1
|
Yi S, Guo X, Lou W, Mao S, Luan G, Lu X. Structure, Regulation, and Significance of Cyanobacterial and Chloroplast Adenosine Triphosphate Synthase in the Adaptability of Oxygenic Photosynthetic Organisms. Microorganisms 2024; 12:940. [PMID: 38792770 PMCID: PMC11124002 DOI: 10.3390/microorganisms12050940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
In cyanobacteria and chloroplasts (in algae and plants), ATP synthase plays a pivotal role as a photosynthetic membrane complex responsible for producing ATP from adenosine diphosphate and inorganic phosphate, utilizing a proton motive force gradient induced by photosynthesis. These two ATP synthases exhibit similarities in gene organization, amino acid sequences of subunits, structure, and functional mechanisms, suggesting that cyanobacterial ATP synthase is probably the evolutionary precursor to chloroplast ATP synthase. In this review, we explore the precise synthesis and assembly of ATP synthase subunits to address the uneven stoichiometry within the complex during transcription, translation, and assembly processes. We also compare the regulatory strategies governing ATP synthase activity to meet varying energy demands in cyanobacteria and chloroplasts amid fluctuating natural environments. Furthermore, we delve into the role of ATP synthase in stress tolerance and photosynthetic carbon fixation efficiency in oxygenic photosynthetic organisms (OPsOs), along with the current researches on modifying ATP synthase to enhance carbon fixation efficiency under stress conditions. This review aims to offer theoretical insights and serve as a reference for understanding the functional mechanisms of ATP synthase, sparking innovative ideas for enhancing photosynthetic carbon fixation efficiency by utilizing ATP synthase as an effective module in OPsOs.
Collapse
Affiliation(s)
- Siyan Yi
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
| | - Xin Guo
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- College of Live Science, Henan University, Kaifeng 450001, China
| | - Wenjing Lou
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Shaoming Mao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
| | - Guodong Luan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
2
|
Nath S. Beyond binding change: the molecular mechanism of ATP hydrolysis by F 1-ATPase and its biochemical consequences. Front Chem 2023; 11:1058500. [PMID: 37324562 PMCID: PMC10266426 DOI: 10.3389/fchem.2023.1058500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
F1-ATPase is a universal multisubunit enzyme and the smallest-known motor that, fueled by the process of ATP hydrolysis, rotates in 120o steps. A central question is how the elementary chemical steps occurring in the three catalytic sites are coupled to the mechanical rotation. Here, we performed cold chase promotion experiments and measured the rates and extents of hydrolysis of preloaded bound ATP and promoter ATP bound in the catalytic sites. We found that rotation was caused by the electrostatic free energy change associated with the ATP cleavage reaction followed by Pi release. The combination of these two processes occurs sequentially in two different catalytic sites on the enzyme, thereby driving the two rotational sub-steps of the 120o rotation. The mechanistic implications of this finding are discussed based on the overall energy balance of the system. General principles of free energy transduction are formulated, and their important physical and biochemical consequences are analyzed. In particular, how exactly ATP performs useful external work in biomolecular systems is discussed. A molecular mechanism of steady-state, trisite ATP hydrolysis by F1-ATPase, consistent with physical laws and principles and the consolidated body of available biochemical information, is developed. Taken together with previous results, this mechanism essentially completes the coupling scheme. Discrete snapshots seen in high-resolution X-ray structures are assigned to specific intermediate stages in the 120o hydrolysis cycle, and reasons for the necessity of these conformations are readily understood. The major roles played by the "minor" subunits of ATP synthase in enabling physiological energy coupling and catalysis, first predicted by Nath's torsional mechanism of energy transduction and ATP synthesis 25 years ago, are now revealed with great clarity. The working of nine-stepped (bMF1, hMF1), six-stepped (TF1, EF1), and three-stepped (PdF1) F1 motors and of the α3β3γ subcomplex of F1 is explained by the same unified mechanism without invoking additional assumptions or postulating different mechanochemical coupling schemes. Some novel predictions of the unified theory on the mode of action of F1 inhibitors, such as sodium azide, of great pharmaceutical importance, and on more exotic artificial or hybrid/chimera F1 motors have been made and analyzed mathematically. The detailed ATP hydrolysis cycle for the enzyme as a whole is shown to provide a biochemical basis for a theory of "unisite" and steady-state multisite catalysis by F1-ATPase that had remained elusive for a very long time. The theory is supported by a probability-based calculation of enzyme species distributions and analysis of catalytic site occupancies by Mg-nucleotides and the activity of F1-ATPase. A new concept of energy coupling in ATP synthesis/hydrolysis based on fundamental ligand substitution chemistry has been advanced, which offers a deeper understanding, elucidates enzyme activation and catalysis in a better way, and provides a unified molecular explanation of elementary chemical events occurring at enzyme catalytic sites. As such, these developments take us beyond binding change mechanisms of ATP synthesis/hydrolysis proposed for oxidative phosphorylation and photophosphorylation in bioenergetics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
3
|
de Souza Araújo DM, de Almeida AAF, Pirovani CP, Mora-Ocampo IY, Lima Silva JP, Valle Meléndez RR. Molecular, biochemical and micromorphological responses of cacao seedlings of the Parinari series, carrying the lethal gene Luteus-Pa, in the presence and absence of cotyledons. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:550-569. [PMID: 36525937 DOI: 10.1016/j.plaphy.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the compatibility between cacao genotypes of the population of the Parinari series (Pa), resulting from the reciprocal crossing of Pa 30 × Pa 169 and Pa 121 × Pa 169, allowed the verification of the occurrence of the recessive lethal single character called Luteus-Pa. These genotypes have this gene in heterozygosity, which when intercross or self-fertilize, segregate in a 3:1 ratio. Normal (NS) and mutant (MS) seedlings grow normally and, after a period of approximately 30 days of age, MS leaves begin to show a metallic yellow color, followed by necrotic spots, and death of the entire seedling, approximately 40 days after the emergency. The work evaluate the molecular, biochemical and micromorphological responses in NS and MS, with and without cotyledons, resulting from the crossing of the Pa 30 × Pa 169 cacao genotypes, aiming to elucidate the possible lethal mechanisms of the homozygous recessive Luteus-Pa. The presence of the lethal gene Luteus-Pa in the seedlings of the cacao genotypes of the population of the Parinari (Pa), with and without cotyledons, resulting from the crossing of Pa 30 × Pa 169, in addition to regulating the synthesis of proteins related to the photosynthetic and stress defense processes, promoted an increase in the synthesis of proteins involved in the glycolic pathway, induced oxidative stress, altered the mobilization of cotyledonary reserves, the integrity of cell membranes, leaf micromorphology and induced the death of seedlings, soon after depletion of protein and carbohydrate reserves, especially in the absence of cotyledons.
Collapse
Affiliation(s)
- D'avila Maria de Souza Araújo
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil.
| | - Carlos Priminho Pirovani
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - Irma Yuliana Mora-Ocampo
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - João Paulo Lima Silva
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil
| | - Raúl René Valle Meléndez
- State University of Santa Cruz, Department of Biological Sciences, km 16 Jorge Amado Highway, 45662-900, Ilhéus, BA, Brazil; Executive Commission for the Cacao farming Plan, km 22 Jorge Amado Highway, 45650-780, Ilhéus, BA, Brazil
| |
Collapse
|
4
|
Iwamoto-Kihara A. Regulatory Mechanisms and Environmental Adaptation of the F-ATPase Family. Biol Pharm Bull 2022; 45:1412-1418. [PMID: 36184497 DOI: 10.1248/bpb.b22-00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The F-type ATPase family of enzymes, including ATP synthases, are found ubiquitously in biological membranes. ATP synthesis from ADP and inorganic phosphate is driven by an electrochemical H+ gradient or H+ motive force, in which intramolecular rotation of F-type ATPase is generated with H+ transport across the membranes. Because this rotation is essential for energy coupling between catalysis and H+-transport, regulation of the rotation is important to adapt to environmental changes and maintain ATP concentration. Recently, a series of cryo-electron microscopy images provided detailed insights into the structure of the H+ pathway and the multiple subunit arrangement. However, the regulatory mechanism of the rotation has not been clarified. This review describes the inhibition mechanism of ATP hydrolysis in bacterial enzymes. In addition, properties of the F-type ATPase of Streptococcus mutans, which acts as a H+-pump in an acidic environment, are described. These findings may help in the development of novel antimicrobial agents.
