis in environmental exposure health outcomes. Trends Mol Med 2024; 30:56-73. [PMID: 38057226 DOI: 10.1016/j.molmed.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Environmental exposures are linked to diseases of high public health concern, including cancer, neurodegenerative disorders, and autoimmunity. These diseases are caused by excessive or insufficient cell death, prompting investigation of mechanistic links between environmental toxicants and dysregulation of cell death pathways, including apoptosis. This review describes how legacy and emerging environmental exposures target the intrinsic apoptosis pathway to potentially drive pathogenesis. Recent discoveries reveal that dynamic regulation of apoptosis may heighten the vulnerability of healthy tissues to exposures in children, and that apoptotic signaling can guide immune responses, tissue repair, and tumorigenesis. Understanding how environmental toxicants dysregulate apoptosis will uncover opportunities to deploy apoptosis-modulating agents for the treatment or prevention of exposure-linked diseases.
Collapse
Affiliation(s)
- Lissah Johnson
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
20
|
Zhou Y, Fang C, Yuan L, Guo M, Xu X, Shao A, Zhang A, Zhou D. Redox homeostasis dysregulation in noise-induced hearing loss: oxidative stress and antioxidant treatment. J Otolaryngol Head Neck Surg 2023; 52:78. [PMID: 38082455 PMCID: PMC10714662 DOI: 10.1186/s40463-023-00686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Noise exposure is an important cause of acquired hearing loss. Studies have found that noise exposure causes dysregulated redox homeostasis in cochlear tissue, which has been recognized as a signature feature of hearing loss. Oxidative stress plays a pivotal role in many diseases via very complex and diverse mechanisms and targets. Reactive oxygen species are products of oxidative stress that exert toxic effects on a variety of physiological activities and are considered significant in noise-induced hearing loss (NIHL). Endogenous cellular antioxidants can directly or indirectly counteract oxidative stress and regulate intracellular redox homeostasis, and exogenous antioxidants can complement and enhance this effect. Therefore, antioxidant therapy is considered a promising direction for NIHL treatment. However, drug experiments have been limited to animal models of NIHL, and these experiments and related observations are difficult to translate in humans; therefore, the mechanisms and true effects of these drugs need to be further analyzed. This review outlines the effects of oxidative stress in NIHL and discusses the main mechanisms and strategies of antioxidant treatment for NIHL.
Collapse
Affiliation(s)
- Yuhang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengchen Guo
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Danyang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
21
|
Singh D, Banerjee G, Verma N, Sinha AK. MAP kinases may mediate regulation of the cell cycle in rice by E2F2 phosphorylation. FEBS Lett 2023; 597:2993-3009. [PMID: 37843487 DOI: 10.1002/1873-3468.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023]
Abstract
E2F is the key transcription factor that determines the proliferative status of cells by regulating the G1/S phase of the cell cycle. In this study, we show that in rice (Oryza sativa), OsE2F2 is a phosphorylation target of MAP kinases. The MAP kinases OsMPK3, OsMPK4, and OsMPK6 interact with and phosphorylate OsE2F2. Next, we determined the serine and threonine residues that could play a role in the phosphorylation of OsE2F2. Subsequently, our study suggests a possible link between MAP kinase-mediated OsE2F2 phosphorylation and its impact on DNA proliferation in the roots of rice seedlings. Finally, we found positive feedback regulation of OsMPK4 by OsE2F2. Therefore, our study hints at the potential impact of MAP kinase signaling on the cell cycle of rice plants.
Collapse
Affiliation(s)
- Dhanraj Singh
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Delhi, New Delhi, India
| | | |
Collapse
|
22
|
Feng Q, Hu K, Hu H, Lu Y, Zhang H, Wang G, Zhang Q, Xu Z, Gao X, Jia X, Zhu H, Song D, Yi H, Peng Y, Wu X, Li B, Zhu W, Shi J. Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells. Int Immunopharmacol 2023; 125:111139. [PMID: 37913572 DOI: 10.1016/j.intimp.2023.111139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The most common neoplasm among adult lymphomas is diffuse large B-cell lymphoma (DLBCL), typically characterized by pain-free and progressive lymph node enlargement. Due to high heterogeneity of DLBCL, 30-40 % of patients are resistant to R-CHOP standard chemoimmunotherapy. DCZ0358 is a new compound designed and synthesized from berberine by our group and the molecular mechanism by which it inhibited DLBCL growth has attracted our widespread attention. In this study, we employed the CCK8 assay to reveal that DCZ0358 inhibited proliferation in a dependent manner of time and dosage of DLBCL cells. Moreover, flowcytometry and western blot results showed that DCZ0358 downregulated the expression of CDK4, CDK6 and CyclinD1 to block cell cycle progression in G0/G1 phase. Furthermore, DCZ0358 enhanced mitochondrial membrane potential depolarization, promoted mitochondrial permeability transport pore openness, increased cytoplastic Ca2+ levels and decreased intracellular adenosine triphosphate production, which led to mitochondrial dysfunction. In particular, DCZ0358 treatment triggered cell apoptosis and elevated intracellular reactive oxygen species (ROS) levels, which subsequently mediated JNK pathway activation. Further research indicated the pre-treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358. Most importantly, DCZ0358 exhibited synergistic anti-tumor effects when combined with etoposide, a common clinical anti-DLBCL drug, both in vitro and certainly in vivo. Above results demonstrated anti-tumor molecular mechanism of DCZ0358 in DLBCL cells and highlighted the ROS/JNK/DNA damage pathway as a potential target in therapies, which have implications for the development of more effective clinical treatments for DLBCL.
Collapse
Affiliation(s)
- Qilin Feng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huifang Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yumeng Lu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Guanli Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qikai Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xinyan Jia
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongfei Yi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Peng
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bo Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
23
|
Duan Z, Li Z, Wang Z, Chen C, Luo Y. Chimeric antigen receptor macrophages activated through TLR4 or IFN-γ receptors suppress breast cancer growth by targeting VEGFR2. Cancer Immunol Immunother 2023; 72:3243-3257. [PMID: 37438548 PMCID: PMC10992605 DOI: 10.1007/s00262-023-03490-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Chimeric antigen receptor macrophage (CAR-M) is a promising immunotherapy strategy of anti-tumor due to its high infiltration, direct phagocytosis of tumor cells, immunomodulation of tumor microenvironment (TME) and linkage of innate and adaptive immunity. Here a series of novelly designed CAR-Ms by targeting vascular endothelial growth factor receptor-2 (VEGFR2), which highly expressed in tumor cells and TME, were evaluated. Their activation signals were transduced by Tlr4 or Ifn-γ receptors either alone or in combination, which were designed to mediate M1 polarization of macrophages as the downstream of lipopolysaccharide or Ifn-γ that had been widely reported. Our results showed that VEGFR2-targeting CAR-Ms could be activated under the stimulation of VEGFR2-expressing cells. They exhibited higher expression of CD86, MHCII and TNF-α in vitro and enhanced tumor suppressive abilities in vivo. Implantation of these CAR-Ms into 4T1 breast cancer-bearing mice could obviously inhibit the progression of tumor without significant toxic side effects, especially the group of mmC in which constructed with Tlr4 as the intracellular domain of CAR. In conclusion, this research provides a promising design of CAR that induce macrophages activation by Tlr4 and/or Ifn-γ receptors, and these CAR-Ms could effectively inhibit tumor growth through targeting VEGFR2.
