1
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
2
|
Harada N, Yoshikatsu A, Yamamoto H, Nakaya Y. 2-Deoxy-D-Glucose Downregulates Fatty Acid Synthase Gene Expression Via an Endoplasmic Reticulum Stress-Dependent Pathway in HeLa Cells. Cell Biochem Biophys 2024; 82:2285-2296. [PMID: 38824236 DOI: 10.1007/s12013-024-01339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Fatty acid synthase (FASN) catalyzes the rate-limiting step of cellular lipogenesis. FASN expression is upregulated in various types of cancer cells, implying that FASN is a potential target for cancer therapy. 2-Deoxy-D-glucose (2-DG) specifically targets cancer cells by inhibiting glycolysis and glucose metabolism, resulting in multiple anticancer effects. However, whether the effects of 2-DG involve lipogenic metabolism remains to be elucidated. We investigated the effect of 2-DG administration on FASN expression in HeLa human cervical cancer cells. 2-DG treatment for 24 h decreased FASN mRNA and protein levels and suppressed the activity of an exogenous rat Fasn promoter. The use of a chemical activator or inhibitors or of a mammalian expression plasmid showed that neither AMPK nor the Sp1 transcription factor is responsible for the inhibitory effect of 2-DG on FASN expression. Administration of thapsigargin, an endoplasmic reticulum (ER) stress inducer, or 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), a site 1 protease inhibitor, mimicked the inhibitory effect of 2-DG on FASN expression. 2-DG did not further decrease FASN expression in the presence of thapsigargin or AEBSF. Site 1 protease mediates activation of ATF6, an ER stress mediator, as well as sterol regulatory element-binding protein 1 (SREBP1), a robust transcription factor for FASN. Administration of 2-DG or thapsigargin for 24 h suppressed activation of ATF6 and SREBP1, as did AEBSF. We speculated that these effects of 2-DG or thapsigargin are due to feedback inhibition via increased GRP78 expression following ER stress. Supporting this, exogenous overexpression of GRP78 in HeLa cells suppressed SREBP1 activation and Fasn promoter activity. These results suggest that 2-DG suppresses FASN expression via an ER stress-dependent pathway, providing new insight into the molecular basis of FASN regulation in cancer.
Collapse
Affiliation(s)
- Nagakatsu Harada
- Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, 151 Nishihayashigi, Izumo city, 693-8550, Shimane, Japan.
| | - Aya Yoshikatsu
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima city, 770-8503, Tokushima, Japan
| | - Hironori Yamamoto
- Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, 3-1-1 Ohde-cho, Echizen city, 915-8568, Fukui, Japan
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima city, 770-8503, Tokushima, Japan
| |
Collapse
|
3
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
4
|
Xu X, Jin W, Chang R, Ding X. Research progress of SREBP and its role in the pathogenesis of autoimmune rheumatic diseases. Front Immunol 2024; 15:1398921. [PMID: 39224584 PMCID: PMC11366632 DOI: 10.3389/fimmu.2024.1398921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune rheumatic diseases comprise a group of immune-related disorders characterized by non-organ-specific inflammation. These diseases include systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ankylosing spondylitis (AS), gout, among others. Typically involving the hematologic system, these diseases may also affect multiple organs and systems. The pathogenesis of autoimmune rheumatic immune diseases is complex, with diverse etiologies, all associated with immune dysfunction. The current treatment options for this type of disease are relatively limited and come with certain side effects. Therefore, the urgent challenge remains to identify novel therapeutic targets for these diseases. Sterol regulatory element-binding proteins (SREBPs) are basic helix-loop-helix-leucine zipper transcription factors that regulate the expression of genes involved in lipid and cholesterol biosynthesis. The expression and transcriptional activity of SREBPs can be modulated by extracellular stimuli such as polyunsaturated fatty acids, amino acids, glucose, and energy pathways including AKT-mTORC and AMP-activated protein kinase (AMPK). Studies have shown that SREBPs play roles in regulating lipid metabolism, cytokine production, inflammation, and the proliferation of germinal center B (GCB) cells. These functions are significant in the pathogenesis of rheumatic and immune diseases (Graphical abstract). Therefore, this paper reviews the potential mechanisms of SREBPs in the development of SLE, RA, and gout, based on an exploration of their functions.
Collapse
Affiliation(s)
| | | | | | - Xinghong Ding
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Yang H, Ou-Yang K, He Y, Wang X, Wang L, Yang Q, Li D, Li L. Nitrite induces hepatic glucose and lipid metabolism disorders in zebrafish through mitochondrial dysfunction and ERs response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107015. [PMID: 38996482 DOI: 10.1016/j.aquatox.2024.107015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Nitrite, a highly toxic environmental contaminant, induces various physiological toxicities in aquatic animals. Herein, we investigate the in vivo effects of nitrite exposure at concentrations of 0, 0.2, 2, and 20 mg/L on glucose and lipid metabolism in zebrafish. Our results showed that exposure to nitrite induced mitochondrial oxidative stress in zebrafish liver and ZFL cells, which were evidenced by increased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) as well as decreased mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP). Changes in these oxidative stress markers were accompanied by alterations in the expression levels of genes involved in HIF-1α pathway (hif1α and phd), which subsequently led to the upregulation of glycolysis and gluconeogenesis-related genes (gk, pklr, pdk1, pepck, g6pca, ppp1r3cb, pgm1, gys1 and gys2), resulting in disrupted glucose metabolism. Moreover, nitrite exposure activated ERs (Endoplasmic Reticulum stress) responses through upregulating of genes (atf6, ern1 and xbp1s), leading to increased expression of lipolysis genes (pparα, cpt1aa and atgl) and decreased expression of lipid synthesis genes (srebf1, srebf2, fasn, acaca, scd, hmgcra and hmgcs1). These results were also in consistent with the observed changes in glycogen, lactate and decreased total triglyceride (TG) and total cholesterol (TC) in the liver of zebrafish. Our in vitro results showed that co-treatment with Mito-TEMPO and nitrite attenuated nitrite-induced oxidative stress and improved mitochondrial function, which were indicated by the restorations of ROS, MMP, ATP production, and glucose-related gene expression recovered. Co-treatment of TUDCA and nitrite prevented nitrite-induced ERs response and which was proved by the levels of TG and TC ameliorated as well as the expression levels of lipid metabolism-related genes. In conclusion, our study suggested that nitrite exposure disrupted hepatic glucose and lipid metabolism through mitochondrial dysfunction and ERs responses. These findings contribute to the understanding of the potential hepatotoxicity for aquatic animals in the presence of ambient nitrite.
Collapse
Affiliation(s)
- Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kang Ou-Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
6
|
Lo CW, Lii CK, Lin KS, Li CC, Liu KL, Yang YC, Chen HW. Luteolin, apigenin, and chrysin inhibit lipotoxicity-induced NLRP3 inflammasome activation and autophagy damage in macrophages by suppressing endoplasmic reticulum stress. ENVIRONMENTAL TOXICOLOGY 2024; 39:4120-4133. [PMID: 38654489 DOI: 10.1002/tox.24289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
Lipotoxicity leads to numerous metabolic disorders such as nonalcoholic steatohepatitis. Luteolin, apigenin, and chrysin are three flavones with known antioxidant and anti-inflammatory properties, but whether they inhibit lipotoxicity-mediated NLRP3 inflammasome activation was unclear. To address this question, we used J774A.1 macrophages and Kupffer cells stimulated with 100 μM palmitate (PA) in the presence or absence of 20 μM of each flavone. PA increased p-PERK, p-IRE1α, p-JNK1/2, CHOP, and TXNIP as well as p62 and LC3-II expression and induced autophagic flux damage. Caspase-1 activation and IL-1β release were also noted after 24 h of exposure to PA. In the presence of the PERK inhibitor GSK2656157, PA-induced CHOP and TXNIP expression and caspase-1 activation were mitigated. Compared with PA treatment alone, Bcl-2 coupled to beclin-1 was elevated and autophagy was reversed by the JNK inhibitor SP600125. With luteolin, apigenin, and chrysin treatment, PA-induced ROS production, ER stress, TXNIP expression, autophagic flux damage, and apoptosis were ameliorated. Moreover, TXNIP binding to NLRP3 and IL-1β release in response to LPS/PA challenge were reduced. These results suggest that luteolin, apigenin, and chrysin protect hepatic macrophages against PA-induced NLRP3 inflammasome activation and autophagy damage by attenuating endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Chia-Wen Lo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Kuan-Shuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Ernst R, Renne MF, Jain A, von der Malsburg A. Endoplasmic Reticulum Membrane Homeostasis and the Unfolded Protein Response. Cold Spring Harb Perspect Biol 2024; 16:a041400. [PMID: 38253414 PMCID: PMC11293554 DOI: 10.1101/cshperspect.a041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endoplasmic reticulum (ER) is the key organelle for membrane biogenesis. Most lipids are synthesized in the ER, and most membrane proteins are first inserted into the ER membrane before they are transported to their target organelle. The composition and properties of the ER membrane must be carefully controlled to provide a suitable environment for the insertion and folding of membrane proteins. The unfolded protein response (UPR) is a powerful signaling pathway that balances protein and lipid production in the ER. Here, we summarize our current knowledge of how aberrant compositions of the ER membrane, referred to as lipid bilayer stress, trigger the UPR.