Collapse
|
5
|
Mendoza-Hoffmann F, Zarco-Zavala M, Ortega R, Celis-Sandoval H, Torres-Larios A, García-Trejo JJ. Evolution of the Inhibitory and Non-Inhibitory ε, ζ, and IF 1 Subunits of the F 1F O-ATPase as Related to the Endosymbiotic Origin of Mitochondria. Microorganisms 2022; 10:microorganisms10071372. [PMID: 35889091 PMCID: PMC9317440 DOI: 10.3390/microorganisms10071372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
The F1FO-ATP synthase nanomotor synthesizes >90% of the cellular ATP of almost all living beings by rotating in the “forward” direction, but it can also consume the same ATP pools by rotating in “reverse.” To prevent futile F1FO-ATPase activity, several different inhibitory proteins or domains in bacteria (ε and ζ subunits), mitochondria (IF1), and chloroplasts (ε and γ disulfide) emerged to block the F1FO-ATPase activity selectively. In this study, we analyze how these F1FO-ATPase inhibitory proteins have evolved. The phylogeny of the α-proteobacterial ε showed that it diverged in its C-terminal side, thus losing both the inhibitory function and the ATP-binding/sensor motif that controls this inhibition. The losses of inhibitory function and the ATP-binding site correlate with an evolutionary divergence of non-inhibitory α-proteobacterial ε and mitochondrial δ subunits from inhibitory bacterial and chloroplastidic ε subunits. Here, we confirm the lack of inhibitory function of wild-type and C-terminal truncated ε subunits of P. denitrificans. Taken together, the data show that ζ evolved to replace ε as the primary inhibitor of the F1FO-ATPase of free-living α-proteobacteria. However, the ζ inhibitory function was also partially lost in some symbiotic α-proteobacteria and totally lost in some strictly parasitic α-proteobacteria such as the Rickettsiales order. Finally, we found that ζ and IF1 likely evolved independently via convergent evolution before and after the endosymbiotic origin mitochondria, respectively. This led us to propose the ε and ζ subunits as tracer genes of the pre-endosymbiont that evolved into the actual mitochondria.
Collapse
Affiliation(s)
- Francisco Mendoza-Hoffmann
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California (UABC)—Campus Tijuana, Tijuana C.P. 22390, Baja California, Mexico
- Correspondence: (F.M.-H.); (J.J.G.-T.)
| | - Mariel Zarco-Zavala
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Raquel Ortega
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Heliodoro Celis-Sandoval
- Instituto de Fisiología Celular (IFC), Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Alfredo Torres-Larios
- Instituto de Fisiología Celular (IFC), Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - José J. García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
- Correspondence: (F.M.-H.); (J.J.G.-T.)
| |
Collapse
|
6
|
Noji H, Ueno H. How Does F1-ATPase Generate Torque?: Analysis From Cryo-Electron Microscopy and Rotational Catalysis of Thermophilic F1. Front Microbiol 2022; 13:904084. [PMID: 35602057 PMCID: PMC9120768 DOI: 10.3389/fmicb.2022.904084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
The F1-ATPase is a rotary motor fueled by ATP hydrolysis. Its rotational dynamics have been well characterized using single-molecule rotation assays. While F1-ATPases from various species have been studied using rotation assays, the standard model for single-molecule studies has been the F1-ATPase from thermophilic Bacillus sp. PS3, named TF1. Single-molecule studies of TF1 have revealed fundamental features of the F1-ATPase, such as the principal stoichiometry of chemo-mechanical coupling (hydrolysis of 3 ATP per turn), torque (approximately 40 pN·nm), and work per hydrolysis reaction (80 pN·nm = 48 kJ/mol), which is nearly equivalent to the free energy of ATP hydrolysis. Rotation assays have also revealed that TF1 exhibits two stable conformational states during turn: a binding dwell state and a catalytic dwell state. Although many structures of F1 have been reported, most of them represent the catalytic dwell state or its related states, and the structure of the binding dwell state remained unknown. A recent cryo-EM study on TF1 revealed the structure of the binding dwell state, providing insights into how F1 generates torque coupled to ATP hydrolysis. In this review, we discuss the torque generation mechanism of F1 based on the structure of the binding dwell state and single-molecule studies.
Collapse
|
7
|
Song K, Baumgartner D, Hagemann M, Muro-Pastor AM, Maaß S, Becher D, Hess WR. AtpΘ is an inhibitor of F 0F 1 ATP synthase to arrest ATP hydrolysis during low-energy conditions in cyanobacteria. Curr Biol 2021; 32:136-148.e5. [PMID: 34762820 DOI: 10.1016/j.cub.2021.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Biological processes in all living cells are powered by ATP, a nearly universal molecule of energy transfer. ATP synthases produce ATP utilizing proton gradients that are usually generated by either respiration or photosynthesis. However, cyanobacteria are unique in combining photosynthetic and respiratory electron transport chains in the same membrane system, the thylakoids. How cyanobacteria prevent the futile reverse operation of ATP synthase under unfavorable conditions pumping protons while hydrolyzing ATP is mostly unclear. Here, we provide evidence that the small protein AtpΘ, which is widely conserved in cyanobacteria, is mainly fulfilling this task. The expression of AtpΘ becomes induced under conditions such as darkness or heat shock, which can lead to a weakening of the proton gradient. Translational fusions of AtpΘ to the green fluorescent protein revealed targeting to the thylakoid membrane. Immunoprecipitation assays followed by mass spectrometry and far western blots identified subunits of ATP synthase as interacting partners of AtpΘ. ATP hydrolysis assays with isolated membrane fractions, as well as purified ATP synthase complexes, demonstrated that AtpΘ inhibits ATPase activity in a dose-dependent manner similar to the F0F1-ATP synthase inhibitor N,N-dicyclohexylcarbodimide. The results show that, even in a well-investigated process, crucial new players can be discovered if small proteins are taken into consideration and indicate that ATP synthase activity can be controlled in surprisingly different ways.
Collapse
Affiliation(s)
- Kuo Song
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Desirée Baumgartner
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Martin Hagemann
- University of Rostock, Institute of Biosciences, Plant Physiology Department, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Sandra Maaß
- University of Greifswald, Department of Microbial Proteomics, Institute of Microbiology, 17489 Greifswald, Germany
| | - Dörte Becher
- University of Greifswald, Department of Microbial Proteomics, Institute of Microbiology, 17489 Greifswald, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
8
|
Miranda-Astudillo H, Zarco-Zavala M, García-Trejo JJ, González-Halphen D. Regulation of bacterial ATP synthase activity: A gear-shifting or a pawl-ratchet mechanism? FEBS J 2020; 288:3159-3163. [PMID: 33377595 DOI: 10.1111/febs.15671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
The F1 Fo -ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton-pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε-subunit of the bacterial F1 Fo -ATP synthase in vivo. We discuss if a gear-shifting versus a pawl-ratchet mechanism may explain the regulatory role of the ε-subunit.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - José J García-Trejo
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
9
|
The 3 × 120° rotary mechanism of Paracoccus denitrificans F 1-ATPase is different from that of the bacterial and mitochondrial F 1-ATPases. Proc Natl Acad Sci U S A 2020; 117:29647-29657. [PMID: 33168750 PMCID: PMC7703542 DOI: 10.1073/pnas.2003163117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rotation of Paracoccus denitrificans F1-ATPase (PdF1) was studied using single-molecule microscopy. At all concentrations of adenosine triphosphate (ATP) or a slowly hydrolyzable ATP analog (ATPγS), above or below K m, PdF1 showed three dwells per turn, each separated by 120°. Analysis of dwell time between steps showed that PdF1 executes binding, hydrolysis, and probably product release at the same dwell. The comparison of ATP binding and catalytic pauses in single PdF1 molecules suggested that PdF1 executes both elementary events at the same rotary position. This point was confirmed in an inhibition experiment with a nonhydrolyzable ATP analog (AMP-PNP). Rotation assays in the presence of adenosine diphosphate (ADP) or inorganic phosphate at physiological concentrations did not reveal any obvious substeps. Although the possibility of the existence of substeps remains, all of the datasets show that PdF1 is principally a three-stepping motor similar to bacterial vacuolar (V1)-ATPase from Thermus thermophilus This contrasts with all other known F1-ATPases that show six or nine dwells per turn, conducting ATP binding and hydrolysis at different dwells. Pauses by persistent Mg-ADP inhibition or the inhibitory ζ-subunit were also found at the same angular position of the rotation dwell, supporting the simplified chemomechanical scheme of PdF1 Comprehensive analysis of rotary catalysis of F1 from different species, including PdF1, suggests a clear trend in the correlation between the numbers of rotary steps of F1 and Fo domains of F-ATP synthase. F1 motors with more distinctive steps are coupled with proton-conducting Fo rings with fewer proteolipid subunits, giving insight into the design principle the F1Fo of ATP synthase.