Collapse
Affiliation(s)
- Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhen Li
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Ziyuan Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
24
|
Swaminathan S, Karvembu R. Dichloro Ru(II)- p-cymene-1,3,5-triaza-7-phosphaadamantane (RAPTA-C): A Case Study. ACS Pharmacol Transl Sci 2023; 6:982-996. [PMID: 37470017 PMCID: PMC10353064 DOI: 10.1021/acsptsci.3c00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 07/21/2023]
Abstract
The use of organometallic compounds to treat various phenotypes of cancer has attracted increased interest in recent decades. Organometallic compounds, which are transitional between conventional inorganic and organic materials, have outstanding and one-of-a-kind features that offer fresh insight into the development of inorganic medicinal chemistry. The therapeutic potential of ruthenium(II)-arene RAPTA-type compounds is being thoroughly investigated, specifically owing to the excellent antimetastatic property of the initial candidate RAPTA-C. This review gives a thorough analysis of this complex and its evolution as a potential anticancer drug candidate. The numerous mechanistic investigations of RAPTA-C are discussed, and they are connected to the macroscopic biological characteristics that have been found. The "multitargeted" complex described here target enzymes, peptides, and intracellular proteins in addition to DNA that allow it to specifically target cancer cells. Understanding these may allow researchers to find specific targets and tune a new-generation organometallic complex accordingly.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
- Center
for Computational Modeling, Chennai Institute
of Technology (CIT), Chennai 600069, India
| | - Ramasamy Karvembu
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| |
Collapse
|
25
|
Yue W, Deng X, Wang Z, Jiang M, Hu R, Duan Y, Wang Q, Cui J, Fang Y. Inhibition of the MEK/ERK pathway suppresses immune overactivation and mitigates TDP-43 toxicity in a Drosophila model of ALS. Immun Ageing 2023; 20:27. [PMID: 37340309 DOI: 10.1186/s12979-023-00354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
TDP-43 is an important DNA/RNA-binding protein that is associated with age-related neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD); however, its pathomechanism is not fully understood. In a transgenic RNAi screen using Drosophila as a model, we uncovered that knockdown (KD) of Dsor1 (the Drosophila MAPK kinase dMEK) suppressed TDP-43 toxicity without altering TDP-43 phosphorylation or protein levels. Further investigation revealed that the Dsor1 downstream gene rl (dERK) was abnormally upregulated in TDP-43 flies, and neuronal overexpression of dERK induced profound upregulation of antimicrobial peptides (AMPs). We also detected a robust immune overactivation in TDP-43 flies, which could be suppressed by downregulation of the MEK/ERK pathway in TDP-43 fly neurons. Furthermore, neuronal KD of abnormally increased AMPs improved the motor function of TDP-43 flies. On the other hand, neuronal KD of Dnr1, a negative regulator of the Drosophila immune deficiency (IMD) pathway, activated the innate immunity and boosted AMP expression independent of the regulation by the MEK/ERK pathway, which diminished the mitigating effect of RNAi-dMEK on TDP-43 toxicity. Finally, we showed that an FDA-approved MEK inhibitor trametinib markedly suppressed immune overactivation, alleviated motor deficits and prolonged the lifespan of TDP-43 flies, but did not exhibit a lifespan-extending effect in Alzheimer disease (AD) or spinocerebellar ataxia type 3 (SCA3) fly models. Together, our findings suggest an important role of abnormal elevation of the MEK/ERK signaling and innate immunity in TDP-43 pathogenesis and propose trametinib as a potential therapeutic agent for ALS and other TDP-43-related diseases.
Collapse
Affiliation(s)
- Wenkai Yue
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Deng
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao Wang
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Mingsheng Jiang
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rirong Hu
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjia Duan
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiangqiang Wang
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jihong Cui
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yanshan Fang
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Liu HF, Pan XW, Li HQ, Zhang XN, Zhao XH. Amino Acid Composition of a Chum Salmon ( Oncorhynchus keta) Skin Gelatin Hydrolysate and Its Antiapoptotic Effects on Etoposide-Induced Osteoblasts. Foods 2023; 12:2419. [PMID: 37372630 DOI: 10.3390/foods12122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
A gelatin hydrolysate with a hydrolysis degree of 13.7% was generated using the skin gelatin of chum salmon (Oncorhynchus keta) and papain-catalyzed enzymatic hydrolysis. The results of analysis demonstrated that four amino acids, namely Ala, Gly, Pro, and 4-Hyp, were the most abundant in the obtained gelatin hydrolysate with measured molar percentages ranging from 7.2% to 35.4%; more importantly, the four amino acids accounted for 2/3 of the total measured amino acids. However, two amino acids, Cys and Tyr, were not detected in the generated gelatin hydrolysate. The experimental results indicated that the gelatin hydrolysate at a dose of 50 µg/mL could combat etoposide-induced apoptosis in human fetal osteoblasts (hFOB 1.19 cells), causing a decrease in the total apoptotic cells from 31.6% to 13.6% (via apoptotic prevention) or 13.3% to 11.8% (via apoptotic reversal). Meanwhile, the osteoblasts exposed to the gelatin hydrolysate showed expression changes for 157 genes (expression folds > 1.5-fold), among which JNKK, JNK1, and JNK3 were from the JNK family with a 1.5-2.7-fold downregulated expression. Furthermore, the protein expressions of JNKK, JNK1, JNK3, and Bax in the treated osteoblasts showed a 1.25-1.41 fold down-regulation, whereas JNK2 expression was not detected in the osteoblasts. It is thus suggested that gelatin hydrolysate is rich in the four amino acids and has an in vitro antiapoptotic effect on etoposide-stimulated osteoblasts via mitochondrial-mediated JNKK/JNK(1,3)/Bax downregulation.