Collapse
Affiliation(s)
- Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Aamna Jain
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
8
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
9
|
Kettel P, Karagöz GE. Endoplasmic reticulum: Monitoring and maintaining protein and membrane homeostasis in the endoplasmic reticulum by the unfolded protein response. Int J Biochem Cell Biol 2024; 172:106598. [PMID: 38768891 DOI: 10.1016/j.biocel.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
The endoplasmic reticulum (ER) regulates essential cellular processes, including protein folding, lipid synthesis, and calcium homeostasis. The ER homeostasis is maintained by a conserved set of signaling cascades called the Unfolded Protein Response (UPR). How the UPR senses perturbations in ER homeostasis has been the subject of active research for decades. In metazoans, the UPR consists of three ER-membrane embedded sensors: IRE1, PERK and ATF6. These sensors detect the accumulation of misfolded proteins in the ER lumen and adjust protein folding capacity according to cellular needs. Early work revealed that the ER-resident chaperone BiP binds to all three UPR sensors in higher eukaryotes and BiP binding was suggested to regulate their activity. More recent data have shown that in higher eukaryotes the interaction of the UPR sensors with a complex network of chaperones and misfolded proteins modulates their activation and deactivation dynamics. Furthermore, emerging evidence suggests that the UPR monitors ER membrane integrity beyond protein folding defects. However, the mechanistic and structural basis of UPR activation by proteotoxic and lipid bilayer stress in higher eukaryotes remains only partially understood. Here, we review the current understanding of novel protein interaction networks and the contribution of the lipid membrane environment to UPR activation.
Collapse
Affiliation(s)
- Paulina Kettel
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria; Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SA, Emerald BS. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics 2024; 16:78. [PMID: 38862980 PMCID: PMC11167878 DOI: 10.1186/s13148-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Elhadi Husein Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Melvin Khee Shing Leow
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
- Dept of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Xu Feng
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
11
|
Ma K, Zhang Y, Zhao J, Zhou L, Li M. Endoplasmic reticulum stress: bridging inflammation and obesity-associated adipose tissue. Front Immunol 2024; 15:1381227. [PMID: 38638434 PMCID: PMC11024263 DOI: 10.3389/fimmu.2024.1381227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Obesity presents a significant global health challenge, increasing the susceptibility to chronic conditions such as diabetes, cardiovascular disease, and hypertension. Within the context of obesity, lipid metabolism, adipose tissue formation, and inflammation are intricately linked to endoplasmic reticulum stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well as cell proliferation and death through the unfolded protein response (UPR) pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose tissue and the inflammatory response. In this review, we comprehensively elucidate the mechanisms by which ERS impacts adipose tissue function and inflammation in obesity, aiming to offer insights into targeting ERS for ameliorating metabolic dysregulation in obesity-associated chronic diseases such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Min Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Hou C, Jiang X, Sheng W, Zhang Y, Lin Q, Hong S, Zhao J, Wang T, Ye X. Xinmaikang (XMK) tablets alleviate atherosclerosis by regulating the SREBP2-mediated NLRP3/ASC/Caspase-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117240. [PMID: 37777030 DOI: 10.1016/j.jep.2023.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinmaikang (XMK) tablets, a Chinese patent medicine, have been used for the prevention and treatment of atherosclerosis (AS) clinically. However, the underlying mechanism of XMK is far from completely illustrated. AIM OF THE STUDY This study aimed to determine whether XMK alleviates AS in Apolipoprotein E-knockout (ApoE-/-) mice and to explore the potential mechanism of action in bone marrow-derived macrophages (BMDMs). MATERIALS AND METHODS XMK decoction was analyzed by an LC‒MS/MS assay. Molecular docking was conducted to determine the interaction of XMK molecular ligands and AS targets. In vivo, 10 ApoE-/- mice were selected as the control group. Fifty ApoE-/- mice were randomly divided into 5 groups: the model group, low-, medium-, and high-dose XMK groups and the simvastatin group. Mice in the control group were fed a chow diet, and the other 5 groups were fed a high-fat diet (HFD) for 12 weeks. After 12 weeks, the treatment groups were administered low-dose XMK (2.28·kg-1·d), medium-dose XMK (4.55·kg-1·d), high-dose XMK (9.1 kg-1 d) and simvastatin (91 mg-1 d) for another 12 weeks. Serum enzymology assays tested AST/ALT, Cr, LDH and CK-MB levels. The atherosclerotic plaques and lipid deposition were measured by Oil red O (ORO) staining and Hematoxylin and Eosin (H&E) staining. Then, we examined the body weight and serum lipids (TC, TG, LDL-C and HDL-C) of the mice. ELISA was performed to determine the levels of inflammatory factors (IL-6, TNF-ɑ, VCAM-1, CXCL8 and CCL2). SREBP2/NLRP3 signaling pathway-related genes (SREBP2, NLRP3, ASC, IL-1β and Caspase-1) were analyzed by RT‒qPCR and western blotting. In vitro, LPS-stimulated BMDMs were treated with different concentrations of XMK (1, 2.5, 5, 10, 20, and 40 μg/ml). Immunofluorescence staining (SREBP2, NLRP3), adenovirus infection and siRNA knockdown (SREBP2, NLRP3, Caspase-1 and ASC) were conducted as complements to the in vivo experiment. RESULTS Molecular docking showed a stable interaction between the effective components of XMK and SREBP2 and NLRP3. Serum enzymology assays revealed the medication safety of XMK in cardiac, hepatic and renal function. Studies in vivo indicated that XMK improved serum lipids (TC, TG, LDL-C and HDL-C) and reduced plaque area. Body weight decreased, and the expression of inflammatory cytokines (IL-6, TNF-ɑ and VCAM-1) was inhibited. Then, XMK downregulated the mRNA and protein expression of SREBP2, NLRP3, ASC, IL-1β and Caspase-1. In vitro, the above findings were reinforced in BMDMs, and knocking down SREBP2 restrained the effect of XMK on the NLRP3/ASC/Caspase-1 signaling pathway. CONCLUSIONS XMK restrains AS by improving inflammation through the SREBP2-mediated NLRP3/ASC/Caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Chijun Hou
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Xinyue Jiang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Wenjuan Sheng
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Yuling Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Qianbei Lin
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Shihan Hong
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jiale Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ting Wang
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Xiaohan Ye
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China.
| |
Collapse
|
13
|
Shreya S, Alam MJ, Anupriya, Jaiswal S, Rani V, Jain BP. Lipotoxicity, ER Stress, and Cardiovascular Disease: Current Understanding and Future Directions. Cardiovasc Hematol Agents Med Chem 2024; 22:319-335. [PMID: 37859305 DOI: 10.2174/0118715257262366230928051902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The endoplasmic reticulum (ER) is a sub-cellular organelle that is responsible for the correct folding of proteins, lipid biosynthesis, calcium storage, and various post-translational modifications. In the disturbance of ER functioning, unfolded or misfolded proteins accumulate inside the ER lumen and initiate downstream signaling called unfolded protein response (UPR). The UPR signaling pathway is involved in lipolysis, triacylglycerol synthesis, lipogenesis, the mevalonate pathway, and low-density lipoprotein receptor recycling. ER stress also affects lipid metabolism by changing the levels of enzymes that are involved in the synthesis or modifications of lipids and causing lipotoxicity. Lipid metabolism and cardiac diseases are in close association as the deregulation of lipid metabolism leads to the development of various cardiovascular diseases (CVDs). Several studies have suggested that lipotoxicity is one of the important factors for cardiovascular disorders. In this review, we will discuss how ER stress affects lipid metabolism and their interplay in the development of cardiovascular disorders. Further, the current therapeutics available to target ER stress and lipid metabolism in various CVDs will be summarized.