Collapse
|
10
|
Correlation between the numbers of rotation steps in the ATPase and proton-conducting domains of F- and V-ATPases. Biophys Rev 2020; 12:303-307. [PMID: 32270445 PMCID: PMC7242557 DOI: 10.1007/s12551-020-00668-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
This letter reports the correlation in the number of distinct rotation steps between the F1/V1 and Fo/Vo domains that constitute common rotary F- and V-ATP synthases/ATPases. Recent single-molecule studies on the F1-ATPase revealed differences in the number of discrete steps in rotary catalysis between different organisms—6 steps per turn in bacterial types and mitochondrial F1 from yeast, and 9 steps in the mammalian mitochondrial F1 domains. The number of rotational steps that Fo domain makes is thought to correspond to that of proteolipid subunits within the rotating c-ring present in Fo. Structural studies on Fo and in the whole ATP synthase complex have shown a large diversity in the number of proteolipid subunits. Interestingly, 6 steps in F1 are always paired with 10 steps in Fo, whereas 9 steps in F1 are paired with 8 steps in Fo. The correlation in the number of steps has also been revealed for two types of V-ATPases: one having 6 steps in V1 paired with 10 steps in Vo, and the other one having 3 steps in V1 paired with 12 steps in Vo. Although the abovementioned correlations await further confirmation, the results suggest a clear trend; ATPase motors with more steps have proton-conducting motors with less steps. In addition, ATPases with 6 steps are always paired with proton-conducting domains with 10 steps.
Collapse
|
11
|
Milgrom YM, Duncan TM. F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε-subunit's C-terminal domain are mutually exclusive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148189. [PMID: 32194063 DOI: 10.1016/j.bbabio.2020.148189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
ATP synthases are important energy-coupling, rotary motor enzymes in all kingdoms of life. In all F-type ATP synthases, the central rotor of the catalytic F1 complex is composed of the γ subunit and the N-terminal domain (NTD) of the ε subunit. In the enzymes of diverse bacteria, the C-terminal domain of ε (εCTD) can undergo a dramatic conformational change to trap the enzyme in a transiently inactive state. This inhibitory mechanism is absent in the mitochondrial enzyme, so the εCTD could provide a means to selectively target ATP synthases of pathogenic bacteria for antibiotic development. For Escherichia coli and other bacterial model systems, it has been difficult to dissect the relationship between ε inhibition and a MgADP-inhibited state that is ubiquitous for FOF1 from bacteria and eukaryotes. A prior study with the isolated catalytic complex from E. coli, EcF1, showed that these two modes of inhibition are mutually exclusive, but it has long been known that interactions of F1 with the membrane-embedded FO complex modulate inhibition by the εCTD. Here, we study membranes containing EcFOF1 with wild-type ε, ε lacking the full εCTD, or ε with a small deletion at the C-terminus. By using compounds with distinct activating effects on F-ATP-ase activity, we confirm that εCTD inhibition and ubiquitous MgADP inhibition are mutually exclusive for membrane-bound E. coli F-ATP-ase. We determine that most of the enzyme complexes in wild-type membranes are in the ε-inhibited state (>50%) or in the MgADP-inhibited state (30%).
Collapse
Affiliation(s)
- Yakov M Milgrom
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| |
Collapse
|
12
|
The β-hairpin region of the cyanobacterial F 1-ATPase γ-subunit plays a regulatory role in the enzyme activity. Biochem J 2019; 476:1771-1780. [PMID: 31164401 DOI: 10.1042/bcj20190242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/21/2023]
Abstract
The γ-subunit of cyanobacterial and chloroplast ATP synthase, the rotary shaft of F1-ATPase, equips a specific insertion region that is only observed in photosynthetic organisms. This region plays a physiologically pivotal role in enzyme regulation, such as in ADP inhibition and redox response. Recently solved crystal structures of the γ-subunit of F1-ATPase from photosynthetic organisms revealed that the insertion region forms a β-hairpin structure, which is positioned along the central stalk. The structure-function relationship of this specific region was studied by constraining the expected conformational change in this region caused by the formation of a disulfide bond between Cys residues introduced on the central stalk and this β-hairpin structure. This fixation of the β-hairpin region in the α3β3γ complex affects both ADP inhibition and the binding of the ε-subunit to the complex, indicating the critical role that the β-hairpin region plays as a regulator of the enzyme. This role must be important for the maintenance of the intracellular ATP levels in photosynthetic organisms.
Collapse
|
13
|
Single-molecule pull-out manipulation of the shaft of the rotary motor F 1-ATPase. Sci Rep 2019; 9:7451. [PMID: 31092848 PMCID: PMC6520343 DOI: 10.1038/s41598-019-43903-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/29/2019] [Indexed: 01/29/2023] Open
Abstract
F1-ATPase is a rotary motor protein in which the central γ-subunit rotates inside the cylinder made of α3β3 subunits. To investigate interactions between the γ shaft and the cylinder at the molecular scale, load was imposed on γ through a polystyrene bead by three-dimensional optical trapping in the direction along which the shaft penetrates the cylinder. Pull-out event was observed under high-load, and thus load-dependency of lifetime of the interaction was estimated. Notably, accumulated counts of lifetime were comprised of fast and slow components. Both components exponentially dropped with imposed loads, suggesting that the binding energy is compensated by the work done by optical trapping. Because the mutant, in which the half of the shaft was deleted, showed only one fast component in the bond lifetime, the slow component is likely due to the native interaction mode held by multiple interfaces.
Collapse
|
14
|
Inabe K, Kondo K, Yoshida K, Wakabayashi KI, Hisabori T. The N-terminal region of the ϵ subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity. J Biol Chem 2019; 294:10094-10103. [PMID: 31068416 DOI: 10.1074/jbc.ra118.007131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
ATP hydrolysis activity catalyzed by chloroplast and proteobacterial ATP synthase is inhibited by their ϵ subunits. To clarify the function of the ϵ subunit from phototrophs, here we analyzed the ϵ subunit-mediated inhibition (ϵ-inhibition) of cyanobacterial F1-ATPase, a subcomplex of ATP synthase obtained from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. We generated three C-terminal α-helix null ϵ-mutants; one lacked the C-terminal α-helices, and in the other two, the C-terminal conformation could be locked by a disulfide bond formed between two α-helices or an α-helix and a β-sandwich structure. All of these ϵ-mutants maintained ATPase-inhibiting competency. We then used single-molecule observation techniques to analyze the rotary motion of F1-ATPase in the presence of these ϵ-mutants. The stop angular position of the γ subunit in the presence of the ϵ-mutant was identical to that in the presence of the WT ϵ. Using magnetic tweezers, we examined recovery from the inhibited rotation and observed restoration of rotation by 80° forcing of the γ subunit in the case of the ADP-inhibited form, but not when the rotation was inhibited by the ϵ-mutants or by the WT ϵ subunit. These results imply that the C-terminal α-helix domain of the ϵ subunit of cyanobacterial enzyme does not directly inhibit ATP hydrolysis and that its N-terminal domain alone can inhibit the hydrolysis activity. Notably, this property differed from that of the proteobacterial ϵ, which could not tightly inhibit rotation. We conclude that phototrophs and heterotrophs differ in the ϵ subunit-mediated regulation of ATP synthase.