Collapse
Affiliation(s)
- Hong-Fang Liu
- Harbin Comprehensive Inspection and Detection Centre for Product Quality, Harbin 150036, China
| | - Xiao-Wen Pan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Hua-Qiang Li
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiao-Nan Zhang
- School of Life Science, Jiaying University, Meizhou 514015, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
27
|
Qian H, Ding Y, Deng X, Huang W, Li Z, Liu F, Zhang J, Wang L, Liu J, Yuan Y, Hou S, Chen X, Ma L. Synthesis-accessibility-oriented design of c-Jun N-terminal kinase 1 inhibitor. Eur J Med Chem 2023; 256:115442. [PMID: 37156184 DOI: 10.1016/j.ejmech.2023.115442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe and progressive lung disease with poor prognosis and limited treatment options. The c-Jun N-Terminal Kinase 1 (JNK1), a key component of the MAPK pathway, has been implicated in the pathogenesis of IPF and represents a potential therapeutic target. However, the development of JNK1 inhibitors has been slowed, partly due to synthetic complexity in medicinal chemistry modification. Here, we report a synthesis-accessibility-oriented strategy for designing JNK1 inhibitors based on computational prediction of synthetic feasibility and fragment-based molecule generation. This strategy led to the discovery of several potent JNK1 inhibitors, such as compound C6 (IC50 = 33.5 nM), which exhibited comparable activity to the clinical candidate CC-90001 (IC50 = 24.4 nM). The anti-fibrotic effect of C6 was further confirmed in animal model of pulmonary fibrosis. Moreover, compound C6 could be synthesized in only two steps, compared to nine steps for CC-90001. Our findings suggest that compound C6 is a promising lead for further optimization and development as a novel anti-fibrotic agent targeting JNK1. In addition, the discovery of C6 also demonstrates the feasibility of synthesis-accessibility-oriented strategy in lead discovery.
Collapse
Affiliation(s)
- Hewen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanqing Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xingyu Deng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Weiwei Huang
- Hangzhou Matrix Biopharmaceutical Co., Ltd, Hangzhou, Zhejiang, 311121, China
| | - Zhenzhen Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Fengling Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jie Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Junping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
28
|
Bai Y, Zhou J, Zhu H, Tao Y, Wang L, Yang L, Wu H, Huang F, Shi H, Wu X. Isoliquiritigenin inhibits microglia-mediated neuroinflammation in models of Parkinson's disease via JNK/AKT/NFκB signaling pathway. Phytother Res 2023; 37:848-859. [PMID: 36484427 DOI: 10.1002/ptr.7665] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Isoliquiritigenin (ISL) is a flavonoid with numerous pharmacological properties, including anti-inflammation, yet its role in Parkinson's disease (PD) with microglia-mediated neuroinflammation remains unknown. In this study, the effects of ISL on inhibiting microglia-mediated neuroinflammation in PD were evaluated in the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model of PD and in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our results showed that ISL prevented behavioral deficits and excessive microglial activation in MPTP-treated mice. Moreover, ISL was found to prevent the elevation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and mitigate the phosphorylation of c-Jun N-terminal protein kinase (JNK), protein kinase B (AKT), nuclear factor kappa light-chain enhancer of activated B cells (NFκB), and inhibitor of NFκB protein ɑ (IκBɑ) in the substantia nigra and striatum of MPTP-treated mice and LPS-stimulated BV-2 cells. Meanwhile, in LPS-stimulated BV-2 cells, ISL inhibited the production of inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α). In addition, the agonist of JNK partly abolished the inhibitory effects of ISL in LPS-treated BV-2 cells. Our results demonstrated that ISL inhibits microglia-mediated neuroinflammation in PD models probably through deactivating JNK/AKT/NFκB signaling pathways. The novel findings suggest the therapeutic potential of ISL for microglia-mediated neuroinflammation in PD.
Collapse
Affiliation(s)
- Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jin Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Han Zhu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Chen H, Chen X, Ma J. The mitigation mechanism of hesperidin on deoxynivalenol toxicity in grass carp hepatocytes via decreasing ROS accumulation and inhibiting JNK phosphorylation. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108646. [PMID: 36842640 DOI: 10.1016/j.fsi.2023.108646] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON), a crucial kind of mycotoxin, is found globally present in the contaminated cereal crops including wheat, barley, maize and rice. Hesperidin (HDN) is a flavonoid with a variety of biological activities found in high concentrations in citrus fruits. However, the potential protective effects of HDN on cell damage under DON toxicity, and the role of oxidative stress, inflammation, autophagy and apoptosis in it, remain unclear. Therefore, we treated grass carp (Ctenopharyngodon idellus) liver cells (L8824 cell) with DON and HDN for 24 h. The results showed that DON exposure caused a higher ROS accumulation, activated inflammation, autophagy and apoptosis, induced the expression of cytokines (NF-kappaB, TNF-α, IL-1β, IL-6), triggered BCL2/BAX-mediated apoptosis and LC3B/P62-dependent autophagy in the L8824 cell line. Moreover, HDN reduced DON exposure-induced inflammation and autophagy by decreasing ROS accumulation and reduced DON exposure-induced apoptosis by inhibiting JNK phosphorylation. These results partly explained the mechanism of biological threat on fish under DON exposure and the potential application value of HDN in aquaculture.
Collapse
Affiliation(s)
- Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China
| | - Xin Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China.
| |
Collapse
|
30
|
Nandy N, Roy JK. Rab11 negatively regulates wingless preventing JNK-mediated apoptosis in Drosophila epithelium during embryonic dorsal closure. Cell Tissue Res 2023; 391:485-504. [PMID: 36705747 DOI: 10.1007/s00441-023-03740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
Rab11, a small Ras like GTPase marking the recycling endosomes, plays instrumental roles in Drosophila embryonic epithelial morphogenesis where an array of reports testify its importance in the maintenance of cyto-architectural as well as functional attributes of the concerned cells. Proper Rab11 functions ensure a precise regulation of developmentally active cell signaling pathways which in turn promote the expression of morphogens and other physico-chemical cues which finally forge an embryo out of a single layer of cells. Earlier reports have established that Rab11 functions are vital for fly embryonic development where amorphic mutants such as EP3017 homozygotes show a fair degree of epithelial defects along with incomplete dorsal closure. Here, we present a detailed account of the effects of Rab11 loss of function in the dorso-lateral epithelium which resulted in severe dorsal closure defects along with an elevated JNK-Dpp expression. We further observed that the dorso-lateral epithelial cells undergo epithelial to mesenchymal transition as well as apoptosis in Rab11 mutants with elevated expression levels of MMP1 and Caspase-3, where Caspase-3 contributes to the Rab11 knockout phenotype contrary to the knockdown mutants or hypomorphs. Interestingly, the elevated expressions of the core JNK-Dpp signaling could be rescued with a simultaneous knockdown of wingless in the Rab11 knockout mutants suggesting a genetic interaction of Rab11 with the Wingless pathway during dorsal closure, an ideal model of epithelial wound healing.