Collapse
Affiliation(s)
- Smriti Shreya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Md Jahangir Alam
- Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupriya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Saumya Jaiswal
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
14
|
Dong B, Sun Y, Cheng B, Xue Y, Li W, Sun X. Activating transcription factor (ATF) 6 upregulates cystathionine β synthetase (CBS) expression and hydrogen sulfide (H 2S) synthesis to ameliorate liver metabolic damage. Eur J Med Res 2023; 28:540. [PMID: 38007457 PMCID: PMC10676581 DOI: 10.1186/s40001-023-01520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
Activating transcription factor 6 (ATF6) is an endoplasmic reticulum stress responsive gene. We previously reported that conditional knockout of hepatic ATF6 exacerbated liver metabolic damage by repressing autophagy through mTOR pathway. However, the mechanism by which ATF6 influence liver metabolism has not been well established. Hydrogen sulfide (H2S) is a gaseous signaling molecule that plays an important role in regulating inflammation, and suppress nonalcoholic fatty liver in mice. Based on the previous study, we assumed that ATF6 may regulate H2S production to participate in liver metabolism. In order to clarify the mechanism by which ATF6 regulates H2S synthesis to ameliorate liver steatosis and inflammatory environment, we conducted the present study. We used the liver specific ATF6 knockout mice and fed on high-fat-diet, and found that H2S level was significantly downregulated in hepatic ATF6 knockout mice. Restoring H2S by the administration of slow H2S releasing agent GYY4137 ameliorated the hepatic steatosis and glucose tolerance. ATF6 directly binds to the promoter of cystathionine β synthetase (CBS), an important enzyme in H2S synthesis. Thus, ATF6 could upregulate H2S production through CBS. Sulfhydrated Sirtuin-1 (SIRT1) was downregulated in ATF6 knockout mice. The expression of pro-inflammatory factor IL-17A was upregulated and anti-inflammatory factor IL-10 was downregulated in ATF6 knockout mice. Our results suggest that ATF6 can transcriptionally enhance CBS expression as well as H2S synthesis. ATF6 increases SIRT1 sulfhydration and ameliorates lipogenesis and inflammation in the fatty liver. Therefore, ATF6 could be a novel therapeutic strategy for high-fat diet induced fatty liver metabolic abnormalities.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ying Sun
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Bingfei Cheng
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yu Xue
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Wei Li
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaofang Sun
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
15
|
Na M, Yang X, Deng Y, Yin Z, Li M. Endoplasmic reticulum stress in the pathogenesis of alcoholic liver disease. PeerJ 2023; 11:e16398. [PMID: 38025713 PMCID: PMC10655704 DOI: 10.7717/peerj.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in protein synthesis, folding, and modification. Under stress conditions such as oxidative stress and inflammation, the ER can become overwhelmed, leading to an accumulation of misfolded proteins and ensuing ER stress. This triggers the unfolded protein response (UPR) designed to restore ER homeostasis. Alcoholic liver disease (ALD), a spectrum disorder resulting from chronic alcohol consumption, encompasses conditions from fatty liver and alcoholic hepatitis to cirrhosis. Metabolites of alcohol can incite oxidative stress and inflammation in hepatic cells, instigating ER stress. Prolonged alcohol exposure further disrupts protein homeostasis, exacerbating ER stress which can lead to irreversible hepatocellular damage and ALD progression. Elucidating the contribution of ER stress to ALD pathogenesis may pave the way for innovative therapeutic interventions. This review delves into ER stress, its basic signaling pathways, and its role in the alcoholic liver injury.
Collapse
Affiliation(s)
- Man Na
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Xingbiao Yang
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Yongkun Deng
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Zhaoheng Yin
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Mingwei Li
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| |
Collapse
|
16
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
17
|
Platko K, Lebeau PF, Nederveen JP, Byun JH, MacDonald ME, Bourgeois JM, Tarnopolsky MA, Austin RC. A Metabolic Enhancer Protects against Diet-Induced Obesity and Liver Steatosis and Corrects a Pro-Atherogenic Serum Profile in Mice. Nutrients 2023; 15:nu15102410. [PMID: 37242292 DOI: 10.3390/nu15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVE Metabolic Syndrome (MetS) affects hundreds of millions of individuals and constitutes a major cause of morbidity and mortality worldwide. Obesity is believed to be at the core of metabolic abnormalities associated with MetS, including dyslipidemia, insulin resistance, fatty liver disease and vascular dysfunction. Although previous studies demonstrate a diverse array of naturally occurring antioxidants that attenuate several manifestations of MetS, little is known about the (i) combined effect of these compounds on hepatic health and (ii) molecular mechanisms responsible for their effect. METHODS We explored the impact of a metabolic enhancer (ME), consisting of 7 naturally occurring antioxidants and mitochondrial enhancing agents, on diet-induced obesity, hepatic steatosis and atherogenic serum profile in mice. RESULTS Here we show that a diet-based ME supplementation and exercise have similar beneficial effects on adiposity and hepatic steatosis in mice. Mechanistically, ME reduced hepatic ER stress, fibrosis, apoptosis, and inflammation, thereby improving overall liver health. Furthermore, we demonstrated that ME improved HFD-induced pro-atherogenic serum profile in mice, similar to exercise. The protective effects of ME were reduced in proprotein convertase subtilisin/kexin 9 (PCSK9) knock out mice, suggesting that ME exerts it protective effect partly in a PCSK9-dependent manner. CONCLUSIONS Our findings suggest that components of the ME have a positive, protective effect on obesity, hepatic steatosis and cardiovascular risk and that they show similar effects as exercise training.
Collapse
Affiliation(s)
- Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Jacqueline M Bourgeois
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 5Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
- Exerkine Corporation, MUMC, Hamilton, ON L8N 3Z5, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
18
|
Florance I, Ramasubbu S. Current Understanding on the Role of Lipids in Macrophages and Associated Diseases. Int J Mol Sci 2022; 24:ijms24010589. [PMID: 36614031 PMCID: PMC9820199 DOI: 10.3390/ijms24010589] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions such as energy storage, hormone regulation and cell division. Lipids, being a primary component of the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety of macrophage functions including phagocytosis, energy balance and ageing. However, functions of lipids in macrophages vary based on the site the macrophages are residing at. Lipid-loaded macrophages have recently been emerging as a hallmark for several diseases. This review discusses the significance of lipids in adipose tissue macrophages, tumor-associated macrophages, microglia and peritoneal macrophages. Accumulation of macrophages with impaired lipid metabolism is often characteristically observed in several metabolic disorders. Stress signals differentially regulate lipid metabolism. While conditions such as hypoxia result in accumulation of lipids in macrophages, stress signals such as nutrient deprivation initiate lipolysis and clearance of lipids. Understanding the biology of lipid accumulation in macrophages requires the development of potentially active modulators of lipid metabolism.
Collapse
|
19
|
Carvalho-Gontijo R, Han C, Zhang L, Zhang V, Hosseini M, Mekeel K, Schnabl B, Loomba R, Karin M, Brenner DA, Kisseleva T. Metabolic Injury of Hepatocytes Promotes Progression of NAFLD and AALD. Semin Liver Dis 2022; 42:233-249. [PMID: 36001995 PMCID: PMC9662188 DOI: 10.1055/s-0042-1755316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nonalcoholic liver disease is a component of metabolic syndrome associated with obesity, insulin resistance, and hyperlipidemia. Excessive alcohol consumption may accelerate the progression of steatosis, steatohepatitis, and fibrosis. While simple steatosis is considered a benign condition, nonalcoholic steatohepatitis with inflammation and fibrosis may progress to cirrhosis, liver failure, and hepatocellular cancer. Studies in rodent experimental models and primary cell cultures have demonstrated several common cellular and molecular mechanisms in the pathogenesis and regression of liver fibrosis. Chronic injury and death of hepatocytes cause the recruitment of myeloid cells, secretion of inflammatory and fibrogenic cytokines, and activation of myofibroblasts, resulting in liver fibrosis. In this review, we discuss the role of metabolically injured hepatocytes in the pathogenesis of nonalcoholic steatohepatitis and alcohol-associated liver disease. Specifically, the role of chemokine production and de novo lipogenesis in the development of steatotic hepatocytes and the pathways of steatosis regulation are discussed.
Collapse
Affiliation(s)
- Raquel Carvalho-Gontijo
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Cuijuan Han
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Lei Zhang
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Vivian Zhang
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla
| | - Kristin Mekeel
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Rohit Loomba
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla
| | - David A. Brenner
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla,Corresponding author: Tatiana Kisseleva, 9500 Gilman Drive, #0063, La Jolla, California 92093, USA. Phone: 858.822.5339,
| |
Collapse
|
20
|
Zhou L, Shen H, Li X, Wang H. Endoplasmic reticulum stress in innate immune cells - a significant contribution to non-alcoholic fatty liver disease. Front Immunol 2022; 13:951406. [PMID: 35958574 PMCID: PMC9361020 DOI: 10.3389/fimmu.2022.951406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease and its complications affect millions of people worldwide. NAFLD (non-alcoholic fatty liver disease) is the liver disease associated with metabolic dysfunction and consists of four stages: steatosis with or without mild inflammation (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. With increased necroinflammation and progression of liver fibrosis, NAFLD may progress to cirrhosis or even hepatocellular carcinoma. Although the underlying mechanisms have not been clearly elucidated in detail, what is clear is that complex immune responses are involved in the pathogenesis of NASH, activation of the innate immune system is critically involved in triggering and amplifying hepatic inflammation and fibrosis in NAFLD/NASH. Additionally, disruption of endoplasmic reticulum (ER) homeostasis in cells, also known as ER stress, triggers the unfolded protein response (UPR) which has been shown to be involved to inflammation and apoptosis. To further develop the prevention and treatment of NAFLD/NASH, it is imperative to clarify the relationship between NAFLD/NASH and innate immune cells and ER stress. As such, this review focuses on innate immune cells and their ER stress in the occurrence of NAFLD and the progression of cirrhosis.