Collapse
Affiliation(s)
- Kosuke Inabe
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and.,the School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Kumiko Kondo
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and
| | - Keisuke Yoshida
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and
| | - Ken-Ichi Wakabayashi
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and.,the School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Toru Hisabori
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and .,the School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
15
|
Lapashina AS, Feniouk BA. ADP-Inhibition of H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2018; 83:1141-1160. [PMID: 30472953 DOI: 10.1134/s0006297918100012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
16
|
Structure of the γ-ε complex of cyanobacterial F 1-ATPase reveals a suppression mechanism of the γ subunit on ATP hydrolysis in phototrophs. Biochem J 2018; 475:2925-2939. [PMID: 30054433 DOI: 10.1042/bcj20180481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
Abstract
F1-ATPase forms the membrane-associated segment of F0F1-ATP synthase - the fundamental enzyme complex in cellular bioenergetics for ATP hydrolysis and synthesis. Here, we report a crystal structure of the central F1 subcomplex, consisting of the rotary shaft γ subunit and the inhibitory ε subunit, from the photosynthetic cyanobacterium Thermosynechococcus elongatus BP-1, at 1.98 Å resolution. In contrast with their homologous bacterial and mitochondrial counterparts, the γ subunits of photosynthetic organisms harbour a unique insertion of 35-40 amino acids. Our structural data reveal that this region forms a β-hairpin structure along the central stalk. We identified numerous critical hydrogen bonds and electrostatic interactions between residues in the hairpin and the rest of the γ subunit. To elaborate the critical function of this β-hairpin in inhibiting ATP hydrolysis, the corresponding domain was deleted in the cyanobacterial F1 subcomplex. Biochemical analyses of the corresponding α3β3γ complex confirm that the clinch of the hairpin structure plays a critical role and accounts for a significant interaction in the α3β3 complex to induce ADP inhibition during ATP hydrolysis. In addition, we found that truncating the β-hairpin insertion structure resulted in a marked impairment of the interaction with the ε subunit, which binds to the opposite side of the γ subunit from the β-hairpin structure. Combined with structural analyses, our work provides experimental evidence supporting the molecular principle of how the insertion region of the γ subunit suppresses F1 rotation during ATP hydrolysis.
Collapse
|
17
|
Sielaff H, Duncan TM, Börsch M. The regulatory subunit ε in Escherichia coli F OF 1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:775-788. [PMID: 29932911 DOI: 10.1016/j.bbabio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
18
|
Krah A, Zarco-Zavala M, McMillan DGG. Insights into the regulatory function of the ɛ subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biol 2018; 8:170275. [PMID: 29769322 PMCID: PMC5990651 DOI: 10.1098/rsob.170275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
ATP synthases catalyse the formation of ATP, the most common chemical energy storage unit found in living cells. These enzymes are driven by an electrochemical ion gradient, which allows the catalytic evolution of ATP by a binding change mechanism. Most ATP synthases are capable of catalysing ATP hydrolysis to varying degrees, and to prevent wasteful ATP hydrolysis, bacteria and mitochondria have regulatory mechanisms such as ADP inhibition. Additionally, ɛ subunit inhibition has also been described in three bacterial systems, Escherichia coli, Bacillus PS3 and Caldalkalibacillus thermarum TA2.A1. Previous studies suggest that the ɛ subunit is capable of undergoing an ATP-dependent conformational change from the ATP hydrolytic inhibitory 'extended' conformation to the ATP-induced non-inhibitory 'hairpin' conformation. A recently published crystal structure of the F1 domain of the C. thermarum TA2.A1 F1Fo ATP synthase revealed a mutant ɛ subunit lacking the ability to bind ATP in a hairpin conformation. This is a surprising observation considering it is an organism that performs no ATP hydrolysis in vivo, and appears to challenge the current dogma on the regulatory role of the ɛ subunit. This has prompted a re-examination of present knowledge of the ɛ subunits role in different organisms. Here, we compare published biochemical, biophysical and structural data involving ɛ subunit-mediated ATP hydrolysis regulation in a variety of organisms, concluding that the ɛ subunit from the bacterial F-type ATP synthases is indeed capable of regulating ATP hydrolysis activity in a wide variety of bacteria, making it a potentially valuable drug target, but its exact role is still under debate.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Mariel Zarco-Zavala
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
19
|
Kondo K, Takeyama Y, Sunamura EI, Madoka Y, Fukaya Y, Isu A, Hisabori T. Amputation of a C-terminal helix of the γ subunit increases ATP-hydrolysis activity of cyanobacterial F 1 ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:319-325. [PMID: 29470949 DOI: 10.1016/j.bbabio.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/01/2022]
Abstract
F1 is a soluble part of FoF1-ATP synthase and performs a catalytic process of ATP hydrolysis and synthesis. The γ subunit, which is the rotary shaft of F1 motor, is composed of N-terminal and C-terminal helices domains, and a protruding Rossman-fold domain located between the two major helices parts. The N-terminal and C-terminal helices domains of γ assemble into an antiparallel coiled-coil structure, and are almost embedded into the stator ring composed of α3β3 hexamer of the F1 molecule. Cyanobacterial and chloroplast γ subunits harbor an inserted sequence of 30 or 39 amino acids length within the Rossman-fold domain in comparison with bacterial or mitochondrial γ. To understand the structure-function relationship of the γ subunit, we prepared a mutant F1-ATP synthase of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1, in which the γ subunit is split into N-terminal α-helix along with the inserted sequence and the remaining C-terminal part. The obtained mutant showed higher ATP-hydrolysis activities than those containing the wild-type γ. Contrary to our expectation, the complexes containing the split γ subunits were mostly devoid of the C-terminal helix. We further investigated the effect of post-assembly cleavage of the γ subunit. We demonstrate that insertion of the nick between two helices of the γ subunit imparts resistance to ADP inhibition, and the C-terminal α-helix is dispensable for ATP-hydrolysis activity and plays a crucial role in the assembly of F1-ATP synthase.
Collapse
Affiliation(s)
- Kumiko Kondo
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Yu Takeyama
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | - Ei-Ichiro Sunamura
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Yuka Madoka
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Yuki Fukaya
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | - Atsuko Isu
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan.
| |
Collapse
|
20
|
Noji H, Ueno H, McMillan DGG. Catalytic robustness and torque generation of the F 1-ATPase. Biophys Rev 2017; 9:103-118. [PMID: 28424741 PMCID: PMC5380711 DOI: 10.1007/s12551-017-0262-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
The F1-ATPase is the catalytic portion of the FoF1 ATP synthase and acts as a rotary molecular motor when it hydrolyzes ATP. Two decades have passed since the single-molecule rotation assay of F1-ATPase was established. Although several fundamental issues remain elusive, basic properties of F-type ATPases as motor proteins have been well characterized, and a large part of the reaction scheme has been revealed by the combination of extensive structural, biochemical, biophysical, and theoretical studies. This review is intended to provide a concise summary of the fundamental features of F1-ATPases, by use of the well-described model F1 from the thermophilic Bacillus PS3 (TF1). In the last part of this review, we focus on the robustness of the rotary catalysis of F1-ATPase to provide a perspective on the re-designing of novel molecular machines.
Collapse
Affiliation(s)
- Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| | - Duncan G. G. McMillan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| |
Collapse
|
21
|
Santamaría-Gómez J, Ochoa de Alda JAG, Olmedo-Verd E, Bru-Martínez R, Luque I. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase. Front Microbiol 2016; 7:857. [PMID: 27375579 PMCID: PMC4893482 DOI: 10.3389/fmicb.2016.00857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023] Open
Abstract
tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.