Collapse
Affiliation(s)
- Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
31
|
Halder S, Chatterjee S. Bistability regulates TNFR2-mediated survival and death of T-regulatory cells. J Biol Phys 2023; 49:95-119. [PMID: 36780123 PMCID: PMC9958227 DOI: 10.1007/s10867-023-09625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 02/14/2023] Open
Abstract
A subgroup of T cells called T-regulatory cells (Tregs) regulates the body's immune responses to maintain homeostasis and self-tolerance. Tregs are crucial for preventing illnesses like cancer and autoimmunity. However, contrasting patterns of Treg frequency are observed in different autoimmune diseases. The commonality of tumour necrosis factor receptor 2 (TNFR2) defects and decrease in Treg frequency on the onset of autoimmunity demands an in-depth study of the TNFR2 pathway. To unravel this mystery, we need to study the mechanism of cell survival and death in Tregs. Here, we construct an ordinary differential equation (ODE)-based model to capture the mechanism of cell survival and apoptosis in Treg cells via TNFR2 signalling. The sensitivity analysis reveals that the input stimulus, the concentration of tumour necrosis factor (TNF), is the most sensitive parameter for the model system. The model shows that the cell goes into survival or apoptosis via bistable switching. Through hysteretic switching, the system tries to cope with the changing stimuli. In order to understand how stimulus strength and feedback strength influence cell survival and death, we compute bifurcation diagrams and obtain cell fate maps. Our results indicate that the elevated TNF concentration and increased c-Jun N-terminal kinase (JNK) phosphorylation are the major contributors to the death of T-regulatory cells. Biological evidence cements our hypothesis and can be controlled by reducing the TNF concentration. Finally, the system was studied under stochastic perturbation to see the effect of noise on the system's dynamics. We observed that introducing random perturbations disrupts the bistability, reducing the system's bistable region, which can affect the system's normal functioning.
Collapse
Affiliation(s)
- Suvankar Halder
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001 Haryana India
| |
Collapse
|
32
|
Liu YX, Yang JY, Sun JL, Wang AC, Wang XY, Zhu LB, Cao HH, Huang ZH, Liu SH, Xu JP. Reactive oxygen species-mediated phosphorylation of JNK is involved in the regulation of BmFerHCH on Bombyx mori nucleopolyhedrovirus proliferation. Int J Biol Macromol 2023; 235:123834. [PMID: 36842745 DOI: 10.1016/j.ijbiomac.2023.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
c-Jun N-terminal kinase (JNK) phosphorylation is widely observed during virus infection, modulating various aspects of the virus-host interaction. In our previous research, we have proved that B. mori ferritin heavy-chain homolog (BmFerHCH), an inhibitor of reactive oxygen species (ROS), facilitates B. mori nucleopolyhedrovirus (BmNPV) proliferation. However, one question remains: Which downstream signaling pathways does BmFerHCH regulate by inhibiting ROS? Here, we first determined that silencing BmFerHCH inhibits BmNPV proliferation, and this inhibition depends on ROS. Then, we substantiated that BmNPV infection activates the JNK signaling pathway. Interestingly, the JNK phosphorylation during BmNPV infection is activated by ROS. Further, we found that the enhanced nuclear translocation of phospho-JNK induced by BmNPV infection was dramatically reduced by pretreatment with the antioxidant N-acetylcysteine (NAC), whereas there was more detectable phospho-JNK in the cytoplasm. Next, we investigated how changes in BmFerHCH expression affect JNK phosphorylation. BmFerHCH overexpression suppressed the phosphorylation of JNK and nuclear translocation of phospho-JNK during BmNPV infection, whereas BmFerHCH knockdown facilitated phosphorylation of JNK and nuclear translocation of phospho-JNK. By measuring the viral load, we found the inhibitory effect of BmFerHCH knockdown on BmNPV infection depends on phosphorylated JNK. In addition, the JNK signaling pathway was involved in BmNPV-triggered apoptosis. Hence, we hypothesize that ROS-mediated JNK phosphorylation is involved in the regulation of BmFerHCH on BmNPV proliferation. These results elucidate the molecular mechanisms and signaling pathways of BmFerHCH-mediated response to BmNPV infection.
Collapse
Affiliation(s)
- Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China; National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Jia-Yue Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jun-Long Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - An-Cheng Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Xing-Ya Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Zhi-Hao Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Shi-Huo Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China.
| |
Collapse
|
33
|
Bai L, Zhou L, Han W, Chen J, Gu X, Hu Z, Yang Y, Li W, Zhang X, Niu C, Chen Y, Li H, Cui J. BAX as the mediator of C-MYC sensitizes acute lymphoblastic leukemia to TLR9 agonists. J Transl Med 2023; 21:108. [PMID: 36765389 PMCID: PMC9921080 DOI: 10.1186/s12967-023-03969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The prognosis of B-cell acute lymphoblastic leukemia (B-ALL) has improved significantly with current first-line therapy, although the recurrence of B-ALL is still a problem. Toll-like receptor 9 (TLR9) agonists have shown good safety and efficiency as immune adjuvants. Apart from their immune regulatory effect, the direct effect of TLR9 agonists on cancer cells with TLR9 expression cannot be ignored. However, the direct effect of TLR9 agonists on B-ALL remains unknown. METHODS We discussed the relationship between TLR9 expression and the clinical characteristics of B-ALL and explored whether CpG 685 exerts direct apoptotic effect on B-ALL without inhibiting normal B-cell function. By using western blot, co-immunoprecipitation, immunofluorescence co-localization, and chromatin immunoprecipitation, we explored the mechanism of the apoptosis-inducing effect of CpG 685 in treating B-ALL cells. By exploring the mechanism of CpG 685 on B-ALL, the predictive biomarkers of the efficacy of CpG 685 in treating B-ALL were explored. These efficiencies were also confirmed in mouse model as well as clinical samples. RESULTS High expression of TLR9 in B-ALL patients showed good prognosis. C-MYC-induced BAX activation was the key to the effect of CpG oligodeoxynucleotides against B-ALL. C-MYC overexpression promoted P53 stabilization, enhanced Bcl-2 associated X-protein (BAX) activation, and mediated transcription of the BAX gene. Moreover, combination therapy using CpG 685 and imatinib, a BCR-ABL kinase inhibitor, could reverse resistance to CpG 685 or imatinib alone by promoting BAX activation and overcoming BCR-ABL1-independent PI3K/AKT activation. CONCLUSION TLR9 is not only a prognostic biomarker but also a potential target for B-ALL therapy. CpG 685 monotherapy might be applicable to Ph- B-ALL patients with C-MYC overexpression and without BAX deletion. CpG 685 may also serve as an effective combinational therapy against Ph+ B-ALL.