Collapse
Affiliation(s)
- Liangliang Zhou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- *Correspondence: Hua Wang,
| |
Collapse
|
21
|
Li Y, Lu L, Zhang G, Ji G, Xu H. The role and therapeutic implication of endoplasmic reticulum stress in inflammatory cancer transformation. Am J Cancer Res 2022; 12:2277-2292. [PMID: 35693091 PMCID: PMC9185617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023] Open
Abstract
Endoplasmic reticulum (ER) stress occurs when proteins are affected by various factors, fail to fold properly into higher structures and accumulate in the lumen of the ER, which activates the unfolded protein response (UPR) to restore normal cellular function or induce apoptosis as a self-protective mechanism. However, a growing number of studies have shown that the three branches of ER stress and the UPR can mediate inflammation and cancer development by interacting with inflammatory transformation-related signaling pathways. Targeting the UPR, especially the use of small molecules that target the active sites of the enzymes IRE1α and PERK and BIP/GRP78 inhibitors are potential strategies for treating tumors and have shown promising results in some tumor models. Therefore, in this review, we summarize the progress of ER stress/UPR research and the signaling pathways associated with inflammatory cancer transformation, provide an in-depth description of the mechanisms of these pathways, and outline strategies in the field of UPR biology in tumor therapy to provide new ideas for the mechanisms of inflammatory cancer transformation and tumor-related treatment.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai 200032, China
| |
Collapse
|
22
|
Flessa C, Kyrou I, Nasiri‐Ansari N, Kaltsas G, Kassi E, Randeva HS. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD). J Cell Biochem 2022; 123:1585-1606. [DOI: 10.1002/jcb.30247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Christina‐Maria Flessa
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing Coventry University Coventry UK
- Aston Medical School, College of Health and Life Sciences Aston University Birmingham UK
- Department of Food Science & Human Nutrition Agricultural University of Athens Athens Greece
| | - Narjes Nasiri‐Ansari
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
| |
Collapse
|
23
|
Pu F, Liu J, Jing D, Chen F, Huang X, Shi D, Wu W, Lin H, Zhao L, Zhang Z, Lv X, Wang B, Zhang Z, Shao Z. LncCCAT1 interaction protein PKM2 upregulates SREBP2 phosphorylation to promote osteosarcoma tumorigenesis by enhancing the Warburg effect and lipogenesis. Int J Oncol 2022; 60:44. [PMID: 35244192 PMCID: PMC8923656 DOI: 10.3892/ijo.2022.5334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) plays an important role in the consumption of glucose and the production of lactic acid, the striking feature of cancer metabolism. The association of PKM2 with osteosarcoma (OS) has been reported but its role in OS has yet to be elucidated. To study this, PKM2‑bound RNAs in HeLa cells, a type of cancer cells widely used in the study of molecular function and mechanism, were obtained. Peak calling analysis revealed that PKM2 binds to long noncoding RNAs (lncRNAs), which are associated with cancer pathogenesis and development. Validation of the PKM2‑lncRNA interaction in the human OS cell line revealed that lncRNA colon cancer associated transcript‑1 (lncCCAT1) interacted with PKM2, which upregulated the phosphorylation of sterol regulatory element‑binding protein 2 (SREBP2). These factors promoted the Warburg effect, lipogenesis, and OS cell growth. PKM2 appears to be a key regulator in OS by binding to lncCCAT1. This further extends the biological functions of PKM2 in tumorigenesis and makes it a novel potential therapeutic for OS.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Doudou Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lei Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenhao Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Baichuan Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
24
|
Passarelli M, Machado UF. AGEs-Induced and Endoplasmic Reticulum Stress/Inflammation-Mediated Regulation of GLUT4 Expression and Atherogenesis in Diabetes Mellitus. Cells 2021; 11:104. [PMID: 35011666 PMCID: PMC8750246 DOI: 10.3390/cells11010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
In recent decades, complex and exquisite pathways involved in the endoplasmic reticulum (ER) and inflammatory stress responses have been demonstrated to participate in the development and progression of numerous diseases, among them diabetes mellitus (DM). In those pathways, several players participate in both, reflecting a complicated interplay between ER and inflammatory stress. In DM, ER and inflammatory stress are involved in both the pathogenesis of the loss of glycemic control and the development of degenerative complications. Furthermore, hyperglycemia increases the generation of advanced glycation end products (AGEs), which in turn refeed ER and inflammatory stress, contributing to worsening glycemic homeostasis and to accelerating the development of DM complications. In this review, we present the current knowledge regarding AGEs-induced and ER/inflammation-mediated regulation of the expression of GLUT4 (solute carrier family 2, facilitated glucose transporter member 4), as a marker of glycemic homeostasis and of cardiovascular disease (CVD) development/progression, as a leading cause of morbidity and mortality in DM.
Collapse
Affiliation(s)
- Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil;
- Programa de Pos-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
25
|
Ramdas Nair A, Lakhiani P, Zhang C, Macchi F, Sadler KC. A permissive epigenetic landscape facilitates distinct transcriptional signatures of activating transcription factor 6 in the liver. Genomics 2021; 114:107-124. [PMID: 34863900 DOI: 10.1016/j.ygeno.2021.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/31/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
Restoring homeostasis following proteostatic stress hinges on a stress-specific transcriptional signature. How these signatures are regulated is unknown. We use functional genomics to uncover how activating transcription factor 6 (ATF6), a central factor in the unfolded protein response, regulates its target genes in response to toxicant induced and physiological stress in the liver. We identified 652 conserved putative ATF6 targets (CPATs), which functioned in metabolism, development and proteostasis. Strikingly, Atf6 activation in the zebrafish liver by transgenic nAtf6 overexpression, ethanol and arsenic exposure resulted in a distinct CPAT signature for each; with only 34 CPATs differentially expressed in all conditions. In contrast, during liver regeneration in mice resulted in a dynamic differential expression pattern of 53% of CPATs. These CPATs were distinguished by residing in open chromatin, H3K4me3 occupancy and the absence of H3K27me3 on their promoters. This suggests that a permissive epigenetic landscape allows stress-specific Atf6 target gene expression.
Collapse
Affiliation(s)
- Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, PO Box. 129188, Abu Dhabi, United Arab Emirates
| | - Priyanka Lakhiani
- Program in Biology, New York University Abu Dhabi, PO Box. 129188, Abu Dhabi, United Arab Emirates
| | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, PO Box. 129188, Abu Dhabi, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, PO Box. 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box. 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
26
|
Huang J, Wang J, He H, Huang Z, Wu S, Chen C, Liu W, Xie L, Tao Y, Cong L, Jiang Y. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int J Biol Sci 2021; 17:4493-4513. [PMID: 34803512 PMCID: PMC8579446 DOI: 10.7150/ijbs.66181] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Jin Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Zichen Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210013 Jiangsu, China
| | - Wenbing Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Li Xie
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, P.R. China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013 Hunan, China.,School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| |
Collapse
|
27
|
SREBP1c silencing reduces endoplasmic reticulum stress and related apoptosis in oleic acid induced lipid accumulation. MARMARA MEDICAL JOURNAL 2021. [DOI: 10.5472/marumj.1009096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Dong XC, Chowdhury K, Huang M, Kim HG. Signal Transduction and Molecular Regulation in Fatty Liver Disease. Antioxid Redox Signal 2021; 35:689-717. [PMID: 33906425 PMCID: PMC8558079 DOI: 10.1089/ars.2021.0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Fatty liver disease is a major liver disorder in the modern societies. Comprehensive understanding of the pathophysiology and molecular mechanisms is essential for the prevention and treatment of the disease. Recent Advances: Remarkable progress has been made in the recent years in basic and translational research in the field of fatty liver disease. Multiple signaling pathways have been implicated in the development of fatty liver disease, including AMP-activated protein kinase, mechanistic target of rapamycin kinase, endoplasmic reticulum stress, oxidative stress, inflammation, transforming growth factor β, and yes1-associated transcriptional regulator/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). In addition, critical molecular regulations at the transcriptional and epigenetic levels have been linked to the pathogenesis of fatty liver disease. Critical Issues: Some critical issues remain to be solved so that research findings can be translated into clinical applications. Robust and reliable biomarkers are needed for diagnosis of different stages of the fatty liver disease. Effective and safe molecular targets remain to be identified and validated. Prevention strategies require solid scientific evidence and population-wide feasibility. Future Directions: As more data are generated with time, integrative approaches are needed to comprehensively understand the disease pathophysiology and mechanisms at multiple levels from population, organismal system, organ/tissue, to cell. The interactions between genes and environmental factors require deeper investigation for the purposes of prevention and personalized treatment of fatty liver disease. Antioxid. Redox Signal. 35, 689-717.