Collapse
Affiliation(s)
- Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | | | - Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of AlicanteAlicante, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| |
Collapse
|
22
|
F1-ATPase conformational cycle from simultaneous single-molecule FRET and rotation measurements. Proc Natl Acad Sci U S A 2016; 113:E2916-24. [PMID: 27166420 DOI: 10.1073/pnas.1524720113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite extensive studies, the structural basis for the mechanochemical coupling in the rotary molecular motor F1-ATPase (F1) is still incomplete. We performed single-molecule FRET measurements to monitor conformational changes in the stator ring-α3β3, while simultaneously monitoring rotations of the central shaft-γ. In the ATP waiting dwell, two of three β-subunits simultaneously adopt low FRET nonclosed forms. By contrast, in the catalytic intermediate dwell, two β-subunits are simultaneously in a high FRET closed form. These differences allow us to assign crystal structures directly to both major dwell states, thus resolving a long-standing issue and establishing a firm connection between F1 structure and the rotation angle of the motor. Remarkably, a structure of F1 in an ε-inhibited state is consistent with the unique FRET signature of the ATP waiting dwell, while most crystal structures capture the structure in the catalytic dwell. Principal component analysis of the available crystal structures further clarifies the five-step conformational transitions of the αβ-dimer in the ATPase cycle, highlighting the two dominant modes: the opening/closing motions of β and the loosening/tightening motions at the αβ-interface. These results provide a new view of tripartite coupling among chemical reactions, stator conformations, and rotary angles in F1-ATPase.
Collapse
|
23
|
Nakanishi-Matsui M, Sekiya M, Futai M. ATP synthase from Escherichia coli : Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:129-140. [DOI: 10.1016/j.bbabio.2015.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
24
|
Shah NB, Duncan TM. Aerobic Growth of Escherichia coli Is Reduced, and ATP Synthesis Is Selectively Inhibited when Five C-terminal Residues Are Deleted from the ϵ Subunit of ATP Synthase. J Biol Chem 2015; 290:21032-21041. [PMID: 26160173 PMCID: PMC4543661 DOI: 10.1074/jbc.m115.665059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.
Collapse
Affiliation(s)
- Naman B Shah
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210
| | - Thomas M Duncan
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
25
|
Buchert F, Konno H, Hisabori T. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:441-450. [PMID: 25660164 DOI: 10.1016/j.bbabio.2015.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/23/2014] [Accepted: 01/27/2015] [Indexed: 11/26/2022]
Abstract
The soluble F1 complex of ATP synthase (FoF1) is capable of ATP hydrolysis, accomplished by the minimum catalytic core subunits α3β3γ. A special feature of cyanobacterial F1 and chloroplast F1 (CF1) is an amino acid sequence inserted in the γ-subunit. The insertion is extended slightly into the CF1 enzyme containing two additional cysteines for regulation of ATPase activity via thiol modulation. This molecular switch was transferred to a chimeric F1 by inserting the cysteine-containing fragment from spinach CF1 into a cyanobacterial γ-subunit [Y. Kim et al., redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch, J Biol Chem, 286 (2011) 9071-9078]. Under oxidizing conditions, the obtained F1 tends to lapse into an ADP-inhibited state, a common regulation mechanism to prevent wasteful ATP hydrolysis under unfavorable circumstances. However, the information flow between thiol modulation sites on the γ-subunit and catalytic sites on the β-subunits remains unclear. Here, we clarified a possible interplay for the CF1-ATPase redox regulation between structural elements of the βDELSEED-loop and the γ-subunit neck region, i.e., the most convex part of the α-helical γ-termini. Critical residues were assigned on the β-subunit, which received the conformation change signal produced by disulfide/dithiol formation on the γ-subunit. Mutant response to the ATPase redox regulation ranged from lost to hypersensitive. Furthermore, mutant cross-link experiments and inversion of redox regulation indicated that the γ-redox state might modulate the subunit interface via reorientation of the βDELSEED motif region.
Collapse
Affiliation(s)
- Felix Buchert
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan; Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan.
| |
Collapse
|
26
|
Wang C, Yamamoto H, Shikanai T. Role of cyclic electron transport around photosystem I in regulating proton motive force. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:931-8. [PMID: 25481109 DOI: 10.1016/j.bbabio.2014.11.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
In addition to ∆pH formed across the thylakoid membrane, membrane potential contributes to proton motive force (pmf) in chloroplasts. However, the regulation of photosynthetic electron transport is mediated solely by ∆pH. To assess the contribution of two cyclic electron transport pathways around photosystem I (one depending on PGR5/PGRL1 and one on NDH) to pmf formation, electrochromic shift (ECS) was analyzed in the Arabidopsis pgr5 mutant, NDH-defective mutants (ndhs and crr4-2), and their double mutants (ndhs pgr5 and crr4-2 pgr5). In pgr5, the size of the pmf, as represented by ECSt, was reduced by 30% to 47% compared with that in the wild type (WT). A gH+ parameter, which is considered to represent the activity of ATP synthase, was enhanced at high light intensities. However, gH+ recovered to its low-light levels after 20 min in the dark, implying that the elevation in gH+ is due to the disturbed regulation of ATP synthase rather than to photodamage. After long dark adaptation more than 2 h, gH+ was higher in pgr5 than in the WT. During induction of photosynthesis, gH+ was more rapidly elevated in pgr5 than that in the WT. Both results suggest that ATP synthase is not fully inactivated in the dark in pgr5. In the NDH-deficient mutants, ECSt was slightly but significantly lower than in the WT, whereas gH+ was not affected. In the double mutants, ECSt was even lower than in pgr5. These results suggest that both PGR5/PGRL1- and NDH-dependent pathways contribute to pmf formation, although to different extents. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Caijuan Wang
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|
27
|
Malyan AN. Noncatalytic nucleotide binding sites: properties and mechanism of involvement in ATP synthase activity regulation. BIOCHEMISTRY (MOSCOW) 2014; 78:1512-23. [PMID: 24490737 DOI: 10.1134/s0006297913130099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP synthases (FoF1-ATPases) of chloroplasts, mitochondria, and bacteria catalyze ATP synthesis or hydrolysis coupled with the transmembrane transfer of protons or sodium ions. Their activity is regulated through their reversible inactivation resulting from a decreased transmembrane potential difference. The inactivation is believed to conserve ATP previously synthesized under conditions of sufficient energy supply against unproductive hydrolysis. This review is focused on the mechanism of nucleotide-dependent regulation of the ATP synthase activity where the so-called noncatalytic nucleotide binding sites are involved. Properties of these sites varying upon free enzyme transition to its membrane-bound form, their dependence on membrane energization, and putative mechanisms of noncatalytic site-mediated regulation of the ATP synthase activity are discussed.
Collapse
Affiliation(s)
- A N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
28
|
Abstract
Subunit rotation is the mechanochemical intermediate for the catalytic activity of the membrane enzyme FoF1-ATP synthase. smFRET (single-molecule FRET) studies have provided insights into the step sizes of the F1 and Fo motors, internal transient elastic energy storage and controls of the motors. To develop and interpret smFRET experiments, atomic structural information is required. The recent F1 structure of the Escherichia coli enzyme with the ϵ-subunit in an inhibitory conformation initiated a study for real-time monitoring of the conformational changes of ϵ. The present mini-review summarizes smFRET rotation experiments and previews new smFRET data on the conformational changes of the CTD (C-terminal domain) of ϵ in the E. coli enzyme.
Collapse
|
29
|
Sunamura EI, Kamei T, Konno H, Tamaoki N, Hisabori T. Reversible control of F(1)-ATPase rotational motion using a photochromic ATP analog at the single molecule level. Biochem Biophys Res Commun 2014; 446:358-63. [PMID: 24607907 DOI: 10.1016/j.bbrc.2014.02.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/25/2014] [Indexed: 11/16/2022]
Abstract
Motor enzymes such as F1-ATPase and kinesin utilize energy from ATP for their motion. Molecular motions of these enzymes are critical to their catalytic mechanisms and were analyzed thoroughly using a single molecule observation technique. As a tool to analyze and control the ATP-driven motor enzyme motion, we recently synthesized a photoresponsive ATP analog with a p-tert-butylazobenzene tethered to the 2' position of the ribose ring. Using cis/trans isomerization of the azobenzene moiety, we achieved a successful reversible photochromic control over a kinesin-microtubule system in an in vitro motility assay. Here we succeeded to control the hydrolytic activity and rotation of the rotary motor enzyme, F1-ATPase, using this photosensitive ATP analog. Subsequent single molecule observations indicated a unique pause occurring at the ATP binding angle position in the presence of cis form of the analog.