Collapse
Affiliation(s)
- Ling Bai
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Lei Zhou
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Wei Han
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Jingtao Chen
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiaoyi Gu
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, Changchun, 130021 China
| | - Zheng Hu
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, Changchun, 130021 China
| | - Yongguang Yang
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, Changchun, 130021 China
| | - Wei Li
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Xiaoying Zhang
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Chao Niu
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Yongchong Chen
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Hui Li
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
34
|
Gao Z, Gao Z, Zhang H, Hou S, Zhou Y, Liu X. Targeting STING: From antiviral immunity to treat osteoporosis. Front Immunol 2023; 13:1095577. [PMID: 36741390 PMCID: PMC9891206 DOI: 10.3389/fimmu.2022.1095577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
The cGAS-STING signaling pathway can trigger innate immune responses by detecting dsDNA from outside or within the host. In addition, the cGAS-STING signaling pathway has emerged as a critical mediator of the inflammatory response and a new target for inflammatory diseases. STING activation leads to dimerization and translocation to the endoplasmic reticulum Golgi intermediate compartment or Golgi apparatus catalyzed by TBK1, triggers the production of IRF3 and NF-κB and translocates to the nucleus to induce a subsequent interferon response and pro-inflammatory factor production. Osteoporosis is a degenerative bone metabolic disease accompanied by chronic sterile inflammation. Activating the STING/IFN-β signaling pathway can reduce bone resorption by inhibiting osteoclast differentiation. Conversely, activation of STING/NF-κB leads to the formation of osteoporosis by increasing bone resorption and decreasing bone formation. In addition, activation of STING inhibits the generation of type H vessels with the capacity to osteogenesis, thereby inhibiting bone formation. Here, we outline the mechanism of action of STING and its downstream in osteoporosis and discuss the role of targeting STING in the treatment of osteoporosis, thus providing new ideas for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongguo Gao
- Department of Medical Laboratory Technology, School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hao Zhang
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shoubo Hou
- Department of General Practice, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| |
Collapse
|
35
|
Oh M, Nam J, Baek A, Seo JH, Chae JI, Lee SY, Chung SK, Park BC, Park SG, Kim J, Jeon YJ. Neuroprotective Effects of Licochalcone D in Oxidative-Stress-Induced Primitive Neural Stem Cells from Parkinson's Disease Patient-Derived iPSCs. Biomedicines 2023; 11:biomedicines11010228. [PMID: 36672736 PMCID: PMC9856162 DOI: 10.3390/biomedicines11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases caused by the loss of dopaminergic neurons in the substantia nigra pars compacta. Although the etiology of PD is still unclear, the death of dopaminergic neurons during PD progression was revealed to be associated with abnormal aggregation of α-synuclein, elevation of oxidative stress, dysfunction of mitochondrial functions, and increased neuroinflammation. In this study, the effects of Licochalcone D (LCD) on MG132-induced neurotoxicity in primitive neural stem cells (pNSCs) derived from reprogrammed iPSCs were investigated. A cell viability assay showed that LCD had anti-apoptotic properties in MG132-induced oxidative-stressed pNSCs. It was confirmed that apoptosis was reduced in pNSCs treated with LCD through 7-AAD/Annexin Ⅴ staining and cleaved caspase3. These effects of LCD were mediated through an interaction with JunD and through the EGFR/AKT and JNK signaling pathways. These findings suggest that LCD could be a potential antioxidant reagent for preventing disease-related pathological phenotypes of PD.
Collapse
Affiliation(s)
- Minyoung Oh
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Juhyeon Nam
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Areum Baek
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seo-Young Lee
- Korean Medicine (KM) Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sun-Ku Chung
- Korean Medicine (KM) Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Byoung Chul Park
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- Correspondence: (J.K.); (Y.-J.J.); Tel.: +82-42-860-4478 (J.K.); +82-42-860-4386 (Y.-J.J.)
| | - Young-Joo Jeon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Correspondence: (J.K.); (Y.-J.J.); Tel.: +82-42-860-4478 (J.K.); +82-42-860-4386 (Y.-J.J.)
| |
Collapse
|
36
|
Tie H, Yu D, Jiang Q, Yang F, Xu Y, Xia W. Research on apoptotic mechanism and related pathways involved in postmortem grass carp (Ctenopharyngodon idellus) muscle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:298-307. [PMID: 35861049 DOI: 10.1002/jsfa.12141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Apoptosis activation is an essential research to reveal the triggering mechanism of flesh quality deterioration. This study was aimed at explaining apoptotic mechanism of postmortem fish in terms of caspases activation, cytochrome c (cyt-c) release, B-cell lymphoma 2 (Bcl-2) and Bcl2-associated X (Bax) protein levels, transcriptional levels of its molecules, and apoptosis-inducing factor (AIF) translocation at 4 °C for 5 days. RESULTS Activation of caspase-9, caspase-8, caspase-3 and the release of mitochondrial cyt-c were observed during storage. The decreased Bcl-2 protein levels, increased Bax protein expressions and Bax/Bcl-2 ratio were major steps for inducing apoptosis. Collectively, transcriptional regulation of Fas ligand (FasL), apoptotic protease activating factor-1 (Apaf-1), inhibitors of apoptosis proteins (IAPs), myeloid cell leukemia-1 (Mcl-1), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) indicated that extrinsic apoptotic pathways (FasL/caspase-8/caspase-3) and intrinsic pathway [(JNK and p38 MAPK)/(Bcl-2, Bax and Mcl-1)/cyt-c/Apaf-1/caspase-9/caspase-3] were involved in apoptotic process. Mitochondrial AIF translocation to nuclear indicated that AIF mediated caspase-independent pathway. CONCLUSION Therefore, transcriptional and translational alterations of multiple signaling molecules acted important roles in regulating apoptosis activation in postmortem process. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huaimao Tie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
Kim KI, Kim SM, Lee YY, Lee Y, Kim CD, Yoon TJ. Pitavastatin Induces Apoptosis of Cutaneous Squamous Cell Carcinoma Cells through Geranylgeranyl Pyrophosphate-Dependent c-Jun N-Terminal Kinase Activation. Ann Dermatol 2023; 35:116-123. [PMID: 37041705 PMCID: PMC10112368 DOI: 10.5021/ad.22.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Pitavastatin is a cholesterol-lowering drug and is widely used clinically. In addition to this effect, pitavastatin has shown the potential to induce apoptosis in cutaneous squamous cell carcinoma (SCC) cells. OBJECTIVE The purpose of this study is to investigate the effects and possible action mechanisms of pitavastatin. METHODS SCC cells (SCC12 and SCC13 cells) were treated with pitavastatin, and induction of apoptosis was confirmed by Western blot. To examine whether pitavastatin-induced apoptosis is related to a decrease in the amount of intermediate mediators in the cholesterol synthesis pathway, the changes in pitavastatin-induced apoptosis after supplementation with mevalonate, squalene, geranylgeranyl pyrophosphate (GGPP) and dolichol were investigated. RESULTS Pitavastatin dose-dependently induced apoptosis of cutaneous SCC cells, but the viability of normal keratinocytes was not affected by pitavastatin at the same concentrations. In supplementation experiments, pitavastatin-induced apoptosis was inhibited by the addition of mevalonate or downstream metabolite GGPP. As a result of examining the effect on intracellular signaling, pitavastatin decreased Yes1 associated transcriptional regulator and Ras homolog family member A and increased Rac family small GTPase 1 and c-Jun N-terminal kinase (JNK) activity. All these effects of pitavastatin on signaling molecules were restored when supplemented with either mevalonate or GGPP. Furthermore, pitavastatin-induced apoptosis of cutaneous SCC cells was inhibited by a JNK inhibitor. CONCLUSION These results suggest that pitavastatin induces apoptosis of cutaneous SCC cells through GGPP-dependent JNK activation.