Collapse
Affiliation(s)
- Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Kushan Chowdhury
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hyeong Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med 2021; 218:211616. [PMID: 33601415 PMCID: PMC7754673 DOI: 10.1084/jem.20201606] [Citation(s) in RCA: 398] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Dysregulation in lipid metabolism is among the most prominent metabolic alterations in cancer. Cancer cells harness lipid metabolism to obtain energy, components for biological membranes, and signaling molecules needed for proliferation, survival, invasion, metastasis, and response to the tumor microenvironment impact and cancer therapy. Here, we summarize and discuss current knowledge about the advances made in understanding the regulation of lipid metabolism in cancer cells and introduce different approaches that have been clinically used to disrupt lipid metabolism in cancer therapy.
Collapse
Affiliation(s)
- Xueli Bian
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongming Xing
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
30
|
Zhao Z, Zhao Y, Zhang Y, Shi W, Li X, Shyy JYJ, He M, Wang L. Gout-induced endothelial impairment: The role of SREBP2 transactivation of YAP. FASEB J 2021; 35:e21613. [PMID: 33977576 DOI: 10.1096/fj.202100337r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Gout is a multifaceted inflammatory disease involving vascular impairments induced by hyperuricemia. Experiments using human umbilical vein endothelial cells treated with uric acid (UA), monosodium urate (MSU), or serum from gout patients showed increased expression of pro-inflammatory genes (ie, VCAM1, ICAM1, CYR61, CCNA1, and E2F1) with attendant increase in monocyte adhesion. Mechanistically, UA- or MSU-induced SREBP2 expression and its transcriptional activity. RNA sequencing analysis and real-time PCR showed the induction of YAP signaling and pro-inflammatory pathways in HUVECs transfected with adenovirus-SREBP2. The SREBP2 knockdown by siRNA partially abolished UA- or MSU-induced YAP activity, pro-inflammatory gene expression, and monocytes adhesion. Vascular intima from transgenic mice overexpressing SREBP2 in endothelium or mice with hyperuricemia exhibited activated YAP signaling and increased expression of pro-inflammatory genes. Betulin, an SREBP pharmacological inhibitor, attenuated the UA-, MSU-, or gout serum-induced endothelial cell inflammation and dysfunction. In the human study, endothelial cell function, assessed by EndoPAT, was negatively correlated with serum UA level among gouty patients and healthy controls. Collectively, UA or MSU causes endothelial dysfunction via SREBP2 transactivation of YAP. Betulin inhibition of SREBP2 may restrain gout-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Zunlan Zhao
- Department of General Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yingshuai Zhao
- Department of General Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Zhang
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Weili Shi
- Department of General Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiqing Li
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ming He
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Liuyi Wang
- Department of General Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021; 476:4061-4080. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.
Collapse
|
32
|
Flessa CM, Kyrou I, Nasiri-Ansari N, Kaltsas G, Papavassiliou AG, Kassi E, Randeva HS. Endoplasmic Reticulum Stress and Autophagy in the Pathogenesis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Evidence and Perspectives. Curr Obes Rep 2021; 10:134-161. [PMID: 33751456 DOI: 10.1007/s13679-021-00431-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease with rising prevalence worldwide. Herein, we provide a comprehensive overview of the current knowledge supporting the role of ER stress and autophagy processes in NAFLD pathogenesis and progression. We also highlight the interrelation between these two pathways and the impact of ER stress and autophagy modulators on NAFLD treatment. RECENT FINDINGS The pathophysiological mechanisms involved in NAFLD progression are currently under investigation. The endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR) seem to contribute to its pathogenesis mainly due to high ER content in the liver which exerts significant metabolic functions and can be dysregulated. Furthermore, disruption of autophagy processes has also been identified in NAFLD. The crucial role of these two pathways in NAFLD is underlined by the fact that they have recently emerged as promising targets of therapeutic interventions. There is a greater need for finding the natural/chemical compounds and drugs which can modulate the ER stress pathway and autophagy for the treatment of NAFLD. Clarifying the inter-relation between these two pathways and their interaction with inflammatory and apoptotic mechanisms will allow the development of additional therapeutic options which can better target and reprogram the underlying pathophysiological pathways, aiming to attenuate NAFLD progression.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, B4 7ET, Birmingham, UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
33
|
Cui A, Ding D, Li Y. Regulation of Hepatic Metabolism and Cell Growth by the ATF/CREB Family of Transcription Factors. Diabetes 2021; 70:653-664. [PMID: 33608424 PMCID: PMC7897342 DOI: 10.2337/dbi20-0006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
The liver is a major metabolic organ that regulates the whole-body metabolic homeostasis and controls hepatocyte proliferation and growth. The ATF/CREB family of transcription factors integrates nutritional and growth signals to the regulation of metabolism and cell growth in the liver, and deregulated ATF/CREB family signaling is implicated in the progression of type 2 diabetes, nonalcoholic fatty liver disease, and cancer. This article focuses on the roles of the ATF/CREB family in the regulation of glucose and lipid metabolism and cell growth and its importance in liver physiology. We also highlight how the disrupted ATF/CREB network contributes to human diseases and discuss the perspectives of therapeutically targeting ATF/CREB members in the clinic.
Collapse
Affiliation(s)
- Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Wei J, Fang D. Endoplasmic Reticulum Stress Signaling and the Pathogenesis of Hepatocarcinoma. Int J Mol Sci 2021; 22:ijms22041799. [PMID: 33670323 PMCID: PMC7918477 DOI: 10.3390/ijms22041799] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), also known as hepatoma, is a primary malignancy of the liver and the third leading cause of cancer mortality globally. Although much attention has focused on HCC, its pathogenesis remains largely obscure. The endoplasmic reticulum (ER) is a cellular organelle important for regulating protein synthesis, folding, modification and trafficking, and lipid metabolism. ER stress occurs when ER homeostasis is disturbed by numerous environmental, physiological, and pathological challenges. In response to ER stress due to misfolded/unfolded protein accumulation, unfolded protein response (UPR) is activated to maintain ER function for cell survival or, in cases of excessively severe ER stress, initiation of apoptosis. The liver is especially susceptible to ER stress given its protein synthesis and detoxification functions. Experimental data suggest that ER stress and unfolded protein response are involved in HCC development, aggressiveness and response to treatment. Herein, we highlight recent findings and provide an overview of the evidence linking ER stress to the pathogenesis of HCC.
Collapse
|
35
|
Novelle MG, Bravo SB, Deshons M, Iglesias C, García-Vence M, Annells R, da Silva Lima N, Nogueiras R, Fernández-Rojo MA, Diéguez C, Romero-Picó A. Impact of liver-specific GLUT8 silencing on fructose-induced inflammation and omega oxidation. iScience 2021; 24:102071. [PMID: 33554072 PMCID: PMC7856473 DOI: 10.1016/j.isci.2021.102071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Excessive consumption of high-fructose diets is associated with insulin resistance, obesity, and non-alcoholic fatty liver disease (NAFLD). However, fructose differentially affects hepatic regulation of lipogenesis in males and females. Hence, additional studies are necessary in order to find strategies taking gender disparities in fructose-induced liver damage into consideration. Although the eighth member of facilitated glucose transporters (GLUT8) has been linked to fructose-induced macrosteatosis in female mice, its contribution to the inflammatory state of NAFLD remains to be elucidated. Combining pharmacological, biochemical, and proteomic approaches, we evaluated the preventive effect of targeted liver GLUT8 silencing on liver injury in a mice female fructose-induced non-alcoholic steatohepatitis female mouse model. Liver GLUT8-knockdown attenuated fructose-induced ER stress, recovered liver inflammation, and dramatically reduced fatty acid content, in part, via the omega oxidation. Therefore, this study links GLUT8 with liver inflammatory response and suggests GLUT8 as a potential target for the prevention of NAFLD.