Collapse
Affiliation(s)
- Ei-Ichiro Sunamura
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-Ku Tokyo 102-0076, Japan; Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | - Takashi Kamei
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-Ku, Sapporo 001-0020, Japan
| | - Hiroki Konno
- Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-Ku, Sapporo 001-0020, Japan.
| | - Toru Hisabori
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-Ku Tokyo 102-0076, Japan; Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan.
| |
Collapse
|
30
|
Lu P, Lill H, Bald D. ATP synthase in mycobacteria: special features and implications for a function as drug target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1208-18. [PMID: 24513197 DOI: 10.1016/j.bbabio.2014.01.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
ATP synthase is a ubiquitous enzyme that is largely conserved across the kingdoms of life. This conservation is in accordance with its central role in chemiosmotic energy conversion, a pathway utilized by far by most living cells. On the other hand, in particular pathogenic bacteria whilst employing ATP synthase have to deal with energetically unfavorable conditions such as low oxygen tensions in the human host, e.g. Mycobacterium tuberculosis can survive in human macrophages for an extended time. It is well conceivable that such ATP synthases may carry idiosyncratic features that contribute to efficient ATP production. In this review genetic and biochemical data on mycobacterial ATP synthase are discussed in terms of rotary catalysis, stator composition, and regulation of activity. ATP synthase in mycobacteria is of particular interest as this enzyme has been validated as a target for promising new antibacterial drugs. A deeper understanding of the working of mycobacterial ATP synthase and its atypical features can provide insight in adaptations of bacterial energy metabolism. Moreover, pinpointing and understanding critical differences as compared with human ATP synthase may provide input for the design and development of selective ATP synthase inhibitors as antibacterials. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Ping Lu
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Hisabori T, Sunamura EI, Kim Y, Konno H. The chloroplast ATP synthase features the characteristic redox regulation machinery. Antioxid Redox Signal 2013; 19:1846-54. [PMID: 23145525 PMCID: PMC3837435 DOI: 10.1089/ars.2012.5044] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. RECENT ADVANCES The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. CRITICAL ISSUES Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. FUTURE DIRECTIONS The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system.
Collapse
Affiliation(s)
- Toru Hisabori
- 1 Chemical Resources Laboratory, Tokyo Institute of Technology , Yokohama, Japan
| | | | | | | |
Collapse
|
32
|
Tikhonov AN. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. PHOTOSYNTHESIS RESEARCH 2013; 116:511-34. [PMID: 23695653 DOI: 10.1007/s11120-013-9845-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/25/2013] [Indexed: 05/02/2023]
Abstract
This review is focused on pH-dependent mechanisms of regulation of photosynthetic electron transport and ATP synthesis in chloroplasts. The light-induced acidification of the thylakoid lumen is known to decelerate the plastoquinol oxidation by the cytochrome b 6 f complex, thus impeding the electron flow between photosystem II and photosystem I. Acidification of the lumen also triggers the dissipation of excess energy in the light-harvesting antenna of photosystem II, thereby protecting the photosynthetic apparatus against a solar stress. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the nature of the rate-limiting step of electron transfer between photosystem II and photosystem I. In the context of pH-dependent mechanism of photosynthetic control in chloroplasts, the mechanisms of plastoquinol oxidation by the cytochrome b 6 f complex have been considered. The light-induced alkalization of stroma is another factor of pH-dependent regulation of electron transport in chloroplasts. Alkalization of stroma induces activation of the Bassham-Benson-Calvin cycle reactions, thereby promoting efflux of electrons from photosystem I to NADP(+). The mechanisms of the light-induced activation of ATP synthase are briefly considered.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M. V. Lomonosov, Moscow State University, Moscow, Russia,
| |
Collapse
|
33
|
ε subunit of Bacillus subtilis F1-ATPase relieves MgADP inhibition. PLoS One 2013; 8:e73888. [PMID: 23967352 PMCID: PMC3742539 DOI: 10.1371/journal.pone.0073888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
MgADP inhibition, which is considered as a part of the regulatory system of ATP synthase, is a well-known process common to all F1-ATPases, a soluble component of ATP synthase. The entrapment of inhibitory MgADP at catalytic sites terminates catalysis. Regulation by the ε subunit is a common mechanism among F1-ATPases from bacteria and plants. The relationship between these two forms of regulatory mechanisms is obscure because it is difficult to distinguish which is active at a particular moment. Here, using F1-ATPase from Bacillus subtilis (BF1), which is strongly affected by MgADP inhibition, we can distinguish MgADP inhibition from regulation by the ε subunit. The ε subunit did not inhibit but activated BF1. We conclude that the ε subunit relieves BF1 from MgADP inhibition.
Collapse
|
34
|
Toei M, Noji H. Single-molecule analysis of F0F1-ATP synthase inhibited by N,N-dicyclohexylcarbodiimide. J Biol Chem 2013; 288:25717-25726. [PMID: 23893417 DOI: 10.1074/jbc.m113.482455] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N,N-Dicyclohexylcarbodiimide (DCCD) is a classical inhibitor of the F0F1-ATP synthase (F0F1), which covalently binds to the highly conserved carboxylic acid of the proteolipid subunit (c subunit) in F0. Although it is well known that DCCD modification of the c subunit blocks proton translocation in F0 and the coupled ATP hydrolysis activity of F1, how DCCD inhibits the rotary dynamics of F0F1 remains elusive. Here, we carried out single-molecule rotation assays to characterize the DCCD inhibition of Escherichia coli F0F1. Upon the injection of DCCD, rotations irreversibly terminated with first order reaction kinetics, suggesting that the incorporation of a single DCCD moiety is sufficient to block the rotary catalysis of the F0F1. Individual molecules terminated at different angles relative to the three catalytic angles of F1, suggesting that DCCD randomly reacts with one of the 10 c subunits. DCCD-inhibited F0F1 sometimes showed transient activation; molecules abruptly rotated and stopped after one revolution at the original termination angle, suggesting that hindrance by the DCCD moiety is released due to thermal fluctuation. To explore the mechanical activation of DCCD-inhibited molecules, we perturbed inhibited molecules using magnetic tweezers. The probability of transient activation increased upon a forward forcible rotation. Interestingly, during the termination F0F1, showed multiple positional shifts, which implies that F1 stochastically changes the angular position of its rotor upon a catalytic reaction. This effect could be caused by balancing the angular positions of the F1 and the F0 rotors, which are connected via elastic elements.
Collapse
Affiliation(s)
- Masashi Toei
- From the Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- From the Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan.
| |
Collapse
|
35
|
DNA-maleimide: An improved maleimide compound for electrophoresis-based titration of reactive thiols in a specific protein. Biochim Biophys Acta Gen Subj 2013; 1830:3077-81. [DOI: 10.1016/j.bbagen.2013.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 11/18/2022]
|
36
|
Pateraki I, Renato M, Azcón-Bieto J, Boronat A. An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:74-85. [PMID: 23302027 DOI: 10.1111/tpj.12109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/15/2012] [Accepted: 12/17/2012] [Indexed: 05/10/2023]
Abstract
Chromoplasts are non-photosynthetic plastids specialized in the synthesis and accumulation of carotenoids. During fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts in a process characterized by the degradation of the thylakoid membranes, and by the active synthesis and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP, and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources. It is widely accepted that the ATP used for biosynthetic processes in non-photosynthetic plastids is imported from the cytosol or is obtained through glycolysis. In this work, however, we show that isolated tomato (Solanum lycopersicum) fruit chromoplasts are able to synthesize ATP de novo through a respiratory pathway using NADPH as an electron donor. We also report the involvement of a plastidial ATP synthase harboring an atypical γ-subunit induced during ripening, which lacks the regulatory dithiol domain present in plant and algae chloroplast γ-subunits. Silencing of this atypical γ-subunit during fruit ripening impairs the capacity of isolated chromoplast to synthesize ATP de novo. We propose that the replacement of the γ-subunit present in tomato leaf and green fruit chloroplasts by the atypical γ-subunit lacking the dithiol domain during fruit ripening reflects evolutionary changes, which allow the operation of chromoplast ATP synthase under the particular physiological conditions found in this organelle.