Collapse
Affiliation(s)
- Kyung-Il Kim
- Department of Dermatology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Dermatology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Seung-Mee Kim
- Department of Dermatology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young-Yoon Lee
- Department of Dermatology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Tae-Jin Yoon
- Department of Dermatology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
- Gyeongsang Institute of Health Sciences, Jinju, Korea
| |
Collapse
|
38
|
Kang YJ, Kwon YH, Jang JY, Lee JH, Lee S, Park Y, Moon HR, Chung HY, Kim ND. MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells. Biomol Ther (Seoul) 2023; 31:73-81. [PMID: 35811306 PMCID: PMC9810441 DOI: 10.4062/biomolther.2022.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.
Collapse
Affiliation(s)
- Yong Jung Kang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Young Hoon Kwon
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Jun Ho Lee
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Sanggwon Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Yujin Park
- Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea,Corresponding Author E-mail: , Tel: +82-51-510-2801, Fax: +82-51-513-6754
| |
Collapse
|
39
|
Luo YR, Kudo TA, Tominami K, Izumi S, Tanaka T, Hayashi Y, Noguchi T, Matsuzawa A, Nakai J, Hong G, Wang H. SP600125 Enhances Temperature-Controlled Repeated Thermal Stimulation-Induced Neurite Outgrowth in PC12-P1F1 Cells. Int J Mol Sci 2022; 23:ijms232415602. [PMID: 36555248 PMCID: PMC9779509 DOI: 10.3390/ijms232415602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the mechanism of temperature-controlled repeated thermal stimulation (TRTS)-mediated neuronal differentiation. We assessed the effect of SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, on neuronal differentiation of rat PC12-P1F1 cells, which can differentiate into neuron-like cells by exposure to TRTS or neurotrophic factors, including bone morphogenetic protein (BMP) 4. We evaluated neuritogenesis by incubating the cells under conditions of TRTS and/or SP600125. Cotreatment with SP600125 significantly enhanced TRTS-mediated neuritogenesis, whereas that with other selective mitogen-activated protein kinase (MAPK) inhibitors did not-e.g., extracellular signal-regulated kinase (ERK)1/2 inhibitor U0126, and p38 MAPK inhibitor SB203580. We tried to clarify the mechanism of SP600125 action by testing the effect of U0126 and the BMP receptor inhibitor LDN193189 on the SP600125-mediated enhancement of intracellular signaling. SP600125-enhanced TRTS-induced neuritogenesis was significantly inhibited by U0126 or LDN193189. Gene expression analysis revealed that TRTS significantly increased β3-Tubulin, MKK3, and Smad7 gene expressions. Additionally, Smad6 and Smad7 gene expressions were substantially attenuated through SP600125 co-treatment during TRTS. Therefore, SP600125 may partly enhance TRTS-induced neuritogenesis by attenuating the negative feedback loop of BMP signaling. Further investigation of the mechanisms underlying the effect of SP600125 during TRTS-mediated neuritogenesis may contribute to the future development of regenerative neuromedicine.
Collapse
Affiliation(s)
- You-Ran Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Tada-aki Kudo
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
- Correspondence: ; Tel.: +81-22-717-8293
| | - Kanako Tominami
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoshi Izumi
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Takakuni Tanaka
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Guang Hong
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Huang Q, Chen Y, Zhang Z, Xue Z, Hua Z, Luo X, Li Y, Lu C, Lu A, Liu Y. The endoplasmic reticulum participated in drug metabolic toxicity. Cell Biol Toxicol 2022; 38:945-961. [PMID: 35040016 DOI: 10.1007/s10565-021-09689-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/07/2021] [Indexed: 01/25/2023]
Abstract
Covalent binding of reactive metabolites formed by drug metabolic activation with biological macromolecules is considered to be an important mechanism of drug metabolic toxicity. Recent studies indicate that the endoplasmic reticulum (ER) could play an important role in drug toxicity by participating in the metabolic activation of drugs and could be a primarily attacked target by reactive metabolites. In this article, we summarize the generation and mechanism of reactive metabolites in ER stress and their associated cell death and inflammatory cascade, as well as the systematic modulation of unfolded protein response (UPR)-mediated adaptive pathways.
Collapse
Affiliation(s)
- Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
41
|
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:783-797. [PMID: 35697779 PMCID: PMC9191761 DOI: 10.1038/s41569-022-00718-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR-Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Murray Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
42
|
Rai S, Tapadia MG. Hsc70-4 aggravates PolyQ-mediated neurodegeneration by modulating NF-κB mediated immune response in Drosophila. Front Mol Neurosci 2022; 15:857257. [PMID: 36425218 PMCID: PMC9678916 DOI: 10.3389/fnmol.2022.857257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/11/2022] [Indexed: 10/06/2023] Open
Abstract
Huntington's disease occurs when the stretch of CAG repeats in exon 1 of the huntingtin (htt) gene crosses the permissible limit, causing the mutated protein (mHtt) to form insoluble aggregates or inclusion bodies. These aggregates are non-typically associated with various essential proteins in the cells, thus disrupting cellular homeostasis. The cells try to bring back normalcy by synthesizing evolutionary conserved cellular chaperones, and Hsp70 is one of the families of heat shock proteins that has a significant part in this, which comprises of heat-inducible and cognate forms. Here, we demonstrate that the heat shock cognate (Hsc70) isoform, Hsc70-4/HSPA8, has a distinct role in polyglutamate (PolyQ)-mediated pathogenicity, and its expression is enhanced in the polyQ conditions in Drosophila. Downregulation of hsc70-4 rescues PolyQ pathogenicity with a notable improvement in the ommatidia arrangement and near-normal restoration of optic neurons leading to improvement in phototaxis response. Reduced hsc70-4 also attenuates the augmented immune response by decreasing the expression of NF-κB and the antimicrobial peptides, along with that JNK overactivation is also restored. These lead to the rescue of the photoreceptor cells, indicating a decrease in the caspase activity, thus reverting the PolyQ pathogenicity. At the molecular level, we show the interaction between Hsc70-4, Polyglutamine aggregates, and NF-κB, which may be responsible for the dysregulation of signaling molecules in polyQ conditions. Thus, the present data provides a functional link between Hsc70-4 and NF-κB under polyQ conditions.