Collapse
Affiliation(s)
- Marta G Novelle
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain.,Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, E28049, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Maxime Deshons
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Cristina Iglesias
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - María García-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Rebecca Annells
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, Oxford, UK
| | - Natália da Silva Lima
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - Manuel Alejandro Fernández-Rojo
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, E28049, Spain.,School of Medicine, The University of Queensland, Herston, 4006, Brisbane, Australia
| | - Carlos Diéguez
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - Amparo Romero-Picó
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| |
Collapse
|
36
|
Delgado-Valero B, de la Fuente-Chávez L, Romero-Miranda A, Visitación Bartolomé M, Ramchandani B, Islas F, Luaces M, Cachofeiro V, Martínez-Martínez E. Role of endoplasmic reticulum stress in renal damage after myocardial infarction. Clin Sci (Lond) 2021; 135:143-159. [PMID: 33355632 DOI: 10.1042/cs20201137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is associated with renal alterations resulting in poor outcomes in patients with MI. Renal fibrosis is a potent predictor of progression in patients and is often accompanied by inflammation and oxidative stress; however, the mechanisms involved in these alterations are not well established. Endoplasmic reticulum (ER) plays a central role in protein processing and folding. An accumulation of unfolded proteins leads to ER dysfunction, termed ER stress. Since the kidney is the organ with highest protein synthesis fractional rate, we herein investigated the effects of MI on ER stress at renal level, as well as the possible role of ER stress on renal alterations after MI. Patients and MI male Wistar rats showed an increase in the kidney injury marker neutrophil gelatinase-associated lipocalin (NGAL) at circulating level or renal level respectively. Four weeks post-MI rats presented renal fibrosis, oxidative stress and inflammation accompanied by ER stress activation characterized by enhanced immunoglobin binding protein (BiP), protein disulfide-isomerase A6 (PDIA6) and activating transcription factor 6-alpha (ATF6α) protein levels. In renal fibroblasts, palmitic acid (PA; 50-200 µM) and angiotensin II (Ang II; 10-8 to 10-6M) promoted extracellular matrix, superoxide anion production and inflammatory markers up-regulation. The presence of the ER stress inhibitor, 4-phenylbutyric acid (4-PBA; 4 µM), was able to prevent all of these modifications in renal cells. Therefore, the data show that ER stress mediates the deleterious effects of PA and Ang II in renal cells and support the potential role of ER stress on renal alterations associated with MI.
Collapse
Affiliation(s)
- Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Lucía de la Fuente-Chávez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María Visitación Bartolomé
- Departmento de Inmunología, Oftalmología y Otorrinolaringología, Facultad de Psicología, Universidad Complutense Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Bunty Ramchandani
- Servicio de Cirugía Cardiaca Infantil, Hospital La Paz, Madrid, Spain
| | - Fabián Islas
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Moncan M, Mnich K, Blomme A, Almanza A, Samali A, Gorman AM. Regulation of lipid metabolism by the unfolded protein response. J Cell Mol Med 2021; 25:1359-1370. [PMID: 33398919 PMCID: PMC7875919 DOI: 10.1111/jcmm.16255] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the site of protein folding and secretion, Ca2+ storage and lipid synthesis in eukaryotic cells. Disruption to protein folding or Ca2+ homeostasis in the ER leads to the accumulation of unfolded proteins, a condition known as ER stress. This leads to activation of the unfolded protein response (UPR) pathway in order to restore protein homeostasis. Three ER membrane proteins, namely inositol‐requiring enzyme 1 (IRE1), protein kinase RNA‐like ER kinase (PERK) and activating transcription factor 6 (ATF6), sense the accumulation of unfolded/misfolded proteins and are activated, initiating an integrated transcriptional programme. Recent literature demonstrates that activation of these sensors can alter lipid enzymes, thus implicating the UPR in the regulation of lipid metabolism. Given the presence of ER stress and UPR activation in several diseases including cancer and neurodegenerative diseases, as well as the growing recognition of altered lipid metabolism in disease, it is timely to consider the role of the UPR in the regulation of lipid metabolism. This review provides an overview of the current knowledge on the impact of the three arms of the UPR on the synthesis, function and regulation of fatty acids, triglycerides, phospholipids and cholesterol.
Collapse
Affiliation(s)
- Matthieu Moncan
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-institute, University of Liège, Liège, Belgium
| | - Aitor Almanza
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
38
|
Xia W, Wang Y, Zhang Y, Ge X, Lv P, Cheng J, Wei J. Endoplasmic reticulum stress induces growth retardation by inhibiting growth hormone IGF-I axis. Growth Horm IGF Res 2020; 55:101341. [PMID: 32890915 DOI: 10.1016/j.ghir.2020.101341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Insulin-like growth factor 1 (IGFI) is one of several growth factors which is induced by growth hormone (GH), which activates the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) pathway, and plays crucial roles in normal human growth, metabolism, and systemic energy homeostasis. However, little is known about the negative regulation of IGF-I production under different physiological or pathological conditions. Herein, we explore whether activation of endoplasmic reticulum (ER) stress regulates IGF-I production and normal body growth. MATERIALS AND METHODS C57BL/6 J mice were challenged with tunicamycin (Tm) to induce ER stress activation. 24 h after stimulation, hepatic mRNA expression was analyzed by RNA-Seq and validated by qPCR. Enzyme-linked immunosorbent assay (ELISA) was performed 24 h after Tm stimulation. Body growth was determined 16 days after Tm stimulation. Animals were then sacrificed and liver tissues were collected for further analysis. RESULTS Mice challenged with Tm displayed a retardation of growth. Molecularly, we found that ER stress inhibited phosphorylation of STAT5. IGF-I transcription and circulating IGF-I were also dramatically decreased under ER stress activation. Moreover, our results demonstrate that IGF-I administration ameliorates Tm-induced growth retardation. CONCLUSIONS ER stress induces growth retardation. ER stress inhibits hepatic GH-JAK2 signaling activation and its downstream target gene expression. These results warrant further research to explore the crosstalk between ER stress and growth hormone signaling in improving body growth.
Collapse
Affiliation(s)
- Wanjun Xia
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yajun Wang
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Heilongjiang 150001, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Pengwei Lv
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
39
|
Xue X, Quan Y, Gong L, Gong X, Li Y. A review of the processed Polygonum multiflorum (Thunb.) for hepatoprotection: Clinical use, pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113121. [PMID: 32693115 DOI: 10.1016/j.jep.2020.113121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum (Thunb.) (PMT) is a member of Polygonaceae. Traditional Chinese medicine considers that the processed PMT can tonify liver, nourish blood and blacken hair. In recent years, the processed PMT and its active ingredients have significant therapeutic effects on nonalcoholic fatty liver disease, alcoholic fatty liver disease, viral hepatitis, liver fibrosis and liver cancer. AIM OF THE STUDY The main purpose of this review is to provide a critical appraisal of the existing knowledge on the clinical application, hepatoprotective pharmacology and hepatotoxicity, it provides a comprehensive evaluation of the liver function of the processed PMT. MATERIALS AND METHODS A detailed literature search was conducted using various online search engines, such as Pubmed, Google Scholar, Mendeley, Web of Science and China National Knowledge Infrastructure (CNKI) database. The main active components of the processed PMT and the important factors in the occurrence and development of liver diseases are used as key words to carry out detailed literature retrieval. RESULTS In animal and cell models, the processed PMT and active components can treat various liver diseases, such as fatty liver induced by high-fat diet, liver injury and fibrosis induced by drugs, viral transfected hepatitis, hepatocellular carcinoma, etc. They can protect liver by regulating lipid metabolism related enzymes, resisting insulin resistance, decreasing the expression of inflammatory cytokines, inhibiting the activation of hepatic stellate cells, reducing generation of extracellular matrix, promoting cancer cell apoptosis and controlling the growth of tumor cells, etc. However, improperly using of the processed PMT can cause liver injury, which is associated with the standardization of processing, the constitution of the patients, the characteristics of the disease, and the administration of dosage and time. CONCLUSION The processed PMT can treat various liver diseases via reasonably using, and the active compounds (2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, emodin, physcion, etc.) are promising candidate drugs for developing new liver protective agents. However, some components have a "toxic-effective" bidirectional effect, which should be used cautiously.
Collapse
Affiliation(s)
- Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunyun Quan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xiaohong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
40
|
Zhou X, Fouda S, Li D, Zhang K, Ye JM. Involvement of the Autophagy-ER Stress Axis in High Fat/Carbohydrate Diet-Induced Nonalcoholic Fatty Liver Disease. Nutrients 2020; 12:nu12092626. [PMID: 32872238 PMCID: PMC7551457 DOI: 10.3390/nu12092626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease that can progress from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), and even further to liver cirrhosis or liver cancer. Overconsumption of high fat and/or carbohydrate are among the most common lifestyle factors that drive the development and progression of NAFLD. This review evaluates recent reports on the involvement of autophagy and endoplasmic reticulum (ER) stress in the pathogenesis of NAFLD. Here, we reveal a mechanism of an intrinsically linked axis of impaired autophagy and unresolved ER stress that mediates the development and progression of NAFLD resulting from the overconsumption of high fat and/or carbohydrate.