Collapse
Affiliation(s)
- Irini Pateraki
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | | | | | | |
Collapse
|
37
|
Shah NB, Hutcheon ML, Haarer BK, Duncan TM. F1-ATPase of Escherichia coli: the ε- inhibited state forms after ATP hydrolysis, is distinct from the ADP-inhibited state, and responds dynamically to catalytic site ligands. J Biol Chem 2013; 288:9383-95. [PMID: 23400782 DOI: 10.1074/jbc.m113.451583] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ε, which partially inserts into the enzyme's central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·ε binding and dissociation, we show that formation of the extended, inhibitory conformation of ε (εX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the εX state, and post-hydrolysis conditions stabilize it. We also show that ε inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ε is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ε N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ε suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.
Collapse
Affiliation(s)
- Naman B Shah
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
38
|
Sunamura EI, Konno H, Imashimizu M, Mochimaru M, Hisabori T. A conformational change of the γ subunit indirectly regulates the activity of cyanobacterial F1-ATPase. J Biol Chem 2012; 287:38695-704. [PMID: 23012354 DOI: 10.1074/jbc.m112.395053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30-40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α(3)β(3)γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ε inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ε inhibition.
Collapse
Affiliation(s)
- Ei-Ichiro Sunamura
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
39
|
Tikhonov AN. Energetic and regulatory role of proton potential in chloroplasts. BIOCHEMISTRY (MOSCOW) 2012; 77:956-74. [DOI: 10.1134/s0006297912090027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Konno H, Nakane T, Yoshida M, Ueoka-Nakanishi H, Hara S, Hisabori T. Thiol modulation of the chloroplast ATP synthase is dependent on the energization of thylakoid membranes. PLANT & CELL PHYSIOLOGY 2012; 53:626-34. [PMID: 22362842 DOI: 10.1093/pcp/pcs018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Thiol modulation of the chloroplast ATP synthase γ subunit has been recognized as an important regulatory system for the activation of ATP hydrolysis activity, although the physiological significance of this regulation system remains poorly characterized. Since the membrane potential required by this enzyme to initiate ATP synthesis for the reduced enzyme is lower than that needed for the oxidized form, reduction of this enzyme was interpreted as effective regulation for efficient photophosphorylation. However, no concrete evidence has been obtained to date relating to the timing and mode of chloroplast ATP synthase reduction and oxidation in green plants. In this study, thorough analysis of the redox state of regulatory cysteines of the chloroplast ATP synthase γ subunit in intact chloroplasts and leaves shows that thiol modulation of this enzyme is pivotal in prohibiting futile ATP hydrolysis activity in the dark. However, the physiological importance of efficient ATP synthesis driven by the reduced enzyme in the light could not be demonstrated. In addition, we investigated the significance of the electrochemical proton gradient in reducing the γ subunit by the reduced form of thioredoxin in chloroplasts, providing strong insights into the molecular mechanisms underlying the formation and reduction of the disulfide bond on the γ subunit in vivo.
Collapse
Affiliation(s)
- Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-Ku, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Imashimizu M, Bernát G, Sunamura EI, Broekmans M, Konno H, Isato K, Rögner M, Hisabori T. Regulation of F0F1-ATPase from Synechocystis sp. PCC 6803 by gamma and epsilon subunits is significant for light/dark adaptation. J Biol Chem 2011; 286:26595-26602. [PMID: 21610078 PMCID: PMC3143624 DOI: 10.1074/jbc.m111.234138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/02/2011] [Indexed: 12/07/2024] Open
Abstract
The γ and ε subunits of F(0)F(1)-ATP synthase from photosynthetic organisms display unique properties not found in other organisms. Although the γ subunit of both chloroplast and cyanobacterial F(0)F(1) contains an extra amino acid segment whose deletion results in a high ATP hydrolysis activity (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., Sugano, Y., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865), its ε subunit strongly inhibits ATP hydrolysis activity. To understand the physiological significance of these phenomena, we studied mutant strains with (i) a C-terminally truncated ε (ε(ΔC)), (ii) γ lacking the inserted sequence (γ(Δ198-222)), and (iii) a double mutation of (i) and (ii) in Synechocystis sp. PCC 6803. Although thylakoid membranes from the ε(ΔC) strain showed higher ATP hydrolysis and lower ATP synthesis activities than those of the wild type, no significant difference was observed in growth rate and in intracellular ATP level both under light conditions and during light-dark cycles. However, both the ε(ΔC) and γ(Δ198-222) and the double mutant strains showed a lower intracellular ATP level and lower cell viability under prolonged dark incubation compared with the wild type. These data suggest that internal inhibition of ATP hydrolysis activity is very important for cyanobacteria that are exposed to prolonged dark adaptation and, in general, for the survival of photosynthetic organisms in an ever-changing environment.
Collapse
Affiliation(s)
- Mari Imashimizu
- From the Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan and
| | - Gábor Bernát
- Department of Plant Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Ei-Ichiro Sunamura
- From the Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan and
| | - Martin Broekmans
- Department of Plant Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Hiroki Konno
- From the Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan and
| | - Kota Isato
- From the Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan and
| | - Matthias Rögner
- Department of Plant Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Toru Hisabori
- From the Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan and
| |
Collapse
|
42
|
Konno H, Isu A, Kim Y, Murakami-Fuse T, Sugano Y, Hisabori T. Characterization of the relationship between ADP- and epsilon-induced inhibition in cyanobacterial F1-ATPase. J Biol Chem 2011; 286:13423-9. [PMID: 21345803 DOI: 10.1074/jbc.m110.155986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATPase activity of chloroplast and bacterial F(1)-ATPase is strongly inhibited by both the endogenous inhibitor ε and tightly bound ADP. Although the physiological significance of these inhibitory mechanisms is not very well known for the membrane-bound F(0)F(1), these are very likely to be important in avoiding the futile ATP hydrolysis reaction and ensuring efficient ATP synthesis in vivo. In a previous study using the α(3)β(3)γ complex of F(1) obtained from the thermophilic cyanobacteria, Thermosynechococcus elongatus BP-1, we succeeded in determining the discrete stop position, ∼80° forward from the pause position for ATP binding, caused by ε-induced inhibition (ε-inhibition) during γ rotation (Konno, H., Murakami-Fuse, T., Fujii, F., Koyama, F., Ueoka-Nakanishi, H., Pack, C. G., Kinjo, M., and Hisabori, T. (2006) EMBO J. 25, 4596-4604). Because γ in ADP-inhibited F(1) also pauses at the same position, ADP-induced inhibition (ADP-inhibition) was assumed to be linked to ε-inhibition. However, ADP-inhibition and ε-inhibition should be independent phenomena from each other because the ATPase core complex, α(3)β(3)γ, also lapses into the ADP-inhibition state. By way of thorough biophysical and biochemical analyses, we determined that the ε subunit inhibition mechanism does not directly correlate with ADP-inhibition. We suggest here that the cyanobacterial ATP synthase ε subunit carries out an important regulatory role in acting as an independent "braking system" for the physiologically unfavorable ATP hydrolysis reaction.
Collapse
Affiliation(s)
- Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Kim Y, Konno H, Sugano Y, Hisabori T. Redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch. J Biol Chem 2010; 286:9071-8. [PMID: 21193405 DOI: 10.1074/jbc.m110.200584] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F(1)-ATP synthase (F(1)-ATPase) is equipped with a special mechanism that prevents the wasteful reverse reaction, ATP hydrolysis, when there is insufficient proton motive force to drive ATP synthesis. Chloroplast F(1)-ATPase is subject to redox regulation, whereby ATP hydrolysis activity is regulated by formation and reduction of the disulfide bond located on the γ subunit. To understand the molecular mechanism of this redox regulation, we constructed a chimeric F(1) complex (α(3)β(3)γ(redox)) using cyanobacterial F(1), which mimics the regulatory properties of the chloroplast F(1)-ATPase, allowing the study of its regulation at the single molecule level. The redox state of the γ subunit did not affect the ATP binding rate to the catalytic site(s) and the torque for rotation. However, the long pauses caused by ADP inhibition were frequently observed in the oxidized state. In addition, the duration of continuous rotation was relatively shorter in the oxidized α(3)β(3)γ(redox) complex. These findings lead us to conclude that redox regulation of CF(1)-ATPase is achieved by controlling the probability of ADP inhibition via the γ subunit inserted region, a sequence feature observed in both cyanobacterial and chloroplast ATPase γ subunits, which is important for ADP inhibition (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., Sugano, Y., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865).