Collapse
Affiliation(s)
| | - Madhu G. Tapadia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
43
|
Agrawal MY, Gaikwad S, Srivastava S, Srivastava SK. Research Trend and Detailed Insights into the Molecular Mechanisms of Food Bioactive Compounds against Cancer: A Comprehensive Review with Special Emphasis on Probiotics. Cancers (Basel) 2022; 14:cancers14225482. [PMID: 36428575 PMCID: PMC9688469 DOI: 10.3390/cancers14225482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
In an attempt to find a potential cure for cancer, scientists have been probing the efficacy of the food we eat and its bioactive components. Over the decades, there has been an exponentially increasing trend of research correlating food and cancer. This review explains the molecular mechanisms by which bioactive food components exhibit anticancer effects in several cancer models. These bioactive compounds are mainly plant based or microbiome based. While plants remain the primary source of these phytochemicals, little is known about probiotics, i.e., microbiome sources, and their relationships with cancer. Thus, the molecular mechanisms underlying the anticancer effect of probiotics are discussed in this review. The principal mode of cell death for most food bioactives is found to be apoptosis. Principal oncogenic signaling axes such as Akt/PI3K, JAK/STAT, and NF-κB seem to be modulated due to these bioactives along with certain novel targets that provide a platform for further oncogenic research. It has been observed that probiotics have an immunomodulatory effect leading to their chemopreventive actions. Various foods exhibit better efficacy as complete extracts than their individual phytochemicals, indicating an orchestrated effect of the food components. Combining bioactive agents with available chemotherapies helps synergize the anticancer action of both to overcome drug resistance. Novel techniques to deliver bioactive agents enhance their therapeutic response. Such combinations and novel approaches are also discussed in this review. Notably, most of the food components that have been studied for cancer have shown their efficacy in vivo. This bolsters the claims of these studies and, thus, provides us with hope of discovering anticancer agents in the food that we eat.
Collapse
Affiliation(s)
- Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | | | - Sanjay K. Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Correspondence: ; Tel.: +1-325-696-0464; Fax: +1-325-676-3875
| |
Collapse
|
44
|
Singh S, Tapadia MG. Ayurvedic formulations Guduchi and Madhuyashti triggers JNK signaling mediated immune response and adversely affects Huntington phenotype. BMC Complement Med Ther 2022; 22:265. [PMID: 36224586 PMCID: PMC9555103 DOI: 10.1186/s12906-022-03724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Huntington's disease manifests due to abnormal CAG trinucleotide expansion, in the first exon of the Huntingtin gene and disease progression involves genetic, immune, and environmental components. The pathogenesis is characterized by the formation of Inclusion Bodies, disruption of neuronal circuitry, cellular machinery, and apoptosis, resulting in gradual and progressive loss of neuronal cells, ultimately leading to nervous system dysfunction. Thus, the present study was conducted to assess the effect of two Ayurvedic formulations, Guduchi and Madhuyashti, on Huntington's phenotype, using Drosophila as a model system. METHOD The Huntington phenotype was ectopically induced in the Drosophila eye using the UAS-GAL4 binary system and the effect of the two Ayurvedic formulations were assessed by feeding the progenies on them. Degeneration was observed microscopically and Real Time-PCR was done to assay the alterations in the different transcripts of the innate immune pathways and JNK signaling pathway. Immunostaining was performed to assay different gene expression patterns. RESULT The present study shows that Guduchi and Madhuyashti, endowed with immunomodulatory and intellect promoting properties, aggravates polyQ mediated neurodegeneration. We provide evidence that these formulations enhance JNK signaling by activating the MAP 3 K, dTAK1, which regulates the expression of Drosophila homologue for JNK. Sustained, rather than a transient expression of JNK leads to excessive production of Anti-Microbial Peptides without involving the canonical transcription factors of the Toll or IMD pathways, NF-κB. Enhanced JNK expression also increases caspase levels, with a concomitant reduction in cell proliferation, which may further contribute to increased degeneration. CONCLUSION This is a report linking the functional relevance of Guduchi and Madhuyashti with molecular pathways, which can be important for understanding their use in therapeutic applications and holds promise for mechanistic insight into the mammalian counterpart.
Collapse
Affiliation(s)
- Surabhi Singh
- grid.411507.60000 0001 2287 8816Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Madhu G. Tapadia
- grid.411507.60000 0001 2287 8816Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
45
|
Rotimi DE, Singh SK. Interaction between apoptosis and autophagy in testicular function. Andrologia 2022; 54:e14602. [PMID: 36161318 DOI: 10.1111/and.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/27/2022] Open
Abstract
Several processes including oxidative stress, apoptosis, inflammation and autophagy are related to testicular function. Recent studies indicate that a crosstalk between apoptosis and autophagy is essential in regulating testicular function. Autophagy and apoptosis communicate with each other in a complex way, allowing them to work for or against each other in testicular cell survival and death. Several xenobiotics especially endocrine-disrupting chemicals (EDCs) have caused reproductive toxicity because of their potential to modify the rate of autophagy and trigger apoptosis. Therefore, the purpose of the present review was to shed light on how autophagy and apoptosis interact together in the testis.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, Nigeria.,Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
46
|
Dyshlovoy SA, Busenbender T, Hauschild J, Girich EV, Kriegs M, Hoffer K, Graefen M, Yurchenko AN, Bokemeyer C, von Amsberg G. Cytotoxic N-Methylpretrichodermamide B Reveals Anticancer Activity and Inhibits P-Glycoprotein in Drug-Resistant Prostate Cancer Cells. Mar Drugs 2022; 20:597. [PMID: 36286421 PMCID: PMC9605374 DOI: 10.3390/md20100597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
N-methylpretrichodermamide B (NB) is a biologically active epidithiodiketopiperazine isolated from several strains of the algae-derived fungus Penicillium sp. Recently, we reported the first data on its activity in human cancer cells lines in vitro. Here, we investigated the activity, selectivity, and mechanism of action of NB in human prostate cancer cell lines, including drug-resistant subtypes. NB did not reveal cross-resistance to docetaxel in the PC3-DR cell line model and was highly active in hormone-independent 22Rv1 cells. NB-induced cell death was stipulated by externalization of phosphatidylserine and activation of caspase-3. Moreover, inhibition of caspase activity by z-VAD(OMe)-fmk did not affect NB cytotoxicity, suggesting a caspase-independent cell death induced by NB. The compound has a moderate p-glycoprotein (p-gp) substrate-like affinity and can simultaneously inhibit p-gp at nanomolar concentrations. Therefore, NB resensitized p-gp-overexpressing PC3-DR cells to docetaxel. A kinome profiling of the NB-treated cells revealed, among other things, an induction of mitogen-activated protein kinases JNK1/2 and p38. Further functional analysis confirmed an activation of both kinases and indicated a prosurvival role of this biological event in the cellular response to the treatment. Overall, NB holds promising anticancer potential and further structure-activity relationship studies and structural optimization are needed in order to improve its biological properties.