Collapse
Affiliation(s)
- Xiu Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| | - Sherouk Fouda
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
- Correspondence: ; Tel.: +61-3-9925-7419; Fax: +61-3-9925-7178
| |
Collapse
|
41
|
Transcriptional Regulation in Non-Alcoholic Fatty Liver Disease. Metabolites 2020; 10:metabo10070283. [PMID: 32660130 PMCID: PMC7408131 DOI: 10.3390/metabo10070283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is the primary risk factor for the pathogenesis of non-alcoholic fatty liver disease (NAFLD), the worldwide prevalence of which continues to increase dramatically. The liver plays a pivotal role in the maintenance of whole-body lipid and glucose homeostasis. This is mainly mediated by the transcriptional activation of hepatic pathways that promote glucose and lipid production or utilization in response to the nutritional state of the body. However, in the setting of chronic excessive nutrition, the dysregulation of hepatic transcriptional machinery promotes lipid accumulation, inflammation, metabolic stress, and fibrosis, which culminate in NAFLD. In this review, we provide our current understanding of the transcription factors that have been linked to the pathogenesis and progression of NAFLD. Using publicly available transcriptomic data, we outline the altered activity of transcription factors among humans with NAFLD. By expanding this analysis to common experimental mouse models of NAFLD, we outline the relevance of mouse models to the human pathophysiology at the transcriptional level.
Collapse
|
42
|
Govindarajan S, Verheugen E, Venken K, Gaublomme D, Maelegheer M, Cloots E, Gysens F, De Geest BG, Cheng TY, Moody DB, Janssens S, Drennan M, Elewaut D. ER stress in antigen-presenting cells promotes NKT cell activation through endogenous neutral lipids. EMBO Rep 2020; 21:e48927. [PMID: 32363653 PMCID: PMC7271650 DOI: 10.15252/embr.201948927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
CD1d‐restricted invariant natural killer T (iNKT) cells constitute a common glycolipid‐reactive innate‐like T‐cell subset with a broad impact on innate and adaptive immunity. While several microbial glycolipids are known to activate iNKT cells, the cellular mechanisms leading to endogenous CD1d‐dependent glycolipid responses remain largely unclear. Here, we show that endoplasmic reticulum (ER) stress in APCs is a potent inducer of CD1d‐dependent iNKT cell autoreactivity. This pathway relies on the presence of two transducers of the unfolded protein response: inositol‐requiring enzyme‐1a (IRE1α) and protein kinase R‐like ER kinase (PERK). Surprisingly, the neutral but not the polar lipids generated within APCs undergoing ER stress are capable of activating iNKT cells. These data reveal that ER stress is an important mechanism to elicit endogenous CD1d‐restricted iNKT cell responses through induction of distinct classes of neutral lipids.
Collapse
Affiliation(s)
- Srinath Govindarajan
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Eveline Verheugen
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Koen Venken
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Djoere Gaublomme
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Margaux Maelegheer
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Eva Cloots
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory for ER Stress and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,VIB-Center for Medical Biotechnology, Ghent, Belgium
| | - Fien Gysens
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Biopharmaceutical Technology Unit, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Bruno G De Geest
- Biopharmaceutical Technology Unit, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Tan-Yun Cheng
- Brigham and Women's Hospital Division of Rheumatology, Immunity and Inflammation, Harvard Medical School, Boston, MA, USA
| | - D Branch Moody
- Brigham and Women's Hospital Division of Rheumatology, Immunity and Inflammation, Harvard Medical School, Boston, MA, USA
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory for ER Stress and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium
| | - Michael Drennan
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Wang J, He W, Tsai PJ, Chen PH, Ye M, Guo J, Su Z. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Health Dis 2020; 19:72. [PMID: 32284046 PMCID: PMC7155254 DOI: 10.1186/s12944-020-01210-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic syndrome. Imbalances between liver lipid output and input are the direct causes of NAFLD, and hepatic steatosis is the pathological premise and basis for NAFLD progression. Mutual interaction between endoplasmic reticulum stress (ERS) and oxidative stress play important roles in NAFLD pathogenesis. Notably, mitochondria-associated membranes (MAMs) act as a structural bridges for functional clustering of molecules, particularly for Ca2+, lipids, and reactive oxygen species (ROS) exchange. Previous studies have examined the crucial roles of ERS and ROS in NAFLD and have shown that MAM structural and functional integrity determines normal ER- mitochondria communication. Upon disruption of MAM integrity, miscommunication directly or indirectly causes imbalances in Ca2+ homeostasis and increases ERS and oxidative stress. Here, we emphasize the involvement of MAMs in glucose and lipid metabolism, chronic inflammation and insulin resistance in NAFLD and summarize MAM-targeting drugs and compounds, most of which achieve their therapeutic or ameliorative effects on NAFLD by improving MAM integrity. Therefore, targeting MAMs may be a viable strategy for NAFLD treatment. This review provides new ideas and key points for basic NAFLD research and drug development centred on mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jin Wang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanping He
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ping-Ju Tsai
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Pei-Hsuan Chen
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Manxiang Ye
- New Francisco (Yunfu City) Biotechnology Co, Ltd Swan-kan-chiau Ind. Dist., Kaofong Village, Yunfu City, Guangdong, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
44
|
Catestatin improves insulin sensitivity by attenuating endoplasmic reticulum stress: In vivo and in silico validation. Comput Struct Biotechnol J 2020; 18:464-481. [PMID: 32180905 PMCID: PMC7063178 DOI: 10.1016/j.csbj.2020.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
An endogenous peptide catestatin alleviates obesity-induced ER stress. Alleviation of ER stress by catestatin improves insulin sensitivity. PID controller based model of ER stress is supported by experimental findings. It predicts AKT phosphorylation achieves insulin sensitivity overcoming ER stress.
Obesity is characterized by a state of chronic, unresolved inflammation in insulin-targeted tissues. Obesity-induced inflammation causes accumulation of proinflammatory macrophages in adipose tissue and liver. Proinflammatory cytokines released from tissue macrophages inhibits insulin sensitivity. Obesity also leads to inflammation-induced endoplasmic reticulum (ER) stress and insulin resistance. In this scenario, based on the data (specifically patterns) generated by our in vivo experiments on both diet-induced obese (DIO) and normal chow diet (NCD) mice, we developed an in silico state space model to integrate ER stress and insulin signaling pathways. Computational results successfully followed the experimental results for both DIO and NCD conditions. Chromogranin A (CgA) peptide catestatin (CST: hCgA352-372) improves obesity-induced hepatic insulin resistance by reducing inflammation and inhibiting proinflammatory macrophage infiltration. We reasoned that the anti-inflammatory effects of CST would alleviate ER stress. CST decreased obesity-induced ER dilation in hepatocytes and macrophages. On application of Proportional-Integral-Derivative (PID) controllers on the in silico model, we checked whether the reduction of phosphorylated PERK resulting in attenuation of ER stress, resembling CST effect, could enhance insulin sensitivity. The simulation results clearly pointed out that CST not only decreased ER stress but also enhanced insulin sensitivity in mammalian cells. In vivo experiment validated the simulation results by depicting that CST caused decrease in phosphorylation of UPR signaling molecules and increased phosphorylation of insulin signaling molecules. Besides simulation results predicted that enhancement of AKT phosphorylation helps in both overcoming ER stress and achieving insulin sensitivity. These effects of CST were verified in hepatocyte culture model.
Collapse
|
45
|
Stauffer WT, Blackwood EA, Azizi K, Kaufman RJ, Glembotski CC. The ER Unfolded Protein Response Effector, ATF6, Reduces Cardiac Fibrosis and Decreases Activation of Cardiac Fibroblasts. Int J Mol Sci 2020; 21:ijms21041373. [PMID: 32085622 PMCID: PMC7073073 DOI: 10.3390/ijms21041373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Activating transcription factor-6 α (ATF6) is one of the three main sensors and effectors of the endoplasmic reticulum (ER) stress response and, as such, it is critical for protecting the heart and other tissues from a variety of environmental insults and disease states. In the heart, ATF6 has been shown to protect cardiac myocytes. However, its roles in other cell types in the heart are unknown. Here we show that ATF6 decreases the activation of cardiac fibroblasts in response to the cytokine, transforming growth factor β (TGFβ), which can induce fibroblast trans-differentiation into a myofibroblast phenotype through signaling via the TGFβ–Smad pathway. ATF6 activation suppressed fibroblast contraction and the induction of α smooth muscle actin (αSMA). Conversely, fibroblasts were hyperactivated when ATF6 was silenced or deleted. ATF6 thus represents a novel inhibitor of the TGFβ–Smad axis of cardiac fibroblast activation.