Collapse
Affiliation(s)
- Yusung Kim
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | |
Collapse
|
44
|
Haruyama T, Hirono-Hara Y, Kato-Yamada Y. Inhibition of thermophilic F 1-ATPase by the ε subunit takes different path from the ADP-Mg inhibition. Biophysics (Nagoya-shi) 2010; 6:59-65. [PMID: 27857586 PMCID: PMC5036666 DOI: 10.2142/biophysics.6.59] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 11/28/2010] [Indexed: 12/01/2022] Open
Abstract
The F1-ATPase, the soluble part of FoF1-ATP synthase, is a rotary molecular motor consisting of α3β3γδε. The γ and ε subunits rotate relative to the α3β3δ sub-complex on ATP hydrolysis by the β subunit. The ε subunit is known as an endogenous inhibitor of the ATPase activity of the F1-ATPase and is believed to function as a regulator of the ATP synthase. This inhibition by the ε subunit (ε inhibition) of F1-ATPase from thermophilic Bacillus PS3 was analyzed by single molecule measurements. By using a mutant ε subunit deficient in ATP binding, reversible transitions between active and inactive states were observed. Analysis of pause and rotation durations showed that the ε inhibition takes a different path from the ADP-Mg inhibition. Furthermore, the addition of the mutant ε subunit to the α3β3γ sub-complex was found to facilitate recovery of the ATPase activity from the ADP-Mg inhibition. Thus, it was concluded that these two inhibitions are essentially exclusive of each other.
Collapse
Affiliation(s)
- Takamitsu Haruyama
- Department of Life Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; Frontier Project "Adaptation and Evolution of Extremophile", College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yoko Hirono-Hara
- Institute of Industrial Science, the University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan; Frontier Project "Adaptation and Evolution of Extremophile", College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
45
|
Sunamura EI, Konno H, Imashimizu-Kobayashi M, Sugano Y, Hisabori T. Physiological impact of intrinsic ADP inhibition of cyanobacterial FoF1 conferred by the inherent sequence inserted into the gammasubunit. PLANT & CELL PHYSIOLOGY 2010; 51:855-65. [PMID: 20421199 DOI: 10.1093/pcp/pcq061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The F(o)F(1)-ATPase, which synthesizes ATP with a rotary motion, is highly regulated in vivo in order to function efficiently, although there remains a limited understanding of the physiological significance of this regulation. Compared with its bacterial and mitochondrial counterparts, the gamma subunit of cyanobacterial F(1), which makes up the central shaft of the motor enzyme, contains an additional inserted region. Although deletion of this region results in the acceleration of the rate of ATP hydrolysis, the functional significance of the region has not yet been determined. By analysis of rotation, we successfully determined that this region confers the ability to shift frequently into an ADP inhibition state; this is a highly conserved regulatory mechanism which prevents ATP synthase from carrying out the reverse reaction. We believe that the physiological significance of this increased likelihood of shifting into the ADP inhibition state allows the intracellular ATP levels to be maintained, which is especially critical for photosynthetic organisms.
Collapse
Affiliation(s)
- Ei-Ichiro Sunamura
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
46
|
Saita EI, Iino R, Suzuki T, Feniouk BA, Kinosita K, Yoshida M. Activation and stiffness of the inhibited states of F1-ATPase probed by single-molecule manipulation. J Biol Chem 2010; 285:11411-7. [PMID: 20154086 DOI: 10.1074/jbc.m109.099143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F(1)-ATPase (F(1)), a soluble portion of F(o)F(1)-ATP synthase (F(o)F(1)), is an ATP-driven motor in which gammaepsilon subunits rotate in the alpha(3)beta(3) cylinder. Activity of F(1) and F(o)F(1) from Bacillus PS3 is attenuated by the epsilon subunit in an inhibitory extended form. In this study we observed ATP-dependent transition of epsilon in single F(1) molecules from extended form to hairpin form by fluorescence resonance energy transfer. The results justify the previous bulk experiments and ensure that fraction of F(1) with hairpin epsilon directly determines the fraction of active F(1) at any ATP concentration. Next, mechanical activation and stiffness of epsilon-inhibited F(1) were examined by the forced rotation of magnetic beads attached to gamma. Compared with ADP inhibition, which is another manner of inhibition, rotation by a larger angle was required for the activation from epsilon inhibition when the beads were forced to rotate to ATP hydrolysis direction, and more torque was required to reach the same rotation angle when beads were forced to rotate to ATP synthesis direction. The results imply that if F(o)F(1) is resting in the epsilon-inhibited state, F(o) motor must transmit to gamma a torque larger than expected from thermodynamic equilibrium to initiate ATP synthesis.
Collapse
Affiliation(s)
- Ei-ichiro Saita
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Aomi 2-3-6, Tokyo 135-0064, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Structural and functional analysis of the intrinsic inhibitor subunit epsilon of F1-ATPase from photosynthetic organisms. Biochem J 2009; 425:85-94. [PMID: 19785575 DOI: 10.1042/bj20091247] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The epsilon subunit, a small subunit located in the F1 domain of ATP synthase and comprising two distinct domains, an N-terminal beta-sandwich structure and a C-terminal alpha-helical region, serves as an intrinsic inhibitor of ATP hydrolysis activity. This inhibitory function is especially important in photosynthetic organisms as the enzyme cannot synthesize ATP in the dark, but may catalyse futile ATP hydrolysis reactions. To understand the structure-function relationship of this subunit in F1 from photosynthetic organisms, we solved the NMR structure of the epsilon subunit of ATP synthase obtained from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, and examined the flexibility of the C-terminal domains using molecular dynamics simulations. In addition, we revealed the significance of the C-terminal alpha-helical region of the epsilon subunit in determining the binding affinity to the complex based on the assessment of the inhibition of ATPase activity by the cyanobacterial epsilon subunit and the chimaeric subunits composed of the N-terminal domain from the cyanobacterium and the C-terminal domain from spinach. The differences observed in the structural and biochemical properties of chloroplast and bacterial epsilon subunits explains the distinctive characteristics of the epsilon subunits in the ATPase complex of the photosynthetic organism.
Collapse
|
48
|
Effect of epsilon subunit on the rotation of thermophilic Bacillus F1-ATPase. FEBS Lett 2009; 583:1121-6. [PMID: 19265694 DOI: 10.1016/j.febslet.2009.02.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 02/24/2009] [Accepted: 02/26/2009] [Indexed: 11/22/2022]
Abstract
F(1)-ATPase is an ATP-driven motor in which gammaepsilon rotates in the alpha(3)beta(3)-cylinder. It is attenuated by MgADP inhibition and by the epsilon subunit in an inhibitory form. The non-inhibitory form of epsilon subunit of thermophilic Bacillus PS3 F(1)-ATPase is stabilized by ATP-binding with micromolar K(d) at 25 degrees C. Here, we show that at [ATP]>2 microM, epsilon does not affect rotation of PS3 F(1)-ATPase but, at 200 nM ATP, epsilon prolongs the pause of rotation caused by MgADP inhibition while the frequency of the pause is unchanged. It appears that epsilon undergoes reversible transition to the inhibitory form at [ATP] below K(d).
Collapse
|
49
|
Abstract
Fluorescence cross-correlation spectroscopy (FCCS) is a technique that physically evaluates the molecular interaction between two fluorophore-tagged molecules such as proteins and oligonucleotides in a quantitative manner. Because it simply makes use of the coincidental movement of two molecules, it could avoid the complexity that sometimes occurs in other fluorescent techniques such as fluorescence resonance energy transfer. The present chapter describes procedures for FCCS of plant proteins expressed and measured in HeLa cells. Determination in plant cells is also mentioned briefly.
Collapse
Affiliation(s)
- Hideki Muto
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
50
|
Hong S, Pedersen PL. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 2008; 72:590-641, Table of Contents. [PMID: 19052322 PMCID: PMC2593570 DOI: 10.1128/mmbr.00016-08] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and P(i), the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology.
Collapse
Affiliation(s)
- Sangjin Hong
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|