Collapse
Affiliation(s)
- Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Tobias Busenbender
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Elena V. Girich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20461 Hamburg, Germany
| | - Konstantin Hoffer
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20461 Hamburg, Germany
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
47
|
Brockmueller A, Mueller AL, Kunnumakkara AB, Aggarwal BB, Shakibaei M. Multifunctionality of Calebin A in inflammation, chronic diseases and cancer. Front Oncol 2022; 12:962066. [PMID: 36185259 PMCID: PMC9523377 DOI: 10.3389/fonc.2022.962066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic diseases including cancer have high case numbers as well as mortality rates. The efficient treatment of chronic diseases is a major ongoing medical challenge worldwide, because of their complexity and many inflammatory pathways such as JNK, p38/MAPK, MEK/ERK, JAK/STAT3, PI3K and NF-κB among others being implicated in their pathogenesis. Together with the versatility of chronic disease classical mono-target therapies are often insufficient. Therefore, the anti-inflammatory as well as anti-cancer capacities of polyphenols are currently investigated to complement and improve the effect of classical anti-inflammatory drugs, chemotherapeutic agents or to overcome drug resistance of cancer cells. Currently, research on Calebin A, a polyphenolic component of turmeric (Curcuma longa), is becoming of growing interest with regard to novel treatment strategies and has already been shown health-promoting as well as anti-tumor properties, including anti-oxidative and anti-inflammatory effects, in diverse cancer cells. Within this review, we describe already known anti-inflammatory activities of Calebin A via modulation of NF-κB and its associated signaling pathways, linked with TNF-α, TNF-β and COX-2 and further summarize Calebin A's tumor-inhibiting properties that are known up to date such as reduction of cancer cell viability, proliferation as well as metastasis. We also shed light on possible future prospects of Calebin A as an anti-cancer agent.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | | | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
48
|
Injury-induced MAPK activation triggers body axis formation in Hydra by default Wnt signaling. Proc Natl Acad Sci U S A 2022; 119:e2204122119. [PMID: 35994642 PMCID: PMC9436372 DOI: 10.1073/pnas.2204122119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydra's almost unlimited regenerative potential is based on Wnt signaling, but so far it is unknown how the injury stimulus is transmitted to discrete patterning fates in head and foot regenerates. We previously identified mitogen-activated protein kinases (MAPKs) among the earliest injury response molecules in Hydra head regeneration. Here, we show that three MAPKs-p38, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs)-are essential to initiate regeneration in Hydra, independent of the wound position. Their activation occurs in response to any injury and requires calcium and reactive oxygen species (ROS) signaling. Phosphorylated MAPKs hereby exhibit cross talk with mutual antagonism between the ERK pathway and stress-induced MAPKs, orchestrating a balance between cell survival and apoptosis. Importantly, Wnt3 and Wnt9/10c, which are induced by MAPK signaling, can partially rescue regeneration in tissues treated with MAPK inhibitors. Also, foot regenerates can be reverted to form head tissue by a pharmacological increase of β-catenin signaling or the application of recombinant Wnts. We propose a model in which a β-catenin-based stable gradient of head-forming capacity along the primary body axis, by differentially integrating an indiscriminate injury response, determines the fate of the regenerating tissue. Hereby, Wnt signaling acquires sustained activation in the head regenerate, while it is transient in the presumptive foot tissue. Given the high level of evolutionary conservation of MAPKs and Wnts, we assume that this mechanism is deeply embedded in our genome.
Collapse
|
49
|
Chrysanthemum boreale Makino Inhibits Oxidative Stress-Induced Neuronal Damage in Human Neuroblastoma SH-SY5Y Cells by Suppressing MAPK-Regulated Apoptosis. Molecules 2022; 27:molecules27175498. [PMID: 36080264 PMCID: PMC9457777 DOI: 10.3390/molecules27175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress has been demonstrated to play a pivotal role in the pathological processes of many neurodegenerative diseases. In the present study, we demonstrated that Chrysanthemum boreale Makino extract (CBME) suppresses oxidative stress-induced neurotoxicity in human neuroblastoma SH-SY5Y cells and elucidated the underlying molecular mechanism. Our observations revealed that CBME effectively protected neuronal cells against H2O2-induced cell death by preventing caspase-3 activation, Bax upregulation, Bcl-2 downregulation, activation of three mitogen-activated protein kinases (MAPKs), cAMP response element-binding protein (CREB) and NF-κB phosphorylation, and iNOS induction. These results provide evidence that CBME has remarkable neuroprotective properties in SH-SY5Y cells against oxidative damage, suggesting that the complementary or even alternative role of CBME in preventing and treating neurodegenerative diseases is worth further studies.
Collapse
|
50
|
Park J, An G, Lim W, Song G. Dinitramine induces implantation failure by cell cycle arrest and mitochondrial dysfunction in porcine trophectoderm and luminal epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128927. [PMID: 35489316 DOI: 10.1016/j.jhazmat.2022.128927] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The herbicide market is growing rapidly, as weed control is a significant challenge in agriculture. Many studies have reported the toxicity of herbicides to non-target organisms. Dinitramine is a dinitroaniline herbicide that is particularly toxic to aquatic organisms. However, little is known about the effects of dinitramine on the female reproductive system. Therefore, in the present study, we utilized porcine trophectoderm (pTr) cells and porcine endometrial luminal epithelial (pLE) cells to verify the reproductive toxicity of dinitramine. Dinitramine reduced the viability of both cell types, by triggering cell cycle arrest, especially at the sub-G1 phase, and increasing apoptosis, inhibiting DNA replication. Dinitramine disrupted intracellular calcium homeostasis and induced oxidative stress by producing reactive oxygen species, leading to the loss of mitochondrial membrane potential and alteration of mitochondrial respiration. Mitogen-activated protein kinase pathways were altered, and migration decreased in pTr and pLE cells after dinitramine treatment; the expression of pregnancy-related genes in these cells was decreased. Thus, dinitramine reduced the viability and migratory capacity of both cell types, and this could interrupt the early stages of pregnancy.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|