Collapse
Affiliation(s)
- Winston T. Stauffer
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.T.S.); (E.A.B.); (K.A.)
| | - Erik A. Blackwood
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.T.S.); (E.A.B.); (K.A.)
| | - Khalid Azizi
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.T.S.); (E.A.B.); (K.A.)
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92161, USA
| | - Christopher C. Glembotski
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA; (W.T.S.); (E.A.B.); (K.A.)
- Correspondence: ; Tel.: +1-619-594-2958
| |
Collapse
|
46
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
Lebeau PF, Byun JH, Platko K, Al-Hashimi AA, Lhoták Š, MacDonald ME, Mejia-Benitez A, Prat A, Igdoura SA, Trigatti B, Maclean KN, Seidah NG, Austin RC. Pcsk9 knockout exacerbates diet-induced non-alcoholic steatohepatitis, fibrosis and liver injury in mice. JHEP Rep 2019; 1:418-429. [PMID: 32039393 PMCID: PMC7005770 DOI: 10.1016/j.jhepr.2019.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
The fatty acid translocase, also known as CD36, is a well-established scavenger receptor for fatty acid (FA) uptake and is abundantly expressed in many metabolically active tissues. In the liver, CD36 is known to contribute to the progression of non-alcoholic fatty liver disease and to the more severe non-alcoholic steatohepatitis, by promoting triglyceride accumulation and subsequent lipid-induced endoplasmic reticulum (ER) stress. Given the recent discovery that the hepatocyte-secreted proprotein convertase subtilisin/kexin type 9 (PCSK9) blocks CD36 expression, we sought to investigate the role of PCSK9 in liver fat accumulation and injury in response to saturated FAs and in a mouse model of diet-induced hepatic steatosis. Methods In this study, we investigated the role of PCSK9 on the uptake and accumulation of FAs, as well as FA-induced toxicity, in a variety of cultured hepatocytes. Diet-induced hepatic steatosis and liver injury were also assessed in Pcsk9-/- mice. Results Our results indicate that PCSK9 deficiency in cultured hepatocytes increased the uptake and accumulation of saturated and unsaturated FAs. In the presence of saturated FAs, PCSK9 also protected cultured hepatocytes from ER stress and cytotoxicity. In line with these findings, a metabolic challenge using a high-fat diet caused severe hepatic steatosis, ER stress inflammation and fibrosis in the livers of Pcsk9-/- mice compared to controls. Given that inhibition of CD36 ablated the observed accumulation of lipid in vitro and in vivo, our findings also highlight CD36 as a strong contributor to steatosis and liver injury in the context of PCSK9 deficiency. Conclusions Collectively, our findings demonstrate that PCSK9 regulates hepatic triglyceride content in a manner dependent on CD36. In the presence of excess dietary fats, PCSK9 can also protect against hepatic steatosis and liver injury. Lay summary The proprotein convertase subtilisin/kexin type 9 (PCSK9) is a circulating protein known to reduce the abundance of receptors on the surface of liver cells charged with the task of lipid uptake from the circulation. Although PCSK9 deficiency is known to cause lipid accumulation in mice and in cultured cells, the toxicological implications of this observation have not yet been reported. In this study, we demonstrate that PCSK9 can protect against cytotoxicity in cultured liver cells treated with a saturated fatty acid and we also show that Pcsk9 knockout mice develop increased liver injury in response to a high-fat diet. PCSK9 reduces the expression of hepatic CD36 in mice. CD36 is a known driver of liver steatosis and injury. PCSK9 protects from palmitate-induced ER stress and ROS in cultured hepatocytes. High-fat diet causes severe hepatic steatosis, ER stress, inflammation and insulin resistance in Pcsk9-/- mice. PCSK9 expression protects mice from diet-induced liver injury.
Collapse
Affiliation(s)
- Paul F. Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph’s Healthcare Hamilton, Ontario L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph’s Healthcare Hamilton, Ontario L8N 4A6, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph’s Healthcare Hamilton, Ontario L8N 4A6, Canada
| | - Ali A. Al-Hashimi
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph’s Healthcare Hamilton, Ontario L8N 4A6, Canada
| | - Šárka Lhoták
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph’s Healthcare Hamilton, Ontario L8N 4A6, Canada
| | - Melissa E. MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph’s Healthcare Hamilton, Ontario L8N 4A6, Canada
| | - Aurora Mejia-Benitez
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph’s Healthcare Hamilton, Ontario L8N 4A6, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Suleiman A. Igdoura
- Department of Biology and Pathology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Bernardo Trigatti
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Kenneth N. Maclean
- the Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA, 80045
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Richard C. Austin
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph’s Healthcare Hamilton, Ontario L8N 4A6, Canada
- Corresponding author. Address: Dr. Richard C. Austin, 50 Charlton Ave East, Room T-3313, Hamilton, Ontario, L8N 4A6. Tel.: 905-522-1155 x35175; Fax: 905-540-6589.
| |
Collapse
|
48
|
Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacol Ther 2019; 203:107401. [PMID: 31419516 PMCID: PMC6848795 DOI: 10.1016/j.pharmthera.2019.107401] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease is a major public health burden. Although many features of nonalcoholic fatty liver disease pathogenesis are known, the specific mechanisms and susceptibilities that determine an individual's risk of developing nonalcoholic steatohepatitis versus isolated steatosis are not well delineated. The predominant and defining histologic and imaging characteristic of nonalcoholic fatty liver disease is the accumulation of lipids. Dysregulation of lipid homeostasis in hepatocytes leads to transient generation or accumulation of toxic lipids that result in endoplasmic reticulum (ER) stress with inflammation, hepatocellular damage, and apoptosis. ER stress activates the unfolded protein response (UPR) which is classically viewed as an adaptive pathway to maintain protein folding homeostasis. Recent studies have uncovered the contribution of the UPR sensors in the regulation of hepatic steatosis and in the cellular response to lipotoxic stress. Interestingly, the UPR sensors can be directly activated by toxic lipids, independently of the accumulation of misfolded proteins, termed lipotoxic and proteotoxic stress, respectively. The dual function of the UPR sensors in protein and lipid homeostasis suggests that these two types of stress are interconnected likely due to the central role of the ER in protein folding and trafficking and lipid biosynthesis and trafficking, such that perturbations in either impact the function of the ER and activate the UPR sensors in an effort to restore homeostasis. The precise molecular similarities and differences between proteotoxic and lipotoxic ER stress are beginning to be understood. Herein, we provide an overview of the mechanisms involved in the activation and cross-talk between the UPR sensors, hepatic lipid metabolism, and lipotoxic stress, and discuss the possible therapeutic potential of targeting the UPR in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Myeong Jun Song
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States of America; Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, United States of America.
| |
Collapse
|
49
|
Yu Y, Dong JT, He B, Zou YF, Li XS, Xi CH, Yu Y. LncRNA SNHG16 induces the SREBP2 to promote lipogenesis and enhance the progression of pancreatic cancer. Future Oncol 2019; 15:3831-3844. [PMID: 31664866 DOI: 10.2217/fon-2019-0321] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Blocking lipogenesis could significantly inhibit the progression of pancreatic cancer. Exploring the regulatory mechanisms of lipogenesis by lncRNA SNHG16 might be of great significance to control the development of pancreatic cancer. Methods: The proliferation, migration, invasion and lipogenesis were determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, transwell and Oil Red O staining assays, respectively. The interactions among lncRNA SNHG16, miR-195 and SREBP2 were analyzed by dual luciferase reporter assays. Results: Both the knock down of lncRNA SNHG16 and SREBP2 and overexpression of miR-195 suppressed the proliferation, migration, invasion and lipogenesis in pancreatic cancer cells. LncRNA SNHG16 directly sponged miR-195 to modulate the lipogenesis via regulating the expression of SREBP2. Conclusion: LncRNA SNHG16 accelerated the development of pancreatic cancer and promoted lipogenesis via directly regulating miR-195/SREBP2 axis.
Collapse
Affiliation(s)
- Yi Yu
- Department of Pediatrics, Ruijin Hospital North, Shanghai Jiaotong University, School of Medicine, Shanghai 201801, PR China
| | - Jia-Tian Dong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Bing He
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Yu-Feng Zou
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Xue-Song Li
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Chen-Hui Xi
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Yuan Yu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| |
Collapse
|
50
|
Enhanced cellular cholesterol efflux by naringenin is mediated through inhibiting endoplasmic reticulum stress - ATF6 activity in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1472-1482. [DOI: 10.1016/j.bbalip.2019.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022]
|